12.12.2024, 16:15
– Raum 0.14
Forschungsseminar Differentialgeometrie
First steps towards an equivariant Lorentzian index theorem
Lennart Ronge (UP)
Alexander Schmeding (NTNU, Trondheim)
Functions of bounded variation (BV) with values in a Banach space are a classical topic of analysis with specific applications for example in rough path theory. In the theory of rough paths one considers routinely even BV-functions with values in non-linear spaces such as manifolds and (finite and infinite-dimensional) Lie groups. In this talk we will explain how the well known construction of manifolds of mappings carries over to the world of BV-functions. As a consequence we are able to generalise the construction of current groups to the BV-setting. This also strengthens known regularity properties a la Milnor for Banach Lie groups.
Joint work with H. Glöckner and A. Suri (Paderborn)