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Abstract

A Lagrangian particle method is developed for the simulation of atmospheric flows
in a non-hydrostatic vertical slice model. The proposed particle method is an extension
of the Hamiltonian Particle-Mesh (HPM) (Frank et al. 2002) and provides preservation
of mass, momentum, and energy. We tested the method for the gravity wave test
in Skamarock & Klemp (1994) and the bubble experiments in Robert (1993). The
accuracy of the solutions from the HPM simulation is comparable to those reported in
these references. A particularly appealing aspect of the method is in its non-diffusive
transport of potential temperature. The solutions are maintained smooth largely due
to a “regularization” of pressure, which is controlled carefully to preserve the total
energy and the time-reversibility of the model. In case of the bubble experiments,
one also needs to regularize the buoyancy contributions. The simulations demonstrate
that particle methods are potentially applicable to non-hydrostatic atmospheric flow
regimes and that they lead to a highly accurate transport of materially conserved
quantities such as potential temperature under adiabatic flow regimes.

Keywords. particle-mesh methods, non-hydrostatic vertical slice model, regularization,
Hamiltonian formulation, conservative discretizations, atmospheric fluid dynamics

1 Introduction

Numerical methods for atmospheric fluid dynamics are almost exclusively based on the
Eulerian formulation of the equations of motion and use finite difference or finite volume ap-
proximations over a given grid (Durran 1998). Alternative methods based on a Lagrangian
description of fluid dynamics lead to either purely particle based methods such as smoothed
particle hydrodynamics (SPH) (Gingold & Monaghan 1977, Lucy 1977) or mixed particle-
mesh methods (Hockney & Eastwood 1988, Birdsall & Langdon 1981). While Lagrangian
particle methods are popular in plasma and astrophysics, applications to atmospheric prob-
lems are rare (Salmon 1983, Gadian et al. 1989). However, Lagrangian particle methods
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are an interesting alternative to grid-based method. Advection is treated very accurately
while conservation aspects such as mass, energy and circulation can be maintained rather
naturally (Frank & Reich 2003).

A main obstacle to the wider application of Lagrangian particle methods seems to be
rooted in a tendency towards instability in nearly incompressible flow regimes. More recently,
the Hamiltonian particle-mesh (HPM) method has been introduced (Frank et al. 2002) to
overcome those instabilities by smoothing thermodynamic quantities over the grid before the
particle forces (pressure gradients) are computed. The practicability of the HPM method
has been illustrated for shallow-water flows on the sphere (Frank & Reich 2004), as well
as in two-layer shallow-water models (Cotter et al. 2004). In this paper we extend the
HPM method to a non-hydrostatic vertical slice model for compressible and dry atmosphere
without orography.

To do so we have to tackle three major challenges. First, we introduce the smoothing of
the thermodynamic quantities in such a manner that it does not interfere with hydrostatic
balance. In other words, given a hydrostatic reference state the smoothing should only af-
fect perturbations about this reference state. Second, we introduce the smoothing in such
a manner that the Lagrangian equations of motion in the fluid particle positions remain
Newtonian with a conservative force field. Third, we implement vertical boundary condi-
tions in an appropriate (and again conservative) manner. In case of strongly unstable flow
regimes (such as temperature perturbations in a neutrally stratified atmosphere) we found
it necessary to also regularize the gravitational forces in a time-reversible but not strictly
energy conserving manner.

The paper is organized as follows. In the following section, we describe the model and
outline our discretization strategy. In Section 3, we present numerical results for a non-
hydrostatic gravity wave test in a stably stratified atmosphere (Skamarock & Klemp 1994)
and two bubble experiments in a neutrally stably atmosphere (Robert 1993). Conclusions
and further directions are summarized in Section 4.

2 Method description

2.1 Model set up

We will be using the following formulation of a non-hydrostatic vertical slice model

Du

Dt
= −cpθ

∂π

∂x
, (2.1)

Dw

Dt
= −cpθ

∂(π − π)

∂z
− g

(
1 −

θ

θ

)
(2.2)

Dθ

Dt
= 0, (2.3)

µt = −
∂(µ u)

∂x
−
∂(µw)

∂z
, (2.4)

with material time derivative

D(·)

Dt
= (·)t + u

∂(·)

∂x
+ w

∂(·)

∂z
, (2.5)
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Exner function
π = µR/cv , (2.6)

and hydrostatic reference state

cpθ
dπ

dz
+ g = 0. (2.7)

Here we have assumed that the hydrostatic reference state depends on z only.
The fluid density ρ is determined through the relation

ρ θ

ρrTr
= µ, (2.8)

where ρr and Tr are constant reference values for density and temperature, respectively. In
Lagrangian variables, the internal energy is entirely determined by µ. This makes it an ideal
variable to work with in this study. However, one could equivalently work with the fluid
density ρ as a primary variable.

We first consider a rectangular domain (x, z) ∈ [0, Lx] × [0, Lz] periodic in x and with
rigid boundary conditions in the vertical, i.e., w(t, x, 0) = w(t, x, Lz) = 0.

The equations of motion preserve the total energy

E =

∫
ρ

2

(
u2 + w2

)
dA+

∫
(cvρT − cpρθπ) dA+

∫
gρ (z − θf(z)) dA, (2.9)

where f(z) is an appropriate function such that df(z)/dz = 1/θ(z). For the given reference
profiles, we were able to compute f analytically. In the general case, we might have to use
numerical quadrature to find f such that f ′ = 1/θ̄.

We next introduce a computational vertical coordinate η. For that purpose we use

µ(z) = [π(z)]cv/R (2.10)

and define η ∈ [0, Lη] by

η(z) =

∫ z

0

µ(z′) dz′ (2.11)

and

Lη =

∫ Lz

0

µ(z′) dz′. (2.12)

The continuity equation (2.4) becomes

∂

∂t

(
µ

µ

)
= −

∂

∂x

(
µ u

µ

)
−

∂

∂η

(
µ η̇

µ

)
(2.13)

in the (x, η) coordinate system.
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2.2 Spatial discretization

We introduce a rectangular grid in the (x, η) ∈ [0, Lx] × [0, Lη] domain with grid points
(xi, ηj), where xi = (i − 1/2)∆x, i = 1, . . . , Nx, ∆x = Lx/Nx and ηj = (j − 1/2)∆η, j =
1, . . . , Nη, ∆η = Lη/Nη. Inverting the coordinate transformation, we obtain the associated
grid in the (x, z) ∈ [0, Lx]×[0, Lz ] plane with (non-uniform) grid points (xi, zj), zj = η−1(ηj).

We also introduce Lagrangian particles with location (Xk(t), Zk(t)), k = 1, . . . , n, n =
nxnz. We also consider the particle position in the (x, η) plane, i.e., ηk(t) = η(Zk(t)). The
particles are initially located at

Xk(0) = (i− 1/2)
Lx

nx

, ηk(0) = (j − 1/2)
Lη

nη

, k = (i− 1)nz + j. (2.14)

We typically use nx = 4Nx and nz = 4Nη.
The next step is to approximate solutions to the continuity equation (2.13). We essentially

follow the approach described in Section 2 of Cotter et al. (2007). In particular, we introduce
the shape functions

ψi,j(x, η) = B3

(
xi − x

∆x

)
B3

(
ηj − η

∆η

)
(2.15)

where B3(s) is the standard cubic B-spline (de Boor 1978). In the horizontal direction we
make use of the periodicity of the domain and in the vertical we appropriately modify the
above definition near the boundaries η = 0,and η = Lη such that

∑

i,j

ψi,j(x, η) = 1 (2.16)

for all (x, η) ∈ [0, Lx] × [0, Lη]. See §2.3 below for more details.
The standard particle-mesh approximation to (2.13) is provided by

µi,j(t) =
∑

k

sk ψi,j(Xk(t), η(Zk(t))) ∆A−1
i,j . (2.17)

Here

∆Ai,j =
∆x∆η

µ(zj)
(2.18)

is the area of the grid cell centered about the grid point (xi, zj) and sk, k = 1, . . . , n, are
constant weights defined by

sk =
µ0(Xk(0), Zk(0))

µ(Zk(0))
∆x∆η, (2.19)

where µ0 is the value of µ at initial time.
Because of (2.16), conservation of total µ follows from

∑

i,j

µi,j(t) ∆Ai,j =
∑

i,j

∑

k

skψi,j(Xk(t), ηk(t)) =
∑

k

sk

∑

i,j

ψi,j(Xk(t), ηk(t)) =
∑

k

sk.

(2.20)
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We also note that µ0 = µ leads to sk = ∆x∆η and µi,j(0) = µ(zj). In other words, the
hydrostatic reference state is preserved under the discretization.

We also assign velocities (uk(t), wk(t)), potential temperature θk = θ(Xk(0), Zk(0)), and
mass

mk =
ρ0(Xk(0), Zk(0))

µ(Zk(0))
∆x∆η = ρrTr

sk

θk
(2.21)

to each particle, where ρ0 is the value of ρ at initial time. Recall that ρ, θ, and µ are related
by (2.8).

The discretized equations of motion are now derived from the discrete energy

E = T + V (2.22)

with kinetic energy

T =
∑

k

mk

2

(
u2

k + w2
k

)
(2.23)

and total potential energy

V = g
∑

k

mk (Zk − θkf(Zk)) + ρrTr

∑

i,j

{
cv [µi,j]

cp/cv − cpµi,jπi,j

}
∆Ai,j , (2.24)

where πi,j = π(zj). We define grid values of the density by

ρi,j(t) =
∑

k

mkψi,j(Xk(t), η(Zk(t))) ∆A−1
i,j . (2.25)

Note that
cvρrTr [µi,j]

cp/cv = cvρi,jθi,jπi,j = cvρi,jTi,j (2.26)

with grid values of temperature Ti,j = θi,jπi,j , Exner function πi,j = [µi,j]
R/cv , and grid value

of potential temperature defined through the relation

µi,j =
ρi,jθi,j

ρrTr

. (2.27)

We observe that E is an approximation to (2.9).
The total potential energy (2.24) depends on all particle positions (Xk, Zk), k = 1, . . . , n.

The associated Newtonian equations of motion are now provided by

mkẌk = −
∂V

∂Xk

, (2.28)

mkZ̈k = −
∂V

∂Zk

, (2.29)

k = 1, . . . , n. A straightforward but technical calculation yields

∂V

∂Xk
= cpmkθk

∑

i,j

∂ψi,j(Xk, η(Zk))

∂Xk
(πi,j − πi,j) (2.30)
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and
∂V

∂Zk

= cpmkθk

∑

i,j

∂ψi,j(Xk, η(Zk))

∂Zk

(πi,j − πi,j) + gmk

(
1 −

θk

θ(Zk)

)
. (2.31)

The equations of motion (2.28)-(2.29) preserve the total energy E and are time-reversible,
i.e., replacing Ẋk and Ẏk by −Ẋk and −Ẏk, respectively, for k = 1, . . . , n is equivalent to
reversing time.

The total energy approximation E is, of course, not unique and different choices for the
discretization of (2.9) lead to different discrete equations of motion in the particle positions.

2.3 Smoothing and boundary conditions

The Hamiltonian particle-mesh method relies on a smoothing of the thermodynamic quan-
tities over the grid. In case of the shallow-water equations this results in a smoothing of the
layer-depth (Frank et al. 2002, Frank & Reich 2004). Here we need to smooth µ and the
Exner function π. The smoothing should be implemented such that the hydrostatic reference
state is not altered.

Let H i′,j′

i,j denote a discrete approximation to the Helmholtz operator

H = 1 − α2
x

∂2

∂x2
− α2

η

∂2

∂η2
(2.32)

over the (x, η) grid subject to periodic boundary conditions in the x direction and zero
Neumann boundary conditions in the η direction. Here αx ≥ 0 and αη ≥ 0 are given
smoothing lengths. Let a smoothed µ̃i,j be defined as the solution of

∑

i′,j′

H i′,j′

i,j (µ̃i′,j′∆Ai′,j′) = µi,j∆Ai,j . (2.33)

Note that if µi,j = µi,j using (2.18), (2.33) implies that µ̃i,j = µi,j and the hydrostatic
reference state is preserved under the smoothing.

We now replace the potential energy (2.24) by

V = g
∑

k

mk (Zk − θkf(Zk)) + ρrTr

∑

i,j

{
cv [µ̃i,j]

cp/cv − cpµ̃i,jπi,j

}
∆Ai,j . (2.34)

The associated gradients are given by

∂V

∂Xk
= cpmkθk

∑

i,j

∂ψi,j(Xk, η(Zk))

∂Xk

(
˜̃π − π

)

i,j
(2.35)

and
∂V

∂Zk
= cpmkθk

∑

i,j

∂ψi,j(Xk, η(Zk))

∂Zk

(
˜̃π − π

)

i,j
+ gmk

(
1 −

θk

θ(Zk)

)
, (2.36)

where
(

˜̃π − π
)

i,j
is defined as the solution of

∑

i′,j′

H i′,j′

i,j

(
˜̃π − π

)

i′,j′
= π̃i,j − πi,j, (2.37)
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with π̃i,j = [µ̃i,j]
R/cv .

Another issue one needs to address is the implementation of the vertical boundary con-
ditions. In our implementation, we made use of the concept of mirror particles. Mirror
particles are widely used in Lagrangian particle methods to represent rigid boundaries. We
explain the idea for the lower boundary at η = z = 0. We expect that the technique can be
extended to implementations with orography.

For each particle with position (Xk, η(Zk)) sufficiently close to the boundary, i.e.
0 ≤ η(Zk) ≤ 2∆η, we introduce a mirror particle with position (Xk,−η(Zk)) and veloc-
ity (uk,−wk). For j = 1, 2, the value of µi,j(t) is then approximated by

µi,j(t) =





∑

k

skψi,j(Xk(t), η(Zk(t))) +
∑

k∈I(t)

skψi,j(Xk(t),−η(Zk)))



∆A−1

i,j (2.38)

where I(t) is the set of all particle indices k that satisfy 0 ≤ η(Zk(t)) ≤ 2∆η at time t. All
shape functions ψi,j are defined as in (2.15). If a particle leaves the domain through the
boundary η = 0, then the mirror particles takes its place and the leaving particle becomes a
mirror particle.

The same construction is applied at the upper boundary condition η = Lη with the only
difference that a mirror particle has position (Xk(t), 2Lη − η(Zk(t))).

2.4 Time-stepping

We use the symplectic and time-reversible Störmer-Verlet method for time-stepping
(Leimkuhler & Reich 2005). The particle positions and velocities are updated as follows:

mkẊ
n+ 1

2

k = mkẊ
n
k −

∆t

2
∇Xk

V(Xn
k , Z

n
k ),

mkŻ
n+ 1

2

k = mkŻ
n
k −

∆t

2
∇Zk

V(Zn
k , Z

n
k ),

Xn+1
k = Xn

k + ∆tẊ
n+ 1

2

k ,

Zn+1
k = Zn

k + ∆tŻ
n+ 1

2

k ,

mkẊ
n+1
k = mkẊ

n+ 1

2

k −
∆t

2
∇Xk

V(Xn+1
k , Zn+1

k ),

mkŻ
n+1
k = mkŻ

n+ 1

2

k −
∆t

2
∇Zk

V(Xn+1
k , Zn+1

k ).

(2.39)

3 Numerical Experiments

We perform two sets of experiments and present the time evolution of potential temperature
perturbations. The potential temperature perturbations are approximated over the grid
using

θ′i,j =

∑
k(θk − θ(Zk))ψi,j(Xk, η(Zk))∑

k ψi,j(Xk, η(Zk))
(3.1)

and we display contour lines of constant potential temperature perturbation unless stated
otherwise.
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Figure 1: Grid-based values of perturbation potential temperature and particles at the
initial instant (upper panel) and at 10 min (lower panel). The contour lines in (a) are
between 0.0005 and 0.0095 K with contour intervals of 0.0005 K. Contour lines in (c) are
between -0.0015 and 0.0030 K with contour intervals of 0.0005 K and contour lines of negative
perturbation values are dashed. Particles with an initial perturbation θ′k > 0.0005 K are
colored red in (b) and (d).

3.1 Gravity wave

We first tested our scheme for gravity wave test described in Skamarock & Klemp (1994).
This test represents a very stable flow regime with no small scale structures being generated
and an energy conserving and time-reversible scheme such as ours should be well behaved.
Note that, contrary to Skamarock & Klemp (1994), we base our simulations on the unap-
proximated 2D Euler equations.

The reference profile is isothermal and the initial temperature perturbation is given by

θ′ = ∆θ
sin( πz

Lz
)

(1 + (x−x0)2

a2 )
, (3.2)

where ∆θ = 0.01 K, x0 = 100 km, a = 5 km. In this experiment ∆t = 1.0 s, ∆x = 1 km,
∆η= 1000, Lz = 10 km, Lx = 300 km. The vertical smoothing scale is αη = 2∆tcs, where
cs ≈ 300 ms−1 is the speed of sound for our model. The horizontal smoothing length is
αx = max(2∆tcs, dx). The number of particles n = 16NxNη, where Nx = 300 and Nη= 10.
The initial zonal wind speed U0 = 20 ms−1. The results displayed in Figure 1 are close to
those presented in Figure 4 of Satoh (2002) and Figure 2 of Giraldo & Restelli (2008). We
conclude that our model is able to reproduce gravity waves faithfully.

The time-step size and the smoothing length have been chosen such that α ≥ ∆tcs/2. We
observed in additional experiments that the scheme remains stable under increased time-step
sizes as long as this relation between α and ∆t is satisfied. However, the accuracy of the
solution is only preserved up to time-step sizes of 6 s. Thereafter the structure of the wave
pattern starts deviating significantly although the computation remains stable.
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3.2 Bubble experiment

We next repeated two of the bubble experiments presented in Robert (1993). In these
experiments the bubble is described by a circular area of temperature perturbations (θ′) in
an isentropic atmosphere (θ0 = 303.15 K). These experiments lead to very fine scale flow
structures and are highly sensitive to discretizations. It has also been found that either
explicitly or numerically induced diffusion is necessary to keep simulations stable, see, e.g.
Scorer & Ludlam (1953); D.K.Lilly (1964). We followed a somewhat different strategy in
our experiments. Instead of diffusion, we dispersively regularized the gravitational forces by
using the following approximation

∂Vg

∂Zk
:= −gmk

∑

i,j

ψi,j(Xk, η(Zk))

[
θ̃′i,j
θ0

]
(3.3)

and ∂Vg/∂Xk = 0. Here θ̃′i,j is obtained from (3.1) by applying the Helmholtz operator
H with an appropriate smoothing length (precise values are stated for each experiment).
The resulting Newtonian equation (2.28)-(2.29) will no longer exactly conserve the total
energy E (see also results in Section 3.3) but they are still time-reversible, i.e., no diffusion
is introduced through (3.3).

The first experiment is to test the motion of one bubble which is given by

θ′ =

{
γ, if r ≤ a

γe−(r−a)2/s2

, if r > a
(3.4)

where r2=(x−x0)
2 + (z− z0)

2, γ = 0.5 K, s = 100 m, a = 50 m, x0 = 500 m, and z0 = 260
m. In this experiment ∆t = 1.0 s, ∆x= 10 m, ∆η = 10, Lx = 1 km, Lz = 1.5 km, and we
set the smoothing scale α/∆x = α/∆η = 20 for µ, π− π̄, and α/∆x = α/∆η = 2 for θ− θ0.
The number of particles n = 4NxNη, where Nx = 100 and Nη= 150 are the number of grid
points in the horizontal and vertical, respectively. Note that the temperature perturbation
decays sufficiently fast not to be affected by the periodic horizontal boundary conditions.

Figure 2a shows the initial potential temperature field together with the location of
particles with θk > 303.15 K. We refer to Robert (1993) for more details of the model set-up.
Figure 2 should be compared to Figures 3-6 in Robert (1993). Although the bubble structure
at given times are different from the reference solution, especially near the edge, it can also
be seen that the general behaviour of the bubble is similar to the results in Robert (1993).
As Robert pointed out, this experiment is not proper for the decision whether the model can
produce accurate solutions since it is subject to strong instabilities in the bubble motion.
Nevertheless, we demonstrate the ability of our slice model for the simulation of thermal
instabilities in a neutrally stratified atmosphere.

We followed the steps taken by Robert to find the answer to the question of accuracy.
The next experiment is to test the ascent of a large warm bubble and the descent of a
small cold bubble. This experiment is to estimate the accuracy of solutions when the initial
thermodynamic fields have a smooth profile (Robert 1993). The perturbation temperature
is given by (3.4) to represent two bubbles with different scales. The parameters for the warm
bubble are such that γ = 0.5 K, s = 50 m, a = 150 m, x0 = 500 m, z0 = 300 m, and for the
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Figure 2: Grid-based values of potential temperature and selected particle positions (a) at
the initial instant, (b) at 6 min, (c) at 12 min, (d) and at 18 min. Contour lines are shown
for potential temperature values between 303.2 K and 303.65 K. The first contour interval is
0.05 K and the subsequent intervals are 0.1 K. Particles with θk > 303.2 K are colored red.

cold bubble, γ = -0.15 K, s = 50 m, a = 0 m, x0 = 560 m, z0 = 640 m. In this experiment
∆t = 1.0 s, ∆x= 10 m, ∆η = 10, Lx = Lz = 1 km, α/∆x = α/∆η = 10 for µ, π − π̄, and
α/∆x = α/∆η = 1 for θ − θ0. The number of particles n = 16NxNη, where Nx = 100 and
Nη= 100. Again we used the approximation (3.3).

The results from this experiment (see Figure 3) should be compared with Figure 8d
in Robert (1993) and t = 10 min. This comparison shows that a difference between the
solutions is evident in the finer details near the edge of the bubble. However, the general
patterns of the potential temperature perturbations are similar to each other. Compared to
∆t = 5 s, as used by Robert, the time-step size is limited to smaller values in this study for
accuracy reasons. In particular, the time-step size cannot be increased beyond 2 s since the
explicit time-stepping plus our regularization of the internal energy are not equivalent to the
semi-implicit time-stepping method. We find that computations with a bigger time-step size
are stable, but the structure of the bubble is not preserve.

3.3 Conservation of energy

We are concerned with energy conservation as well as the accuracy of the solution. The
diagnostic equations for the relative change in total energy are

∆E(tn) =
E(tn) − E(t0)

|E(t0)|
(3.5)
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Figure 3: Grid-based values of potential temperature and selected particle positions at the
initial instant (upper panel (a)-(b)) and at 10 min (lower panel (c)-(d)). Contour lines
are shown for potential temperature values between 303.05 K and 303.60 K with contour
intervals of 0.1375 K. Particles with θk > 303.2 K are colored red and those with θk < 303.1
K are colored blue.

and

∆T (tn) =
T (tn) − T (t0)

|E(t0)|
(3.6)

for the relative change in kinetic energy. We compare the energy tendency in the bubble
experiment and the gravity wave test (Figure 4). The total energy is preserved with the very
high accuracy in the latter test, while the energy drifts (decays) in the former test. This drift
in the bubble experiment is due to the gradient approximation (3.3). This approximation
is required to smooth the locally large thermal forces to which the particle movement is
very sensitive in a neutrally stratified atmosphere. The sensitivity of the solutions to the
temperature approximations has been addressed in D.K.Lilly (1964). Please note that in
none of the experiments any systematic form of dissipation/diffusion/viscosity has been
introduced, i.e., our simulations are entirely time-reversible up to round-off errors.

4 Conclusions

In this paper we have generalized the shallow water particle-mesh method (HPM) (Frank
& Reich 2004) to a vertical slice model. In particular, we have shown how to implement
the smoothing of the pressure/Exner function in the presence of a hydrostatic reference
state and rigid lid boundary conditions. We have demonstrated that the method is capable
of capturing non-hydrostatic flow regimes. In case of strong thermal instabilities (bubble
experiments) we found it necessary to modify the force field slightly. All simulations
were performed without any explicit or numerical form of viscosity. In case of the gravity
wave test we found the total energy preserved to a very high degree of accuracy. Another
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Figure 4: Energy tendency in the (a) two-bubble experiment and the (b) gravity wave
experiment. Definitions for ∆E(tn) and ∆T (tn) are provided by (3.5) and (3.6), respectively.

advantage of our particle-mesh method can be found in the purely dispersive transport
of potential temperature, i.e., there is no temperature diffusion introduced through the
numerical advection scheme. The same applies to the particle masses and we obtain exact
conservation of total mass as a byproduct. These properties make the HPM method a
candidate for long time simulations, where qualitative information about atmosphere flow
regimes are desired. However, a number of outstanding issues need to be addressed before
such simulations can be performed. Among these are (i) implementation of orography, and
(ii) efficient time-stepping methods for flows with large aspect ratio (nearly hydrostatic flow
regimes).
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