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Abstract We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation

models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle

techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on

continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined

dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined

using the framework of optimal transportation theory.
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1 Introduction

We consider dynamical models given in form of ordinary differential equations (ODEs)

ẋ = f(x, t) (1)

with state variable x ∈ Rn. Initial conditions at time t0 are not precisely known and are treated as a random variable

instead, i.e., we assume that

x(t0) ∼ π0,

where π0(x) denotes a given probability density function (PDF). The solution of (1) at time t with initial condition x0

at t0 is denoted by x(t; t0,x0).

To compensate for the resulting uncertainty in the solutions x(t; t0,xo), x0 ∼ π0, of (1), t > t0, we assume that

we obtain measurements y(tq) ∈ Rk at discrete times tq ≥ t0, q = 1, 2, . . . ,M , subject to measurement errors. The

measurements are related to the state variable through a linear forward operator H ∈ Rk×n and the measurement errors

are assumed to be Gaussian distributed with zero mean and covariance matrix R ∈ Rk×k, i.e.

y(tq)−Hx(tq) ∼ N(0,R). (2)

The evolution of the initial PDF π0 under the ODE (1) up to the first measurement at t1 is provided by the continuity

equation
∂π

∂t
= −∇x · (πf), (3)

which is also called Liouville’s equation in the statistical mechanics literature [13]. Let us denote the solution of Liouville’s

equation at observation time t1 > t0 by πf (x) = π(x, t1). In other words, solutions x(t1; t0,x0) with x0 ∼ π0 constitute

a random variable with PDF πf . The assimilation of the measurement y(t1) leads now to a discontinuous change in the

forecast PDF πf to an analyzed PDF πa. The precise relation between πf and πa will be summarized in the following

section. Once the analyzed PDF πa is available, Liouville’s equation is solved to the next observation time t2 with the

analysed PDF πa as the new initial condition at t1. The sequence of discontinuous changes at assimilation times tq and

continuous propagation of the PDF in between observations under Liouville’s equation (3) is then repeated for all q ≥ 2.
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In terms of practical implementations, one needs to replace the general class of PDFs by appropriate statistical

models ρ(x|z), where ρ is a given function of phase space x and a set of parameters z ∈ Rl. The time evolution of a PDF

π under a statistical model is then approximated by π(x, t) = ρ(x|z(t)) with the parameters z(t) ∈ Rl evolving in time.

Hence, once a statistical model has been chosen, the key challenge is to define appropriate evolution equations for the

parameters z. For linear differential equations, the statistical model can be chosen to be a Gaussian parametrized by its

mean and covariance matrix. Update equations for the mean and the covariance matrix are provided by the celebrated

Kalman filter (see, for example, [22,24]). For general differential equations, particle or sequential Monte Carlo filters have

been proposed. These methods are based on empirical measures parametrized by particle locations and weights (see, for

example, [4] and the following section). While particle filters can be shown to be asymptotically correct as the number

of particles increases, they become computationally demanding for high dimensional problems. The extended Kalman

filter (see, for example, [22]) represents an attempt to make the standard Kalman filter approach applicable to nonlinear

problems under the assumption that the PDFs remain nearly Gaussian with small variance. A more recent addition to

the family of filter algorithms is provided by the ensemble Kalman filter (EnKF), which combines empirical measures for

approximating Liouville’s equation (3) with a Kalman analysis update for the data assimilation step (see, for example,

[11]). As for the extended Kalman filter, the EnKF relies on the assumption that the PDFs remain approximately

Gaussian. However the assumption of small variance can be dropped since no linearization step is involved. The EnKF

is now widely being used in atmosphere-ocean dynamics, but a rigorous analysis of approximation errors is not yet

available.

Each of the above mentioned filter algorithms got its limitations when applied to complex physical models. A survey

of these limitations and possible remedies are, for example, discussed in [20] in the context of geophysical fluid dynamics,

which also provides a main motivation for the investigations presented in this paper. More specifically, we propose a

novel formulation for the above described sequential data assimilation problem in form of a continuous time dynamical

system in Section 3. We then demonstrate in Section 4 that popular EnKF techniques naturally fit into this framework.

The continuous formulation of [5,6] for deterministic square root filters [26,11] is summarized first and is then extended

to the EnKF with randomly perturbed observations [8,11]. As a novel result we obtain a stochastic differential equation

formulation of the EnKF analysis step. We also discuss links to iterative regularization methods [18] and H∞ filtering

[24]. Possible extensions to non-Gaussian statistical models are outlined in Section 5. These extensions avoid the need

for random re-sampling of particle locations as it is necessary for particle and sequential Monte Carlo methods [4] and,

hence, should be more robust in applications where the particle numbers is smaller than or comparable to the dimension

of the phase space Rn.

2 Particle and ensemble Kalman filters

A first step to perform data assimilation for nonlinear ODEs (1) is to approximate solutions to the associated Liouville

equation (3). Here we rely exclusively on particle methods [4] for which Liouville’s equation is naturally approximated

by the evolving empirical measure. More precisely, particle or ensemble filters rely on the simultaneous propagation of

m independent solutions xi(t), i = 1, . . . ,m, of (1) [11]. We associate the empirical measure

πem(x, t) =

m∑
i=1

αiδ(x− xi(t)) (4)

with weights αi > 0 satisfying
m∑
i=1

αi = 1.

Here δ(·) denotes the Dirac delta function. Hence our statistical model is given by the empirical measure (4) and is

parametrized by the particle weights {αi} and the particle locations {xi}. In the absence of measurements, the empirical

measure πem with constant weights αi is an exact (weak) solution to Liouville’s equation (3) provided the xi(t)’s are

solutions to the ODE (1).

At any observation point tq, we need to merge the forecast or prior PDF πf (x) with a likelihood function [18]

π(y|x) ∝ exp
(
−1

2
(Hx− y)T R−1 (Hx− y)

)
,

which characterizes the conditional PDF induced by the measurements (2). Here ∝ stands for equality up to a constant

scaling factor. For a given observation y = y(tq), Bayes’ theorem [18] states that the posterior PDF πa(x) is provided

by

πa(x) = π(x|y(tq)) with π(x|y) ∝ π(y|x)πf (x). (5)
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Here the scaling factor hidden in the ∝ notation depends on y, which however turns into a constant after setting

y = y(tq). For a particle method, the prior PDF is given by (4) with t = tq. A formal application of Bayes’ formula (5)

leads to a new set of weights αi given by

αai = Cαfi × exp
(
−1

2
(Hxi(tq)− y(tq))

T R−1 (Hxi(tq)− y(tq))
)
,

where C is a normalization constant to guarantee
∑m
i=1 α

a
i = 1, while the particle locations xi remain fixed.

To avoid a highly non-uniform distribution of the resulting particle weights after a number of data assimilation

steps, a random re-sampling step is performed. As a result one obtains randomly re-sampled ensemble locations xi(tq),

i = 1, . . . ,m, with equal weights αi = 1/m. See, for example, [4] for details. Convergence of particle filters to the analytic

filtering solution can be shown in the limit m→∞ [4]. The stochastic re-sampling step is however problematic since it

introduces a large amount of random noise for small ensemble sizes m < n, which are typical for many applications from

geophysical fluid dynamics [20].

A notable exception to the above described procedure is provided by EnKFs, which lead to a dynamic change in

ensemble locations xi while keeping the weights fixed, i.e. αai = αfi . This eliminates the need for stochastic re-sampling.

The EnKF is based on the assumption that the particles xi are drawn from a Gaussian PDF and relies on the standard

Kalman filter variance minimizing methodology. The interpretation of the Kalman analysis step in terms of readjusted

particle positions/ensemble members xi is a key step in the derivation of the EnKF. In [5,6] it has been shown that the

particle/ensemble readjustment step can be formulated as the solution of a differential equation in an artificial embedding

parameter s ∈ [0, 1]. This reformulation can be interpreted as a continuous deformation of the associated PDF under the

data assimilation step and we will provide a general dynamical systems framework for such a continuous deformation

approach in the following section. The deformation approach formally leads to an additional source term for the ODE

model (1). We mention that the same methodology appears in [9] in the context of time-continuous filtering problems.

For such problems the evolving probability measure is already continuous in time and, contrary to the intermittent data

assimilation problem considered in this paper, no artificial embedding process is required.

3 A novel continuous dynamical systems filter formulation

In this section, we derive a novel dynamical systems formulation of the data assimilation step (5). We first note that a

single application of Bayes’ formula (5) can be replaced by an N -fold recursive application with incremental likelihood

πN (y|x) ∝ exp
(
− 1

2N
(Hx− y)T R−1 (Hx− y)

)
, (6)

i.e., we first write (5) as

πa(x) ∝ πf (x)

N∏
j=1

πN (y(tq)|x)

and then consider the implied iteration

πj+1(x) =
πj(x)πN (y(tq)|x)∫
dxπj(x)πN (y(tq)|x)

with π0 = πf and πa = πN . We may now expand the exponential function in (6) in the small parameter ∆s = 1/N to

first obtain

πj+1(x) =
πj(x)

{
1− ∆s

2 (Hx− y(tq))
T R−1 (Hx− y(tq))

}
∫

dxπj(x)
{

1− ∆s
2 (Hx− y(tq))

T R−1 (Hx− y(tq))
} +O(∆s2)

and to then derive in the limit N →∞ the evolution equation

∂π

∂s
= −1

2
(Hx− y(tq))

T R−1 (Hx− y(tq))π + µπ (7)

in the fictitious time s ∈ [0, 1]. The scalar Lagrange multiplier µ is equal to the expectation value of the negative log

likelihood function

L(x; y(tq)) =
1

2
(Hx− y(tq))

T R−1 (Hx− y(tq)) (8)

with respect to π and ensures that
∫

dx ∂π/∂s = 0. We also set π(x, 0) = πf (x) and obtain πa(x) = π(x, 1). For further

reference, we replace (7) by the equivalent but more compact formulation

∂π

∂s
= −π (L− Eπ[L]) . (9)
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Here Eπ denotes expectation with respect to the PDF π. See [6] for a detailed discussion of a related derivation in the

context of ensemble Kalman filters. It should be noted that the continuous embedding defined by (9) is not unique.

Eq. (9) defines the change (or transport) of the PDF π with respect to the fictitious time s ∈ [0, 1]. Following an

optimal transportation approach (see, for example, [27]), we can view this change alternatively as induced by a continuity

(Liouville) equation
∂π

∂s
= −∇x · (πg) (10)

for an appropriate vector field g(x, s) ∈ Rn. At any time s ∈ [0, 1] the vector field g(·, s) is not uniquely determined by

(9) and (10) unless we also require that it is the minimizer of the kinetic energy

T (v) =
1

2

∫
dπ vTMv

over all admissible vector fields v ∈ L2(dπ,Rn), where M ∈ Rn×n is a positive definite mass matrix. Admissibility means

that g = v satisfies (10) for given π and ∂π/∂s. Under these assumptions, minimization of the functional

L[v, φ] =
1

2

∫
dπ vTMv +

∫
dxφ

{
∂π

∂s
+∇x · (πv)

}
for given π and ∂π/∂s leads to the Euler-Lagrange equations

πMg − π∇ψ = 0,
∂π

∂s
+∇x · (πg) = 0

in the velocity field g and the potential ψ. Hence, provided that π > 0, the desired vector field is given by g = M−1∇xψ,

where the potential ψ(x, s) is the solution of the elliptic partial differential equation (PDE)

∇x ·
(
πM−1∇xψ

)
= −∂π

∂s
= π (L− Eπ[L]) . (11)

We mention that the related formulation in [9] (i.e. eq. (19) in [9]) relies on an integral transform representation of

the vector field g in (10), which could also be explored in the context of our intermittent data assimilation problem.

More specifically, let G(x,x′) denote the Greens function for Poisson’s equation ∇x · (∇xu) = f over x ∈ Rn, then

g(x, s) =
1

π(x, s)

∫
Rn

∇xG(x,x′)
{
π(x′, s)

(
L(x′; y(tq))− Eπ[L]

)}
dx′.

On a more abstract level one could consider the Monge-Kantorovich problem for transporting the prior PDF πf into

the posterior PDF πa under the quadratic cost function c(x,y) = ‖x − y‖2 in phase space Rn [27]. General existence

results of an optimal transportation map y = T (x); i.e.

πf (x) = πa(T (x)) | det∇xT (x)|,

and its displacement interpolation in form of a Liouville/continuity equation (10) with appropriate vector field g are

stated, for example, in Theorems 2.12 and 5.51 of [27].

In light of the above discussions, we may now replace (9) by the continuity or Liouville equation

∂π

∂s
= −∇x ·

(
πM−1∇xψ

)
(12)

with an underlying ODE formulation
dx

ds
= M−1∇xψ(x, s) (13)

in the fictitious time s ∈ [0, 1]. As for the ODE (1) and its associated Liouville equation (3), we may approximate (13)

and its associated Liouville equation (12) by an empirical measure of type (4). Furthermore, one and the same empirical

measure approximation can now be used for both the ensemble propagation step under the model dynamics (1) and the

data assimilation step (12) using constant and equal weights αi = 1/m. The particle filter approximation is closed by

finding an appropriate numerical solution to the elliptic PDE (11). This is the crucial step which will lead to different

nonlinear particle filter algorithms. In the following section, we will solve (11) under the simplifying assumption that

the PDF π in (11) is taken to be a Gaussian PDF with mean equal to the ensemble mean and covariance equal to the

ensemble covariance matrix. Other obvious choices, such as π in (11) being represented by a Gaussian mixture model,

will be explored in forthcoming publications.
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4 Continuous ensemble Kalman filter formulations

In this section, we again take the particle approximation (4) as a starting point, assume that all ensemble members have

equal weights, i.e. αi = 1/m, and discuss continuous EnKF formulations both in a deterministic and stochastic setting.

We start by discussing (6) and Bayes’ theorem in case the prior distributions πf is Gaussian parametrized by its mean

xf and its covariance matrix Pf . It should be noted that the product of two Gaussian PDFs is again a Gaussian PDF

which allows for a more direct derivation of equation (13). To do so we introduce a generalized square root Ŷf of Pf

such that Pf = Ŷf ŶT
f . Then the continuous deformation of the Gaussian prior into its posterior can be characterized

by the differential equation
dx

ds
= −PHTR−1(Hx− y) (14)

for the mean and the differential equation

dŶ

ds
= −1

2
PHTR−1HŶ (15)

for the generalized square root of P, respectively. The initial conditions are x(0) = xf and Ŷ(0) = Ŷf . The posterior

values of the mean and the square root are provided by the solutions of (14) and (15), respectively, at s = 1. We also

have Pa = Ŷ(1)Ŷ(1)T . See [6] for a derivation of (14) and (15).

It should be noted that (14) and (15) formally arise from a continuous time Kalman filter formulation with trivial

model dynamics ẋ = 0 [24]. Furthermore, (15) implies the well-known Riccati equation

dP

ds
= −PHTR−1HP (16)

for the covariance matrix P.

Continuous EnKF formulations in the sense of Section 3 rely on a reformulation of (14) and (15) in terms of dynamical

equations in the ensemble members xi, i = 1, . . . ,m. We discuss two specific formulations in the following two subsections.

4.1 Ensemble square root filter

In this section we focus on ensemble square root filter implementations of an EnKF [26,11]. For notational convenience,

the ensemble members {xi(s)}mi=1 are collected in a matrix X(s) ∈ Rn×m. In terms of X(s), the ensemble mean is given

by

x(s) =
1

m
X(s)e ∈ Rn

and we introduce the ensemble deviation matrix

Y(s) = X(s)− x(s)eT ∈ Rn×m, (17)

where e = (1, . . . , 1)T ∈ Rm. The implied covariance matrix is

P(s) =
1

m− 1

m∑
i=1

(xi(s)− x(s)) (xi(s)− x(s))T =
1

m− 1
Y(s)YT (s). (18)

Note that Ŷ = Y/
√
m− 1 defines a generalized square root of P.

As shown in [5,6], an equivalent formulation of (14) and (15) in terms of the ensemble members xi(s) is provided by

dxi
ds

= −P∇xiVq(X) = −1

2
PHTR−1 (Hxi + Hx− 2y(tq)) , (19)

i = 1, . . . ,m, where Vq is the potential

Vq(X) =
m

2

{
L(x; y(tq)) +

1

m

m∑
i=1

L(xi; y(tq))

}
(20)

with the negative log likelihood function L(x; y(tq)) given by (8) for a measurement at tq. The solutions of (19) over a

unit time interval provide a particular analysis step for an ensemble square root filter.

Upon comparison with (13) we find that (19) fits into the dynamical systems framework developed in Section 3 with

mass matrix M(s) = P−1(s) and ∇xψ(xi, s) = −∇xiVq(X(s)).
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In practice, (19) needs to be discretized by an appropriate time-stepping method such as the forward Euler method.

It should be noted that the forward Euler method leads to an iterative procedure similar to a pre-conditioned Landweber-

Fridman iteration for ill-posed problems of type

Hx = y. (21)

See, for example, [18]. In our case, the pre-conditioner is provided by the forecast ensemble covariance matrix Pf and the

adjoint of H is based on the measurment error covariance matrix R. More precisely, the analyzed mean xa is provided

as solution to the linear system

P−1f (xa − xf ) + HTR−1(Hxa − y) = 0, (22)

which provides a regularized solution to (21). One can formally replace P−1f by αP−1f in (22) and treat α as a regu-

larization parameter in the sense of Tikhonov [18]. While it is then common practice to stop the Landweber-Fridman

iteration by a discrepancy principle for unknown parameter value α [18], we integrate (19) over the finite time-interval

s ∈ [0, 1] under the assumption that α = 1 is optimal. It would be of interest to explore the relation between these

two “stopping” criteria and to also investigate the duality between solving (22) by simple optimization algorithms and

iterative approaches based on underlying differential equations in articficial time (see, for example, [3] and [2]). It should,

however, be kept in mind that a Kalman filter requires not only the computation of the most likely state but in addition

the update of a covariance matrix. Furthermore, the general data assimilation problem requires the update of a complete

PDF.

As proposed in [6], the continuous formulation (19) allows for a concise formulation of a sequences of observations at

time instances tq, q = 1, . . . ,M , and intermittent propagation of the ensemble under the dynamics (1). Specifically, we

obtain the differential equation

ẋi = f(xi, t)−
M∑
q=1

δ(t− tq) P∇xiVq(X) (23)

in each ensemble member, where δ(·) denotes again the standard Dirac delta function. The mathematical interpretation of

(23) relies on replacing the Dirac delta function by a family of compactly supported smooth functions δε which approach

the Dirac delta function δ in the limit ε→ 0. See [6] and the following subsection for more details.

It should be noted that (23) is equivalent to a standard Kalman filter (and hence is optimal) if the model is linear and

if the number of ensemble members m is larger than the dimension of phase space n. Since neither of the two assumptions

are satisfied for most geophysical applications, EnKF formulations need to be modified to make them robust with respect

to sampling errors and/or weakly non-Gaussian PDFs. Two popular techniques are localization [16,15] and ensemble

inflation [1]. However, we first discuss the more recently introduced mollification approach [6].

4.1.1 Mollification: a seamless data assimilation approach

The Dirac delta functions in (23) lead to discontinuous changes in the ensemble members at assimilation times tq, which

can lead to artificial readjustment processes under the subsequent model dynamics. Hence it makes sense to “mollify”

the discontinuous analysis adjustments and we obtain

ẋi = f(xi, t)−
M∑
q=1

δε(t− tq) P∇xiVq(X), (24)

where

δε(s) =
1

ε
ψ(s/ε),

ψ(s) is the standard hat function

ψ(s) =

{
1− |s| for |s| ≤ 1,

0 else,
(25)

and ε > 0 is an appropriate parameter. The hat function (25) could, of course, be replaced by another B-spline. We

note that the term mollification was introduced to denote families of compactly supported smooth functions δε which

approach the Dirac delta function δ in the limit ε → 0. Mollification via convolution turns non-standard functions

(distributions) into smooth functions [12]. Here we relax the smoothness assumption and allow for any non-negative,

compactly supported family of functions that can be used to approximate the Dirac delta function.

Formulation (24) can be solved numerically by any standard ODE solver and leads to a seamless data assimilation

approach. Of course, the ODE formulation becomes increasingly stiff as ε → 0. Formulation (24) has been shown in [6]

to avoid the generation of unbalanced waves in multi-scale wave-advection equations, which is a problem with standard

EnKF implementations. See, e.g. [17,19]. Related “mollification” approaches are provided by [7,21].
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4.1.2 Covariance localization

Due to the fact that the number of ensemble members m is often much smaller than the dimension n of phase space, the

empirical covariance matrix (18) is highly rank deficient and spurious correlations arise due to under-sampling. Schur-

product covariance localization [16,15] has become a popular and powerful technique to deal with these issues. We find

that Schur-product-based localizations can easily be applied to (24) to obtain, e.g.

ẋi = f(xi, t)−
M∑
q=1

δε(t− tq) P̃∇xiVq(X), (26)

with

P̃ = Cloc ◦P,

and Cloc ∈ Rn×n an appropriate localization matrix [16,15,14]. See [5] for implementation details.

Calculations can be simplified by freezing the time-dependent covariance matrix P(t) for the duration of a single

assimilation step, i.e.

ẋi = f(xi, t)−
M∑
q=1

δε(t− tq) P̃(tq)∇xiVq(X).

4.1.3 Ensemble inflation and H∞ filtering

Ensemble inflation [1] is another popular technique to correct for poor statistics from small ensemble sizes, i.e m � n.

Ensemble inflation is performed either before or after a data analysis step and consists in replacing P by δP with factor

δ > 1. A corresponding adjustment of the ensemble members {xi} is required to reflect the change in the ensemble

covariance matrix.

We now point to a link between ensemble inflation and H∞ filtering [24]. We first introduce a (negative) cost function

D(x) = −θ
2

(Lx)TS−1Lx

for given matrices L and S and parameter θ > 0. The matrix S is assumed to be symmetric positive definite. We also

introduce the (negative) potential

W(X) =
m

2

{
1

m

m∑
i=1

D(xi)−D(x)

}
and the modified data assimilation equations

ẋi = f(xi, t)−
M∑
q=1

δε(t− tq)P [∇xiVq(X) +∇xiW(X)]

= f(xi, t)−
M∑
q=1

δε(t− tq)P
[
∇xiVq(X)− θ

2
LTS−1L (xi − x)

]
.

The additional term does not directly affect the evolution of the mean. Instead an additional contribution to the ensemble

deviations is introduced that exactly mirrors the term found in continuous H∞ filter formulations [24].

4.2 Ensemble Kalman filter with perturbed observations

In this section, we derive a novel stochastic differential equation (SDE) formulation of the EnKF with randomly perturbed

observations [8,11]. The perturbed ensemble Kalman filter step is given by

xai = xfi −K
(
Hxfi + di

)
,

where

K = PfHT
(
HPfHT + R

)−1
is the Kalman gain matrix and

di = y(tq) + ri
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are randomly perturbed observations, i.e. ri ∼ N(0,R), i = 1, . . . ,m. Here xfi denotes the forecast ensemble value at

time tq and xai the analyzed values for i = 1, . . . ,m.

The perturbed ensemble Kalman filter step motivates us to introduce the stochastic differential equation (SDE)

dxi = −PHTR−1
(

[Hxi − y(tq)] ds+ R1/2dWi

)
(27)

in the ensemble members xi(s), i = 1, . . . ,m, where Wi(s) ∈ Rk denotes standard k-dimensional Brownian motion [23].

It should be noted that the covariance matrix P depends on the ensemble members xi(s) and the noise is therefore of

multiplicative nature. We use the Itô interpretation of (27) and the SDE is solved over the interval s ∈ [0, 1] with initial

condition xi(0) = xfi [23]. The analysed ensemble value is provided by xai = xi(1).

We now verify that (27) is indeed the correct continuous stochastic EnKF formulation. A standard time discretization,

which is compatible with the Itô interpretation of (27), is given by the forward Euler method

xn+1
i = xni −PnHTR−1

([
Hxni − y(tq)

]
∆s+ R1/2zni ∆s

1/2
)
, (28)

where zni ∈ N(0, Ik) and ∆s > 0 is the step-size. We now take the limit m→∞ and obtain the update

xn+1 = xn −PnHTR−1
(
Hxn − y(tq)

)
∆s

for the ensemble mean, which becomes
d

ds
x = −PHTR−1 (Hx− y(tq)) (29)

in the limit ∆s → 0. We next study the update of the covariance matrix P. In terms of the ensemble deviations (17),

Euler’s method (28) leads to

Yn+1 = Yn −PnHTR−1
(
HYn∆s+ R1/2Zn∆s1/2

)
with random matrices

Zn =
[
zn1 |zn2 | · · · |znm

]
− zneT ∈ Rn×m.

We use the definition

Pn+1 =
1

m− 1
Yn+1(Yn+1)T

to obtain

Pn+1 = Pn − 2∆sPnHTR−1HPn +
∆s

m− 1
PnHTR−1/2Zn(Zn)TR−1/2HPn,

where we have already dropped all terms linear in Zn because of statistical independence to Yn, i.e., Zn(Yn)T /(m−1)→
0 as m→∞. Since also Zn(Zn)T /(m− 1)→ Ik as m→∞, we derive

Pn+1 = Pn −∆sPnHTR−1HPn

in the limit of m → ∞ ensemble members. Hence, under the additional limit ∆s → 0, we recover the desired Riccati

equation (16) for the ensemble covariance matrix P.

In summary, we may conclude that the proposed SDE formulation (27) is consistent with the deterministic formula-

tions (29) and (16) in the limit m→∞. Eqs. (29) and (16), on the other hand, are equivalent to the standard Kalman

filter step.

Unlike (19), formulation (27) does not directly fit into the dynamical systems framework of Section 3. However, if we

replace the continuity equation (12) by a Fokker-Planck equation [13]

∂π

∂s
= −∇x ·

(
πM−1∇xψ −

1

2
D∇xπ

)
with an appropriate diffusion tensor D ∈ Rn×n and also replace the elliptic PDE (11) by

∇x ·
(
πM−1∇xψ

)
= π (L− Eπ[L]) +

1

2
∇x · (D∇xπ) ,

then we can treat stochastic particle filters within the dynamical systems framework of Section 3 with the ODE (13)

now being replaced by the associated SDE [13]. In case of (27), the diffusion tensor is given by D = PHTR−1HP.
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We finally mention two approaches to increase the robustness of ensemble Kalman filters with randomly perturbed

observations. First, a complete ensemble Kalman filter formulation in terms of a mollification approach is given by

dxi = f(xi, t)dt−
M∑
q=1

δε(t− tq) PHTR−1
(

[Hxi − y(tq)] dt+ R1/2dWi

)
. (30)

Secondly, multiple ensemble formulations have been introduced by [16,17] to make the EnKF with perturbed observations

more robust with respect to random sampling errors. The key idea is to use different covariance matrices for each ensemble

member. For example, the covariance matrix Pii for the ith particle is given by

Pii =
1

m− 2

∑
l 6=i

(xl − xi) (xl − xi)
T , (31)

where

xi =
1

m− 1

∑
l 6=i

xl.

In other words, Pii is the covariance matrix for the reduced ensemble Xi = (x1, . . . ,xi−1,xi+1, . . . ,xm), which is

obtained from the full ensemble by eliminating its ith ensemble member. The multiple ensemble continuous Kalman

filter with perturbed observations is now given by

dxi = f(xi, t)dt−
M∑
q=1

δε(t− tq) PiiH
TR−1

(
[Hxi − y(tq)] dt+ R1/2dWi

)

with Pii given by (31).

5 Statistical models and generalized ensemble filters

We finally outline a general framework for data assimilation which generalizes the continuous EnKF approach discussed

previously. We start from an empirical measure (4) with equal weights αi = 1/m and particle locations xi(t) being

propagated under the mollified filter equations

ẋi = f(xi, t) +

M∑
q=1

δε(t− tq) M−1∇xψq(x; X)|x=xi
,

where the potentials ψq are obtained as numerical solutions to the associated elliptic PDE (13) over the interval t ∈
[tq − ε, tq + ε]. We use the notation ψq(x; X) to indicate that the statistical model for the PDF π in (13) depends on

the ensemble X and on the measurement at time t = tq. There are many possible choices for numerical approximations.

For example, one could approximate π by a Gaussian mixture model [1]. The identification of the appropriate mixture

components from the ensemble X could be achieved by the expectation maximization (EM) algorithm [10,25]. The vector

field g = M−1∇xψq could be approximated by an appropriate linear combination of continuous ensemble Kalman filter

updates for the individual Gaussian mixture components. Other possible choices could, of course, be explored.

6 Summary

We have summarized previous work on continuous EnKF formulations by [5,6] and have extended it to the EnKF

formulation with perturbed observations, which leads to stochastic differential equations in the ensemble members. We

have also outlined a general dynamical systems framework for continuous ensemble filtering, which can serve as a base

for deriving nonlinear ensemble/particle filters based on the numerical approximation of an elliptic PDE. The proposed

approach avoids the random re-sampling step necessary for traditional particle filters [4].

Acknowledgment. We would like to thank Yann Brenier and Andrew Stuart for inspiring discussions on the subject

of this paper.
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