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Abstract

We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient
long-term numerical integration of the atmosphere. In the HPM method, the hydro-
static approximation is interpreted as a holonomic constraint for the vertical position of
particles. This can be viewed as defining a set of vertically buoyant horizontal meshes,
with the altitude of each mesh point determined to satisfy the hydrostatic balance con-
dition, and with particles modeling horizontal advection between the moving meshes.
We implement the method in a vertical slice model and evaluate its performance for
the simulation of idealized linear and nonlinear orographic flow in both dry and moist
environments. The HPM method is able to capture the basic features of the gravity
wave to a degree of accuracy comparable to that reported in the literature. Numerical
solution in the moist experiment indicates the influence of moisture on wave charac-
teristics is represented reasonably well and the reduction of momentum flux is in good
agreement with theoretical analysis.

1 Introduction

In recent years efforts have been made to extend the use of Hamiltonian particle-mesh (HPM)
methods for atmospheric modeling (e.g. Frank et al. (2002); Frank & Reich (2004); Cotter et
al. (2004); Shin & Reich (2009)). An important issue in atmospheric modeling, particularly
for climate simulation, is the numerical conservation of mass of air, water, and long-lived
tracers (Thuburn 2008). The hydrostatic HPM method has some advantages with respect to
this issue in that it conserves mass locally and satisfies an exact advection equation for long-
term simulations. The key idea is to approximate horizontal motion along the lines of the
Hamiltonian particle-mesh method while the vertical motion is discretized as a moving mesh
method. Lin (2004) has also discussed the reduction of dimensionality from 3D to layered 2D
by using floating vertical coordinates in the context of a finite volume dynamical core. In this
article we present the hydrostatic HPM method and test the scheme for idealized orographic
flows. We demonstrate that the HPM is able to properly represent fundamental processes
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such as the generation of gravity waves due to orographic forcing and the influence of moist
processes on the character of idealized linear and nonlinear orographic waves. Compared
to previous numerical studies Durran & Klemp (1983) (Hereafter DK83) and Pinty et al.
(1995) (Hereafter P95) for linear hydrostatic orographic flows with an isolated hill of 1 m
height, the wave generation is well-represented in our model.

In the following sections we explain details of the HPM method and how we represent
moving meshes to enforce time-dependent hydrostatic balance. Then we discuss the results
of numerical experiments and propose further work with the HPM method.

2 The Hydrostatic HPM

The hydrostatic Hamiltonian particle-mesh (HPM) method is derived for a vertical slice
model, using Eulerian coordinates (x, z) ∈ Ω ⊂ R2 and Lagrangian labels (a, b) ∈ Ω. We
denote discrete approximations of dependent variables over the Eulerian grid with Latin
indices, and those over a discrete label space with Greek indices. For example, fα,γ is an
approximation to f(a, c) at a grid point (aα, cγ) = (α∆a, γ∆c) in label space, where ∆a, ∆c
are mesh sizes and α, γ ∈ Z. For mixed Eulerian-Lagrangian approximations, we use a form
such as fi,γ ≈ f(xi, cγ). More details about such mixed approximations will be given in the
following paragraphs.

The hydrostatic HPM method is different in nature from nonhydrostatic HPM (Shin
& Reich 2009) in that the vertical motion is discretized using a moving mesh. We define
time-dependent Lagrangian particles with x-positions denoted by xα,γ+1/2(t), and vertically
buoyant mesh points with z-coordinates zi,γ(t). As indicated by the indexing, the horizontal
position of the mesh point is fixed in the Eulerian frame, while its vertical position is fixed
in the Lagrangian frame, i.e. z = z(x, c). We define horizontal basis functions with support
centered at the mean of two vertically moving mesh points, that is, at (xi, zi,γ+1/2) with
zi,γ+1/2 = (zi,γ+1 + zi,γ)/2. The basis functions, denoted by ψi,γ+1/2(x), are non-negative and
satisfy the partition of unity property∑

i

ψi,γ+1/2(x) = 1 (2.1)

for all (x, z) ∈ Ω. We also introduce the scaled basis functions

ψ̂i,γ+1/2(x) =
ψi,γ+1/2(x)

∆x
. (2.2)

It is natural to use the same basis function at xi independent of the value of γ. Hence we
will use the simpler notation ψi(x) and ψ̂i(x). A basis function having the desired properties
is the cubic B-spline with support radius 2∆x.

A Lagrangian particle with x-position xα,γ+1/2 carries a mass mα,γ+1/2 and a potential
temperature θα,γ+1/2. Note that we do not request that θα,γ+1/2 = θγ+1/2, i.e., lines of con-
stant cγ+1/2 need not be lines of constant potential temperature (isentropes). Additionally,
in the case of moist simulations, a particle also carries a moisture budget, which is com-
monly represented by the total mixing ratio rtα,γ+1/2

. The moisture can experience phase
changes and in this study we consider only those between cloud water and water vapor.
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The three quantities (mα,γ+1/2, θα,γ+1/2, rtα,γ+1/2
) remain constant under unsaturated condi-

tions, but θα,γ+1/2 may vary when latent heat is released in association with phase changes
of water. The quantities mα,γ+1/2 and rtα,γ+1/2

always remain constant. Regardless of the
saturated/unsaturated condition, the moist static energy is conserved so that the scheme
can be energetically consistent.

Here we consider simple problems of air flows in a hydrostatic balance, which are a good
approximation for orographic flow arising due to moderate surface terrains.

2.1 Density approximation

The density ρi,γ+1/2(t) ≈ ρ(xi, zi,γ+1/2) is approximated by

ρi,γ+1/2(t) =
1

zi,γ+1(t)− zi,γ(t)

[∑
α

mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]
. (2.3)

Conservation of mass is encoded in the identity

∑
i,γ

ρi,γ+1/2(t) ∆x [zi,γ+1(t)− zi,γ(t)] =
∑
i,γ

[∑
α

mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]
∆x

=
∑
α,γ

mα,γ+1/2

[∑
i

ψi(xα,γ+1/2(t))

]
(2.4)

=
∑
α,γ

mα,γ+1/2,

due to (2.1). The product of density and potential temperature, i.e., µ = θρ, is a primitive
variable, approximated at (vertically moving) mesh points (xi, zi,γ+1/2). The approximation
for µi,γ+1/2 is

µi,γ+1/2(t) =
1

zi,γ+1(t)− zi,γ(t)

[∑
α

θα,γ+1/2mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]
, (2.5)

and we obtain conservation via∑
i,γ

µi,γ+1/2(t) ∆x [zi,γ+1(t)− zi,γ(t)] =
∑
α,γ

θα,γ+1/2mα,γ+1/2. (2.6)

Other thermodynamic quantities are now easily approximated over (xi, zi,γ+1/2) using the
standard identities

T = θπ, π =

(
µ

µ0

)κ/(1−κ)

, (2.7)

where µ0 = p0/R is a constant reference value, cp = cv/(1− κ), and κ = Rd/cp = 2/7, and
Rd is the ideal gas constant for dry air.
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2.2 Equations of motion and discrete hydrostatic balance

Since we work with the hydrostatic approximation, the vertical motion does not contribute
to the kinetic energy and whose discrete approximation is

T =
1

2

∑
α,γ

mα,γ+1/2|ẋα,γ+1/2|2. (2.8)

The potential energy is defined by

Vanalytic =

∫
Ω

[
cvµ0

(
µ

µ0

)1/(1−κ)

+ gρz

]
dxdz. (2.9)

With our given approximations this becomes

V =
∑
i,γ

[
cvµ0

(
µi,γ+1/2

µ0

)1/(1−κ)

+ gρi,γ+1/2zi,γ+1/2

]
∆x∆zi,γ+1/2 = VP + VG, (2.10)

where for ease of notation we introduce the following abbreviation:

∆zi,γ+1/2 = zi,γ+1 − zi,γ. (2.11)

The continuous equations of motion are now obtained from the Lagrangian functional

L =

∫
Ldt, (2.12)

where L = T - V . The associated discrete Euler-Lagrange equations are straightforward to
derive. At time level tn, the contribution to the Lagrangian is

Ln(xnα,γ+1/2) =
1

2
mα,γ+1/2

(
xnα,γ+1/2 − x

n−1
α,γ+1/2

∆t

)2

− V(xnα,γ+1/2). (2.13)

The fully discrete approximation of the action integral L is then given by

L∆t =
N∑
n=1

Ln∆t. (2.14)

Computing partial derivatives of L∆t with respect to xnα,γ+1/2, and setting them equal to
zero, we obtain

0 =
∂L∆t

∂xnα,γ+1/2

= −mα,γ+1/2

(xn+1
α,γ+1/2 − 2xnα,γ+1/2 + xn−1

α,γ+1/2)

∆t
−∆t∇xV(xnα,γ+1/2). (2.15)

This equation is the discrete analog of the Euler-Lagrangian equation

d

dt

∂L
∂ẋ

=
∂L
∂x

. (2.16)
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The momentum equation is given by

mα,γ+1/2ẍα,γ+1/2 = −∇xV(xnα,γ+1/2) = FG
x,α,γ+1/2 + F P

x,α,γ+1/2, (2.17)

where the gravitational force applied on the particle is

FG
x,α,γ+1/2 = −g mα,γ+1/2

∑
i

[zi,γ+1/2∇xψi(xα,γ+1/2)], (2.18)

and the pressure gradient force is

F P
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

∑
i

[(
µi,γ+1/2

µ0

)κ/(1−κ)

∇xψi(xα,γ+1/2)

]
. (2.19)

Störmer-Verlet time-stepping equivalent to 2.15 leads to the explicit update

mα,γ+1/2

[
xn+1
α,γ+1/2 − 2xnα,γ+1/2 + xn+1

α,γ+1/2

]
= ∆t2

[
FG,n
x,α,γ+1/2 + F P,n

x,α,γ+1/2

]
. (2.20)

Since L does not depend on żi,γ+1/2, the associated Euler-Lagrange equation z results in a
holonomic constraint, which on the discrete level becomes

0 =
∂L∆t

∂zni,γ+1/2

= −∆t∇zV(zni,γ+1/2). (2.21)

These nonlinear constraint equations are coupled in the index γ but not in i. Hence we
essentially have to solve a decoupled set of discretized, one-dimensional, nonlinear elliptic
equations in the vertical. Note that this also holds true in three dimensions. The appropriate
boundary conditions are zi,0 = 0 and zi,M = H for the bottom and top surfaces. It is easy
to include orography into this approach by simply setting zi,0 = zs(xi), where zs(xi) is the
height of the surface at xi.

To simplify notation in the following, we define µi,γ+1/2= µi,γ+1/2∆zi,γ+1/2 and ρi,γ+1/2=
ρi,γ+1/2∆zi,γ+1/2. To complete the time-step at tn+1, we obtain the new vertical positions
zn+1
i,γ that satisfy the discrete hydrostatic balance condition. Equation (2.21) becomes

0 = FG
z,i,γ + F P

z,i,γ, (2.22)

with

FG
z,i,γ = −g

2
[ρ̄i,γ+1/2 + ρ̄i,γ−1/2], (2.23)

and

F P
z,i,γ = cvµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

−
(
µi,γ−1/2

µ0

)1/(1−κ)
]

− cp

[
µi,γ+1/2

(
µi,γ+1/2

µ0

)κ/(1−κ)

− µi,γ−1/2

(
µi,γ−1/2

µ0

)κ/(1−κ)
]

(2.24)

= −κcpµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

−
(
µi,γ−1/2

µ0

)1/(1−κ)
]
,
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by again applying the discrete variational principle. These equations are solved subject to
the boundary conditions zi,0 = zs(xi) and zi,M = H. Note that with particles horizontally
fixed, FG

z,i,γ is constant. We use the relation

F P
z,i,γ = −κcpµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

∆z
1/(κ−1)
i,γ+1/2 −

(
µi,γ−1/2

µ0

)1/(1−κ)

∆z
1/(κ−1)
i,γ−1/2

]
(2.25)

and

∂

∂zi,γ
∆z

1/(κ−1)
i,γ+1/2 =

∂

∂zi,γ
(zi,γ+1 − zi,γ)1/(κ−1) =

1

1− κ
∆z

1/(κ−1)
i,γ+1/2 ∆z−1

i,γ+1/2, (2.26)

plus related formulas to set up a Newton iteration for finding zi,γ+1/2. The vertical position
of the particle at xα,γ+1/2 is then approximated by

zα,γ+1/2 =
∑
i

zi,γ+1/2 ψi(xα,γ+1/2(t)), (2.27)

and the diagnostic estimation of the vertical velocity can be given by

W n+1
α,γ+1/2 =

1

∆t
(zn+1
α,γ+1/2 − z

n
α,γ+1/2), (2.28)

and we denote the zonal velocity of a particle, ẋα,γ+1/2 by Uα,γ+1/2. The grid-based zonal
and vertical winds are then defined by

ui,γ+1/2 =

∑
α Uα,γ+1/2mα,γ+1/2 ψi(xα,γ+1/2)

ρi,γ+1/2∆x∆zi,γ+1/2

, (2.29)

wi,γ+1/2 =

∑
αWα,γ+1/2mα,γ+1/2 ψi(xα,γ+1/2)

ρi,γ+1/2∆x∆zi,γ+1/2

, (2.30)

for diagnostic purposes such as analysis of divergence and vorticity fields (Frank et al. 2002).
We illustrate the moving meshes in response to the generation of an orographic wave asso-
ciated with an isolated hill in the vertical slice model (Fig. 1). If there is a disturbance that
generates imbalance on the vertically stratified layers, the meshes move vertically to find
new positions zn+1

i,γ+1/2 that satisfy hydrostatic balance. The particles lay midway between
adjacent horizontal meshes so that they also adjust vertically conforming to the buoyant
meshes. A similar moving mesh approach was combined with an Eulerian finite volume
scheme and semi-Lagrangian advection in (Lin 2004).

We did not use numerical diffusion for tests in this study, but spurious small scale per-
turbations are filtered using a Helmholtz operator on the thermodynamic quantities over the
grid (Frank et al. 2002). The Helmholtz operator is applied directly in the Lagrangian such
that Hamiltonian structure is maintained. In the current context, we smooth ρ, µ, z and
the Exner function π. Frank et al. (2005) showed that the combination of this regularization
and Störmer-Verlet time-stepping modifies the dispersion relation in a manner equivalent to
a two-time-level semi-implicit time discretization for the linearized shallow-water equations.
Let H i′

i denote a discrete approximation to the Helmholtz operator

H = 1− α2
x

∂2

∂x2
(2.31)
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Figure 1: Schematic descriptions of particles conforming to a moving mesh due to an isolated
hill. Vertical grids (zγ) are denoted by black lines and the mean of two vertically moving
meshes, zi,γ+1/2 = (zi,γ+1 + zi,γ)/2 by red lines. We plot every 20th particle (Black dots) in
each layer.

over the x grid subject only to x and its periodic boundary conditions. Here αx ≥ 0 is a
given smoothing length. Then a smoothed µ̃i is defined as the solution of∑

i′

H i′

i µ̃i′ = µi. (2.32)

Likewise we obtain ρ̃ and z̃ using the Helmholtz operator. Note that now z̃, µ̃/∆zi,γ+1/2,
and ρ̃/∆zi,γ+1/2 replace z, µ, and ρ in (2.10). The associated force fields (2.18) and (2.19)
are then given by

F̃G
x,α,γ+1/2 = −g mα,γ+1/2

∑
i

[z̃i,γ+1/2∇xψi(xα,γ+1/2)], (2.33)

and

F̃ P
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

∑
i

[
π̃i,γ+1/2∇xψi(xα,γ+1/2)

]
, (2.34)

where π̃i is defined as the solution of
∑

i′ H
i′
i π̃i′ = [µ̃/(µ0∆zi,γ+1/2)]κ/(1−κ).

3 Numerical experiments with orography

We evaluate the performance of our scheme by testing the generation of gravity waves due
to an idealized orography. Details of the experiments are listed briefly in Table 1. The aim
of these tests is to examine if the hydrostatic HPM method is capable of capturing general
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features of gravity waves in the presence of orography. For this purpose we use the tests in
the linear hydrostatic flow regime reported in DK83 and P95. As is pointed out in a number
of references in the literature, an appropriate upper boundary layer is essential in numerical
simulations of orographic flow to prevent the reflection of waves back into the domain. The
portion of the domain where a dissipative boundary condition is put into operation is often
called a “sponge layer”. In our experiments we apply such a boundary condition only to the
zonal wind. The sponge layer in DK83 is defined by

U+ = U− +
∆t

2
τ(z)(U− − U0), (3.1)

where U− is an updated zonal wind of a particle using (2.17), U0 a constant zonal wind
speed given at the initial time, ∆t is a time interval, and U+ a new velocity. In DK83 τ(z)
is defined by

τ(z) =


0, for z ≤ zB

−χ
2

(
1− cos z−zB

zT−zB
π
)
, for 0 ≤ z−zB

zT−zB
≤ 0.5

−χ
2

[
1 +

(
z−zB
zT−zB

− 1
2

)
π
]
, for 0.5 ≤ z−zB

zT−zB
≤ 1

(3.2)

where χ is a constant, zT is the top of the domain, and zB is the bottom of the sponge
layer. We choose the constant χ = 20 h−1, with which an optimal solution is produced in
the experiments of this study. We have observed excessive dissipation or instability with
much larger or smaller than this value, respectively. Meanwhile the type of sponge layer in
P95 is given such that

U+ = (1− β)U− + β U0. (3.3)

The coefficient β = βv for the vertical sponge layer in P95 is defined by

βv =


0, for z < zB(

z−zB
zT−zB

)2

, for zB < z < zT ,
(3.4)

and similarly the coefficient β = βh for lateral sponge zones is given by

βh =


cos2

[
π
2

(
x
xD

)]
, for 0 < x < xD

cos2
[
π
2

(
xL−xD
xD

)]
, for xL − xD < x < xL

0, otherwise,

(3.5)

where xL is the lateral size of the domain and xD is the thickness of the sponge zone. We
choose the P95 type of lateral sponge zone since we obtain an optimal solution close to the
analytic solution with this boundary condition. The Coriolis parameter is set to be zero for
all tests. We use a bell-shaped profile for the orography represented by

h(x) = h0

(
a2

x+ a2

)
. (3.6)
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Initially we begin with the peak height h0 = 0 and increase h0 gradually during the early
stage of the integration until h0 = 1 m. The isolated hill is placed at the center of the
domain. The number of particles is 2 per cell and the total number of particles per layer is
kept uniform.

Table 1: Description of numerical experiments

Test Details Description
T1 U = 20 m/s, a = 10 km, N = 0.0196 s−1 Linear hydrostatic flow in DK83
T2 U = 32 m/s, a = 16 km, N = 0.0187 s−1 Linear hydrostatic flow in P95
T3 U = 20 m/s, a = 10 km, N = 0.0132 s−1 Linear dry/moist flow in DK83
T4 U = 20 m/s, a = 10 km, N = 0.0132 s−1 Nonlinear dry/moist flow with h0 = 1km

T1: Linear hydrostatic flow
Figure 2 shows the grid-based zonal wind perturbation (u′ = u− U0) and the vertical wind
perturbation (w′ = w). The size of spatial domain is Lx = 180 km and Lz = 16 km, and
the atmosphere is isothermal with the temperature T0 = 250 K as in DK83. The bottom
of the sponge layer zB is 8 km. For the lateral sponge zone, we choose the thickness xL =
2 km. The smoothing length αx = 1 km. The spatial resolution in DK83 was 2 km, but
we choose it to be 1 km since we obtain more accurate solution with the doubled spatial
resolution. The vertical velocity perturbation is better captured in our hydrostatic model
with the increase in the spatial resolution. We can integrate the equation with the time-step
size of 18 s. Figure 2 also shows time tendency of the energy, and the profile of the vertical
flux of horizontal momentum M , which is defined by

M =

∫ ∞
−∞

ρu′w′dx (3.7)

in terms of Reynolds stress, and this is normalized by pressure drag on the surface approxi-
mated by

D =
−π
4
ρ0NU0h

2
0 (3.8)

for the linear mountain wave (Durran & Klemp 1983). As shown in (3.8), the buoyancy
frequency N controls the magnitude of the surface drag given mountain height and mean
wind speed. The simulation is stable as implied by the energy tendency and the wave
structure and the magnitude of the perturbation are in good agreement with the reference
solution presented in DK83. For example, the local minimum of the zonal wind perturbation
around z = 5 km is correctly captured as seen by the contour line of -24 × 10−3 m/s (see
Fig. 1a in DK83 for the analytic solution). The normalized momentum flux during the
quasi-steady state is about 0.998 (Fig. 2) and this is quite close to the theoretical value 1.
We observe that the coefficient χ for the vertical sponge layer influences the magnitude of
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Figure 2: The zonal wind (u′), vertical velocity (w′), time tendency of the total energy (H)
and potential energy (PE), and vertical profile of the normalized momentum flux. We display
here 1000u′ and 1000w′. The contour interval is 6 × 10−3 m/s for the zonal wind and 0.6 ×
10−3 m/s for the vertical wind. They are the solution at t = 10 h, when it is quasi-steady.
The momentum flux at 10 h is colored red and the flux at earlier integration times displayed
in blue dash lines. See more details in text.

the perturbation and the behavior of the vertical momentum flux (not shown). The larger
χ becomes, the weaker the momentum flux.

T2: Linear hydrostatic flow in P95
The height of the hill h0 is the same as DK83, but the hill is broader and the uniform initial
wind speed is stronger (32 m/s instead of 20 m/s). Also the domain size is larger with Lx =
512 km and Lz = 20 km. We use the same spatial resolution ∆x = 3.2 km and ∆z = 0.25
km as in P95. In our simulations ∆t can be up to 36 s with the smoothing scale αx = 3.2 km
for the result shown in this article. In P95, zB is not explicitly given, but they suggest that
zB = Lz − λz, where λz is the vertical wave length of the dominant wave. The wave length
is λz = 2πU0/N so that the bottom of the sponge layer zB is estimated to be 9.29 km. For
the lateral sponge zone, we choose the thickness xL = 2 km as in T1. Figure 3a shows the
result from the experiment with the P95 type of vertical sponge layer and Figure 3b shows
the result with the DK83 type of the sponge layer. In both simulations we use the P95 type
of lateral sponge zones. The wave structure is similar to each other and to the reference
solution in P95, but the magnitude of the perturbation in Figure 3a is slightly weaker. The
momentum flux is well resolved in both experiments and close to the analytical estimation.
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Figure 3: The same as Figure 2, except the contour interval is 5 × 10−3 m/s for the zonal
wind and 0.5 × 10−3 m/s for the vertical wind. (a) T2 with the vertical sponge layer of P95.
(b) T2 with the vertical sponge layer of DK83. The P95 type of lateral sponge zones are
used in both simulations.
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4 Representation of moist process

We consider here highly simplified condensation and evaporation processes explicitly resolved
over particles. We summarize the notation for the variables associated with moist processes:

md dry air mass component

mv mass of water vapor component

mc mass of liquid water component

rv mixing ratio of water vapor, rv = mv/md

rc cloud water, rc = mc/md

rs mixing ratio of liquid water

rt total moisture content of an air parcel, rt = rv + rc

L the latent heat of vaporization at 0◦C = 2.5 ×106 J/kg

Rv the specific gas constant of water vapor = 461.5 J/(kg·K)

To account for liquid water loading and water vapor in the reversible moist process, the ideal
gas equation in the moist environment can be expressed by

p = ρRdT
1 + rv/ε

1 + rt
, (4.1)

where ε = Rd/Rv ≈ 0.622, the ratio of gas constant of dry air to water vapor. Accordingly,
hydrostatic balance is defined by

dπ

dz
= − g

cpθ

1 + rt
1 + rv/ε

. (4.2)

The relation between π and µ = ρθ becomes

π =

[
µ

µ0

(
1 + rv

ε

1 + rt

)] κ
(1−κ)

. (4.3)

Given an initial condition, the density over the position of a particle xα,γ+1/2 can be approx-
imated by

ρα,γ+1/2 =
pα,γ+1/2

RTα,γ+1/2

1 + rvα,γ+1/2
/ε

1 + rtα,γ+1/2

. (4.4)

We assign the (total) mass of the “moist particle”, mα,γ+1/2,t0 ≈ ρα,γ+1/2,t0∆a∆c. This is
done at the initial time and the mass of the particle remains unchanged in time. Using the
hydrostatic equation (4.2), we calculate the vertical mesh position zi,γ+1/2 and the pressure
gradient force for the particles is given by

F P
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

∑
i

(µi,γ+1/2

µ0

1 + rvi,γ+1/2
/ε

1 + rti,γ+1/2

)κ/(1−κ)

∇xψi(xα,γ+1/2)

 .
(4.5)
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Even in the absence of phase changes, rsα,γ+1/2
on the particles at each time t needs to be

calculated if the pressure and temperature approximated at the position have been changed.
We use Bolton’s formula (1980) for the saturated vapor pressure

esα,γ+1/2
= 6.11 exp

[
17.67(Tα,γ+1/2 − 273)

243.5 + Tα,γ+1/2 − 273

]
, (4.6)

es is in hPa. Then we obtain the saturation mixing ratio rs

rsα,γ+1/2
≈ ε

esα,γ+1/2

(pα,γ+1/2 − esα,γ+1/2
)
. (4.7)

The thermodynamic equations for the phase conversion processes are similar to those for
the moisture budget in Klemp and Wilhelmson (1978), but we do not include any numerical
diffusion terms or sub-grid turbulent parameterization. The prognostic equations for the two
moist components—water vapor and condensed liquid water—and the potential temperature
are given by

drv
dt

= δ(rv, rc)
drs
dt
,

drc
dt

= −δ(rv, rc)
drs
dt
, (4.8)

d ln θ

dt
= − L

cpT

drv
dt
.

The Heaviside function δ(rv, rc) has been introduced to represent phase conversions that
occur under the conditions:

δ(rv, rc) =

{
1, for rv ≥ rs or rc > 0

0, for rv < rs and rc = 0.

We assume that the phase conversions take place over each particle and the moist components
compose the total mass of the particle. The latent heat of vaporization (L) is indeed varying
with the temperature, but we take it as constant for the numerical experiments, where the
effect is negligible for the purpose of this study. The total water content rt is conserved in
the absence of rain and turbulent mixing.

Once the parcel is saturated, rv − rs > 0, the excess is converted into liquid water and
added to rc. The new rv becomes equal to rs. The change of saturation mixing ratio ∆rs and
the associated change of the temperature ∆T through the phase conversion is approximated
by

∆rs ≈
rs − rv

1 + L2rs/(cpRvT 2)
, (4.9)

∆T ≈ −L∆rs
cp

. (4.10)

The derivation of the equation for ∆rs is described in Appendix A. To ensure the values of
rc and rv remain positive and rt is invariant, we limit ∆rs = max(∆rs, rv) for condensation
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and ∆rs = min(∆rs, −rc) for evaporation. Subsequently, we can update the mixing ratio
of water vapor, liquid water, and potential temperature using (4.8). Then, the mesh height
zi,γ+1/2,t is calculated to satisfy a new hydrostatic balance after the occurrence of phase
changes. To be consistent with (4.2) and (4.8) the energy (E = V + T +Q) of the system
has contributions:

V =
∑
i,γ

cvµ0

[
µi,γ+1/2

µ0

(
1 + rvi,γ+1/2

/ε

1 + rti,γ+1/2

)] 1
(1−κ)

+ gρi,γ+1/2zi,γ+1/2

∆x∆zi,γ+1/2, (4.11)

T =
1

2

∑
α,γ

mα,γ+1/2 |ẋα,γ+1/2|2, (4.12)

Q = L
∑
α,γ

rvα,γ+1/2
mα,γ+1/2. (4.13)

T3: Linear dry/moist hydrostatic flow in DK83
As described in the literature (e.g. DK83), the strength of the orographic wave can diminish
when moisture is present. The temperature profile is calculated given stability N = 0.0132
with the surface temperature T0 = 273 K. The approximate Scorer parameter l = (N2/U2

0 −
(∂2U0/∂

2z)/U0)1/2 can be constant with height as discussed in DK83. For the test T3 we
use the same numerical set-up as for the test T1, except ∆t = 9 s. To obtain a stable
moist solution in the test with a higher surface temperature than 273 K, a smaller time-
step size than ∆t = 18 s is required. Figure 4a shows the result from dry simulation and
Figure 4b shows the result from the moist simulation with relative humidity RH = 100%
with rc = 0 initially. In comparison to the dry simulation with RH = 0% (Fig. 4a) the
wave length is longer and the perturbation is weaker. The theoretical vertical wavelength
λz = 2πU/N might increase as the stability is reduced due to the presence of moist processes.
We approximate the first vertical half-wavelength of numerical solutions by examining the
height at which the contour of isentropic surface becomes a mirror image of the isolated hill
(DK83). The first vertical half-wavelength is about 4.5 km in the test without moisture (RH
= 0%), while it is about 7.5 km in the moist simulation. As done in DK83 we compare
the momentum flux in this test with an analytical estimation using the approximate moist
stability Nm suggested in Durran & Klemp (1982). For comparison, we denote the reference
magnitude of momentum flux of the dry case by D defined in (3.8). The approximate moist
stability is Nm = 0.008 s−1 at the surface given T0 = 273 K and RH = 100%. The momentum
flux can be reduced to 0.61D theoretically, if Nm replaces N in (3.8). The vertical mean
(0 ∼ 8 km) of the momentum flux in Fig. 4a is about 0.56D, which is lower than the
expected value 0.61D. In DK83, Note that the momentum flux is about 0.4D instead of
the theoretical estimation 0.47D in the partially cloudy case, while the difference is smaller
in the everywhere cloudy case in DK83. In our simulation it is cloudy in the layer below
about 5 km. To examine the effect of the cloudiness we retain the stability N = 0.0132,
but increase the surface temperature to 280 K so that more latent heat can be released.
This initial set-up yields the approximate moist stability Nm = 0.006 s−1 and the depth of
cloudy layer extends to 6.5 km. The analytic estimation of surface drag is reduced to 0.46D
with the decreased stability. The vertical mean of the momentum flux is about 0.47D in
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our simulation (Fig. 4c), which shows that the vertical profile of momentum flux becomes
closer to the theoretical analysis as cloudiness increases. Those results from T3 experiments
indicate that the effect of moist process on the characteristics of mountain wave is reasonably
represented by the hydrostatic HPM.

T4: Nonlinear dry/moist hydrostatic flow
We use the same initial set-up as for the first two tests in T3, except that h0 = 1 km, ∆t
= 18 s, and the vertical domain size Lz = 32 km for the nonlinear test. We increase the
domain size to implement a very thick sponge layer for the highly nonlinear mountain waves
(Durran & Klemp 1983), but maintain the same vertical resolution as in T3. The height of
the mountain is increased from zero to 1 km gradually for an hour to avoid the generation
of instabilities. During this period, we also add a frictional damping,

F F
α,γ+1/2 = −β mα,γ+1/2

(
ẋα+1,γ+1/2 − 2ẋα,γ+1/2 + ẋα−1,γ+1/2

)
,

to the right-hand side of the momentum equation (2.17). A damping coefficient β = 2/∆t
is used in this test. Since the damping is applied only while the height is increased, the
variational relation would not be affected after the height of mountain reaches 1 km. The
momentum flux is normalized by Dn = −π

4
ρ0NU0h

2
0

[
1 + 7

16
(h0 l)

2
]

(Miles & Huppert 1969)
instead (3.8). Figure 5a shows that the dry solution is stable and represents a similar wave
structure to that of the linear counterpart (Fig. 4a). However, momentum flux diverges with
height, especially above 4 km, where the streamline reversal occurs. Nonhydrostatic effects
may play an important role in this highly nonlinear case (Durran & Klemp 1983) and the
vertical transport of momentum might not be adequately represented by a hydrostatic model.
Durran (1995) suggests that the wave-induced momentum fluxes need to be parameterized
for a complete description of sub-grid scale forcing related to wave propagation. Those
aspects would certainly require further investigations. Figure 5b shows that the nonlinear
moist wave is weakened by latent heat releases as in the linear test T3. The results from
the nonlinear tests show that our model performs a stably in the more challenging nonlinear
case, and produces the wave structures that are qualitatively similar to those of the linear
cases.

5 Discussions and outlook

We have extended the HPM method to a hydrostatic vertical slice model and evaluated its
performance using some idealized tests of both dry and moist atmospheres. It is shown
that the model captures the fundamental features of the orographic gravity wave and the
results are quantitatively in good agreement with reference solutions. In particular, moist
processes are newly implemented in an HPM model and the moist effect on the gravity
wave is reasonably well reproduced. We show the potential of the hydrostatic HPM for a
dynamical core suitable for climate simulations where the conservation of mass of air, water,
and long-lived tracers is essential and no artifactual generation of energy is desirable.

As the methods stands, particles adjust vertically conforming to the moving mesh. How-
ever, we may need to consider a redistribution of particles when diabatic processes lead to
a convective instability. A simple solution might be vertically exchanging particles between
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layers depending on heating/cooling, to resemble convection. In the future we will test such
vertical exchanges of particles, aiming to develop a convective parameterization method for
the hydrostatic HPM to describe cumulus convection and the response of larger-scale cir-
culations. One can anticipate in such situations that the horizontal velocity distribution of
particles can tend to be non-uniform. To prevent this, we may need to include a diffusion
mechanism. This implies that we leave the strictly Lagrangian variational approach but
it would add computational flexibility. We will further investigate the technical aspect of
particle remapping in future publications.
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A Appendix

We use a simplified description of a moist process suggested in Haltiner & Williams (1980).
The condensation/evaporation of water vapor should satisfy the following relation

rv + ∆rv = rs(T + ∆T, p) (A.1)

during the time interval ∆t assuming pressure is unchanged. This assumption is relevant
for the hydrostatic regime. The term on the right-hand side can be approximated using the
Taylor expansion,

rs(T + ∆T, p) ≈ rs(T ) +

(
∂rs
∂T

)
p

∆T. (A.2)

Since

rs = ε

(
es
p

)
, (A.3)

des
dT

=
Les
RvT 2

, (A.4)

we rewrite the Clasius-Clapeyron equation in terms of rs as

drs
dT

=
Lrs
RvT 2

.; (A.5)

Since ∆T = −L∆rv /cp by the thermodynamic law, we combine (A.1) and (A.2) and use
(A.5) to express

rv + ∆rv ≈ rs +

(
Lrs
RvT 2

)(
−L∆rv
cp

)
. (A.6)

Thus,

∆rv ≈ rs − rv +

(
Lrs
RvT 2

)(
−L∆rv
cp

)
. (A.7)

Solving this for ∆rv yields

∆rv ≈
rs − rv

1 +
(

L2rs
cpRvT 2

) . (A.8)
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Figure 4: The same as Figure 2, except some parameters given for the initial set-up. (a)
Moist simulation with RH = 100 % and the surface temperature T0 = 273 K. (b) The same
as (a), but RH = 0. (c) RH = 100 % and T0 = 280 K. See the details in text.
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Figure 5: The same as Figure 4 (a) and (b), except that h0 = 1 km, Lz = 32 km, and the
contour interval is 6 m/s for zonal wind and 0.6 m/s for vertical wind perturbation.
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