17.10.2025, 11:00
– Campus Golm, Building 9, Room 2.22 and via Zoom
Arbeitsgruppenseminar Analysis
TBA
Rosa Preiss (TU Berlin)
Anatolii Zhuchok (Luhansk Taras Shevchenko National University, Poltava, Ukraine)
A trioid is an algebraic system consisting of a set with three binary associative operations satisfying certain axioms. Trioids are a generalization of semigroups. They play a prominent role in trialgebra theory. After defining the concept of a trioid we present examples of trioids and their relationships with such algebraic structures as Poisson algebras, Leibniz algebras, dialgebras, dimonoids, digroups and n-tuple semigroups. Then we establish independence of axioms of trioids and construct absolutely and relatively free algebras in trioid variety.