Eigenvalue asymptotic for weighted Laplacians on rough Riemannian manifolds with boundary

13.09.2018, 16:15  –  Haus 9, Raum 2.22
Forschungsseminar Differentialgeometrie

Medet Nursultanov

 We investigate an asymptotic of the eigenvalues of the of the indefinite-weighted Laplace equation, $\Delta u = \lambda P u$, on the Riemannian manifold equipped with a rough metric. Namely, for the different boundary conditions, we prove the Weyl’s law for both negative and positive eigenvalues. 

zu den Veranstaltungen