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Abstract

A key aspect of the recently proposed Hamiltonian particle-mesh (HPM) method is its
time-staggered discretization combined with a regularization of the continuous governing
equations. In this article, the time discretization aspect of the HPM method is analysed for
the linearized, rotating, shallow-water equations with orography, and the combined effect
of time-staggering and regularization is compared analytically with the popular two-time-
level semi-implicit time discretization of the unregularized equations. It is found that the
two approaches are essentially equivalent, provided the regularization parameter is chosen
appropriately in terms of the time step A ¢. The article treats space as a continuum and,
hence, its analysis is not limited to the HPM method. Copyright © 2005 Royal Meteorological
Society
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I. Introduction

An important issue in numerical weather prediction is
the treatment of poorly resolved inertia-gravity waves.
To circumvent the strict limitations imposed via the
CFL condition on the maximum time step of explicit
integration methods, most operational codes make use
of some implicitness. At each time step, fully implicit
methods require the solution of a nonlinear system of
equations, whereas linearly implicit methods require
only the solution of a linear system. In this article, an
alternative strategy is investigated, which is based on
applying a regularization procedure to the continuous
governing equations that renders them suitable for
explicit integration. This approach has been proposed
in the context of the Hamiltonian particle-mesh (HPM)
method (see, e.g. Frank ef al. (2002) and Frank &
Reich (2004)).

The HPM method is based on the Lagrangian for-
mulation of fluid dynamics and uses a conserva-
tive (Hamiltonian) version of the classical particle-
mesh spatial truncation technique (Birdsall & Lang-
don, 1981; Hockney & Eastwood, 1988). Encourag-
ing numerical results have been reported in a num-
ber of articles (Frank et al., 2002; Frank & Reich
2004; Cotter et al., 2004). However, with the excep-
tion of conservation properties (Frank & Reich, 2003;
Bridges et al., 2005; Cotter & Reich, 2004), theoreti-
cal understanding of the HPM method is somewhat
limited. In this article, the time-stepping aspect of
the HPM method is investigated. It is applied to the
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two-dimensional shallow-water equations (henceforth
referred to as the SWEs) and its linearized free and
forced response is analysed and compared with the
standard two-time-level semi-implicit approach (see,
e.g. Staniforth (1997) and Durran (1998)).

In Section 2, the regularization procedure is dis-
cussed and applied to the orographically forced SWEs
on an f-plane. These equations are then linearized
and discretized in Section 3, where the two-time-level
semi-implicit discretization of the linearized, unregu-
larized equations is also given. The analytical prop-
erties of the regularized continuous equations are dis-
cussed in Section 4, which motivates a comparison of
the non-rotating discrete system with its semi-implicit
counterpart in Section 5. This comparison is extended
to the rotating system in Sections 6 and 7 before con-
clusions are drawn in Section 8.

2. The regularization procedure of the
HPM method applied to the SWEs

The numerical treatment of the SWEs has been the
subject of extensive research as these equations serve
as a model system for the more complex primi-
tive equations and/or the non-hydrostatic Euler equa-
tions of three-dimensional atmospheric fluid dynam-
ics (Durran, 1998). The orographically forced SWEs
on an f-plane in an Eulerian framework are

Du

— = +fv — gh, — gh?, 1
Dr +fv — ghy — ghy (1)
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Dy s

Dr —fu — ghy — ghy ) (2)
Dh

Dr = —h(uy +vy). 3)

Here h5 = h%(x,y) is the height of the orography
above mean sea level and &4 = h(x,y, t) is the fluid
depth, i.e. the depth of the fluid between the orography
and the fluid’s free surface. Also, g is gravity (assumed
constant), f is twice the (constant) angular velocity of
the reference plane,

D
E() = () +ul) + V(-)y» 4)

is the material time derivative, and subscripts denote
partial differentiation with respect to that variable.

Alternatively, in a Lagrangian framework, the SWEs
are given by

w = +fv — ghe — ghy, (5)
v = —fu — ghy — ghy}, (6)
X, =u, (7)
Y=, (®)

~[fen] ©

Here x =x(a,b,t) and y =y(a,b,t) are now the
coordinates of a fluid particle with initial coordinates
x=aandy = b,

d(x,y)
d(a,b)

= Xa¥b — XbYa> (10)

denotes the Jacobian of the transformation, and
h%(a, b) is the initial fluid depth. Note that the inde-
pendent variables in the Lagrangian framework are
time ¢ and labels (a, b). Furthermore, the Lagrangian
partial time derivative (.), corresponds to the material
time derivative D (.)/Dt in the Eulerian framework.

The HPM method applies to the Lagrangian frame-
work and the HPM discretization consists essentially
of three steps.

First, (5)—(9) are regularized by applying a modified
inverse Helmholtz operator A to the fluid depth
obtained from the continuity Equation (9). Denoting
now the unmodified fluid depth by u, this step leads
to the replacement of 4, as it appears in the momentum
Equations (5) and (6), by the modified fluid depth h
given as

h=Axp,

:[a<x,y>

—1
0
a(a,b):| wh.oadb

where
—1
Asp= <1+y2—a2V2> i, (12)
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so that
n= (147" =) (13)

Also, V2 = 8? + 8y2, o > 0 is a prescribed ‘smooth-
ing length scale’ and y > 0 is a further smoothing
parameter, which is set equal to zero in the standard
implementations of the HPM method. Additionally,
MO — (1 + ]/2 _ a2v2) hO'

Second, the resulting equations are discretized in
time by a staggered leapfrog discretization

“HHA—I_“" = +fv"+l+v" — g™ —ghi, (14)

v”*'At— v i u”+'2+ u" g™V _ enS . (15)

xn+1/2A_[xn—1/2 v 6

A a7

e [T
a,

together with h"*1/2 = A% pu"+1/2. The staggered
discretization is fully explicit for f = 0. For f # 0,
the discrete momentum updates (14)—(15) lead to a
2 x 2 implicit equation in u”"*! and v"*!.

Third, a spatial discretization, via a classical particle-
mesh method (Birdsall & Langdon, 1981; Hockney
& Eastwood, 1988), is applied, taking particular care
that the resulting finite-dimensional differential equa-
tions are conservative (i.e. Hamiltonian) (Frank ef al.,
2002; Frank & Reich, 2004).

The empirical rationale behind the introduction of
a smoothing operator A into the HPM method is
to control poorly resolved, high-frequency, inertia-
gravity waves. It has been found that such waves can
otherwise destabilize the HPM method. The particular
form of the operator A is motivated by its success in
numerical experiments. However, other ‘smoothing’
operators are conceivable.

In this article, only the analysis of the first two steps
in the derivation of the HPM method is considered,
and therefore the spatial discretization aspect of the
HPM method is ignored.

3. Linearizing the Lagrangian fluid
equations and the HPM discretization

The only non-linearity in the Lagrangian picture
arises from Equation (11). Its linearization about a
motionless basic state of constant free surface height
H leads to the relation
pw=H(-x,—y. (19)
provided the orography 4% is assumed to be a perturba-
tion quantity, in the sense || < H. Here x’ =x —a

Atmos. Sci. Let. 6: 97—104 (2005)



Analysis of a regularized, time-staggered discretization method 99

and y' =y — b denote small perturbations about the
basic state. Since the basic state is assumed to be
motionless, x;, ~ x; and y, ~y/. Hence, the linear
system of partial differential equations is

u = +fv — ghy — ghy, (20)
v = —fu — ghy — ghy, 1)
x/ =u, (22)
y=v, (23)
p=H( —x; —y), (24)

together with # = A % u. Equations (22)—(24) can be
simplified to the Eulerian form
M = _H(ux + Vy)7 (25)
since xy, = uy and yy, = vy.
It can be verified that linearization and discretization
are commutative Processes and, hence, the staggered

leapfrog discretization applied to the linear Equations
(20), (21) and (25) gives

un—i—l —u vn+1 4 pn
= e ekl (26)
vn+1 —pn un+1 + u"
- _ _ hn+1/2 _ hS, 27
> f 5 ghy g (27)
Mn-‘rl/Z _ 'un—l/Z

= —Hu; +v)), (28)

At

together with A" T1/2 = A s u"*1/2,

In Section 4, the analytic solutions of (20), (21),
and (25) are compared with the solutions of the
standard linearized SWEs with & = u, and the impact
of the filtering operator .A on both the forced and free
solutions is discussed.

The second part of the article, Sections 5-7, is
devoted to the numerical discretization (26)—(28) and
a comparison with the two-time-level semi-implicit
discretization of (20), (21), and (25) with h = u,
namely

Mn+1 —u" vn—i—l 4 pn h;l-H + h;l

= — — gh3 (29
A i — S ghy . (29)
prtl ut yn h;1+1 + hy"
=— - — gh3,(30
Ar f > e ghy,(30)
pntl _opn n+1 n v{t—H 4y
Tt g P oyh Th gy
At 2 2

Such a comparison is motivated by the fact that the
semi-implicit time discretization is widely used in
numerical weather prediction and climate modelling.
Note that, for the linear equations, the two-time-level
semi-implicit method is akin to the Crank—Nicolson,
trapezoidal and implicit midpoint methods.
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4. Analytic impact of regularizing the linear
SWEs on an f-plane

In order to isolate the slow modes (here the stationary,
degenerate Rossby modes) from the propagating fast
(inertia-gravity) modes, the curl and divergence of (20)
and (21) are formed, giving

& = —fD, (32)
and
D, =ft —gV3(h + h%). (33)
Equation (25) may be rewritten as
w; = —HD. (34)
Manipulation of (32) and (34) yields
0 =0, (35)
where
Q=& - %M (36)

is the linearized and scaled potential vorticity pertur-
bation. Equations (33), (34) and (36) then lead to

wy = —HD, = —fH¢ + gHV?h + gH V*h’

= — (fHQ + /1) + GV2h +45), (D)
with p and & related by (13) and cp = 4/gH. It is

convenient, using (13) and (12), to rewrite (37) as an
equation for 4, i.e. as

hy +f2h — fPLAV? A x h

= —f2Ax (P;—Q — L2V?hS ) , (38)

where L = co/f denotes the Rossby radius of defor-
mation.

Equations (35) and (38) govern the evolution of Q
and h respectively, and ¢ can be diagnosed from these
using (36).

Equation (35) essentially governs the geostrophic
(f = const.) degenerate Rossby mode and has the
solution Q = Q°, where QU is the initial value of Q.
Equation (38) is a forced, second-order-in-time partial
differential equation for 4. Both Q = 0° and hS are
independent of time. Therefore, the forced response of
h is stationary. It is the free, time-dependent response
of h that governs the propagation of the inertia-gravity
modes.

The behaviour of the free and forced responses of
the regularized and unregularized equations are now
compared.
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4.1. Forced solutions

After application of (1 4 y? — @?V?) to (38), the time-
independent, forced solution i = A is related to
Q" and 75 by

jforced _ _ [1 Ty <L12e + az) vz]—l

X <?QO - L,%vzhs) : (39)

where superscript ‘forced’ denotes the forced solution.
Furthermore, noting that the forced solution is time-
independent, the forced solution for ¢ is found from
(33) to be related to that of & by

é.forced — ?VZ (hforccd + hS) ,

which does not introduce any further dependence on
the regularization parameters « and y. Hence, only
the forced response of the fluid depth, 27, need be
considered.

Comparison of (39) with the unregularized result
(i.e. (39) with « = 0 and y = 0), shows that, provided
o K Lg and y « 1, the regularization does not signif-
icantly influence the forced response of 4 to the initial
potential vorticity perturbation Q° and to the orogra-
phy 45, It is found later (see discussion in Section 8)
that such a choice of « and y is not only justified but
also practicable.

(40)

4.2. Free solutions

Using (12) and cé =f 2L,ze, the free response of (38),
which represents the inertia-gravity waves, is governed
by the regularized wave equation

hfree +f2hfree . C(% <1 + )/2 _ azvz)_l v2pfree _ 0
1t — Yy
4D
where superscript ‘free’ denotes the free solution.
Comparison of (41) with the unregularized wave
equation

htftree +f2hfree _ CgVthree — 0’ (42)

reveals that the impact of the regularization procedure
is to artificially reduce the frequency of linear inertia-

gravity waves from o = :I:\/f2 +c5 (k2 +1?) to

g (k> +1?)
== [f2 0 .
“ \/f +1+y2+a2(k2+12)

This is an analytic result, independent of any dis-
cretization procedure. It means that a spurious numer-
ical dispersion is introduced into the continuous prob-
lem such that the highest wavenumber components
are increasingly retarded as a function of increasing
wavenumber (i.e. decreasing scale).

(43)
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The result is qualitatively reminiscent of the impact
of a semi-implicit discretization of the original, unreg-
ularized equations, which also progressively retards
the propagation of gravity modes as a function of
decreasing scale (see e.g. Staniforth (1997)). Thus, in
qualitative terms at least, the regularization procedure
does at an analytic level what the semi-implicit method
is known to do at a discrete level. This aspect is now
investigated.

5. An equivalence between explicit
time-staggered discretization of the
regularized equations and semi-implicit
time discretization of the unregularized
equations

For simplicity, throughout this section, the non-
rotating, linear SWEs are considered, i.e. it is assumed
that f = 0. The more general case of f #0 is
addressed in Sections 6 and 7.

5.1. Explicit time-staggered discretization of the
regularized SWEs

Consider the explicit time-staggered discretization of
the regularized SWEs (26)—(28) with f = 0. Taking
the divergence of (26) and (27), and using (13), yields
the formulation

Dn-i-l —_ D"

- _ —gV2 (hn+1/2+hS>’

(44)
and
hn+1/2 _ hn—l/2

=-—-HAxD",
At

(45)

in terms of the variables h"*!/2 and D" = u" +v".

Algebraic manipulation of (44) and (45) then yields
hn+3/2 _ 2hn+1/2 + hn—1/2

= APV A (W24 RS) . (46)

Averaging successive time steps of (46), defining

the integer time-level approximations

1
2

B (hn+l/2 T hn—l/Z) ’ (47)

and using (12) leads to the equivalent formulation
hn+1 — 2hn _ hnfl
—1
+ (coAn? (1472 = aV2) V2 (1" +1%). (48)

Algorithmically, most of the computational cost of
the time-staggered discretization of the regularized
equations is the overhead, when applying the smooth-
ing operator in (46), of solving a modified Helmholtz
problem whose Helmholtz coefficient is (1 + yz) a2,

Atmos. Sci. Let. 6: 97—104 (2005)
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5.2. Semi-implicit time discretization of the
unregularized SWEs

Repeating the manipulations from the previous sec-
tion, but for (29)—(31), the semi-implicit discretization
of the unregularized SWEs with f = 0 becomes equiv-
alent to

hn+1 —2p" +hn71 — (C()At)z
e ey
X

s
n +h:|, 49

which can be considered to be a time-centred dis-
cretization of the wave Equation (42) for f = 0.
Algorithmically, most of the computational cost of
the semi-implicit discretization is the overhead of
solving the modified Helmholtz problem defined b2y
(5049) whose Helmholtz coefficient is (coAt/2)“.
The inversion of this modified Helmholtz operator
yields the equivalent ‘explicit’ recursion relation

Ar\?
hn-‘rl —2p" — hn—] + (C()At)z [1 _ <COT> VZ}

-1

x V? (h" +h%). (50)
Comparing now (48) with (50), it is seen that they are
equivalent if « is set to coAz/2 and y to zero, which,
for 1% = 0, can be seen as a numerical approximation
to (42). The two Helmholtz coefficients are then also
identical. This means that, in the non-rotating case, the
time-staggered discretization of the regularized, linear
SWEs is precisely equivalent to a semi-implicit time
discretization of the unregularized linear SWEs when
o = coAt/2 and y = 0. (As will be found in Section
(7), v plays a crucial role when f # 0.)

6. Time-staggered discretization of the
forced regularized SWEs on an f-plane

Consider now the time-staggered discretization of the
regularized linear SWEs on an f-plane, i.e. Equations
(26)—(28).

6.1. Derivation of an equivalent difference
equation for the fluid depth

Defining
=l —ul 5

X v

and assuming a continuous representation in space,
(26)—(28), together with (13), may be equivalently
rewritten as

n+l _ «n
é‘ At é‘ — _fz (Dn+1 +Dn> , (52)
Dn+1 — D" f il .
At 2 (( +e )
_ gv2 (hn+1/2 + hS> , (53)
hn+1/2 _ hn—l/2
— = —HAxD". (54)

At
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Subtracting (54) from its index increment gives
hn+3/2 _ 2hn+1/2 + hn—l/2
Ar?
Dn+1 — D"
=—HAx|—— ], 55
e

and using (53) gives

hn-i—3/2 _ 2hn+1/2 + hn—l/2
Ar?

+c3V? (hn+1/2 + hS)] .

Using (47), (56) then leads to

:A*[_H_f <§n+1+§n)

hn—H —2ht 4 hn—l
At?

— Ax [_HTf <§n+1+2§n+;n71>

+§ V2 (" + 1) (57)

Next, using (36) and (13), the discrete linear poten-
tial vorticity perturbation is defined as

n __ «n f no__ «n f 2 2v72
Q" =¢ gt =¢ —E<1+V —oeV)
hn+1/2 hn—1/2
+. (58)

It can be verified that Q" is constant and equal to
its initial value Q° under the Equations (52)—(54).
Hence, ¢" can be replaced in (57) by

- =Q0+i<1+y2—a2V2>h”,

o (59)

with corresponding replacements for the integer shifted
values. Finally, the governing second-order difference

equation for £ is derived as
thrl —2h" + hnfl f2
At? Y

— Ax[HQ — GV* (h" +15)].

(hn+1+2hn+hn71>

(60)

6.2. Stability of the free solution

Using the definition (12), the free solution to (60) is
governed by the equation

hn-i—l — 24" hn—] 2
2 22\ ! 202
+<1+y —aV) 2V2h". 61)
Seeking solutions of the form
W )\'ne[(kx-‘rly)’ (62)

Atmos. Sci. Let. 6: 97—104 (2005)
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yields
(,\2 —2B) + 1) —0, (63)
where
s’ (1= F?%) —cAr® (k* +1%) /2
B b(1+F?) ’
bzl+y2+a2<k2+lz>,
Y
F = > (64)
with solutions
A=B+iV1— B2 (65)

Thus, the requirement for stability that |A| < 1 gives
the necessary and sufficient condition
B* <1, (66)

in which case |A| = 1 and the solutions are neutrally

stable. Substituting the definitions (64) into (66) then
gives

2
2442

cHAr 2 . 12\? 22
(—2 )(k +l>§4bF

+b(1-F)Gal (R +12),  (©D)

which may be rewritten as
0< (chtzmz + 4F2b)

ZAtZ
x (1 2 aim? - C‘)Tm2 . (68)

1/2 . :
where m = (k2 +1 2) /? is the horizontal wave num-
ber. For this inequality to be satisfied for any horizon-
tal wavenumber thus requires

2o (coAt>2‘
- 2

In order that the regularized continuous governing
equations are as close as possible to the unregularized
ones, as small a value of o as possible, consistent with
numerical stability, should be chosen. Therefore, from
(69), the optimal choice for the smoothing length scale
is o = coAt/2. Note also that, for fixed y, increasing o
beyond this lower limit for stability anyway decreases
the coefficient of the associated Helmholtz problem

and, hence, decreases the efficiency of an iterative
solver.

(69)

Copyright © 2005 Royal Meteorological Society
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6.3. Forced solution

Seeking solutions of the form h” = p"*! = pforeed jp
(60) and using the definition (12) gives the relation

O — _f2 (1 + 7/2 _ a2V2> thl‘C@d

— fHO" + gH V? (hforced + hs) . 0)

Solving for hforeed i (70) shows that the numerical
forced fluid depth £7™°¢ is given exactly as in (39),
and this itself reduces to the unregularized result under
the assumption that o < Lg and y? < 1.

6.4. Free solution

From (61), the free solution (corresponding to the
inertia-gravity waves) is governed by the explicit
recursion relation

hn+1 — 2hn _ hn—l _ sztz
1+ f2A12/4
~1
[1 — L3 (1472 - a2V2> V2:| h"
- frar’ > a2\
) Ly Ll e — | —a“V
1+f2At2/4< Ty« )

2
X {1 —I3V2 42 [1 - (%) vznh". (71)

This is compared to the corresponding expression
for the semi-implicit discretization in the next section.

7. Semi-implicit time discretization of the
forced SWEs on an f-plane

In this section, the semi-implicit time discretization
(29)—(31) is considered on an f~plane and the resulting
discretization is compared with the time-staggered
discretization of the regularized equations.

7.1. Derivation of an equivalent difference
equation for the fluid depth

Manipulating (29)—(31) in a similar way as in Sec-
tion 6 leads to the equivalent formulation

thrl —2h" + hnfl
7 — _j% <§n+1 +2§n +§n71>
(hn-H + 24" +hn—l)
4

+ gHV2|: +h5] (72)

in terms of the fluid depth and the vorticity alone.
Next, the discrete linear potential vorticity perturbation
is defined as

!

I h". (73)

0" =¢" -

Atmos. Sci. Let. 6: 97—104 (2005)
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It can be verified that Q" is constant and equal
to its initial value Q¥ under the semi-implicit time
discretization. Hence, ¢” in (72) may be replaced by

n 0 f n

= —h", 74
=00+ (74)
with corresponding replacements for the integer shifted
values. Finally, the governing second-order difference

equation for 4 is derived as

hn+1 —2hn hn—l 2
o + _ _fz <hn+l +2h" + hn—l)
h”+1 + 2R +hn—1
— fHO" + gHV2|:( 1 )+h5 .
(75)

7.2. Stability of the free solution

It can be verified that the semi-implicit method is
unconditionally (neutrally) stable.

7.3. Forced solution

Seeking solutions of the form A" = h"*! = piorced jp
(75) gives the relation

0= _f2hforced —fHQO + gHV2 <hforced + /’ZS> )
(76)
Solving for hforeed it is found that the numerical
forced fluid depth A is given exactly as in the
unregularized case (i.e. (39) with « =0 and y = 0).

7.4. Free solution

The free solutions to (75) are governed by the explicit
recursion

hn+1 — Zhn _ hn—l —sztz

ISR VA

x (1= 13v2) ",

(77)

This is to be compared with the corresponding
recursion (71) for the time-staggered discretization of
the regularized equations. Noting that Lg = co/f, it is
found that the two recursions are precisely equivalent
for a = coAt/2 if, additionally, the choice y = f At/2
is made. This choice is consistent with the non-rotating
(f = 0) case where y was required to be zero.

8. Conclusions
A spatial regularization of the orographically forced
SWEs, as used in the recently proposed HPM method,

has been analysed in terms of linear perturbations. The

Copyright © 2005 Royal Meteorological Society
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effect of the regularization is governed by two param-
eters: o, which measures the length scale at which
the scale-dependent smoothing becomes significant;
and y, which is a measure of the scale-independent
smoothing. Provided y is chosen so that y <« 1 and «
is chosen to be much smaller than the Rossby radius
of deformation, i.e. such that o < L2, then the forced
response of the regularized equations is close to that of
the unregularized equations. Further, and as expected,
the free response (the inertia-gravity waves) of the reg-
ularized equations approaches that of the unregularized
ones as @« — 0 and y — 0. For non-zero values of «,
the inertia-gravity waves are increasingly retarded as
their wavenumber increases (reminiscent of the effect
on discrete inertia-gravity waves of the semi-implicit
scheme). Increasing y away from zero also retards the
inertia-gravity waves, but the effect, in isolation from
o, is independent of the wavenumber.

The regularized equations have then been dis-
cretized using a time-staggered leapfrog scheme. It is
found that numerical stability of the free solution of
this scheme requires

coAt

> (78)

o=

Therefore, noting the above requirement for accu-
racy that o be as small as possible the optimal choice
for the smoothing length is @ = coAtz/2. Increasing o
beyond this value will unnecessarily reduce the accu-
racy of the free and forced responses. Additionally, for
a fixed value of y, it would also decrease the coeffi-
cient of the associated Helmholtz problem and, hence,
decrease the efficiency of an iterative solver.

The regularized, time-staggered leapfrog discretiza-
tion has been compared with the popular two-time-
level semi-implicit time discretization. It is found that,
for the linearized equations, if « assumes its opti-
mal value and the choice y = fAr/2 is made, then
the two schemes give exactly the same numerical
dispersion relation for the free response, i.e. for the
inertia-gravity waves. Additionally, the regularized,
time-staggered leapfrog discretization yields a very
similar result to the analytic forced response (which
is obtained exactly by the semi-implicit discretization)
provided (oc/LR)2 < 1and y? « 1. With o = ¢yAt/2
and y = fAt/2, then o/Lg = y, and the two condi-
tions reduce to the same requirement, namely that the
time step should be chosen such that f At/2 <« 1. This
is generally the case for models of the Earth’s atmo-
sphere.
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