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Abstract
A time-staggered semi-Lagrangian discretisation of the rotating shallow-water equations is proposed
and analysed. Application of regularisation to the geopotential field used in the momentum equations
leads to an unconditionally stable scheme. The analysis, together with a fully nonlinear example ap-
plication, suggests that this approach is a promising, efficient, and accurate, alternative to traditional
schemes.
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1 Introduction

Recently, a novel time-staggered temporal discretisation of the rotating shallow-water equations (SWEs) has
been proposed (Frank et al. 2005, Wood et al. 2006). Unconditional stability is achieved by appropriate
regularisation of the geopotential field used in the momentum equations.

Whilst promising, the scheme and analysis of Frank et al. (2005) and Wood et al. (2006) neglected
advection and any aspects of spatial discretisation. This paper therefore extends that work to include both
effects: the temporal discretisation is coupled with a semi-Lagrangian (SL) scheme for advection and is
discretised spatially on an Arakawa C-grid. The resulting scheme is second-order accurate in both time and
space.

Linear analysis shows that unconditional stability is achieved provided a parameter governing the regu-
larisation is chosen in the same way as for the non-advective scheme of Frank et al. (2005) and Wood et al.
(2006). An example application of the scheme to a fully nonlinear case of two interacting vortices indicates
the practical potential of the complete spatio-temporal discretisation.

After introducing the SWEs and describing the regularisation procedure in Sections 2 and 3, respectively,
the application of a semi-Lagrangian scheme is detailed in Section 4. A linear analysis is presented in Section
5 and the example application, when the scheme is discretised spatially as detailed in the Appendix, is given
in Section 6. Conclusions are given in Section 7.

2 The shallow-water equations

The shallow-water equations on an f-plane are

Du
Ft = +f’l) - ‘I)z, (21)
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Dt —fu— oy, (2.2)
DInd®
=— 2.
o =D, (23)
where
D =uy + vy, (2.4)

is the horizontal divergence, ® = gh (x,y,t) is the height of the fluid above mean sea level multiplied by g
(the (constant) acceleration due to gravity), and f is twice the (constant) angular velocity of the reference
plane. Also, the kinematic equation is

D
- = 2.
2 (@) = (wv), (25)
where u (z,y,t) and v (z,y,t) are the wind components in the z and y directions respectively,
D p—
i D=0 +ul), +v(),, (2.6)

is the material time derivative, and subscripts denote partial differentiation with respect to that variable.
Egs. (2.1) - (2.2) are the two components of the momentum equation and (2.3) is the continuity equation
written in logarithmic form.

3 Regularisation

3.1 The regularisation procedure

For stability reasons, the governing equations (2.1) - (2.3) are regularised before discretisation by replacing
® in the momentum equations by the regularised variable ® (Frank et al. 2005, Wood et al. 2006). Thus

Du

D_t = +f'l) — (i)w, (31)
Dv ~

The Wood et al. (2006) regularisation, utilised herein, has the important advantage over the Frank et al.
(2005) one of preserving dynamic balance, and only impacting the unbalanced components of the flow. It
amounts, in continuous form [cf. (2.7)-(2.9) of Wood et al. (2006)], to solving the Helmholtz problem

(1-a?V?) (& -8) = —a? (RL + R}), (3.3)

where
RY= fv—®,;, R® = —fu—®,, (3.4)
V=8 +02, (3.5)

and a is a prescribed ‘smoothing length scale’. Note that if the right-hand sides of (2.1) - (2.2) are identically
zero, i.e. the winds are in geostrophic balance with the gradient of ®, then the regularisation (3.3) leaves ®
unchanged and the balanced state is preserved.

3.2 Linearisation of the regularised equations

To prepare for the analysis of the impact of regularisation on the propagation of linear inertia-gravity waves,
(2.3) - (2.6) and (3.1) - (3.4) are linearised using the expansions

u(z,y,t) U+ (z,y,t), (3.6)
v(z,y,t) = V+o (z,y,t), (3.7)
®(z,y,t) = &+ (z,y,t), (3.8)
®(z,y,t) = B+ (z,9,1), (3.9)



where primed variables are perturbations about the basic state, and U, V' and ®( are positive constants.
[Implicit in this procedure is the inclusion of the gradients of an underlying bottom slope orography
h® (z,y,t) = (fV/g)x — (fU/g)y in (3.1) - (3.2) in order to balance the mean velocity (U,V) of the
(stationary) basic-state. This permits analysis of the semi-Lagrangian aspects of the discretisation which
would otherwise be omitted.] The linearisation then yields

DLuI _ rF
Dt = +fv' —d, (3.10)
! ~
Dé;’ =—fu' - &, (3.11)
D9
gt = -39, (3.12)
where B
(1-a?V?)d' =9 —a’f(, (3.13)
("= v, —uy, D' =u, +oy, (3.14)
Dy,
i (=) +UO),+V (), (3.15)

3.3 Impact of regularisation on the propagation of linear inertia-gravity waves.

Inserting expansions of the form F(z,y,t) = Fpexp[i (kx + ly + wt)] into (3.10) - (3.15), where F =
u' v, @D it is straightforward to show that the impact of the regularisation procedure is to artifi-
cially reduce the frequency of linear inertia-gravity waves from w = — (kU +1V) £ \/f2 + ®¢ (k? + [2)
tow = — (kU +1V) £ \/[f2 + ® (k2 +12)] / [1 + a2 (k2 + [2)]. This analytic result, derived in Wood et al.
(2006) for the special case U = V = 0, is independent of any discretisation procedure. It means that a
spurious numerical dispersion is introduced into the continuous problem such that the highest wavenumber
components are increasingly retarded as a function of increasing wavenumber (i.e., decreasing scale). This
is similar to the impact of a semi-implicit discretisation of the original, unregularised equations, which also
progressively retards the propagation of gravity modes as a function of decreasing scale (see e.g. Staniforth
(1997)). Thus, the regularisation procedure qualitatively does at an analytic level what the semi-implicit
method is known to do at a discrete level.

4 Time-staggered semi-Lagrangian discretisation

Egs. (3.1), (3.2) and (2.3) are discretised using an explicit, time-staggered semi-Lagrangian discretisation
of the governing equations, using values of (u,v) defined at integer time levels “n”, and values of ® and ®
defined at half-integer time levels “n —1/2”. There are three steps to the discretisation which are repeatedly
cycled. The first uses known gridpoint values of (u,v)””" and ®"~1/2, to obtain gridpoint values of (u,v)".
The second uses known gridpoint values of ®*~1/2 and (u,v)" to obtain gridpoint values of ®"+/2. The
third uses known gridpoint values of (u,v)"” and ®"+1/2 to obtain gridpoint values of ®"+1/2. These three
steps are now described in detail.

4.1 Step 1, determination of (u,v)" from (u,v)"”' and ®" /2

Assume that (z,y) " = (z (") ,y (t""')) denotes the location of a departure point for the velocity
field at time ¢~ = (n — 1) At, where At is the timestep length, (z,y)’; denotes its corresponding gridpoint
location at time t" = nAt, and subscripts “D” and “A” signify evaluation at the departure and arrival points
(z (t"),y (t")) and (z (t" 1),y (t" 1)) respectively. The location of the departure point is determined using
backward trajectories. Eq. (2.5) is thus discretised in a centred manner as

n—1

('T;y)A _Aimay)D = % I:(U,'U)Z + (U;'U)%_l] ) (41)
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where (u,v)%_1 and (u,v)’; correspond to the velocities at the departure and arrival points respectively.
The velocity (u,v)’; is not however as yet known. Time-staggered semi-Lagrangian discretisations of
(3.1) - (3.2) are therefore used to close the problem. Thus

%_T?%_l = +g (vk +ovpt) - % [(&;z)z—; + (@)Z_é} : (4.2)
B L) - L[@) )], s

where terms at time (n — 1/2) At are evaluated as the mean of their values at the arrival and departure
points (z (t"),y (t")) and (z (t"~'),y (t"~')) respectively, and quantities at departure points are evaluated
using interpolation. B

The determination of values of (u,v)" from known values of (u,v)" " and ®~1/2 is a two-part procedure.

4.1.1 Determination of trajectories for the discretisation of the momentum equations

1

To determine the position (z,y)7, ~ of departure points, discretisations (4.1) - (4.3) are solved iteratively

using bilinear interpolation.

4.1.2 Determination of (u,v)"; from (u,v)%*l and 7 1/2

Having determined (z,y)} ', the velocity (u,v)’; at the arrival points is obtained from (4.2) - (4.3), where
bicubic interpolation is now used instead of bilinear interpolation to evaluate quantities at the trajectory

departure points (z,y)}; "

4.2 Step 2, determination of ®"*'/2? from ®"~'/2 and (u,v)"

The determination of the backward trajectories for the discretisation of the continuity equation is done in the
usual way (Staniforth & Co6té 1991). Assume that (z, y)ZJrl/2 = (z (t"+1/2) ,y (#"+1/2)) denotes the location
of an arrival point for ® at time (n + 1/2) At, (:c,y)gfl/ % denotes its corresponding departure location at
time (n — 1/2) At, and subscript “D” now denotes evaluation at the departure point of the trajectory used
to discretise the continuity equation, instead of the momentum equation. The arrival point is assumed to

be a gridpoint. The corresponding location (z, y)%_l/ % of the departure point is determined using backward
trajectories, i.e. by discretising (2.5) as
+1 n—1
(Z_,y)" ' - (xay) : 1
A A7 D — 2 [(u,v)y + (u,v)p]. (4.4)

The determination of values of ®"+'/2 from known values of ®"~'/2 and (u,v)" is also a two-part
procedure.

4.2.1 Determination of trajectories for the discretisation of the continuity equation

To determine the position (x,y)%ﬁl/ % of departure points, discretisation (4.4) is solved iteratively using

bilinear interpolation .

4.2.2 Determination of /2 from ®" /2 and (u,v)"

Having determined (z, y)%_l/ 2 ®n+1/2 ig determined from ®" /2 and (u,v)" by using the following time-

staggered discretisation of the continuity equation (2.3):

ln(CbT_%)—(ln(I))g_% 1, . o s
- - —L@y+0p), @5)

i.e.



z —3_ At At
S (it
D
Here
D" = (ug +1vy)", )
and subscript “ D” denotes evaluation using cubic interpolation at the trajectory departure point (z,y)7, /2.
4.3 Step 3, determination of <I>”+1/2 from (I)ZH/Q

The crucial step for stable propagation of gravitational oscillations with long time steps is the application
of regularisation - see Frank et al. (2005) and Wood et al. (2006) for analysis of this and its link to the

semi-implicit time scheme. This is accomplished by solving a Helmholtz problem to obtain &)ZH/ ? for use in

the regularised momentum equations (3.1) - (3.2) at the next timestep. Thus :I;ZH/ ? is obtained by solving
the discrete Helmholtz problem (cf. (2.14) - (2.16) of Wood et al. (2006))

[1 - (1 32172) v2] (3- @)Z“/ fo @ (RU4RY), (4.8)

(i 0B+ AR — @05, R = L pup AR @5 @)

where
f
2

Eliminating R* and R” from (4.8) - (4.9) then leads to

a2 9
()T

where F' = fAt/2. The choice of an appropriate value for « is discussed in Section 5.2.

RY =

<I> +1/2 _ =& +1/2 (ﬁ) 5{[(UA+UD)z—(“A+UD)y] _FI:(UA+UD)m+(vA+vD)y]}J
(4.10)

5 Analysis

5.1 Linearisation

The time-staggered semi-Lagrangian discretisation described in Section 4 is, in summary, comprised of (4.1)
- (4.7) and (4.10). As the first step in the analysis, these equations are linearised using the expansions (3.6)
- (3.9) to give

uA u_lg ! _ f m—1 _1 ~m—1 ~m—1
A g RT3 [(% 2)A+(¢’” 2)0}’ (5.1)

UA /UI[T; ! _ f m—1 l m—3% ~in—1
ARt = ) g [(80), + (87), ] 6:2)

(I)/n-i-% B (bln—% <I)
A =y @+ D), (5.3)
where
a2 2 In 1/2 m—1/2 a2 f In 1 In 1 m—1 m—1

Cln l_U _ In @In lzu +’U (55)
(x:y)%i = (way)A — At (Uu V): (56)
(xay)gii = ($ay)2+5 - At (UJ V) . (57)



For analysis purposes, it is convenient to take the curl and divergence of (5.1) - (5.2) to obtain,

¢ =t / 1
m m—
AP =S (7 +957Y), (5.8)
Din _ @In—l f " . 1 1 1
AL = () -5 (VTR Vi), (5.9)

5.2 Stability

Stability of the discretisation is governed by (5.3) - (5.9). Note that (5.8) implies (P+FD'p = (' -FD1 1,

so that 1 F
B - FORT = S (T + 5 (@ - DB (5.10)

This equation is used to simplify the linearised regularisation equation (5.4). Assume exact differentiation
and interpolation and the time-dependent expansions

F(z,y,t) = Fryexp i (kz + ly + wt)], (5.11)

where F = u/,v',{',®',®' &' Insertion of (5.11) into (5.3) - (5.9) and use of (5.10) then leads to

Ilc,l (E-1) F(E+1) 0 Ilc,l
N| D, | =| —RSF(E+1) (E—1) —AtRcos (¢) (k> + 1) E3 9., | =0, (5.12)
(2% 0 cos (£) BoAtE? (E—-1) Bl
where

E* L E 2
E=expli(w+ kU +IV)AL], Eg = E(w=0), cos({)zo_%ﬁ0

= cos [(kU +1V) %] , (5.13)

and 2 (1 + 1)
1 . o (k°+1
= =1+sin? (A% 2= —— 7
R TP @i 5= s (94 117
Egs. (5.6) - (5.7) have also been used to allow simplification of exponential terms.
For (5.12) to have non trivial solutions, the determinant of the matrix /' must be zero which yields the
dispersion relation

(5.14)

(E-1) [(E —1)? + RSF? (E + 1) + ARG? cos® (€) E] =0, (5.15)
where )
A A
G? = ¥ (7'5) (K* +17). (5.16)
The trivial root
E=expli(w+kU+1V)At] =1, (5.17)

corresponds to the degenerate Rossby mode, which is neutrally stable.
The other two roots correspond to gravity modes and they satisfy

(E—1)>+ RSF?(E +1)> + 4RG? cos® (§) E =0, (5.18)

which, using (5.14), may be rewritten as

AE* -2BE+C =0, (5.19)
where
A=C=R1'4SF? B=R"'—SF?-2G?cos® (¢). (5.20)
The solution of (5.19) is
p=BEWVA B Vf_m, (5.21)
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Figure 1: Initial fluid height h.
where .
A? — B = 4[SF? + G” cos® (¢)] [}—2 — G? cos? (5)] . (5.22)

Since A and B are real, neutral stability (i.e. |E| = 1) is obtained provided the discriminant 42 — B? > 0.
Using the definitions (5.14), the first factor of (5.22) is unconditionally non-negative, independently of the
values of F? and G?. The second factor is also found to be non-negative when

a? > & (A;) : (5.23)

In summary, provided conditions (5.23) hold, |E|> = 1 from (5.20) - (5.22), and the discretisation is neutrally
stable.

6 An example application

To demonstrate the behaviour of the proposed scheme under a nonlinear, nearly balanced flow regime, the
shallow-water equations (2.1)-(2.3) are considered on an f-plane placed at 45° degree latitude and within a
doubly periodic domain of length L, = L, = 3840km. Initial conditions for (u,v,®) are chosen to satisfy
the reverse balance equation

V20 = f(v, — uy) — 2J(u,v), (6.1)

where J(u,v) = vyuy — uzv, denotes the Jacobian operator. The reference height of the fluid is set equal
to 9665m, i.e., &y ~ 9.4814 x 10*m?s~2. The initial conditions are furthermore chosen such that two
interacting vortices are generated. See Fig. 1 for the initial fluid height h, and the uppermost panels of
Fig. 2 for the initial potential vorticity (PV) field ¢ = (v, — uy + f) /h. The maximum initial wind speed is
approximately 11ms~!.

The time-staggered semi-Lagrangian discretisation, described and analysed in Sections 4 and 5.2 re-
spectively, has been implemented on an Arakawa C grid - see Appendix A for details. The gridlength is
Az = Ay = 60km, the timestep is At = 20min, and the regularisation parameter « is set to its optimal
value a® = ®¢(At/2)2. Trajectory computations are implemented as fixed point iterations with two itera-
tions per trajectory computation. To assess the time-staggered semi-Lagrangian discretisation, an additional
simulation is performed using the well-established two-time-level semi-implicit semi-Lagrangian approach
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Figure 2: Computed time evolution, from initial time to ¢ = 6 days, of PV over the domain (z,y) €
[0,3840 km] x [0,3840km] using the time-staggered semi-Lagrangian (leftmost panels) and semi-implicit
semi-Lagrangian (centre panels) schemes, both with timestep At = 20min: contours plotted between
6.4 x 107¥m~1s7! and 2.2 x 107" m~!s~! with contour interval 1.56 x 1078 m~1s~!. Differences (time-
staggered semi-Lagrangian minus semi-implicit semi-Lagrangian) at corresponding times are plotted in right-
most panels with a 10 times smaller contour interval, where thin (thick) lines are positive (negative) contours.



[e.g. Temperton & Staniforth (1987), McDonald & Bates (1987)], implemented here on an Arakawa C grid.
This integration is also performed using a timestep of At = 20min, which is an order-of-magnitude larger
than the stability limit (At ~ 1.5min) of a traditional explicit Eulerian leapfrog time scheme. As can be
seen from Fig. 2, both simulations yield very similar results.

7 Conclusions

A recently proposed, time-staggered and regularised temporal discretisation of the non-advective SWEs
has been coupled with a semi-Lagrangian scheme for advection. Linear analysis shows that the scheme
is unconditionally stable provided the regularisation parameter is chosen in the same way as for the non-
advective case.

The scheme has been spatially discretised on an Arakawa C-grid and is second-order accurate in both
time and space. Its application to a fully nonlinear example of two interacting vortices demonstrates the
practical potential of the scheme for the stable discretisation of the SWE’s.

It is known that centred semi-implicit semi-Lagrangian discretisations of the SWE’s can suffer from
spurious resonance at large timestep in the presence of orography (Rivest et al. 1994). It is therefore
important to include orography in the present scheme, and to analyse the forced response. This is done
in a companion Note (Staniforth & Wood 2006) to the present one. Therein it is shown that the obvious
extension of the present scheme can also exhibit spurious orographic resonance. However, it is also shown
that this can be addressed, without adversely affecting stability, by using a procedure akin to the off-centring
one proposed in Rivest et al. (1994).
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A Implementation details for a C grid

Consider a doubly periodic domain (z,y) € [0, L]x[0, L]. The spatial discretisation of the shallow-water equa-
tions is performed using a standard Arakawa C grid with gridlengths Az = Ay = L/N, where N is the num-
ber of independent integer points in each direction. For all 4,5 = 0,..., N — 1, integer gridpoints are located
at (z4,y;) = (iAz,jAy), cell-centred grid points at (z;41/2,yj41/2) = ((i +1/2) Az, (j +1/2) Ay), and a



pair of side-centred grid points at (z;1/2,%:) = ((i + 1/2) Az, jAy)) and (2, y;j11/2) = (iAz, (j + 1/2) Ay).
Following standard practice, the geopotential ® is stored at cell-centred grid points (;c,-+1 /2> Yj+1 /2), with
numerical values denoted by ®;1/3 j41/2. Similarly, the u and v velocity components are stored at the side-
centred grid points (2;,y;41/2) and (2;41/2,y;) respectively, with corresponding numerical values denoted
by Ui 5+1/2 and Vit1/2,5-

Define differencing operators

fm_,_l’n - fm_l,n fm,n-i-l - fm,n—l
(61-7)7”’" = z Az 2 ) (5yf)m,n = ZAy : ’ (A]')
and averaging operators
— 1 —y 1
fm,n = 2 (fm—l—%,n +'7:m—%,n) ) fm,n = 2 (]:m,n—i-% +‘7:m,n—%) > (A2)

where F denotes any variable stored at appropriate gridpoints, with m and n being either integers or half
integers as appropriate. One can combine these operators to obtain composite differencing and averaging
operators such as

e e R e R Ny

2
(022) 143543 = A2 (A.3)
and
—TyY ]-
Yij+t T g (Uz'+%,j 01 TVl T UF%,;‘H) (A.4)
with analogous expressions for (6§<I>)z. /24412 and ﬂﬁl /2,57 respectively.
Applying this spatial discretisation to (3.1) - (3.5) gives
D = +fo, , — (6,® (A.5)
Dt ity T Yig+} RV FPTE '
D gy = gt~ (4,3) (49
DtUH‘%J - ui-{-%J v i+1,j ’ ’
D
where the regularised geopotential is defined by
2 (52 | 52 % 2
{ [1—a® (82 +62)] (@ - <1>) }H%,H% = —0® (6. R* + 6,R"), 1 111 (A.8)
and
These equations can be combined to yield a single equation
2 (52 | s2\1 & _ 2 - —
{l1-a? (02 +42)] @}H%,H% = [~ 0] (5,7 — 8,5 s 1y (A.10)

To apply the spatial C-grid discretisation with the time-staggered semi-Lagrangian temporal one of
section 4 requires specification of the discrete trajectory equations used to determine departure points. For
simplicity, three sets of trajectories are computed in the present implementation, viz. those for particles
that arrive at cell-centred gridpoints ($i+1 /25 Yig1 /2), and at side-centred gridpoints (a:,-,j+1 /25 Yi i1 /2) and
($i+1 /2,5> Yit1 /2’]-). The relevant discretisations at time level ¢™ for the (u,v) trajectories of the momentum
equation (4.1) are

n—1
T l,Y; s L] —\ Ty a0 1,Y; 501 -1
( hij+32 945+ ) ( i,j+35° Ji,j+ ) 1 n n
2 2 2 2/ D = — (’U,Z]_{_l,ﬁwy 1) + (Uij_}.l,ﬁ?y- 1) 5 (A].].)
At 2 s 2’ "i,j+5/ 4 WJt3? Yig+5 ) p
n—1
(rovnaviras) = (Povsavisa) , 170, -
= = (u 1 Vil j) + (u L Uil j) . (A12)
At 2 it+35,7 230 ) 4 it+35,7 20 ) p

10



The corresponding discretisation for the trajectories of the continuity equation (4.4) is

nl

2
@is gty Yirdird) ~ @arpir Yirgird)n * _ 170, - )"Jr(ﬂw o )"}
At 9 [\Tit3.0+3 Vit 3.5+4 ) 4 i+3.0+37 Ditgi+s ) pl
(A13)

11



