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Abstract

A regularized and time-staggered discretization of the two-dimensional, vertical slice
Euler equation set is described and analysed. A linear normal mode analysis of the
time-discrete system indicates that unconditional stability is obtained, for appropriate
values of the regularization parameters, for both the hydrostatic and non-hydrostatic
cases. Furthermore, when these parameters take their optimal values, the stability
behaviour of the normal modes is identical to that obtained from a semi-implicit dis-
cretization of the unregularized equations.
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1 Introduction

A time-staggered discretization, combined with a regularization of the continuous governing
equations, has recently been proposed as a solution method for the shallow water equations
(Frank et al. 2005). It was shown by linear analysis that, for an appropriate regularization
of the geopotential field, unconditional stability is obtained. An improved regularization
procedure, which additionally preserves any balance present in the original unregularized
equations, is described in Wood et al. (2006). This work was extended further to also
include the effects of advection and spatial discretization on an Arakawa C-grid (Staniforth
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et al. 2006, Reich 2006). Linear analysis (Staniforth et al. 2006) showed that the regularized,
time-staggered discretization remains unconditionally stable if the regularization parameters
are chosen in the same way as for the non-advecting case.

Here the regularized, time-staggered discretization procedure is applied to the two-
dimensional, vertical slice Euler equations. Whilst the shallow water studies, listed above,
demonstrate the validity of the method for handling fast gravity waves, analysis of the ver-
tical slice equations enables the handling of combined fast gravity and acoustic waves to be
examined.

Following a presentation of the continuous vertical slice equations in section 2, they are
written in a regularized form in section 3. The regularized equations are then linearized
in section 4 and a normal mode analysis performed in section 5, in order to determine the
dispersion effects of the regularization procedure. In section 6 the regularized and linearized
equations are discretized in time using the time-staggered approach (the spatial representa-
tion remains continuous). A stability analysis of the linear normal modes of the equation set
is then performed. Both hydrostatic and non-hydrostatic cases are considered. This analysis
indicates that unconditional stability is assured, in either case, for appropriate choices of the
regularization parameters. In section 7 a stability analysis of the unregularized equations,
using a semi-implicit time-discretization, is performed and the results compared with those
of section 6. Conclusions are presented in section 8.

2 The continuous governing equations

The continuous set of governing equations is written in Cartesian coordinates. The fully
compressible, inviscid vertical slice (x− z) Euler equation set, in the absence of diabatic
forcing, is,

Du

Dt
+ cpθ

∂π

∂x
= 0, (2.1)

Dv

Dt
= 0, (2.2)

δV
Dw

Dt
+ cpθ

∂π

∂z
+ g = 0, (2.3)

(
1− κ

κ

)
Dπ

Dt
+ π

(
∂u

∂x
+

∂w

∂z

)
= 0, (2.4)

Dθ

Dt
= 0, (2.5)

with the equation of state

π(1−κ)/κ =
R

p00

ρθ. (2.6)

A non-hydrostatic/hydrostatic switch has been introduced. The equation set is fully com-
pressible when δV = 1, but reduces to the hydrostatic primitive equation set when δV = 0.

In the above u, v, w are components of the velocity in the x, y and z-directions respec-
tively, π is the Exner pressure defined as π ≡ (p/p00)

κ, where p is the pressure and p00

is a reference pressure, θ is the potential temperature, g is the acceleration due to gravity
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(assumed constant), cp is the specific heat at constant pressure for dry air, κ ≡ R/cp and R
is the gas constant for dry air. The material time derivative is,

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
. (2.7)

Eqs. (2.1)-(2.6) are solved subject to appropriate boundary conditions. Herein, these are
assumed to be periodicity in the horizontal together with rigid top and bottom boundaries,
such that w vanishes there. A consequence of the vertical boundary conditions is that π is
in hydrostatic balance at the top and bottom boundaries.

3 The regularized equations

The regularization of (2.1)-(2.5) is performed about a motionless, hydrostatically balanced
basic state with potential temperature θ∗ (z) and Exner pressure π∗ (z), so that

cpθ
∗dπ∗

dz
+ g = 0. (3.1)

The regularized equations for the system are written as,

Du

Dt
+ cpθ

∂π̃

∂x
= 0, (3.2)

Dv

Dt
= 0, (3.3)

δV
Dw

Dt
+

1

1 + α2

(
cpθ

∂π̃

∂z
+ g

)
= 0, (3.4)

Dπ

Dt
+ π

(
κ

1− κ

)(
∂u

∂x
+

∂w

∂z

)
= 0, (3.5)

Dθ

Dt
= 0, (3.6)

together with the definition of the regularized Exner function, π̃:{
1−

[
β2

x

∂2

∂x2
+

β2
z

θ∗

{
∂

∂z
+
(

1− κ

κ

)
1

π∗
dπ∗

dz

}
θ∗

1 + α2

∂

∂z

]}
(π̃ − π) = − Rπ̃

cpθ∗
. (3.7)

In (3.7) the quantities α, βx and βz are regularization parameters, assumed real, and

Rπ̃ ≡ β2
x

∂

∂x
Ru + β2

z

[
∂

∂z
+
(

1− κ

κ

)
1

π∗
dπ∗

dz

] (
Rw

1 + α2

)
, (3.8)

with

Ru ≡ −cpθ
∗∂π

∂x
, (3.9)

and

Rw ≡ −θ∗

θ

(
cpθ

∂π

∂z
+ g

)
. (3.10)
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Eq. (3.7) is solved subject to boundary conditions consistent with those applied to the
unregularized equation set (2.1)-(2.6). As noted above, these are periodicity in the horizontal
together with rigid top and bottom boundaries, such that w vanishes there. A consequence
of the vertical boundary conditions is that π̃ is also in hydrostatic balance at the top and
bottom boundaries. Therefore, the boundary conditions for (3.7) are periodicity in the
horizontal and ∂ (π̃ − π) /∂z = 0 at the top and bottom boundaries.

The definition of π̃ given by (3.7) is not unique for the non-linear case. However, the form
presented is consistent with the normal mode structure of the underlying equations (Thuburn
et al. 2002, Davies et al. 2003). Moreover, note that the form (3.7)-(3.10) has the impor-
tant property that it maintains any motionless, horizontally homogeneous, hydrostatically
balanced state, since then Ru = Rw = 0 and therefore π̃ = π.

4 Linearization of the regularized equations

Now linearize the regularized equations (3.2)-(3.7) about the same stationary, motionless,
hydrostatic basic state as in section 3 by writing θ = θ∗ + θ

′
, π = π∗ + π

′
and π̃ = π∗ + π̃

′
.

Dropping primes for convenience, the linearized equations are then,

∂u

∂t
+ cpθ

∗∂π̃

∂x
= 0, (4.1)

∂v

∂t
= 0, (4.2)

δV
∂w

∂t
+

1

1 + α2

(
cpθ

∗∂π̃

∂z
− g

θ

θ∗

)
= 0, (4.3)

∂π

∂t
+ π∗

(
κ

1− κ

)(
∂u

∂x
+

∂w

∂z

)
+

dπ∗

dz
w = 0, (4.4)

∂θ

∂t
+

dθ∗

dz
w = 0, (4.5)

{
1−

[
β2

x

∂2

∂x2
+

β2
z

θ∗

{
∂

∂z
+
(

1− κ

κ

)
1

π∗
dπ∗

dz

}
θ∗

1 + α2

∂

∂z

]}
π̃

= π − β2
z

cpθ∗

[
∂

∂z
+
(

1− κ

κ

)
1

π∗
dπ∗

dz

]
gθ

(1 + α2) θ∗
, (4.6)

where (3.1) has been used in (4.3).

5 Normal mode analysis

Normal modes of the time-continuous, linearized equations are examined in this section to
prepare the way for the analysis, in section 6, of the time-staggered discrete equation set.
For analytical tractability, rigid boundary conditions are assumed at the lower boundary
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z = 0 and at the upper boundary z = zT = constant. Furthermore, choose the stationary
basic state to be isothermal (this also greatly facilitates analytic tractability) so that,

π∗ = π∗Se−κz/H , θ∗ = θ∗Seκz/H , (5.1)

where the subscript S denotes evaluation at the surface, H ≡ RT ∗/g is the scale height of
the atmosphere and the constant temperature is T ∗ ≡ π∗θ∗. The normal modes of (4.1)-(4.5)
for this isothermal basic state atmosphere and the assumed boundary conditions have been
determined following section 3 of Thuburn et al. (2002) - see also Davies et al. (2003). They
fall into two classes; external modes and internal modes.

5.1 External modes

In the case of external modes, seek solutions of the form (cf. (5.4)-(5.11) of Davies et al.
(2003) with δA ≡ δB ≡ 1),

u = u0 exp [i (kxx + ωt)] exp
(

κz
H

)
,

v = 0,
π̃ = π̃0 exp [i (kxx + ωt)] ,
π = B−1π̃,
w = 0,
θ = 0,

(5.2)

where

B−1 ≡
[
1− β2

x

∂2

∂x2
− β2

z

1 + α2

(
∂2

∂z2
− 2Γ

∂

∂z

)]
, (5.3)

and Γ ≡ (1− 2κ) / (2H).
Inserting (5.2) into (4.1)-(4.6) leads to,

u0 = −cpθ
∗
Skx

ω
π̃0, B−1 = B−1

ext ≡ 1 + β2
xk

2
x, ω2 = Bext (c∗s)

2 k2
x, (5.4)

where (c∗s)
2 ≡ κcpT

∗/ (1− κ) is the square of the sound speed for the basic state. When
β2

x ≡ 0 no regularization occurs since B−1
ext = 1 and so π̃ = π. It can be seen that, for a

fixed value of β2
x > 0, the propagation of the external modes is increasingly slowed as the

horizontal wave number, kx, becomes larger. Therefore, in terms of accuracy, β2
x should have

the smallest (positive) value consistent with the numerical stability of any discretization
scheme combined with the regularization procedure (see section 6 below).

5



5.2 Internal modes

For the internal modes, seek solutions of the form (cf. (5.15)-(5.20) of Davies et al. (2003)
with δB ≡ δC ≡ δD ≡ 1),

u = u0 exp [i (kxx + ωt)] [Γ sin (kzz)− kz cos (kzz)] exp
(

z
2H

)
,

v = 0,

π̃ = π̃0 exp [i (kxx + ωt)] [Γ sin (kzz)− kz cos (kzz)] exp
[(

1−2κ
2H

)
z
]
,

π = B−1π̃,

w = w0 exp [i (kxx + ωt)] sin (kzz) exp
(

z
2H

)
,

θ = θ0 exp [i (kxx + ωt)] sin (kzz) exp
[(

1+2κ
2H

)
z
]
.

(5.5)

Inserting (5.5) into (4.1)-(4.6) produces (cf. (5.21)-(5.25) of Davies et al. (2003) with δA ≡ 1),

u0 = −cpθ
∗
Skx

ω
π̃0, (5.6)

w0 = − iωcpθ
∗
S (Γ2 + k2

z)

(N ∗)2 − δV (1 + α2) ω2
π̃0, (5.7)

θ0 =
κcp (θ∗S)2 (Γ2 + k2

z) /H

(N ∗)2 − δV (1 + α2) ω2
π̃0, (5.8)

B−1 = B−1
int ≡ 1 + β2

xk
2
x +

β2
z

1 + α2

(
Γ2 + k2

z

) δV (1 + α2) ω2

δV (1 + α2) ω2 − (N ∗)2 , (5.9)

and the dispersion relation,

[
δV

(
1 + α2

)
ω2 − (N ∗)2

] {[
1 + β2

xk
2
x +

β2
z

1 + α2

(
Γ2 + k2

z

)]
ω2 − (c∗s)

2 k2
x

}

−
(
Γ2 + k2

z

) [
(c∗s)

2 − β2
z

1 + α2
(N ∗)2

]
ω2 = 0, (5.10)

where (N ∗)2 ≡ κg2/ (RT ∗) is the square of the buoyancy frequency of the basic state.

5.2.1 Hydrostatic case, δV = 0

When δV = 0, the acoustic modes are eliminated (because (5.10) reduces from a quartic
equation to a quadratic one, with two fewer solutions). Then (5.10) simplifies to,

ω2 =
(N ∗)2 k2

x

(Γ2 + k2
z) + (1 + β2

xk
2
x) (N ∗)2 / (c∗s)

2 . (5.11)

It is clear from (5.11) that the modes are increasingly slowed, for a fixed β2
x > 0, as kx →∞.

Regularization in the vertical plays no role for the hydrostatic case.
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5.2.2 Non-hydrostatic case, δV = 1

If δV = 1 there are four solutions to (5.10). It can be shown that the dispersion relation is
then,

ω2 =
K ±

√
K2 − 4L (N ∗)2 (c∗s)

2 k2
x

2L
, (5.12)

where
K ≡

[(
1 + α2

)
k2

x + Γ2 + k2
z

]
(c∗s)

2 +
(
1 + β2

xk
2
x

)
(N ∗)2 , (5.13)

L ≡
(
1 + α2

) [
1 + β2

xk
2
x +

β2
z

1 + α2

(
Γ2 + k2

z

)]
. (5.14)

The role of the regularization is to scale-selectively slow down the modes with the highest
frequency. For the acoustic modes (the positive root in (5.12)) this occurs, for fixed regu-
larization parameters, when kx → ∞ or kz → ∞ (and kz or kx fixed respectively). If ωU

denotes the unregularized frequency (obtained by setting α = βx = βz = 0 in (5.13) and
(5.14)), an examination of (5.12) indicates that (ω/ωU) → 0 when kx → ∞ or kz → ∞,
i.e. the regularization increasingly slows the propagation of these fast acoustic modes. In the
case of the gravity waves (the negative root in (5.12)), for a given kz, the frequency increases
as kx → ∞, the highest frequency occurring for the deepest internal mode. For this case
(ω/ωU) → 1/ (1 + α2), i.e. the high frequency modes are slowed and increasingly so as the
regularization parameter α increases.

The smallest (positive) values of α2, β2
x and β2

z , consistent with numerical stability, pro-
vide the most accurate solutions when the regularization procedure is applied in the context
of the discretized equations, as in the following section.

6 Stability of the time-staggered discretization

6.1 Time-staggered discretization

The linearized, regularized equations, (4.1)-(4.6), with the assumption of an isothermal basic
state (5.1), are discretized in a time-staggered manner, analogous to Frank et al. (2005), to
produce,

un+1 − un

∆t
+ cpθ

∗∂π̃n+1/2

∂x
= 0, (6.1)

vn+1 − vn

∆t
= 0, (6.2)

δV

(
1 + α2

) wn+1 − wn

∆t
+ cpθ

∗∂π̃n+1/2

∂z
− g

θn+1/2

θ∗
= 0, (6.3)

πn+1/2 − πn−1/2

∆t
+ π∗

[(
κ

1− κ

)(
∂un

∂x
+

∂wn

∂z

)
− κ

H
wn

]
= 0, (6.4)

θn+1/2 − θn−1/2

∆t
+

κ

H
θ∗wn = 0, (6.5)
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[
1− β2

x

∂2

∂x2
− β2

z

1 + α2

(
∂2

∂z2
− 2Γ

∂

∂z

)]
π̃n+1/2 = πn+1/2− gβ2

z

cp (1 + α2) (θ∗)2

(
∂

∂z
− 1

H

)
θn+1/2,

(6.6)
where ∆t is the time-step interval. The variables u, v and w are stored at integer temporal
levels n∆t, while θ and π are stored at half-integer levels (n− 1/2) ∆t. Given a state(
un, vn, wn, θn−1/2, πn−1/2

)
the system is advanced a time interval ∆t by:

• Using (6.4) and (6.5) to obtain πn+1/2 and θn+1/2 respectively.

• Solving (6.6) to obtain π̃n+1/2.

• Using (6.1)-(6.3) to obtain un+1, vn+1 and wn+1.

6.2 Stability of external modes

Since (6.1)-(6.6) keep the spatial representation continuous, the expansions (5.2) are valid
solutions of this set of equations. Substituting (5.2) into (6.1)-(6.6) yields,

u0S = −∆t

2
cpkxθ

∗
Sπ̃0, B−1

extπ̃0S = −∆t

2
kxπ

∗
S

(
κ

1− κ

)
u0, Bext =

1

1 + β2
xk

2
x

, (6.7)

where S ≡ sin (ω∆t/2). From (6.7),

S2 =
(

c∗s∆t

2

)2 k2
x

1 + β2
xk

2
x

. (6.8)

Note that (6.8) is equivalent to the time-continuous expression (5.4) if ω, in the latter, is
replaced by its discrete analogue 2S/∆t.

For stable solutions S is required to be real and −1 ≤ S ≤ 1. Equivalently 0 ≤ S2 ≤ 1,
and then, using (6.8),

0 ≤
(

c∗s∆t

2

)2

k2
x ≤ 1 + β2

xk
2
x. (6.9)

Stability is obtained, independently of ∆t, c∗s and kx, if β2
x ≥ (c∗s∆t/2)2.

6.3 Stability of internal modes

Following a similar procedure to that used for the external modes leads to the corresponding
discrete dispersion relation,[
δV

(
1 + α2

) ( 2

∆t

)2

S2 − (N ∗)2

]{[
1 + β2

xk
2
x +

β2
z

1 + α2

(
Γ2 + k2

z

)] ( 2

∆t

)2

S2 − (c∗s)
2 k2

x

}

−
(
Γ2 + k2

z

) [
(c∗s)

2 − β2
z

1 + α2
(N ∗)2

] (
2

∆t

)2

S2 = 0. (6.10)

Again an equivalence can be made between (6.10) and its time-continuous analogue (5.10)
if ω is replaced by its discrete analogue 2S/∆t.
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Since stable solutions require ω to be real, it is convenient to write (6.10) in terms of
T ≡ tan (ω∆t/2), so that S2 ≡ T 2/ (1 + T 2), and therefore

aT 4 + bT 2 + c = 0, (6.11)

where

a ≡ pq − r, b ≡ −
[
p (c∗s)

2 k2
x + q (N ∗)2 + r

]
, c ≡ (N ∗)2 (c∗s)

2 k2
x, (6.12)

with

p ≡ δV

(
1 + α2

) ( 2

∆t

)2

− (N ∗)2 , (6.13)

q ≡
[
1 + β2

xk
2
x +

β2
z

1 + α2

(
Γ2 + k2

z

)] ( 2

∆t

)2

− (c∗s)
2 k2

x, (6.14)

r ≡
(
Γ2 + k2

z

) [
(c∗s)

2 − β2
z

1 + α2
(N ∗)2

] (
2

∆t

)2

. (6.15)

6.3.1 Hydrostatic case, δV = 0

If δV = 0, then (6.10) may be manipulated to give,

−
[
q (N ∗)2 + r

]
T 2 + c = 0. (6.16)

Stability is assured if T 2 is both real and positive, i.e. it is assured for the hydrostatic internal
modes if

T 2 =
c

q (N ∗)2 + r
≥ 0. (6.17)

From above, c ≥ 0 is always true and q (N ∗)2 + r ≥ 0 leads to,

1 + β2
xk

2
x +

(
c∗s
N ∗

)2 (
Γ2 + k2

z

)
≥
(

c∗s∆t

2

)2

k2
x. (6.18)

Condition (6.18) will be satisfied independently of ∆t, kx, kz and the basic state if,

β2
x ≥

(
c∗s∆t

2

)2

. (6.19)

Note that there are no conditions on α or βz, so that it is possible to set α2 = β2
z = 0,

reducing (3.7) to a one-dimensional equation. This could provide efficiency advantages over
the standard semi-implicit approach for a hydrostatic model.

6.3.2 Non-hydrostatic case, δV = 1

For stability T 2 is again required to be both real and positive.
If T 2 is to be real, then b2− 4ac ≥ 0 is required. From (6.12)-(6.15) it can be shown that

b2 − 4ac =
[
p (c∗s)

2 k2
x − q (N ∗)2 + r

]2
+ 4r (N ∗)2

[
q + (c∗s)

2 k2
x

]
. (6.20)
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This is guaranteed to be positive if r ≥ 0. From (6.15) this implies that

(c∗s)
2
(
1 + α2

)
≥ β2

z (N ∗)2 , (6.21)

which is satisfied, independently of the basic state, if

α2 ≥ β2
z

(
N ∗

c∗s

)2

. (6.22)

Since c is guaranteed to be positive, T 2 will additionally be positive (and stability will
be assured) if a ≥ 0 and b ≤ 0. Condition (6.22) guarantees that r ≥ 0. Then inspection
of (6.12) shows that b will be negative or zero if p ≥ 0 and q ≥ 0. Taking δV = 1 these
inequalities lead to,

1 + α2 ≥
(N ∗∆t

2

)2

, (6.23)

and (6.18), respectively. Thus,

α2 ≥
(N ∗∆t

2

)2

, (6.24)

and (6.19) guarantee b ≤ 0 for the non-hydrostatic case, independently of ∆t, kx, kz, βz and
the isothermal basic state. If a ≥ 0 then pq ≥ r, which implies,

p

{
1 +

[
β2

x −
(

c∗s∆t

2

)2
]
k2

x

}
≥ −

(
Γ2 + k2

z

) [( 2

∆t

)2

β2
z − (c∗s)

2

]
. (6.25)

The LHS of (6.25) will be positive, given the previous conditions (6.19) and (6.24), while
the RHS will be zero or negative if,

β2
z ≥

(
c∗s∆t

2

)2

. (6.26)

6.4 Summary

Drawing together the above results, stable solutions of the linearized and regularized time-
staggered scheme are obtained, in the hydrostatic case, if,

β2
x ≥

(
c∗s∆t

2

)2

, (6.27)

(there are no conditions on βz and therefore α = βz = 0 satisfies (6.22)), whilst for the
non-hydrostatic case the conditions,

α2 ≥ β2
z

(
N ∗

c∗s

)2

, β2
x ≥

(
c∗s∆t

2

)2

, β2
z ≥

(
c∗s∆t

2

)2

, (6.28)

are required.
The values of the regularization parameters obtained by taking equality in (6.27) and

(6.28) are optimal in the sense that they minimize the distortion of the equation set, due to
regularization, whilst providing unconditional stability.
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7 Comparison with a semi-implicit scheme

The system (2.1)-(2.5) may be linearized about the isothermal basic state (5.1) and differ-
enced in a semi-implicit manner, e.g. Staniforth (1997), to give,

un+1 − un

∆t
+

1

2
cpθ

∗ ∂

∂x

(
πn+1 + πn

)
= 0, (7.1)

vn+1 − vn

∆t
= 0, (7.2)

δV
wn+1 − wn

∆t
+

1

2
cpθ

∗ ∂

∂z

(
πn+1 + πn

)
− 1

2
g
(θn+1 + θn)

θ∗
= 0, (7.3)

πn+1 − πn

∆t
+

1

2
π∗
{(

κ

1− κ

)
∂

∂x

(
un+1 + un

)
+

[(
κ

1− κ

)
∂

∂z
− κ

H

] (
wn+1 + wn

)}
= 0,

(7.4)
θn+1 − θn

∆t
+

1

2

κ

H
θ∗
(
wn+1 + wn

)
= 0. (7.5)

7.1 External modes

Inserting the expansions (5.2) into (7.1)-(7.5), setting B−1
ext ≡ 1, and using the definition of

T , then leads to,

u0T = −∆t

2
cpkxθ

∗
Sπ0, π0T = −∆t

2
kxπ

∗
S

(
κ

1− κ

)
u0. (7.6)

From (7.6), the dispersion relation is,

T 2 =
(

c∗s∆t

2

)2

k2
x. (7.7)

Comparing (7.7) with (6.8), after use of the identity S2 ≡ T 2/ (1 + T 2), they are identical
when β2

x = (c∗s∆t/2)2. This is the optimal value (in the sense discussed in sub-section 6.4
above) for this parameter.

7.2 Internal modes

Inserting (5.5) into (7.1)-(7.5), setting B−1
int ≡ 1, and using the definition of T , leads to,

u0T = −∆t

2
cpkxθ

∗
Sπ0, (7.8)

δV w0T = −i
∆t

2

[
g
θ0

θ∗S
− cpθ

∗
S

(
Γ2 + k2

z

)
π0

]
, (7.9)

[
2i

∆tπ∗S

(
1− κ

κ

)
π0

(S
C

)
+ ikxu0 − w0

]
= 0, (7.10)

θ0T = i
∆t

2

κθ∗S
H

w0. (7.11)
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The system (7.8)-(7.11) may be combined to give the dispersion relation in the form of a
quartic for T ;

aT 4 + bT 2 + c = 0, (7.12)

where

a ≡ δV

(
2

∆t

)4

, b ≡ −
(

2

∆t

)2 [
(c∗s)

2
(
δV k2

x + Γ2 + k2
z

)
+ (N ∗)2

]
, c ≡ (N ∗)2 (c∗s)

2 k2
x.

(7.13)

7.2.1 Hydrostatic case, δV = 0

If δV = 0 then the dispersion relation is,

T 2 =
c(

2
∆t

)2 [
(c∗s)

2 (Γ2 + k2
z) + (N ∗)2

] . (7.14)

Note that (6.17) is identical to (7.14) when β2
x = (c∗s∆t/2)2.

7.2.2 Non-hydrostatic case, δV = 1

Using (6.12)-(6.15) it is found that, if α2 = (N ∗∆t/2)2 and β2
x = β2

z = (c∗s∆t/2)2 (their
optimal values), then the coefficients (6.12) are identical to (7.13) for δV = 1.

8 Conclusions

A regularized and time-staggered discretization procedure has been applied to the two-
dimensional, vertical slice Euler equations. A linear normal mode stability analysis of the
system shows that the scheme is unconditionally stable for appropriate choices of the regu-
larization parameters α, βx and βz for both hydrostatic and non-hydrostatic formulations.
Furthermore, when these parameters take their optimal values, the stability behaviour of the
normal modes is identical to that obtained from a semi-implicit discretization of the linear
unregularized Euler equations.

For the hydrostatic case it is possible to set the regularization parameters α and βz to
zero, whilst retaining unconditional stability. This allows for a much simplified solution of
the regularized Exner pressure, π̃, which could offer efficiency advantages over a standard
semi-implicit scheme. When non-hydrostatic flows are considered the regularized scheme
allows more control and flexibility of the form of the Helmholtz equation which must be
solved. For the semi-implicit approach the Helmholtz equation must be derived from, and
be consistent with, the discrete form of the governing equations. Thus, the regularized
system is less tightly coupled than the semi-implicit one, which may also be advantageous.

The results presented here indicate the exciting possibility of applying the regularized,
time-staggered approach to the full Euler equations. If, additionally, it can be successfully
coupled to a semi-Lagrangian advection scheme, this would then lead to a viable uncondi-
tionally stable scheme for the solution of these equations.
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