
Multiple-time-stepping generalized hybrid Monte Carlo methods

Bruno Escribanoa, Elena Akhmatskayaa,b, Sebastian Reichc, Jon M. Azpirozd

aBCAM - Basque Center for Applied Mathematics, E-48009 Bilbao, Spain
bIKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain

cUniversität Potsdam, Institut für Mathematik, D-14469 Potsdam, Germany
dKimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center

(DIPC), P.K. 1072, Donostia, Spain

Abstract

Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which
proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics
and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping
(MTS) and mollification of slow forces. We demonstrate that the comparatively simple
modifications of the method not only lead to better performance of GSHMC itself but also
allow for beating the best performed methods, which use the similar force splitting schemes.
In addition we show that the same ideas can be successfully applied to the conventional
generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and
MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties,
exact temperature control during simulation and computational robustness and efficiency.
MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to
the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified)
Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow
Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians
improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency
of the method. Both methods were implemented in the open-source MD package ProtoMol
and were tested on a water and a protein systems. Results were compared to those obtained
using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate
the superiority of the new methods over LM in terms of stability, accuracy and sampling
efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte
Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead
to improving stability of MTS and allow for achieving larger step sizes in the simulation of
complex systems.
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modified Hamiltonians

1. Introduction

Molecular dynamics (MD) is a useful tool for theoretical investigation of molecular sys-
tems. A primary limitation in the application of MD to the study of complex processes
involving macromolecules, e.g. biomolecules, is the small time step size of conventional MD.
Whereas the latter is typically measured in femtoseconds, dynamical processes of interest hap-
pen in microseconds and longer time scales. Bridging the time scale gap between simulations
and the phenomena of interest has been an area of active research for more than a decade. One
area of intense focus is design of numerical algorithms, which accelerate MD simulations by
making use of the multi-scale nature of the macromolecular systems. Multiple-time-stepping
(MTS) methods are among the most popular approaches of this type. The methods are based
on the idea to build multiple time step integrators for molecular dynamics that allow for time
steps of differing lengths according to how rapidly a given type of interaction is evolving in
time. When simulating biological systems such as proteins one must take into consideration
atomic vibrations in the order of femtoseconds as well as collective motions in the order of
milliseconds. MTS methods use different time steps for the integration of different time scale
processes, adapting the computational performance to the molecular system being simulated.
For example, the most computationally expensive long range electrostatic interactions only
contribute to the dynamics on a relatively long time scale and it is not necessary to calculate
them as often as other interactions such as bonded or angle interactions. In this way, it is
feasible to save computational time by increasing the time step without sacrificing accuracy.

The prototypical algorithm is the Verlet-I/r-RESPA/Impulse integrator [6, 7], which splits
the forces into fast and slow components and evaluates the former more frequently than the
latter. The ratio between frequencies of evaluation of the slow forces and fast forces, so called
the step-size ratio, measures the gain in simulation performance.

Splitting forces can be achieved in different ways and can include several levels [8]. For
example initial splitting in bonded and non-bonded forces can be followed by splitting further
each group of forces according to their relative intrinsic time scales. In this paper we focus
on a single level splitting force scheme.

In theory, MTS methods can dramatically speed up MD simulations by reducing the
number of expensive slow force evaluations. For example, in biomolecular applications, the
computational complexity of the fast short-range force evaluations scales linearly in the num-
ber of atoms in the system, N, while it scales quadratically in N for the slow long-range force
evaluations. Furthermore, while the short-range fast forces are easy to compute in parallel,
long-range slow forces require global data communication and hence are more difficult to
parallelize efficiently.
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In practice, however, the impulse MTS methods such as the popular Verlet-I/r-RESPA
suffer from severe resonance instabilities that limit practical performance gain [5, 9]. For
solvated biomolecular systems, for example, the stability limit corresponds to the step-size
ratio to be equal to ∼4 [9].

Another problem is that common time-stepping methods do not exactly sample from the
target temperature even if the simulations are stable and are subject to a thermostat [10, 11].
This error can be controlled with a loss of computational efficiency.

Recent research has partially resolved some of these issues. On the one hand, a group of
algorithms which eliminate resonance induced instabilities by constraining the high frequen-
cies [12–14] or by coupling the system to a bath [5, 8, 15–19] has been introduced. Though
the reported step-size ratios for such schemes is sometimes an order of magnitude larger
than for the original impulse MTS methods, other than resonance issues may still limit the
performance of such methods. Thus, some of those algorithms use specific chemical informa-
tion about the simulated systems and thus cannot be easily generalized. Other algorithms
offer a control of the resonance problem at the price of loosing dynamical properties due to
the non-Hamiltonian nature of the equations of motion used [15] or making the simulations
prohibitively expensive [16]. Also, the ergodicity of the recent MTS algorithms is not always
proven.

On the other hand, the incorrect sampling problem has been resolved by generalized
hybrid Monte Carlo methods [1, 20–23] which rigorously sample from the canonical ensemble
while only weakly interfering with the underlying molecular dynamics model. In addition,
these methods offer the potentially faster exploration of conformational space compared to
conventional MD simulations.

Here we propose to combine the MTS philosophy with the hybrid Monte Carlo (GHMC)
methods [1, 20–23] in a way that the resulting MTS methods benefit from the delayed reso-
nance barrier. This can be achieved by coupling a system to a Langevin thermostat naturally
offered by GHMC and also by constraining the high frequencies using MOLLY [12, 13].

This leads us to two novel MTS methods, multi-time stepping generalized Hybrid Monte
Carlo (MTS-GHMC) and multi-time stepping generalized shadow Hybrid Monte Carlo (MTS-
GSHMC), for constant temperature molecular simulation of large biomolecular systems.

For the MTS-GHMC method, we demonstrate an improved stability compared with the
best performed mollified MTS methods which use the similar MTS schemes. Moreover, the
method allows for a larger step-size than that permitted by Langevin stabilized MTS methods
[5]. However it will be shown that the acceptance rate in the molecular dynamics part of
MTS-GHMC quickly deteriorates for very large step-size ratio and the effective efficiency
gain (effective step-size ratio) is lower than the gain determined by step-size ratios alone.

A loss of performance due to decreasing the acceptance rate is not a new problem in
molecular simulation. It was successfully solved in the past for different hybrid Monte Carlo
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methods by Izaguirre and Hampton (SHMC) [23], Akhmatskaya and Reich (TSHMC) [24],
Akhmatskaya and Reich (GSHMC) [1] by utilizing shadow / modified Hamiltonians [25].

Therefore, in order to improve the performance of MTS-GHMC we combine the ideas of
generalized shadow hybrid Monte Carlo (GSHMC) [1] with the MTS-GHMC method and
yield the new mollified multi-time-stepping method MTS-GSHMC.

A key contribution of this paper is the derivation of shadow Hamiltonians for the mollified
MTS methods. This step is necessary since the shadow Hamiltonians used in the single time
stepping GSHMC [1] are specific to the single time-step Störmer-Verlet method. To overcome
this limitation we employ a highly efficient method for evaluating shadow Hamiltonians as
proposed by Skeel and Hardy [25] for symplectic splitting methods [26]. However, due to the
multi-scale nature of MTS methods, a non-trivial modification of the approach of Skeel and
Hardy is required to make it applicable to the MTS-GSHMC method.

We demonstrate that the proposed methods, MTS-GHMC/GSHMC, are stable and thus
do not suffer from resonance or non-resonance instabilities. They rigorously sample from
the canonical ensemble and can accurately reproduce dynamical properties. In addition, the
new methods offer longer time steps and increased computational robustness compared to
Langevin stabilized MTS methods.

The paper is organized as follows. In Section 2 we formulate the basic molecular dynamics
problem statement, outline key challenges for efficient simulations of biomolecular systems
and provide the key ingredients of the proposed new MTS-GHMC/GSHMC methods. Section
3 is devoted to the necessary background material from [13] and [5] on mollified MTS and
Langevin stabilized methods. The novel MTS-GHMC method is described in Section 4. In
Section 5, we introduce the key theoretical ingredients of the proposed MTS-GSHMC method
such as the concept of modified / shadow Hamiltonians and the homogeneous extension [25]
of an MTS method. We then extend the general framework of Skeel and Hardy [25] to
the efficient evaluation of shadow Hamiltonians for mollified MTS methods and present the
algorithmic summary of the new MTS-GSHMC approach.

In Section 6 we give some implementation details; in Section 7 we present numerical
results for two benchmark systems. We summarize our main conclusions in Section 8.

2. Problem statement and proposed methodology

Molecular dynamics (MD) requires the solution of Newton’s equations of motion for a
classical unconstrained simulation

M
d2

dt2
X = −∇XU(X), (1)
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where M is a diagonal mass matrix of atomic masses, X is the collective atomic position
vector, U is the potential energy, typically given by

U = U bonded + Unonbonded, (2)

U bonded = U bond + Uangle + Udihedral + U improper, (3)

Unonbonded = UV an der Waals + U electrostatics, (4)

and the gradient vector −∇XU(X) is the force. Let N denote the number of atoms of the
molecular model. Then the computational complexity of bonded interactions is proportional
to N while it scales with N2 for non-bonded interactions. Simple cut-off schemes have been
devised to reduce the computational cost of non-bonded interactions. But it has also been
found that cut-off schemes lead to poor approximations for highly charged systems such as
biomolecular systems [27].

MD simulations are typically performed either under constant number of particles N,
volume V and temperature T (NVT ensembles) or under constant number of particles N,
pressure P and temperature T (NPT ensembles). Various techniques have been proposed
to perform such ensemble simulations (see, e.g., [28]). In this report, we will focus on NVT
ensemble simulations and will use Langevin dynamics to control temperature. Details will
be given in Section 3.2.

Throughout the paper, we use the following conventions. We assume that collective
atomic position vector X and the collective atomic momentum vector P = M d

dt
Xare column

vectors of length 3N. We also introduce the state vector Γ = (XT , P T )T , which is a column
vector of length 6N, and the collective atomic velocity vector V = M−1P = d

dt
X. Here Y T

denotes the transpose of a vector Y , i.e., Y T is a row vector if Y is a column vector and vice
versa.

Expectation values from an NVT ensemble are characterized by the canonical distribution

ρcanon ∝ exp(−βH), (5)

where β = 1/kBT is the inverse temperature and H is the total energy, which in turn is
defined by

H(Γ) =
1

2
P TM−1P + U(X). (6)

We introduce the following notation. Given a function f of the state variable Γ, we denote
its expectation value with respect to ρcanon by

E[f ] =

∫
f(Γ)ρcanon(Γ)dΓ. (7)
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Under the assumption of ergodicity, the ensemble average (7) can be replaced by a time-
average along trajectories from a MD simulation under the NVT ensemble and one obtains

E[f ] = lim
t′→∞

1

t′

∫ t′

0

f(Γ(t))dt, (8)

which forms the base of computing expectation values from MD simulations. Typical quan-
tities of interest include expectation values for thermodynamic and kinetic properties of the
simulated systems [28].

The approximate computation of expectation values using (8) requires performing MD
simulations over time intervals [0, t′] with t′ as large as possible. The length of a MD sim-
ulation is, on the other hand, limited by the length of the time-step that can be used. MD
simulations can be accelerated by the use of multiple-time-stepping (MTS) methods, such as
the Verlet-I/r-RESPA method [6, 7], which is based on approximating slow forces as widely
separated impulses. One derives impulse MTS methods by first rewriting (1) as

M
d2

dt2
X = F fast(X) + F slow(X), (9)

where F fast = −∇XU
fast and F slow = −∇XU

slow subject to U = U fast + U slow. The
partitioning of the potential U into a fast part U fast and a slow part U slow is done such that

� an appropriate outer time-step ∆t for the slow part is significantly larger than an inner
time-step δt for the fast part,

� evaluations of the fast force field F fast are computationally much less expensive than
evaluations of F slow.

Given an integer p > 1 such that the outer time-step ∆t and the inner time-step δt satisfy
∆t = pδt, an impulse MTS method can now be stated as

M
d2

dt2
X(t) =

L∑
m=0

cm∆tδx(t−m∆t)F slow(X(t)) +

pL∑
n=0

dnδtδx(t− nδt)F fast(X(t)), (10)

for t ∈ [0, t′ = L∆t], δx is the Dirac delta function, and cm = dn = 1 except when m = n = 0
or m = L, n = pL, respectively, in which case cm = dn = 1/2. Analytic solutions to (10)
(i.e., numerical approximations to (1)) can be found by integrating (10) twice with respect
to time. See Appendix A for more details.

However, the impulse MTS method (10) suffers from resonance instabilities. This limits
large step-sizes possible. For solvated biomolecular systems, one, for example, has to restrict
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the time step-ratio p = ∆t/δt to p ≤ 4 with an inner time-step of δt = 1 fs [13]. These step-
size limitations can be partially overcome by the mollified MTS methods of Garca-Archilla
et al. [12] and Izaguirre et al. [5].

In the following section, we summarize the improved MTS methods of Izaguirre et al.
[5, 13].

3. Mollified multiple-time-stepping methods

We first summarize the basic results of Izaguirre et al. [13] and then suggest an improved
force field mollification based on the concept of soft constraints, as introduced by Zhou et al.
[29].

3.1. Constant energy mollified MTS method

Let rij ≥ 0 denote the distance between atom i and atom j. The switching function S
serves to split non-bonded interactions into slow and fast parts. It is defined by

S(rij) =


0 if rij > rcutoff ,
1 if rij < ron,
(r2cutoff−r

2
ij)2(r2cutoff+2r2ij−3r2on)

(r2cutoff−r2on)3
if ron ≤ rij ≤ rcutoff ,

(11)

for given cutoff radius rcutoff and transition interval defined by [ron, rcutoff ] [30]. Given a
potential energy U with entries defined by (2) – (4) we now define the “fast” potential by

U fast = U bonded + UnonbondedS (12)

and the slow contribution by

U slow = Unonbonded − UnonbondedS. (13)

We have to stress that such a splitting scheme is not unique, we use it here for simplicity.
To retain the Hamiltonian, the switch must be applied to the energy rather than the forces.
In commonly used MD software packages, switches often have C1 continuity, which yields a
C0 vector field. In our study we use the scheme of C2 continuity as implemented in ProtoMol.
This guarantees the sufficient accuracy of calculated shadow Hamiltonians to provide high
acceptance rates.

Mollified MTS methods are then defined by an operator

X̄ = A(X) (14)
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which assigns a filtered, averaged position X̄ to an instantaneous collective atomic position
vector X. The averaging operator is then applied to the slow potential to yield a mollified
slow potential

U slow
molly(X) = U slow(A(X)). (15)

The mollified impulse MTS method of Izaguirre et al., 1999 is now given by

M
d2

dt2
X(t) =

L∑
m=0

cm∆tδx(t−m∆t)F slow
molly(X(t)) +

pL∑
n=0

dnδtδx(t− nδt)F fast(X(t)), (16)

for t ∈ [0, t′ = L∆t] with the slow forces defined by

F slow
molly(X) = −∇U slow

molly(X) = AX(X)TF slow(A(X)), (17)

where AX(X) denotes the Jacobian matrix of partial derivatives. The coefficients cm and dn
take values as defined for (10).

One notes that (16) can be viewed as a standard impulse MTS method (10) applied to a
“mollified” molecular system defined by the energy functional

Hmolly(Γ) =
1

2
P TM−1P + U fast(X) + U slow

molly(X). (18)

The assumption is, of course, that the difference between (6) and (18) is small. Nevertheless
the difference between H and Hmolly has to be kept in mind and we will come back to this
issue when putting (16) into the context of generalized hybrid Monte Carlo (GHMC) methods
[1, 20, 21].

Two particular instances of averaging operators A have been presented in [13]. While both
operators can be used in the context of the newly proposed MTS-GHMC/GSHMC methods,
we focus here on the Equilibrium method, which has been shown to lead to the most stable
variant of (16) [5, 13]. Let us write the bond stretching and bond bending potentials as

U bond(X) + Uangle(X) =
1

2
g(X)TKg(X), (19)

where K is a diagonal matrix of force constants and g(X) is a vector of independent bond
constraints (stretches and bends). Let us denote the Jacobian matrix of partial derivatives
gX(X) by G(X). The averaging operator X̄ = A(X) for the method Equilibrium is defined
by the implicit system of equations

X = X −M−1G(X)Tµ (20)

0 = g(X) (21)

8



in the vector of Lagrange multipliers µ. Details of the implementation of Equilibrium can
be found in [13].

It has been demonstrated by Zhou et al. [29] that the averaged positions X̄ are better
characterized by soft constraints, i.e., (21) should be replaced by

0 = G(X)M−1∇XU
fast(X). (22)

In other words, X̄ is now defined as the minimizing state for the potential energy U fast along
M−1G(X)T .

3.2. Langevin stabilization
The stochastically stabilized and mollified MTS methods of [5] are based on the regular

Langevin equations

dP = −∇XUmolly(X)dt− γPdt+
√

2γkBTM1/2dW (t), dX = M−1Pdt, (23)

applied to the mollified potential energy

Umolly = U fast + U slow
molly. (24)

Here γ is the collision frequency, W (t) is a vector of independent standard Wiener processes,
kB is the Boltzmann constant, and T is the target temperature.

The collision frequency γ should be chosen sufficiently small to not alter dynamic proper-
ties of the molecular system. It has been demonstrated in [5] that γ = 0.2 ps−1 is suitable for
simulations of solvated biomolecular systems. Further implementation details can be found
in the original paper [5]. For our numerical experiments we use a particular implementation
described in Section 4.2, which is closely related to the newly proposed MTS-GHMC method.
The MTS-GHMC method is described in the next section.

4. Multiple-time-stepping generalized hybrid Monte Carlo method

The proposed simulation method takes the hybrid Monte Carlo (GHMC) method [20, 21]
as a starting point. GHMC is a rigorous sampling tool for molecular systems. As such, GHMC
can be used, for example, to compute free energies and to find molecular conformations with
applications to drug design.

Throughout this paper we apply the “reduced-flipping” method upon rejection of trajecto-
ries [31]. This method decreases autocorrelation times compared to the standard momentum
flip, while rigorously satisfying the detailed balance condition and minimizing the interference
with the system’s dynamics.

We now demonstrate how to combine GHMC with a mollified MTS method. To do so,
we assume that a splitting of the potential energy function U into a fast contribution (12)
and a slow contribution (13) is given. We also assume that an averaging operator (14) has
been defined, which implies a mollified slow potential (15) and a mollified total energy (18).
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4.1. MTS-GHMC: Algorithmic summary

The generalized hybrid Monte Carlo (GHMC) algorithm of Horowitz [21] and Kennedy
and Pendleton [20] for sampling from the canonical ensemble (5) is defined as the concatena-
tion of two Markov Chain Monte Carlo (MCMC) steps: a molecular dynamics Monte Carlo
(MDMC) and a partial momentum refreshment Monte Carlo (PMMC) step. The key novel
step of the proposed MTS-GHMC method is the implementation of a mollified impulse MTS
method in the MDMC step. We now summarize the proposed method.

The accepted states of the MTS-GHMC method are denoted by Ωi = (ΓTi , ti)
T , i =

0, . . . , I, where Γi = (XT
i , P

T
i )T , Xi is a collective vector of atomic positions, Pi is a collective

vector of atomic momenta, and ti is time.

4.1.1. Partial momentum refreshment Monte Carlo (PMMC)

Given an accepted state Ωi = (ΓTi , ti)
T , Γi = (XT

i , P
T
i )T , its collective atomic momentum

vector Pi is now mixed with an independent and identically distributed normal (Gaussian)
noise vector Ξi of dimension 3N and the partial momentum refreshment step is given by

P̄i = cos(φ)Pi + sin(φ)Ξi,
Ξ̄i = cos(φ)Ξi − sin(φ)Pi,

(25)

where 0 < φ ≤ π/2 is a given angle and Ξi ∼ N[0, βM−1]. Here N[0, βM−1] denotes the
(3N )-dimensional normal distribution with zero mean and covariance matrix βM−1, M is
the diagonal mass matrix of the molecular system, β = 1/kBT is the inverse temperature.

Denote the new state vector by Ω̄i = (Γ̄Ti , ti)
T , Γ̄i = (XT

i , P
T

i )T .

4.1.2. Molecular dynamics Monte Carlo (MDMC)

This step consists of the following two sub-steps.

� Molecular dynamics (MD). We apply the mollified impulse MTS method (16) to the
current state Ω̄i. As shown in Appendix A, (16) gives rise to a time-reversible and
volume conserving mapping Ψτ , τ = L∆t, and a proposal state is defined by

Ω̂i = (Γ̂Ti , ti + τ)T , Γ̂i = Ψτ (Γ̄i), (26)

where L > 0 is a given integer.

� Monte Carlo (MC). The next accepted state Ωi+1 is found through a Metropolis accept
/ reject criterion

Ωi+1 =


Ω̂i with probability PA(Γ̄i, Γ̂i)

Ω̄i with probability PS(Γ̄i|Γ̄i−1, Γ̂i)
FΩ̄i otherwise

, (27)
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where
PA(Γ̄i, Γ̂i) = min(1, exp(−β(Hmolly(Γ̂i)−Hmolly(Γ̄i)))), (28)

is the probability of acceptance andHmolly is the Hamiltonian defined in (18). PS(Γ̄i|Γ̄i−1, Γ̂i)
is the self-transition probability defined in [31], in other words, it is the probability of
avoiding the momentum flip after a rejected trajectory. The operator F symbolizes the
momentum flip.

4.2. Remarks

We wish to point out that the collective vector of atomic positions Xi as well as time ti
remain unchanged from Ωi to Ωi+1 in case of rejection of the MDMC proposal step.

The free parameters of the MTS-GHMC scheme include the angle φ in (25), the inner
and outer step-sizes, δt and ∆t, respectively and the number of outer time-steps L. We will
always assume that

φ =
√

2γτ << 1. (29)

Here γ > 0 is the collision frequency of an underlying Langevin model (23) and τ = ∆tL.
Applying the condition (29) ensures that our method stays close to Langevin dynamics, which
will guarantee a fair comparison with LM.

We note that (25) and (26) without a Metropolis accept / reject step (i.e., with all MD
proposal steps being accepted) and with L = 1 yield a standard multiple time-stepping
method for the underlying Langevin equations (23). The Metropolis test (27) turns (25)
- (26) into a thermodynamically consistent implementation of stochastically stabilized and
mollified MTS methods. See also [22] for a more detailed discussion on the relation between
Langevin dynamics (23) and GHMC.

4.3. Data analysis

Let {Ωi}Ii=1 denote a sequence of accepted states from a MTS-GHMC simulation with
Ωi = (ΓTi , ti)

T and Γi = (XT
i , P

T
i )T . Expectation values of a function f(Γ) with respect to

the canonical density (5) are computed according to the formula

〈f〉 =

∑I
i=1 wif(Γi)∑I

i=1wi
(30)

with weight factors
wi = exp (−β(H(Γi)−Hmolly(Γi))) . (31)

Provided the MTS-GHMC method generates an ergodic Markov chain for the given molecular
system, we have

lim
I→∞
〈f〉 = E[f ] (32)

independent of the specific parameter values of the implemented MTS-GHMC method [32].
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5. Multiple-time-stepping generalized shadow hybrid Monte Carlo (MTS-GSHMC)
method

It is a well-known problem of hybrid Monte Carlo (HMC) and generalized hybrid Monte
Carlo (GHMC) methods that the acceptance rate of the molecular dynamics proposal step
deteriorates with increasing time-steps and increasing system sizes [20]. One option to coun-
teract this effect is to apply higher-order symplectic time-stepping methods. However this also
increases the computational cost of HMC/GHMC. An alternative, less expensive approach
has been proposed by Izaguirre and Hampton [23] for HMC and by Akhmatskaya and Reich
[1, 24] for GHMC and is based on the concept of modified shadow Hamiltonians for symplectic
time-stepping methods. The key observation is that symplectic time-stepping methods (see
[26, 33] for an introduction to symplectic methods and modified equation analysis) conserve
modified energy (shadow Hamiltonians) to much higher accuracy than the accuracy of the
method itself. This suggests an implementation of HMC/GHMC in the framework of impor-
tance sampling with respect to such shadow Hamiltonians. The feasibility of the generalized
shadow hybrid Monte Carlo (GSHMC) approach [1] for large biomolecular systems has been
demonstrated by Wee et al. [2] and Escribano et al. [3, 4].

To be able to extend MTS-GHMC to MTS-GSHMC we need to establish easily com-
putable shadow Hamiltonians for the mollified MTS methods of Izaguirre et al. [13]. In the
remainder of this section, we describe the key construct for the shadow Hamiltonians for the
mollified MTS methods and formulate the multiple-time stepping generalized shadow Hybrid
Monte Carlo algorithm.

5.1. Shadow Hamiltonians

5.1.1. Skeel & Hardy construction of 4th and 8th order shadow Hamiltonians

Newton’s equations of motion (1) can be put into the Hamiltonian dynamics framework
by introducing the collective atomic momentum vector P = M d

dt
X and the Hamiltonian

(energy)

H(X,P ) =
1

2
P TM−1P + U(X). (33)

The associated canonical Hamiltonian equations of motion are given by

d

dt
X = ∇PH(X,P ) = M−1P,

d

dt
P = −∇XH(X,P ) = −∇XU(X). (34)

We assume that there are N atoms and, hence, X,P ∈ R3N.
Following Skeel and Hardy [25], we define the homogeneous of degree two extension of a

Hamiltonian H(X,P ) by

H̃(X, a, P, b) = a2H(a−1X, a−1P ), (35)
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where a ∈ R and b ∈ R are two additional degrees of freedom. Setting a = 1 we obtain the
simplified augmented system of equations of motion for the Hamiltonian defined in (33).

d

dt
X = M−1P,

d

dt
P = −∇XU(X),

d

dt
b = XT∇XU(X)− 2U(X). (36)

Let Y (t) = (X(t)T , 1, P (t)T , b(t)T ) denote a solution of (36). A key result of Skeel and Hardy
[25] states that

H(X(t), P (t)) =
1

2

d

dt
Y (t)TJY (t), (37)

which, using (36), is easy to verify. Here J is the skew-symmetric matrix

J =

[
03N+1 I3N+1

−I3N+1 03N+1

]
∈ R(6N+2)×(6N+2) (38)

and I3N+1 denotes the identity matrix of dimension 3N + 1.
Another important observation is that the above arguments hold true for any Hamiltonian

H(X,P ) and in particular for the modified Hamiltonians H∆t(X,P ) of a symplectic time-
stepping method, which defines a mapping

Γn+1 = Ψ∆t(Γn), (39)

Γ = (XT , P T )T ∈ R6N [26, 33]. Modified Hamiltonians are defined such that they are
conserved to an order in the step-size ∆t which is higher than the order of the method
itself. Recursive formulas for computing modified Hamiltonians are known; but are typically
not viable for practical computations [26, 33]. The homogeneous augmented approach on
the other hand allows for a relatively simple computation of modified Hamiltonians along
numerical trajectories.

Before giving the details of the construction we outline the basic idea. Let Ψ̂∆t denote the
natural extension of a symplectic time-stepping method (39) to the extended system (36),
i.e.,

Yn+1 = Ψ̂∆t(Yn). (40)

Let Π(t) denote an interpolation polynomial of order 2k, k > 0, through discrete solution
points Yn, n = −k, . . . , 0, . . . ,+k. Then we define a modified energy value at t = t0 by

H∆t(X0, P0) =
1

2

d

dt
Π(t)TJΠ(t), (41)

with skew-symmetric matrix J defined by (38) and Y0 = (XT
0 , 1, P

T
0 , 0)T . The accuracy of

the modified Hamiltonian increases with the number of time-steps 2k > 0. With k = 2 one
can achieve fourth-order while k = 4 leads to an eighth-order modified Hamiltonian in ∆t.
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Assume that we wish to determine the value of the shadow Hamiltonian about Yi =
(XT

i , 1, P
T
i , bi)

T . Then k = 2 (fourth-order) or k = 4 (eighth-order) time-steps forward and
backward in time are performed with (40) (unless those steps have already been performed
as part of the simulation). Hence we have 2k + 1 discrete approximations Yj, j = i −
k, . . . , i, . . . , i+ k, centered about Yi available and, for k = 2, we define

A0 = Yi, (42)

A1 =
1

2
(Yi+1 − Yi−1) , (43)

A2 = Yi+1 − 2Yi + Yi−1, (44)

A3 =
1

2
[Yi+2 − 2Yi+1 + 2Yi−1 − Yi−2] , (45)

A4 = Yi+2 − 4Yi+1 + 6Yi − 4Yi−1 + Yi−2. (46)

as well as

Al,m =
1

2∆t
ATl JAm, l,m = 0, . . . , 4, (47)

with the skew-symmetric matrix J defined by (38). In case of k = 2 we need only to compute
A0, A1, A2 and Al,m for m, l = 0, . . . , 2.

The fourth-order shadow Hamiltonian at Yi is now defined by

H
[4]
∆t(Xi, Pi) = A1,0 −

1

6
A1,2 (48)

and the eighth-order shadow Hamiltonian by

H
[8]
∆t(Xi, Pi) = A1,0 −

2

7
A1,2 +

5

42
A3,0 +

13

105
A3,2 −

19

210
A1,4 −

1

140
A3,4, (49)

respectively.
Skeel and Hardy [25] use the homogeneous augmenting approach to develop shadow

Hamiltonians for the Störmer-Verlet method and these shadow Hamiltonians have been im-
plemented in the shadow hybrid Monte Carlo (SHMC) method of Izaguirre and Hampton
[23].

5.1.2. Augmented mollified MTS method

In order to use the just described technique for constructing shadow Hamiltonians for
mollified MTS methods, an appropriate extension of a symplectic time-stepping method has
to be formulated.
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As suggested in Section 5.1.1, we introduce an additional variable b and the extended
mollified MTS method (16) can be expressed compactly as follows:

M
d2

dt2
X(t) =

L∑
m=0

cm∆tδx(t−m∆t)F slow
molly(X(t)) +

pL∑
n=0

dnδtδx(t− nδt)F fast(X(t)), (50)

d
dt
b(t) = −

∑L
m=0 cm∆tδx(t−m∆t)

[
X(t)TF slow

molly(X(t)) + 2U slow
molly(X(t))

]
−
∑pL

n=0 dnδtδx(t− nδt)
[
X(t)TF fast(X(t)) + 2U fast(X(t))

]
.

(51)

Note that (50) is identical to (16) and recall that (16) can be integrated exactly. The same
applies to (51) once X(t) has been determined from (50). Hence (50)-(51) define a one-step
method in Y = (XT , 1, P T , b)T , which we denote by

Yi+1 = Ψ̂L∆t(Yi). (52)

Finally note that (51) corresponds to the third equation in (36).
Once an appropriate extension of a symplectic time-stepping method has been formulated,

Skeel and Hardy [25] provide a straightforward approach for evaluating higher-order shadow
Hamiltonians (48)-(49).

5.1.3. Shadow Hamiltonians for the MTS-GSHMC method

A straightforward application of (48) or (49) to the MTS-GHMC method (see Section 4)
led however, to an unsatisfactory behavior of the resulting shadow MTS-GSHMC method.
While the acceptance rate in the MDMC part increased as expected, a large drift in kinetic
energy was observed in the course of the Monte Carlo simulation. An explanation for this
phenomenon is that the shadow Hamiltonian H

[4],MTS
∆t is nearly conserved along numerical

trajectories under the MDMC step but, at the same time, it is found that the difference
between the original Hamiltonian H and the shadow Hamiltonian H

[4],MTS
∆t becomes large as

momenta P get refreshed under the PMMC part of the MTS-GSHMC method.
To overcome this large drift in the shadow Hamiltonian H

[4],MTS
∆t , we investigated an

alternative derivation of shadow Hamiltonians from the standard BCH-formula for splitting
methods [26, 33]. The associated fourth-order shadow Hamiltonian is given by

H
[4]
∆t = Hmolly − δt2

24

[
(F fast)TM−1F fast − 2P TM−1U fast

XX M
−1P

]
−∆t2

24

[
(F slow

molly + 2F fast)TM−1F slow
molly − 2P TM−1(U slow

molly)XXM
−1P

]
+O(δt4,∆t4).

(53)
Here UXX denotes the Hessian matrix of second-order partial derivatives of a scalar-valued
function U . We note that (53) is the sum of the original Hamiltonian plus the corrections
from a Störmer-Verlet method applied to the fast and slow systems alone plus a mixed term
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−∆t2

12
(F fast)TM−1F slow

molly. Next we write (53) in the equivalent form (up to higher order terms
in δt and ∆t)

H
[4]
∆t = H

[4],SV,fast
δt +H

[4],SV,slow
∆t − 1

2
P TM−1P − ∆t2

12
(F fast)TM−1F slow

molly. (54)

Here H
[4],SV,fast
δt denotes a fourth-order shadow Hamiltonian for a Störmer-Verlet integration

of the fast system with Hamiltonian Hfast = P TM−1P/2 + U fast(X) and step-size δt. Simi-

larly, H
[4],SV,slow
∆t denotes a fourth-order shadow Hamiltonian for a Störmer-Verlet integration

of the slow system with Hamiltonian Hslow = P TM−1P/2 + U slow
molly(X) and step-size ∆t.

Explicit formulas for H
[4],SV,fast
δt and H

[4],SV,slow
δt can be found in Appendix B and follow from

the results stated in [25] for the standard Störmer-Verlet method. Alternatively, one could
use the shadow Hamiltonians proposed in [1].

We further note that

H
[4],SV,slow
∆t − 1

2
P TM−1P − ∆t2

12
(F fast)TM−1F slow

molly = H
[4],MTS
∆t −H [4],MTS,fast

∆t +O(δt4,∆t4),

(55)

where H
[4],MTS,fast
∆t denotes the fourth-order shadow Hamiltonian (48) for the MTS method

(16) with F slow
molly ≡ 0. Hence, we finally propose the following fourth-order shadow Hamilto-

nian
H

[4]
∆t = H

[4],MTS
∆t −H [4],MTS,fast

∆t +H
[4],SV,fast
δt . (56)

We used this shadow Hamiltonian in the numerical experiments of Section 6. The key
observation is that (56) contains approximations on both time-step levels (outer and inner)
while (48) relies on the outer time-step ∆t only.

We now generalize (56) to arbitrary order. Let H
[q],MTS
∆t denote the qth order shadow

Hamiltonian for a MTS method according to the construction of Skeel and Hardy [25]. Let

H
[q],MTS,fast
∆t denote the qth order shadow Hamiltonian for the same MTS method with F slow

molly

set equal to zero. Finally, let H
[q],SV,fast
δt denote the qth order shadow Hamiltonian for the

Störmer-Verlet method applied to the fast system with step-size δt. Then the shadow Hamil-
tonian for use in the newly proposed MTS-GSHMC method has a form:

H
[q]
∆t = H

[q],MTS
∆t −H [q],MTS,fast

∆t +H
[q],SV,fast
δt . (57)

5.2. Multiple-time-stepping generalized shadow hybrid Monte Carlo (MTS-GSHMC) algo-
rithm

The proposed simulation method takes the hybrid Monte Carlo (GHMC) method [20, 21]
and its extension to shadow Hamiltonians by Akhmatskaya and Reich [1] as a starting point.
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As in the case of MTS-GHMC, we will use the reduced-flipping method in our implementation
[31].

We now demonstrate how to combine GSHMC with a mollified MTS method. To do so,
we assume that a splitting of the potential energy function U into a fast contribution U fast

and a slow contribution U slow is given. We also assume that an averaging operator (14)
has been defined, which implies a mollified slow potential (15). Finally we suppose that an
extended mollified MTS method (52) as well as a shadow Hamiltonian (57) of order q ≥ 4
have been implemented. For simplicity of notation, we denote this shadow Hamiltonian by
H∆t.

5.2.1. MTS-GSHMC: Algorithmic summary

The generalized shadow hybrid Monte Carlo (GSHMC) algorithm of [1] and [22] for
sampling with respect to the shadow canonical distribution

ρ̃canon ∝ exp(−βH∆t) (58)

is defined as the concatenation of two MCMC steps: a molecular dynamics Monte Carlo
(MDMC) and a partial momentum refreshment Monte Carlo (PMMC) step. The key novel
steps of the proposed MTS-GSHMC method are the implementation of an extended mol-
lified impulse MTS method (50)-(51) and importance sampling with respect to a shadow
Hamiltonian H∆t. We now summarize the proposed MTS-GSHMC method.

The accepted states of the MTS-GSHMC method are denoted by Ωi = (Y T
i , ti)

T , i =
0, . . . , I, where Yi = (XT

i , 1, P
T
i , bi)

T , Xi is a collective vector of atomic positions, Pi is a
collective vector of atomic momenta, bi is a scalar, and ti is time. Note that the definition of
Ωi is different from the one used for the MTS-GHMC method (Section 4).

5.2.2. Partial momentum refreshment Monte Carlo (PMMC)

The PMMC step of MTS-GSHMC consists of a proposal step and a Metropolis accept /
reject criterion.

� Partial momentum refreshment (PM). Given an accepted state Ωi = (Y T
i , ti)

T , Yi =
(XT

i , 1, P
T
i , bi)

T , its collective atomic momentum vector Pi is mixed with an independent
and identically distributed normal (Gaussian) noise vector Ξi of dimension 3N and the
partial momentum refreshment step is given by

P̃i = cos(φ)Pi + sin(φ)Ξi,

Ξ̃i = cos(φ)Ξi − sin(φ)Pi,
(59)

where 0 < φ ≤ π/2 is a given angle and Ξi∼N [0, βM−1]. Here N [0, βM−1] denotes the
(3N)-dimensional normal distribution with zero mean and covariance matrix βM−1,
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M is the diagonal mass matrix of the molecular system, β = 1/kBT is the inverse
temperature. Denote the proposed state vector by Ω̃i = (Ỹ T

i , ti)
T , Ỹi = (XT

i , 1, P̃
T
i , bi)

T .

� Monte Carlo (MC). The accepted state Ω̄i is found through a Metropolis accept/reject
criterion:

Ω̄i =

{
Ω̃i with probability min(1, exp(−β∆He

∆t)
Ωi otherwise

, (60)

with

∆He
∆t := H∆t(Xi, P̃i) +

1

2
Ξ̃T
i M

−1Ξ̃i −H∆t(Xi, Pi)−
1

2
ΞT
i M

−1Ξi. (61)

5.2.3. Molecular dynamics Monte Carlo (MDMC)

This step consists of the following two sub-steps.

� Molecular dynamics (MD). We apply the extended mollified MTS method (52) to the
current state Ω̄i = (Ȳ T

i , , ti)
T with Ȳi = (XT

i , 1, P̄
T
i , bi)

T . The proposal state is defined
by

Ω̂i = (Ŷ T , ti + L∆t)T , with Ŷi = Ψ̂τ (Ȳi) (62)

for τ = ∆tL and given integer L ≥ 1. Ψ̂τ is defined as in (52).

� Monte Carlo (MC): The next accepted state Ωi+1 is found through a Metropolis ac-
cept/reject criterion

Ωi+1 =


Ω̂i with probability PA(Ȳi, Ŷi)

Ω̄i with probability PS(Ȳi|Ȳi−1, Ŷi)
FΩ̄i otherwise

, (63)

with acceptance probability

PA(Ȳi, Ŷi) = min(1, exp(−β(H∆t(Ŷi)−H∆t(Ȳi)))), (64)

and self-transition probability PS(Ȳi|Ȳi−1, Ŷi) as defined in [31]. The operator F repre-
sents the momentum flip.
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5.2.4. Remarks

We wish to point out that the collective vector of atomic positions Xi as well as time ti
remain unchanged from Ωi to Ωi+1 in case of rejection of the MDMC proposal step.

The free parameters of the MTS-GSHMC scheme include the angle φ in (59), the inner
and outer step-sizes δt and ∆t, respectively, as well as the number of outer time-steps L and
the order of the shadow Hamiltonian. We will always assume that

φ =
√

2γτ << 1. (65)

Here γ > 0 is the collision frequency of an underlying Langevin model [22] and τ = ∆tL.
Note that the variable b is only required for computing shadow Hamiltonians. Further-

more, only differences in b appear in the formulas for shadow Hamiltonians and, hence, one
can set b = 0 at the beginning of each MDMC and PMMC step.

5.2.5. Data analysis

Let {Ωi}Ii=1 denote a sequence of accepted states from a MTS-GSHMC simulation with
Ωi = (Y T

i , ti)
T and Yi = (XT

i , 1, P
T
i , bi)

T . Expectation values of a function f(Γ), Γ =
(XT , P T )T , with respect to the canonical density

ρcanon ∝ exp(−βH) (66)

are computed according to the formula

〈f〉 =

∑I
i=1 wif(Γi)∑I

i=1wi
(67)

with weight factors
wi = exp (−β(H(Xi, Pi)−H∆t(Xi, Pi))) (68)

and state variables Γi = (XT
i , P

T
i )T . Provided the MTS-GSHMC method generates an

ergodic Markov chain for the given molecular system, we have

lim
I→∞
〈f〉 = E[f ] (69)

independent of the specific parameter values of the implemented MTS-GSHMC method [32].
The predictive performance analysis suggested for HMC-based methods [1, 23, 34] is

applicable to the new methods introduced in this paper.
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Level 0: Leapfrog
δt

 
= 1 fs

Level 1: MOLLY
Δt

 
= pδt

Level 2: HMC
Δt

HMC 
= LΔt

Figure 1: Example of a ProtoMol MTS-HMC simulation. Several integrator levels can be defined as nested
loops and the forces can be spit between these levels.

6. Numerical experiments: Methodology

We have implemented MTS-GHMC/GSHMC in the molecular dynamics software Proto-
Mol [30], version 2.1. We chose ProtoMol instead of other more popular optimized software
packages for its flexibility in adopting new numerical schemes and algorithms, which saved
much implementation time at the expense of losing some computational power. We prefer to
use version 2.1 because the documentation available for this version is much more extensive
compared with the latest version. ProtoMol 2.1 includes a hybrid Monte Carlo scheme and
the procedure for calculation of shadow Hamiltonians (see for details [23]). However, it is
worth saying at this point that the implementation strategy chosen by ProtoMol requires
the additional integration of several molecular dynamics time steps, which in the case of
macromolecular systems can add a significant amount of computational time. It is becoming
even more crucial for the method discussed in this paper as three different shadow Hamil-
tonians have to be calculated per one Monte Carlo step. A more efficient implementation
approach has been presented recently [3] which does not require integration of any additional
steps during the MD part of GSHMC, although the momentum update does require addi-
tional short trajectories. Overall, in an efficient implementation of shadow Hamiltonians, the
computational overhead can be negligible.

In ProtoMol every numerical method is called an integrator, regardless of whether it
actually integrates differential equations, like a leapfrog scheme, or it samples velocities, like
a Monte Carlo algorithm. The structure of ProtoMol allows the user to combine several
integrator levels at runtime using MTS and organize them as nested loops. Figure 1 shows
the example of an HMC simulation performing Metropolis test every L steps. It is combined
with a mollification for slow forces every p steps and a leapfrog integrator scheme every single
step.
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For the implementation of MTS-GHMC, we used the HMC integrator already available
in ProtoMol and replaced the velocity resetting between MC steps with a partial velocity
update. The only additional modifications required were the introduction of a new parameter
for the angle of the velocity update (0 < φ ≤ π/2) and a new weight term in the output files
for re-weighting observables to account for the mollification of the positions.

For the implementation of MTS-GSHMC we used the SHMC integrator in ProtoMol as
a template. We introduced a similar partial velocity update as in MTS-GHMC, in this case
followed by a Metropolis test. However, the method for obtaining shadow Hamiltonians in
SHMC is only valid for single-time-stepping (STS) integrators, so we included a new method
that uses the three-step scheme:

H
[q]
∆t = H

[q],MTS
∆t −H [q],MTS,fast

∆t +H
[q],SV,fast
δt , (70)

as discussed in Section 5.1.
The first term is calculated employing the method already implemented in ProtoMol

using backward differences [25] but for full MTS cycles with a step-size ∆t = pδt, p > 1. The
second term is calculated in the same way but without slow forces (F slow=0). The third term
is calculated by using only the STS integrator (Störmer-Verlet) with step-size δt. We also
added the weight term to the output for re-weighting observables. In this case it is necessary
to account for the mollification of the positions and the approximation made by the shadow
Hamiltonians.

7. Numerical results

7.1. Description of model systems

A very basic implementation of these methods was previously tested on a one-dimensional
chain of diatomic molecules interacting through Lennard-Jones potentials [4, 35, 36]. Here
we present results from our ProtoMol implementation.

We consider two different systems to test the numerical accuracy of the new integrators
MTS-GHMC and MTS-GSHMC. First we consider a system of 423 flexible TIP3P [37] water
molecules simulated using periodic boundary conditions. As a second system we consider
a small solvated protein such as BPTI comprising 1101 atoms. We used the CHARMM22
force field for proteins [38]. We will refer to this system as protein further through the paper.
Similar test systems have been widely used to test MTS algorithms (see, for example, [39]).
The objective was to compare our results with a Langevin stabilization method, Langevin
Molly (LM), which demonstrated superior performance over conventional MTS methods [5]
and which is also available in ProtoMol.

All simulations are performed in constant NVT ensemble at T=300 K. The potential
energy includes bonded and unbonded terms. Bonded terms are bond and angle interactions
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in the water system, as well as dihedral and improper interactions in the protein system.
Non-bonded terms include Lennard-Jones and Coulomb potentials. The force splitting is
done in accordance with (12) and (13), using the switching function (11). As a mollification
scheme we chose the Equilibrium method for its proven stability [5, 13], implemented in
ProtoMol 2.1.

7.2. Accuracy of the new methods for single time stepping integration

We first check that the new methods produce accurate results in STS simulations. We
produce reference values with an STS molecular dynamics simulation using the standard
Störmer-Verlet leapfrog integrator for 1 ns, δt=1 fs and T=300 K. Also for reference, we
ran an STS Langevin dynamics simulation using a Langevin impulse integrator [40] with the
same parameters and γ=0.2 ps−1. From here on we will refer to these reference simulations as
MD and LD respectively. We performed similar STS simulations using HMC, SHMC, GHMC
and GSHMC, with no force splitting at the moment. HMC and SHMC results correspond
to the standard implementations available in ProtoMol, while GHMC and GSHMC results
were produced with the new implementation. For each of these methods, we tested different
values for the trajectory length (L=1, 10, 100, 500, 1000) and for the step-size (δt=0.25 fs,
0.5 fs, 1 fs). As we can see from Table 1 the new methods produce results for the average
potential and total energies in good agreement with the reference values within the statistical
error.

It is worth clarifying that the error bars presented in Table 1 represent the standard
deviation taking into account the effect of the correlation between samples in MCMC simu-
lations. The estimation of accurate error bars in Markov chain Monte Carlo simulations is
not a trivial matter as a consequence of the potentially high correlation between samples.
A full discussion on the topic can be found elsewhere [41]. In our results the correlation
was removed by using a binning analysis in which we first calculate averages over ‘bins’ of 5
consecutive samples and then average over the bins, which are less correlated than the initial
samples [42, 43].

These results were used for choosing the optimal values of inner step-size δt and trajectory
length L for the subsequent MTS simulations. Based on the acceptance rate observed, we
found for the new methods the optimal values to be δt=1 fs and L=10. This choice satisfies
0 < φ ≤ π/2 and keeps φ << 1, considering φ =

√
2γL∆t. Note that for SHMC the results

shown correspond to a step-size δt=0.5 fs. For δt=1.0 fs the integrator was trapped in the
momentum update stage. As a consequence, SHMC calculations with δt=1.0 fs require long
computation times and provide poor statistics.

7.3. Efficiency of the new MTS methods in reproducing dynamical properties

Though Hybrid Monte Carlo cannot reproduce in full kinetic properties of simulated sys-
tems, the generalized hybrid Monte Carlo (GHMC) was designed specifically for keeping more
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Table 1: Comparison of STS methods for the water and protein systems. Potential energy U and total
energy E given in kJ/mol. Acceptance rate Acc given as a percentage over total simulated time of 1 ns, with
step-size δt=1 fs, γ=0.2 ps−1 and trajectory length L=10. With δt=1 fs the SHMC integrator was trapped
in the momentum update stage and we were not able to collect the statistics. For sake of comparison, the
results obtained with δt=0.5 fs are shown.

System Method Acc U(kJ/mol) E(kJ/mol)
Water MD – -1191±12 -828.8±0.5

LD – -1185±22 -807±27
HMC 89% -1182±20 -804±25
GHMC 90% -1179±22 -803±28
SHMC* 100% -1193±19 -817±23
GSHMC 100% -1191±20 -816±25

Protein MD – -1891±20 -871.1±0.8
LD – -1910±33 -926±41
HMC 61% -1894±27 -912±36
GHMC 76% -1901±31 -915±40
SHMC* 100% -1879±24 -898±33
GSHMC 99% -1898±37 -900±22

*Results obtained with step-size δt=0.5 fs.

dynamical information in simulations. Momentum flips introduced in GHMC to satisfy the
detailed balanced conditions may potentially damage the simulated dynamics. To overcome
this problem, either a number of rejected proposals has to be minimized [22] or a frequency
of momentum flips should be reduced [31] or both ideas can be implemented at once. In this
work we apply the both approaches to MTS-GSHMC and use the reduced flip technique [31]
in MTS-GHMC. The resulting methods still rigorously sample canonical distribution and
satisfy the detailed balance condition.

To guarantee the fair comparison of dynamical properties achieved by three tested meth-
ods, the range of parameters providing the accurate dynamics in the generalized hybrid
Monte Carlo methods has to be identified. Once it is done (see subsection 7.2), our main
objective is to find the maximum effective step-size for each of the new methods that still
produces good dynamics. We define effective step-size as ∆teff = pδtAcc, where Acc is the
acceptance rate for proposed trajectories in MTS-GHMC/MTS-GSHMC and p is the number
of steps between an integration of the slow forces. This gives an intuitive idea about the real
performance improvement and provides the fair comparison with the non-HMC methods.
We test the accuracy of the dynamical results by calculating the self-diffusion coefficient of
water molecules D(γ) in both tested systems for small γ and comparing it with results from
a standard MD simulation and with mollified Langevin stabilization (LM). We calculate the
self-diffusion coefficient D from the definition D = R(τ)/6τ , where R = 〈|r(τ) − r(0)|2〉 is
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Figure 2: Variation of the water self-diffusion coefficient for the different MTS methods with increasing γ for
the water system (left) and protein system (right).

the mean square displacement averaged over the particles in the system and τ is the total
length of the simulation [44].

In all the following results we used a fixed trajectory length L=10, a simulation time
of 1 ns, cubic periodic boundary conditions and the potential switching function defined by
(11). The same switching function is used for splitting the Coulomb potential between fast
and slow and for bringing the Lennard-Jones potential to zero smoothly. It is important to
use a C2 function (with continuous second order derivative) in order to avoid energy drift
[13], which would affect the accuracy of shadow Hamiltonians and hence the acceptance rate.

The strategy to follow begins from calculating a reference value for D using a 1 ns MD
(leapfrog) simulation. We then run similar simulations with MTS-GHMC, MTS-GSHMC
and LM, gradually increasing γ until the value of D diverges by 3% or more of the reference
value, and find in this way γmax. We then gradually increase ∆t until D diverges again,
finding ∆tmax for each integrator. The process is repeated for the water and protein systems.

It is worth noting that for proper calculation of diffusion coefficients it is necessary to
perform much longer simulations and with larger systems. The values calculated here do not
exactly correspond to experimental measurements, but we can still use them to benchmark
the new methods by comparing them to a reference value calculated with standard MD, as
it was suggested in [5].

In Figure 2 we show the results for the self-diffusion coefficient D calculated for the two
benchmark systems, water and protein, using the three tested methods with increasing γ.
All simulations ran for 1 ns with δt=1 fs and ∆t=1, so with no effective force separation
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Table 2: Maximum values of ∆t that produce good dynamics measurements for the water system. Step-size
δt=1 fs, trajectory length L=10 and a total simulated time of 1 ns. ∆t (fs) outer step-size, D diffusion
coefficient, Acc acceptance rate, ∆teff (fs) effective step-size.

LM MTS-GHMC MTS-GSHMC
γ(ps−1) ∆t ∆D Acc ∆teff ∆D Acc ∆teff ∆D

0.0 1 – 88% 0.88 – 97% 0.97 –
0.2 16 3% 69% 17.25 2% 83% 23.12 1%
0.5 12 3% 70% 12.60 1% 77% 17.05 3%
1.0 12 1% 71% 12.72 2% 78% 14.11 1%

Table 3: Maximum step-sizes ∆t that produce good dynamics measurements for the protein system. Step-
size δt=1 fs, trajectory length L=10 and a total simulated time of 1 ns. ∆t (fs) outer step-size, D diffusion
coefficient, Acc acceptance rate, ∆teff (fs) effective step-size.

LM MTS-GHMC MTS-GSHMC
γ(ps−1) ∆t ∆D Acc ∆teff ∆D Acc ∆teff ∆D

0.0 1 – 76% 0.76 – 99% 0.99 –
0.2 12 1% 67% 13.30 3% 88% 19.36 3%
0.5 8 3% 69% 11.01 2% 96% 15.39 2%
1.0 2 38% 67% 8.01 2% 95% 15.25 3%

yet. In the case of LM, a slight increase of the collision frequency γ produced a severe loss of
accuracy, while both MTS-GHMC/GSHMC obtained reasonable values of D for all γ ≤ 20.

We now choose the γmax for each system that shows good dynamics results and gradually
increase the cycle-length for the slow forces, ∆t. In this way we find the maximum step-size
for each method that does not corrupt the dynamics of the system.

Tables 2 and 3 show a summary of the largest step-sizes achieved for each method. For
MTS-GHMC and MTS-GSHMC larger step-sizes can be used without affecting the accuracy
of the diffusion coefficient, which does not diverge more than 3% from the reference value
measured with an STS simulation. In particular, for γ=0.2 ps−1 MTS-GSHMC obtains
reliable results using an effective step-size approximately 50% longer than in the best LM
simulation, an improvement that becomes even more evident as we increase γ.

7.4. Efficiency of the new methods in reproducing thermodynamical properties

The objective here is to check the accuracy of the new methods by calculating average
potential energies while using γ=0.2 ps−1, which allows the comparison with LM. We use a
similar approach and same conditions as in the previous section, keeping L = 10 to satisfy
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Figure 3: Total energy values as a function of γ for the water system (left) and protein system (right).

Table 4: Maximum step-sizes ∆t (fs) that produce good energy measurements. γ=0.2 ps−1 for both water
and protein systems. Step-size δt=1 fs, trajectory length L=10 and a total simulated time of 1 ns.

LM MTS-GHMC MTS-GSHMC
System ∆t ∆E Acc ∆teff ∆E Acc ∆teff ∆E
Water 8 0.1% 72% 11.59 0.1% 86% 18.85 0.4%

10 0.5% 71% 14.21 0.4% 85% 20.32 0.9%
12 0.6% 71% 15.57 0.9% 80% 22.50 0.6%

Protein 8 0.2% 68% 10.91 0.1% 91% 18.15 0.5%
10 0.5% 68% 12.27 0.1% 84% 18.37 0.4%
12 1.0% 67% 13.32 1.0% 89% 22.26 0.3%

that φ ≤ π/2, considering φ =
√

2γL∆t.
Our criterion for considering an accurate result is that the divergence from the reference

value is not bigger than 1%, so that:

〈E〉 − Eref
Eref

< 0.01,

where Eref is the averaged total energy calculated in a similar simulation using the STS
method. The procedure we follow is to find the maximum ∆t for the three MTS methods
that produces an acceptable error of ∆E < 0.01Eref .

MTS-GHMC proves to be more efficient than LM, achieving longer effective step sizes
for the water and protein systems, with a maximum of 15 fs and 13 fs respectively. MTS-
GSHMC performs even better, reaching an effective step-size of over 22 fs for both systems. In
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Figure 4: Radial distribution function comparison for the water system with γ=0.2 ps−1.

Table 4 we show the biggest achievable step-sizes for each method considering only accuracy
limitations.

Even larger step-sizes can be achieved in all three methods by further increasing ∆t at
the expense of losing numerical precision. We found it is possible to run LM simulations with
γ=1 ps−1 and ∆t= 30 fs, although the average energies measured with this step-size are hardly
reliable. An increase in the dissipation coefficient γ further damages the accuracy of energy
measurements in LM (see Figure 3). On the other hand, MTS-GHMC/GSHMC methods
could achieve larger step-sizes, but the subsequent decrease of the acceptance rate and the
poor efficiency of shadow Hamiltonian calculation in ProtoMol makes them impractical, even
if the simulation is still stable. We can conclude that the maximum achievable step-size
for slow forces in both MTS-GHMC and MTS-GSHMC is only determined by accuracy
considerations.

As an additional comparison and to further check the accuracy of our simulations, Figure
4 shows radial distribution functions extracted from the simulations in Table 2 for γ=0.2 ps−1.
We can see that both LM and MTS-GSHMC reproduce the well known radial distribution
function for liquid water [45].
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Figure 5: Ramachandran plot for the Φ/Ψ angles of the Gly56 residue of BPTI.

7.5. Sampling efficiency

We can compare the sampling efficiency of MTS-GSHMC and LM by counting the number
of different geometric conformations visited during a fixed simulated time, as suggested in
[46]. The idea is to divide the energy profiles of each dihedral angle into wells, with divisions
between wells placed at the maxima of the dihedral potential energy. At each integration time
step we create a conformation string based on which well each dihedral occupies. At the end
of the simulation we count how many different conformation strings have been produced. We
applied this method to a 1 ns simulation of the protein system with step-size for slow forces
∆t=16 fs, inner step-size δt=1 fs and γ=0.2 ps−1. We obtained 665 different conformations
with LM and 1147 with MTS-GSHMC. This great improvement in sampling efficiency is
also observed in STS simulations using GSHMC, which finds 741 different conformations.
This improvement is due to the beneficial combination of partial momentum updates and
the use of shadow Hamiltonians in Metropolis tests, which improves the sampling by helping
the MD discern which trajectories are worth following. As an example of the benefits of
better sampling, in Figure 5 we show the Ramachandran plot for the Φ/Ψ angles of the
Gly56 residue of BPTI, where we can see that MTS-GSHMC and GSHMC both discover a
second stable conformation not found by LM. The case of this residue is specially significant
because LM does not find that second conformation even when running longer simulated
times. Ramachandran plots of other residues are not as significant, but in all cases we
observe broader histograms, meaning that we are exploring a larger range of the Φ/Ψ space.

7.6. Parameters

The two new methods introduce several new parameters that deserve special attention,
namely, the angle of the partial momentum update φ, the MD trajectory length L and the
order of the shadow Hamiltonian k (only for MTS-GSHMC).
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As we discussed in Section 4.2, the angle φ can be related to the collision frequency γ in
a Langevin model through the expression:

φ =
√

2γ∆tL,

and can take values between 0 and π/2. In order to not interfere with the dynamics of
the system, γ –and hence φ – must be kept as small as possible, although bigger γ enables
longer step-sizes for the slow forces. We found that the optimal values for γ are between 0.2
and 1 ps−1.

The length of the MD trajectory L has a strong impact on the sampling efficiency of
the methods and in their computational cost. A short L means that the Metropolis test
and the partial momentum update have to be performed too often and the computational
overhead becomes important. On the other hand, a very long trajectory length implies
that the benefits in sampling efficiency are diminished, as the simulation becomes closer to
standard MD. Furthermore, if the acceptance rate is not close to 100%, much computational
time is wasted integrating trajectories that will be discarded. In consequence, finding an
optimal value for L usually requires a trial and error approach. Most commonly the values
will be between 10 and 1000 steps, but one must remember that the value of φ is influenced
by L and φ can not be bigger than π/2.

In the case of MTS-GSHMC we have an additional new parameter, the order of the
shadow Hamiltonian k. In Appendix B we detail the expression for a fourth-order shadow
Hamiltonian of Skeel and Hardy [25] for the Störmer-Verlet method. In most cases fourth or-
der is enough to achieve the desired accuracy. Higher orders might provide better acceptance
rates, although the additional computation required for their calculation is rarely justified,
and not compensated by the number of additional accepted trajectories.

7.7. Performance

The straightforward way to measure the performance of the new methods would normally
be to compare computational times with respect to the corresponding STS method. For
example, MTS-GSHMC with an outer step-size of ∆t=20 fs can save approximately 60% of
the computational time compared to a similar STS simulation. However, one would expect a
much higher gain considering that we are avoiding 19 of every 20 slow-force integrations. This
is a negative consequence of ProtoMol’s modular design and in particular its implementation
of Shadow Hamiltonians.

In order to measure the real performance gain of the new methods when compared with
LM we must take into consideration not only the maximum achievable step-size of each
method, but also the acceptance rates, as bigger step-sizes often come at the expense of more
rejected trajectories. However, ultimately what limits the performance gain is the accuracy
of the measurements obtained at those step-sizes. In Table 5 we show the maximum effective
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Table 5: Maximum effective step-size ∆tmax
eff in fs for the three tested methods in terms of accuracy limitations

for both simulated systems with γ=0.2 ps−1. D (10−5cm2/s) water self-diffusion, E (kJ/mol) total energy.

Kinetic Thermodyn. All Relative
System Method ∆tmax

eff ∆tmax
eff ∆tmax

eff D E gain

Water LM 16 12 12 4.3±0.3 -804±24 1.00
MTS-GHMC 17.25 15.57 15.57 4.1±0.4 -786±27 1.30
MTS-GSHMC 23.12 22.50 22.50 4.1±0.3 -793±26 1.88

Protein LM 12 10 10 4.1±0.5 -927±39 1.00
MTS-GHMC 13.30 13.32 13.30 4.2±0.2 -938±36 1.33
MTS-GSHMC 19.36 22.26 19.36 4.1±0.2 -946±30 1.94

step-sizes for all three methods on both simulated systems taking into account the accuracy
limitations when calculating kinetic and thermodynamic properties. For the water system we
found that ∆t=12 fs was the biggest step-size that produces good measurements for diffusion
coefficients and energy averages using LM. Using MTS-GHMC, we can increase the effective
step-size to 15.57 fs, and in the case of MTS-GSHMC, the performance gain is even higher,
reaching a step-size of 22.50 fs. For the protein system we found a maximum of ∆teff=13.30 fs
for MTS-GHMC and ∆teff=19.36 fs for MTS-GSHMC while still producing accurate values,
compared with 10 fs for LM. However, any larger step-sizes did not compensate the decrease
in acceptance rate.

We can measure the relative gain in performance by comparing the maximum step-size
that reproduces both good dynamics and thermodynamical properties in each system. As
we can see in Table 5, MTS-GSHMC obtains a relative performance gain of 1.88 over LM in
the water system and 1.94 in the protein system. There is clearly an important advantage in
using MTS-GSHMC, although MTS-GHMC also beats LM by factors of 1.30 and 1.33, while
still avoiding the added complexity of using shadow Hamiltonians.

8. Conclusions

We have introduced two new methods for molecular simulations, MTS-GHMC and MTS-
GSHMC. Both methods use force splitting techniques for larger step-sizes and force field
mollification combined with the naturally possessed weak stochastic stabilization for avoiding
numerical resonances. First results show that these methods can be used for obtaining
reliable dynamical information as well as accurate sampling data, improving the performance
and efficiency of their STS counterparts, GHMC and GSHMC. We have compared our new
methods with a mollified Langevin dynamics implementation (LM) known as an efficient
MTS technique, and found that the HMC methods outperform LM in terms of accuracy and
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sampling efficiency, allowing for larger step-size in calculating slow forces.
Both MTS-GHMC and MTS-GSHMC produce results comparable in accuracy, improving

that of LM for γ >1 ps−1. Both methods converge rigorously to the NVT ensemble, con-
serving temperature without requiring any additional thermostats. The generalized partial
momentum update ensures temperature conservation without interfering with the accuracy
of dynamics for all tested collision frequencies. With the proper choice of parameters, both
methods produce accurate measurements of kinetic and thermodynamic data. Values for
the self-diffusion coefficient of water molecules remain accurate when using dissipation co-
efficients (γ >1 ps−1) that spoil LM simulations. The outer step-size of MTS-GHMC can
be made at least as long as that of LM for the same γ, while in MTS-GSHMC it can be
increased by almost a factor of two for both the water and protein systems.

However, an increase of step-sizes leads to an increase in Metropolis rejection rates. Hence,
the effective sampling efficiency gain is lower than the gain determined by step-size ratios
alone. A better measure for efficiency is given by the effective outer step-size ∆teff = pδtAcc,
where Acc is the acceptance rate for proposed trajectories and p the number of steps between
slow force integrations. Using this concept we have compared the maximum effective step-
sizes obtained by each method in terms of accuracy limitations. Throughout our simulations,
we have found that MTS-GHMC consistently outperforms LM with an effective gain between
10% and 20%. But MTS-GSHMC has shown that it can easily improve those results with
an effective step-size that is typically 50% longer than that of LM, while not losing accuracy
in the simulation results.

We have also measured the increase in sampling performance by monitoring the number
of different dihedral conformations explored by MTS-GSHMC compared to LM. As expected,
the partial momentum update in combination with the use of shadow Hamiltonians lead to
the better sampling efficiency compared with LM. We found that some dihedral conformations
are completely missed by LM even in relatively long simulations (> 1 ns). Indeed, with the
optimal choice of parameters, the number of different conformations per simulated time is
twice bigger in MTS-GSHMC than in LM simulations.

Throughout this paper we have used the reduced-flipping method [31] upon rejection of
proposal trajectories. This method ensures rigorous sampling in the canonical ensemble by
fulfilling the detailed balance condition. At the same time we found that this approach only
slightly interferes with the dynamics of the systems. Other ways of treating the momentum
update are discussed in [22, 47].

We found that a straightforward application of the shadow Hamiltonian formulations of
Skeel and Hardy [25] to MTS methods leads to a large drift in energy values along MC sam-
ples. An improved formulation (57) was suggested and successfully implemented within the
molecular dynamics software ProtoMol. The use of shadow Hamiltonians in the Metropolis
tests results in larger step-sizes for slow force integration, although the algorithm used in
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ProtoMol for the calculation of these Hamiltonians limits the computational gain. A more
efficient implementation, similar to the one suggested in [3], will be necessary to properly
measure the potential advantages in terms of computational time.

In summary, we showed that the generalized Hybrid Monte Carlo methods based on a
mollified multiple time stepping molecular dynamics and the sampling with respect to a
shadow Hamiltonian specifically defined for a multi-scale integrator, demonstrate superior
sampling performance not only over its progenitor GSHMC but also over Langevin dynamics
and hybrid Monte Carlo methods which use similar force splitting schemes.
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Appendix A. Impulse time-stepping methods

In this appendix, we outline how (16) can be solved exactly to give rise to a numerical
approximation for the differential equation

M
d2

dt2
X = −∇U fast(X)−∇U slow

molly(X). (A.1)

We note that equation (A.1) is conservative with energy (18).
We recall that the ratio between the inner step-size δt and the outer step-size ∆t is denoted

by p = ∆t/δt and L is the number of outer step-sizes. We introduce the notation P (t′ + ε)
and P (t′ − ε) to denote the left and right hand side, respectively, limits of a time-dependent
collective atomic momentum vector P (t) with a discontinuity at t = t′. We also introduce
tn = nδt, n = 0, . . . , pL.

Integration of (16) once with respect to time reveals that P (t) = const. whenever t 6= tn,
which implies

X(tn+1) = X(tn) + δtM−1P (tn + ε), P (tn+1 − ε) = P (tn + ε). (A.2)

For all t = tn, n = 0, . . . , pL, an “impulse / kick” is applied to the velocities while the
positions remain constant, i.e., X(tn + ε) = X(tn− ε) = X(tn) since X(t) is continuous. The
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magnitude of the impulse / kick depends on whether there is an integer m, m = 0, . . . , L,
such that n = mp (outer step-size) or not (inner step-size). In case of an outer step-size we
have

P (tn + ε) = P (tn − ε) + cm∆tF slow
molly(X(tn)) + dnδtF

fast(X(tn)), (n = pm) (A.3)

while an inner step-size leads to

P (tn + ε) = P (tn − ε) + dnδtF
fast(X(tn)). (A.4)

The constant coefficients cn and dm take values as defined for (10).
Given an initial molecular state Γ(0), we formally set P (−ε) = P (0) to initiate the

algorithm. Similarly, at final time τ = ∆tL, we formally set P (τ) = P (τ + ε) to define the
molecular state vector Γ(τ) at t = τ . Hence we have constructed a mapping Ψτ : Γ(0)→ Γ(τ)
which maps an initial molecular state Γ(0) into the desired numerical approximation Γ(τ) at
time τ = L∆t = pLδt. The mapping Ψτ is time-reversible, symplectic and volume conserving
[13].

Appendix B. Shadow Hamiltonian definition

The fourth-order shadow Hamiltonian of Skeel and Hardy [25] for the Störmer-Verlet
method applied to a system with Hamiltonian

H(X,P ) =
1

2
P TM−1P + U(X) (B.1)

and step-size h is given by

H
[4],SV
h (Xi, Pi) = H(Xi, Pi) + 1

4
[U(Xi+1)− 2U(Xi) + U(Xi−1)]

+h
6
P T
i M

−1 [F (Xi+1)− F (Xi−1)] + 5h2

24
F (Xi)

TM−1F (Xi)

+h2

12
F (Xi)

TM−1 [F (Xi+1)− 2F (Xi) + F (Xi−1)] ,

(B.2)

with F = −∇U . We obtain H
[4],SV,fast
δt by setting h = δt, U = U fast and F = F fast and

H
[4],SV,slow
∆t by setting h = ∆t, U = U slow

molly and F = F slow
molly, respectively. Alternatively,

one could use the fourth-order shadow Hamiltonian proposed in [1] for the Störmer-Verlet
method.
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