14.01.2026, 14:00 - 15:15
– Campus Golm, Building 9, Room 2.22 and via Zoom
Institutskolloquium
Getting to the chore of things
Christian Mercat (Claude Bernard University Lyon 1)
Anatolii Zhuchok (Luhansk Taras Shevchenko National University, Poltava, Ukraine)
A trioid is an algebraic system consisting of a set with three binary associative operations satisfying certain axioms. Trioids are a generalization of semigroups. They play a prominent role in trialgebra theory. After defining the concept of a trioid we present examples of trioids and their relationships with such algebraic structures as Poisson algebras, Leibniz algebras, dialgebras, dimonoids, digroups and n-tuple semigroups. Then we establish independence of axioms of trioids and construct absolutely and relatively free algebras in trioid variety.