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Abstract
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1. Intoduction

Recently, the interest in research on gases of Bosons has increased and models of
different kinds have been studied, in particular their connection to cycle percolations.
Siité [17, 18] and Benfatto et all [1] considered limiting models of random permutations
without interaction and in the mean field, respectively. Ueltschi [19, 20] examined
lattice models on the basis of Siité’s work. In particular both, Siité and Ueltschi,
indicated in which way cycle percolation and Bose Einstein condensation are connected.
Very recently, Ueltschi and Betz [2, 21] generalised the lattice model to models of
random point configurations in space.

From the point of view of point processes Fichtner [8] started the investigation of
the position distribution of the Bose gas and gave a characterisation in terms of its
moment measures of a point process on RY.

The initial point of our investigations is the work of Ginibre [10] who investigated
quantum gases and derived a representation of the reduced density matrices of the Bose
gas in terms of Wiener measures. His results are a valuable starting point for defining
a point process on a certain loop space, which will be called Ginibre gas. Our aim is to
characterise limits corresponding to various specifications in the sense of Preston [15].

The paper is organised as follows: In section 2, firstly the Ginibre gas model is
introduced. We then recall the notion of specifications and Martin-Dynkin boundary
due to Follmer [7] and Dynkin [5, 6] and define the filtrations which this paper is
concerned with. After that, we study different examples of specifications. These are in
sections 3— 5 the microcanonical, canonical and grand canonical loop ensemble. Finally,
we turn second canonical ensemble in section 6, which could be more convenient from

a physical point of view.
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2. The setting

2.1. The Ginibre Gas

For an arbitrary integer j > 1 consider a continuous function x : [0, j3] = R¢ with
2(0) = x(j3). The image of x in R? is a j-loop at inverse temperature (3. It represents
j simultaneously moving particles starting at z(k3), k = 0,...,7 — 1 and changing its
positions during a time intervall of length 8. Hence, x([kﬂ, (k- 1)ﬁ]) is the trace of a
single particle or elementary component. Let X; denote the space of j-loops

X;={xeC([0,j8LRY) : 2(0) =2(iB)}, X:=[]JX;
j=1
the space of loops at the inverse temperature 5. X contains continuous trajectories of
multiple length of 8. Each of the spaces of j-loops is endowed with the Borel topology,
and we equip X with the corresponding disjoint union topology, that is the finest
topology such that the canonical injections X; — X are continuous.

Let By(R?) be the algebra of bounded Borel sets of R?, which is a partially ordered
set when endowed with the inclusion (By(R?),<). For A € By(R?) define the set of
bounded sets of X to be

By :=By(X) = {B e B(X): BC Xy for some A € By(R?)}
where X is the set of all the loops contained in A,
XpA ={xe X :rangex C A}

In that way we speak of a loop x contained in some region A, whenever the image of
the loop is fully contained in A, for which we write x < A; a set of loops is bounded,
whenever there exists some bounded region A, which contains these loops. Note that if
Ay, Ay € By(RY) are two disjoint bounded regions, then X5, U Xx, € X, A, without
equality in general, since loops may start in one region and cross the other one.

Let 13 be the density of the centered normal distribution on R? with covariance

matrix 31 and consider on (R?)’ the measure

ﬁj (da) = 1[)[3(0,1 — CL()) Tt ’ll)ﬁ(aj,1 — CL]',Q)?)/JQ(CLO — aj,l)dao . daj,l.



4 Mathias Rafler

Furthermore, let p : X; — (R?)? be the projection z +— (2(0),z(8),...,z((j —1)8))

1

and p; be a measure on X such that pjop™ = p;. Of particular interest are Brownian

bridge measures or measures of a random walk bridge with normally distributed steps.

Now, sum up the measures p; to get a family of measures p, on X for z € (0,1],

ps = Zi.jpj- (2.1)

=7
The parameter z is the fugacity.

Lemma 1. For any z € (0,1] and any d = 1, p, is a o-finite but infinite measure on

X.

Proof. Consider the projection s : X — R? on the initial point of a loop, s : & —

2(0), then
1
. -1 _
P10 = Grppar

with \ denoting the Lebesgue measure on R%. This can be seen from
[ #tan)ps o5 Hdao) = [ flaoyvs(ar —a) - vs(as1 — ay-2)
X w,@(ao — aj,l)dao N daj,1

- / F(a0)is(ao — ao)dag = (2mBj) 42 / f(ao)dao,

since the rhs of the first line is a convolution of normal distributions. That way we get
p=os™t = (2m8) g1 4 (DA, (22)

where g, : [0,1] = Ry u {0} is for any a > 0 defined as

20
gal2) = ) - (2.3)
j=1 J
Since for any « > 1 this g, is finite on [0, 1], we get the claim.

Observe that for 0 < « < 1 the series g, is only finite on [0,1) without the right

boundary. Furthermore g, is strictly increasing and continuous whenever it is finite.

A configuration 1 is an element of the phase space M (X) of locally finite point

measures on X . Particularly, i is a collection of loops such that any bounded region A
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contains only a finite number of loops. For simplicity write x € y whenever y = 0, + v

for some v € M (X). Every configuration p has a representation p = »___ d,. The

TEP T

following restrictions of a configuration pu will be used throughout this article:

My = Z 0, is the configuration of j-loops of p,
repurcX;
By 1= Z 0,  the restriction of p to loops which stay in A.
rzeprcCA

A configuration y is said to be simple, if for all z € X the relation p({z}) < 1 is
satisfied, i.e. at each site x there is at most one loop in the configuration pu. The set
of locally finite simple point measures is denoted by M (X).

A probability measure on M (X) and on M'(X) is a point process and a simple
point process, respectively. Of special interest are the Poisson point processes E,_,
which are even concentrated on simple configurations of loops M’ (X)), since p. has no
fixed atoms. If B,_ 5 denotes the restriction of B, to M (X, ) and p. a the restriction
of p, to Xy, respectively, then B, » = P

Pz,A"

Definition 1. The Ginibre gas with fugacity z € (0,1] is the Poisson process P, on

A composition n is a finite point measure on N*, i.e. an element of M(N*). Observe

that there is a canonical partial order on M7 (N¥),

v <0 () <)

for all j € N*. For n € M}(N¥) let denote * the element in M (N*) which represents
the support of 7, namely
= > 8 forn =Y n()j;
jENFm(j)=1 i1

2.2. Specifications and Martin-Dynkin boundary

Specifications were studied intensely by Preston [15], who contributed the notion of
microcanonical and canonical ensemble in this context. A further tessera is the work
of Follmer [7], who extended the Martin boundary technique to specifications. As a
consequence, a characterisation of Poisson processes by their local specifications was

given by Nguyen and Zessin [13].
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Consider the measurable space (M'(X),E) of simple point measures on X and fix
a with respect to (By(R?),Z) decresing family of sub-o-fields E = {Ex}p of £ A

probability kernel 7’ is a mapping M'(X) x €& — R~ with the properties
1. Ype M (X):7'(u, -) is a measure,
2. VE€ & :7'(-,E) is E-measurable.

An E-specification m = {ma}a is a collection of probability kernels on M'(X) x &
such that

1. VA€ & : ma(-,A) is Ex-measurable,
2. VAe & :mp(+,A) =14,

3. Vpe M(X) s ma(p, M (X)) € {0,1},
4. VA C N :7p = mama.

A Gibbs state or a phase with respect to the E-specification is a probability measure
P on M'(X) such that its conditional expectations given the o-algebras in E is given
by the corresponding kernel, Ep(-|€4) (1) = ma(, - ). Let C = C(m) denote the set of
those phases. If C' contains more than one phase, a phase transition occurs.

To define the Martin-Dynkin boundary fix a countable base (Ay)x of Bo(R?) and a
polish topology on M"(X) compatible with {€x, }x. One obtains a polish topology on
the set of probability measures on M'(X). Furthermore, let C, = C.(7) be the set

of all limits
lim 7, (s, +) (2.4)
k—w

for sequences (ug)r < M'(X). Now C,. does not depend on the choice of the family
(Ax)r and is complete in the set of probability measures on M'(X), hence polish
with the induced Borel field Cy,. The Martin-Dynkin boundary associated to 7 is the
measurable space (Cy,Cy).
Finally, let Q,, for u € M'(X) be the limit
Qu = lim mp, (p, -), (2.5)

k—w
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then the essential part A of the Martin-Dynkin boundary is the set of those P € C,, nC,
for which @. = P holds P-a.s, i.e.

Qu(A) =P(A) for P-a.e. p. (2.6)
2.3. Counting Loops

The purpose of this subsection is to define filtrations on M"(X), that is to define
how to count loops. As already pointed out, x < A for some bounded region A and
some loop x € X iff x is completely contained in A. Consequently, the loop x is outside
A iff x leaves A at least once. Define a collection of counting variables {na} AeBo(R4)

each np counting the number of loops of each kind in some region A

na s M(X) > MGIN*), napi= Y iy 508, (2.7)
j=1
where |v| := v(X) is the total mass of v of the point measure v. npp is indeed an

almost surely finite measure under B,_, since B,_ is locally finite and hence pa)(X) < o0
almost surely for any bounded region A. From the definition immediatly follows that
nap < nap for each configuration p and bounded regions A € A’. Therfore, we can

define spatial increments, that is for A, A’ € By(RY) with A € A’
nara s MI(X) HMf(N*L NATLA P= NAr — NA.

Now we are able to give the definition of the filtration of the outside events E =
{Eata,

Epn = U({TLA/’A =nlA 2 A € By(RY),ne /\/lf(N*)}), (2.8)
that is the smallest o-algebra such that the increments of the region A are measurable.
In keeping the terminology of Preston, the phases corresponding to E will form the
grand canonical loop ensemble.

Adding more detailled information about the interior leads to the filtration F = {F }a,

Far=E&pxv O'<{TLA =nne /M;(N*)})7 (2.9)

which is associated to the microcanonical loop ensemble.
For a configuration p € M'(X) let cap = ;- nap(j) be the total number of loops
inside A and

Gr =En VJ({CA =k|keN*}>7 (2.10)
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the G = {Ga }a defines the canonical loop ensemble. Similiar to ny, we have for A € A,
ca < ceprand cprp = cpr — cp s Ep-measurable.
Finally, we are interested in what happens if we give weights to loops of different
lengths, in particular we consider the counting variable
N M(X) > N5 Nap= 3 jnan(), (2.11)
j=1
which counts the number of elementary components of the loops inside A. It is clear
that N fulfills the same monotonicity and measurablility properties of the increments
as cp. Let

HA=€AVO'<{NA=]C|ICEN*}> (2.12)

and call the corresponding ensemble H = {H }a canonical ensemble.

In the following sections specifications with respect to these Filtrations are going
to be discussed: In section 3 the microcanonical loop ensemble F, in section 4 the
canonical loop ensemble G, in section 5 the grand canonical loop ensemble E and

finally in section 6 the canonical ensemble H.

3. The microcanonical loop ensemble

In this section the specification for the filtration F = {Fp}a is discussed. As an
intermediate step, a representation of the Poisson process B,  conditioned on certain

events derived. Afterwards we turn to the Martin boundary technique.

Fix a fugacity z € (0,1]. For each A € By(R%), ny maps the simple Poisson process
F,. on M'(X) into a finite Poisson process B, , on M}(N*) with intensity measure

T.,A given by
2

T.A(j) = TPj(XA)- (3.1)
Indeed,
29M0) p (X )10
Pf'z,A ("7) = B)z (nA = 77) = exp(_pz(XA)) 1_[* W
JEN
Tz,A(j)"(j)

= exp(—7,A(N¥)) H

Jen*

ni)! -’
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since p,(Xa) = 7, A(N*). Let p. o denote the normalisation of the finite measure p, a;
then we define the n-convolution P" A of the probability measures pj; A, j = 1 for some

n e M;(N¥) as
Plai=pk= s 747, (3:2)

which represents the superposition of loops of a given length j according to the number

n(j). The B, ,-combination of that convolution is

ppz,A = Z B, (77)P;],A' (3.3)
neM (N*)

Thus Ispz) A 1s given by a two step mechanism: At first choose a composition 7 €
M;(N*) defining the number of loops in some bounded region A and then realise a
configuration according to this composition. An effect is that the fugacity z does only
affect the choice of the composition and not P;” A

These probability measures are closely related to the Ginibre gas restricted to

bounded sets A, B,_ 5
Lemma 2. B, (Alny =1n) = P, (A).

Proof. Since we have exactly K = >, 7(j) loops in A and if we order them in

increasing length, we obtain
1
B)z,A(A nny =1n) = exp(—p.(Xa)) Z *'
!

/ /lAlnA =0z, + ... +0g,)p2a(dx1) -+ - p2oa(day,)

— exp(—p- (Xa))

Kl
></---/1,41,LA:,]((5I1 + .o+ 0uy)pea(drr) - pra(den)
213) p (X )10

= exp(—pz(XA)) 7 o X
jg* F"In(5)!
X/"'/lAlnA:n(§Il +"'+5IN)ﬁZ,A(d$17"'7dmN)

exp(—p.(Xa) []

jen*

ul —
],,7(])77(])| Pp7A(A N {TLA - ’r]})a
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Finally, setting A = M'(X) we get the normalisation constant and using the fact that

P} \(na =n) =1 we get the assertion.
Corollary 1. P,_p =P,_,.

Proof. This follows immediatly since
Boale)= > B (mP(9)
neEM; (N*)

> B (mBalelna =n) =B Aly)
neEM; (N*)

for any measurable, nonnegative function ¢.

That way we found a new representation of P,_. Define on X x M"(X)
ﬂ-ﬁ(:uﬁ (10) = :sz,A (‘P( -+ /J(Ac)) ’TLA = TLA/J,)

=Py (@(- +M(AC))>

and observe that 7 is a probability kernel. 7% = {7} } 5 is indeed an F-specification,
which follows from the conditioning procedure of the Poisson process. By definition,
P,. € C(nF), hence the set of phases C(n™) associated to 7' is not empty.

Fix an expanding sequence (Ag)r € Bo(RY) with J,o; Ax = R?, let Fp = (), Fa,
be the tail-field and P € C,. ("), then for ¢ € L'(P),

P(plF,) = lim 73, (+,0)  Poas. (3.4)

Therefore, the limits @, = limy 77& (1, - ) exist P-a.s. in p and are by construction
contained in the Martin-Dynkin boundary C.,(7¥).

Define the j-loop density of some configuration p in Ay as

Y

].k( _ nAkU(.j)

pi(Xa,)’

let Y; be its limit as k& — oo provided that the limit exists and write Y = (Y});. Let

(3.5)

M Dbe the set of all those p € M'(X), such that Y} exists for each j € N* and is finite.
Note that instead of the volume of Aj the volume of Xy, is used to define the density.

However, it has been shown in lemma 1 that, asymptotically, their volume is the same
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/2

up to a constant given by (2755)~*2. For notationally purpose we write for the convex

y-combination

yep:=> yip; (3.6)

j=1

for any sequence y = (y;); of nonnegative real numbers.

Proposition 1. Let f : X — R be nonnegative and measurable with bounded support,

weM and Y(p) e (exp( f) - 1) convergent. Then for any ¢ € L'(IP)

P(‘Pu:w) = kh_r)r; 77%;,6( L) = R’-p(‘P) P-a.s. (37)

Proof. At first we show that the following limit exists and equals

/\

hm 7rA (w, - )f) = Qu if) —exp< ZY pj(l—exp(—f))). (3.8)

j=1

Let N be the set of ”good configurations”,
N={pe M (X): klim mx, (1, ) exists}.
c— L

Let f: X — R be nonnegative and measurable with bounded support and such that
f(exp(—f) - l)dp # 0, then there exists kg such that supp f < Ay for k > kg. Provided
weN, we get

7 () (if) = / exp(— / FAE (u,dv) = / exp(— / Fdv) P ()

= /exp(—((5$1 + ...+ (5mnAk“(N*))f)/3X:k (dxq,. .., dank#(N*))

=TI [ ewrenmaan] ™"

Je(na, w)*
na, k1(5)

= H 1+ pja, (exp(—f(:v)) — ]

jE('fLAkM)*

np, (5)
I1 { [1 pj (exp(—f(:c)) - 1) ] pj(XA’“)}p,-A(xAk)

= + .

je(na, wy* Pi(Xar)

Use supp f = supp (exp(— f) - 1) to obtain the last line. Since the lhs converges
by assumption, so the rhs does. Therefore N' € M. Vice versa, if u € M, the rhs

converges and so the lhs does, hence M € N and (3.8) is shown.
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Immediatly we get that @), is a Poisson process with intensity measure Y (u) o p,

which is the claim.

In case of divergence of the series, @(z f) = 0 whenever f # 0, and there is no
suitable limit for @,. Thus we have shown that the only possible limits for @, are
Poisson processes.

For F..-measurable ¢ the proposition 1 implies P(¢ f(Q.)) = P(¢ R, (f(Q)))
and we get

Br(1)ep(Q. = Qu) =1 P-a.s.
Particularly, ¥; = Y;(u) P-a.s. for each j.

Let A" ={PeC,.nC|Q. =P P-as.} be the essential part of the Martin-Dynkin

boundary associated to F. Since AF is a Borel set in C.,, AF is a Borel space itsself

with the induced field. For a phase P € C define a probability measure VF on AF as
VZ(A) = B(Q. € 4),
hence by conditioning

P(e) = P(Q-(p)) = . P(p)V¥(dP)

can be written as a Cox process. Vice versa, any probability measure V on AF induces

a phase P e C.

Theorem 1. The essential part of the Martin-Dynkin boundary of ©° consists of all
Poisson processes with intensity measure ye p for nonnegative sequences y = (y;); such

that y e p is a o-finite measure on X,
AF = (Buyly » p o-finite}.
Proof. Let y e p be o-finite. As already seen, B,,, € C(r"), and clearly
Qu=FEep Buepas.
For arbitrary P € AF we have
| POVIaP) =B = Qo) Pas
This implies VF = dp,,, for some o-finite intensity measure y e p.

Remark 1. Observe that the fugacity z played only a minor role in the analysis of

the microcanonical ensemble.
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4. The canonical loop ensemble

In the previous section we conditioned on the different types of loops; now we
drop this distinguishing feature and consider the total number of loops. This means
to count like cp. Intuitively, this means to forget the superposition of the different
Poisson processes on each space of j-loops. Since the reasoning generally is the same
as in the previous section, some details are left out, whenever already given. Troughout

this section the fugacity z remains fixed.

Lemma 3. Let By = {ne M;(N*): > n(j) = k} the set of compositions of mass k,
then

k
B..(B) = Y B ()= 2000

nEBy

exp(p.(X4))

Proof.
B\ (Br) = B.alea = k).

zs

Since cy is the sum of independently Poisson distributed random variables, ¢, is Poisson

distributed itself with the given intensity.

From the decomposition of B, s in Corollary 1 immediatly follows
-1
Boalelea=eam) = (3 Boa) D BLPILe)  (@&D)

NEBecy NEBec, 1

for any measurable function ¢ on X, , which again emphasises the two step mechanism:
At first choose a composition according to some law and then realise the loops according

to the given composition.

Let the kernel be

w§0) = B (- + 50 fer = can). (12)

It follows that 7€ = {n§}A is an G-specification. Again, B,_ € C(n®), hence C(n®)
is not empty. Fix an expanding sequence (Ax)r < Bo(RY) with Uizt A = R?, let
G =, Ga, be the tail-field and P € C.. (%), then for ¢ € L'(P),

P(plGr) = Jim 73 (-, 9)  Pas. (4.3)
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Therefore the limits

Qu = lim 7%, (1, -) (4.4)

[vess
exist P-a.s. in p and are by construction contained in the Martin-Dynkin boundary
C.(7®) in case of existence.

Let the loop density of a configuration p in Ay be

CALH
Wi(p) = (X)) (4.5)

and let W be its limit as £k — oo provided that the limit exists. Let M be the set of

all those € M'(X), such that W exists.

Proposition 2. Let f: X — R be nonnegative and measurable with bounded support

and W (p) < 0. Then for any ¢ € L*(PP)
P(¢lG) = Jim 75, (-,¢) =Byp.(p)  Peas. (4.6)

Proof. Essentially the arguments as in the previous section apply,

CALH

G V(i) = Plexp(=f))r pa (exp(—f(x)) — 1) ]P=Fa) | =0
a P2 (Xp)AkH o { [1 + p2(Xa,) ]

- eXP(—W(u)pz(l - exp(—f)))-

Hence we get

—

@) = exo (W (. (1= exn(-1) ).

that is that @, is a Poisson process with intensity measure W(u)p..

Similiar to the microcanonical case, if W(u) is not finite, @(z f) = 0 whenever
f # 0, and there is no suitable limit for @),,. Furthermore, the possible limits @, are

Poisson processes.

Since this implies for G,,-measurable ¢, P(¢ f(Q.)) = P(¢ By,. (f(Q.))) one gets
By (). (@ =Qpu) =1 P-a.s.

Particularly W = W(u) P-a.s. holds.
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Let A® = {Pe C,nC|Q. = P P-as.} be the essential part of the Martin-Dynkin

boundary. For P € C define a probability measure V¥ on A® as
VE(A) =P(Q. € A),
hence
Plo) = PQUe) = [ PeVF(aP)

can be written as a mixed Poisson process. Vice versa, any probability measure V on

A% induces a phase P e C.

Theorem 2. The essential part of the Martin-Dynkin boundary of #€ consists of all

Poisson processes with intensity measure wp, for any positive real number w,
G
A¥ ={PR,,_ |w > 0}.

Proof. If w is a positive real number, wp, is a o-finite measure on X. As already
seen, B,,. € C(n®), and clearly Q, = B,,. B,,.-a.s. For arbitrary P € AF we have
| FEVIAP) =Plp) =Qp)  Pas.
This implies VP = op,,. for some o-finite intensity measure wp,.
Remark 2. It is remarkable that in the microcanonical case any fugacity z leads to the
same set of Gibbs states, where in the canonical loop case these Gibbs states depend

on this parameter. Essentially a similiar result for Poisson processes on R¢ can already

be found in [13].

5. The grand canonical loop ensemble

This last ensemble completes the considerations about loop ensembles to the last
case, when we do not condition on a number of loops of a given configuration. For

that, define the kernel as follows

Al ) =B a (90(- +/~L(AC))>~ (5.1)

Similiar to the previous sections 7 = {75}, is an E-specification.

Fix an expanding sequence (Ax)r < Bo(R?) with Uk>1 Ap =R?, let &, = Nk €, be
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the tail-field and P € C.. (7%), then for ¢ € L*(P),

P(pler) = lim 73, (-, ¢)  Pas. (5.2)
Therefore the limits
Qu = Jim 7%, (u, -) (5.3)

exist P-a.s. in g and are by construction contained in the Martin-Dynkin boundary

Cor (7®).

Proposition 3. Let f be nonnegative and measureable with bounded support. Then
@;(zf) = lim} (p, - )(if) exists, is non-degenerate and

—

Qu(if) = eXP(—pz(l - eXp(—f)))- (5.4)

Proof. The proof of the corresponding microcanonical loop ensemble applies with

This means that the Poisson process with intensity measure p, is the only limit,

hence there is no phase transition. Clearly,

Theorem 3. The essential part of the Martin-Dynkin boundary of © consists of the

Poisson process with intensity measure p,.

6. The canonical ensemble of elementary components

From a physical point of view it could be more convenient to work on the level
of elementary constituents instead of the composite loops, since they represent the
elementary particles, the bosons; and it is more interesting to find statements about
the number of particles in some bounded region A rather than the number of families
they align with. Recall from eq. (2.11) that the number of elementary components in

a bounded region A is

Nap =Y jnap(j)-

Jj=z1
Hence, under B, , N has a compound Poisson distribution whenever z < 1 for d > 3

and z < 1 for d = 1, 2. However, the conditions

HAZSAVJ<{NA=/€:/€EN*}>.
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do not allow a direct computation as in the previous sections. Instead we are going to
define 7% in a similiar way as before as a conditioned Poisson process, to represent it
as a convex combination of P/ and to show a large deviation principle for the mixing
measure. If the latter measure converges to a suitable limiting probability measure,

then, since the microcanonical weak limits are known, 7§ will converge as well.

From now on fix d > 3, z = 1 and write p instead of p;, etc. At first we derive the

representation in terms of P ,.

Lemma 4. With Cpr = {n € M;(N*): >7jn(j) = M} being the set of compositions

with first moment M and p € M (X) a fized configuration with Nau = M, it follows
(v + 1N, @B@) = 5 mawrg(o(-+44)). @

n€Cm

Proof. This can be seen from disintegration of conditional expectations as in the

beginning of section 3.

If we now condition P,, on the event {N) = M} on the lhs. of eq. (6.1), this turns
into P,

TA

conditioned on C); on the rhs. Though define
ma (1, ) = Boa (90( + M(AC)) ’NA = NA,LL) (6.2)

= [ 2 (- ) Bl (63
which is indeed a probability kernel on X x M (X).
It even follows that 7 = {7} }, is an H-specification. As in the previous sections, fix
an expanding sequence (Ag)g of bounded regions.
Before we turn to the analysis of the Martin-Dynkin boundary of 7™, we derive a large
deviation principle for B., (-|Cx,,). This one can be shown in using a large deviation

principle for B, (+). Since the deviation is done for fixed u, we write My, instead of

My,

Np, it and think of it as an increasing parameter in k such that AT

converges to some

finite limit as k — oo.

Large deviation principle for B,,. The intensity measure 75, grows asymptotically

like the volume of Ag, already seen in Lemma 1,

7= lim 2k = (27r6)_d/2z L J;. (6.4)

k—x |Ag| = i1+
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7 in some sense represents the critical limiting loop densities. From that already follows

that there is a law of large numbers,

VAC NS>0 lim B, <{n : W/(\f? . T(A)‘ > 5}) — 0,

which says that the mean density of loops of any kind tends to 7.

The large deviation principle for B., is established in [11] using Cramer’s method:
On M(N*), B, (m € ) satisfies a LDP with speed |Aj| and good rate function
I: M(N*) — [0, 00] given by

Tkir) = T(flogf—f+1) if/{<<7,f:—d7,flogf f+1elLi(r)

o otherwise
which means that {I < ¢} is compact for any ¢ > 0 and for any G € M(N*) vaguely

open

L
h]fri)lflf |Ak| log B, ({77 Al € G}) érelgl(/@ T) (6.5)

and for any F' € M(N*) vaguely closed

n
lim su log B, t——€e F —inf I(k;T 6.6
,H,pmu g <{n A }) inf 1(x37). (6.6)

Large deviation principle for B, (-|Chy, ). The conditioned Poisson process can
be interpreted as being absolutely continuous with respect to the unconditioned pro-
cess, where the density is roughly an indicator function times a normalisation constant.

That way the LDP for B, ~transforms into some LDP for B, (-[Chs,).

B, (10w,) = (B, (exp(—xcn, ) exp(—xcu, (), ().

where the functional x4 for some set A € M(N*) is defined to be x4 = 0lc. As
known in large deviation theory, the rate function for B, (-|Chy, ) will be the rate

function for P, plus a functional of the form x4 for a suitable set A, see i.c. [4].

TAg
However, because of poor continuity properties of these functionals x 4 additional care

has to be taken. Let
Dy = {re M(N*)|> " jr(j) = u}

be the set of measures on N* with first moment u representing the densities of the

loops of the different kinds. Observe that in the vague topology xp, is neither upper
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nor lower semicontinuous. But if its upper or lower semicontinuous regularisations are
not infinite for any x € M(N*), one may deduce the lower and upper large deviation

bound, respectively, as will do in the sequel.

Lemma 5. The upper and lower semicontinuous reqularisations x5 and Xl[ﬁi of Xp,

with respect to the vague topology are

we) —oo, sty = eI = (6.7)

XD,
0 otherwise

Proof. First note that x%°¢ = Xint 4 and ijc = Xc14, where int A and cl A denote the
interior and the closure of A, respectively. But cl D,, = {k € M(N*) : > jr(j) < u},
hence we get the lower semicontinuous regularisation of xp,. By the same argument

we get int D, = (c1 DS)¢ = ¢ and the upper semicontinuous regularisation.

Upper bound of the partition function. In applying [4, Lemma 2.1.7] we get
the upper bound as

: 1
limsup ——

msup e log By, (exp(—Xcay, ) < — inf [I +lse ] (6.8)

M(N#)

Since xp, is not lower semicontinuous, it is replaced by its lower semicontinuous
regularisation on the rhs. We solve the variational problem on the rhs. of eq. (6.8),

which is a minimisation problem with a constraint.

Proposition 4. Let z, be the solution of
(27rﬁ)*d/zgd/2(z) =u Au®, (6.9)
where u* := (27r6)’d/29d/2(1) and gq/5 is given in eq. (2.3). Then

inf [1 + Xﬁ;ﬂ =3 (1)) (6.10)

MO i1

Proof. The minimisation of I + xlf,i is equivalent to the minimisation of I under

the constraint Y jk(j) < w. For the moment, assume v < u«* and minimise [
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given > jk(j) = v for any v < u. By the Euler-Lagrange method of conditional

minimisation,

Zyn 10gz—Z@(logf_8§—l>+TN* Zlong

Jj=1 Jj=1 Jj=1

—Z@( ;TZ 1)+T(N*),

Jj=1

which has a unique minimiser on M(N*), k =3, z17(j)8; with z, being the solution

of eq. (6.9) with u replaced by v. Immediatly
== () +T(N*) =D (1 - 20)7(j)
j=z1 j=1

follows. Since necessarily z,, < 1 and z, is an increasing function of v, eq. (6.10) holds.
Now let w > u™, so there is no solution of eq. (6.9). Let ug = u™ — (27rﬂ)*d/2gd/2(1)

be the excess mass. Define & = 7 and &#(™ = & + %06y, then clearly for all n

Zj/?:( ij-i +up=1u

j=1 j=1

while #(™) — & vaguely. Furthermore

1(E™) =Y &) <10g fg; — > + <Fc(n) + L;“) (log F"(i)(:)u"o — 1> + 7(N*)

- J—in(N*\{n}) + (T(n) + 1:;) (1og(1 + nf("n)) - 1) +7(N¥)
SIR) =1(1)=0  asn— .

Lower bound of the partition function. As we have seen in lemma 5, the upper
semicontinuous regularisation x75¢ of xp, is not finite and the analogue argument for
the lower bound does not apply. The reason is the sparseness of D, in the vague
topology which even holds for the blow ups D% of D, of the form D¢ = {x € M(N*) :
| > jik(5) —u| < e} for any € > 0. Otherwise this could have been used for some kind
of Boltzmann principle, see e.g. [16].

However, the 2-parameter sets

Dipps i= {ne M(N*) 0> jk(j } (6.11)

j<m
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of those measures in M(N*), whose first moment restricted to {1,...,m} does not

reach s are vaguely open. Furthermore

m m Dm,s+6 = C1D57

e>0m=1

i.e. if the first moment of some measure on N* restricted to {1,...,m} is bounded by
s+e¢ for any m € N* and € > 0, then the first moment of the whole measure is bounded

by s. Since now xp is upper semicontinuous for any m € N* and

m,s+e

og B, (eXD(~XDycrc) Lino,, ., <1} ) = = (6.12)

m,s+e >

lim 1 1
im limsup —
Lo pyo |Ak|

we get for any m and e by [4, Lemma 2.1.8] a lower bound

. 1 .
h,ggg}fm log B, (exp(=XD,n.1.)) = —Mll(fllwf*) [I + XDm,HE} (6.13)

for the system restricted to the first m components. Therefore, we get the lower bound
as m — o0 and € — 0.

Consider now the family of minimisation problems on the rhs of eq. (6.13). Here we
have to link the two parameters m and s. Since ) jom Jd% is strictly decreasing to 0,

there exists mg € N* such that for any m > mg, u — (273) %2 dism jd% = 0.

Proposition 5. Let ¢ > 0 and m € N* be such that

1
Smei=u+e—(2r8) Y2y > 0

j>m
and z(m <) be the solution of (2m3) 4> ngm ]Z% = Sm.e. Theninf v ) {I—i—xpmdm_}s}

ngm(l - z{m,g))T(j) and as firstly m — oo and then € — 0, 2(y,c) = 2u, where 2, is

given in proposition 4.

Proof. The first part is similar to the previous proof where the minimiser in this

case is

1 .
1 jI+drz J=m
K(j) = ——7 . 6.14
K’(]) (27Tﬂ)d/2 Z(m.e) ( )

GIFd2 ] sm

To see the second part, assume for the moment u = u*, then s,,  is not exactly the m-

th partial sum of the series of (QWﬁ)_d/zgd/Q(l), but close to it. Observe that z(, o) > 1
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for each m > mg and (2(;m,c))m=m, is an decreasing sequence for any ¢ > 0. Indeed,

from

(279) d/QZ d/2 = = (2nf)”

J<m Jjsm

immediatly follows z(p, o) > 1 and

m-+1
1 z
o a2 —ap__Fme)
Sm4+1l,e — Sme = (2775) / m < (27T6) / m

yields the decrease. Finally the sequence (2(;,c))m can not be bounded away from 1

Flm,e)

for any £ > 0 since otherwise the sequence of sums | > j<m a3 ) would diverge.
mz=mg

Hence z(,;,,c) — 1 for any € > 0 as m — oo.
For u > u™* these arguments apply as well.
Let now u < u*, fix € > 0 such that u + ¢ < u* and mg be even large enough, such

that s, ¢ > 0. Then firstly z(,, ) <1 for each m = mg follows since

—d/2 ma)_ —d/2 —d/2
(270) /Z I = Sm.e <u* — (270) /Z d/2 = (270) /Z d/2

jsm j>m ]<m

Next we show that (Z(m,s))m>m0 is an increasing sequence in m and tends to 2z, ..

Since m+1
1 z
_ —d/2 —d/2 (m,e)
Sm+1.e — Sme = (2m3) / (m+ )42 > (213)" Y (m + 1)d/2’

Z(m+1,e) needs to be bigger than z(,, ). Since necessarily (2(;,e))m is bounded from
above by 1, the sequence converges and the only limit can be 2, . since s,, . tends to

u + ¢ as m — 00. By the continuity of g4/, the claim follows as € — 0.

Thus we have shown that the following limit exits and equals

Jim. |Ak| log By (exp(—xcn,)) = —7(G=,),

where u = limy, 7% is the limiting particle density, 2, is given in proposition 4 an
h limg, e is the limiting particle density, 2, is given | ition 4 and
G, :N* 5> R, jr1—27,

Since the minimiser of the minimisation problem was unique, the conditioned Poisson

process is asymptotically degenerate and

P (o 2 o) =6, 619
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Martin-Dynkin boundary. Back to Martin-Dynkin boundary technique, we inter-
pret the boundary condition p € M'(X) as a random element and write capital letters
instead of small ones to emphasize the dependence on u. Let U be the limiting particle
density, U(p) = limg_ o %, in case of existence of the limit and put U(u) = oo if the
limit does not exist. For each configuration p with U(u) < oo there exists Z = Z(u)
such that

(27B) " g40(Z) = U A u*. (6.16)
Proposition 6. Let f: X — R be nonnegative and measurable with bounded support

and p € M. Then for any ¢ € L*(P)

P(p[Hy) = lim 73, (-, 9) =B, (g)  P-as.

Proof. From eq. (6.15) we get

P, ({77 : ﬁ € - }’CNAkH) — Orz0,

as k — o. Now we can use the results of section 3 to deduce that the measures
converge
. H
lch—I>IOl()7TAk('LL7 =B

Again the reasoning of the preceeding sections applies. Since for H,,-measurable ¢,

P(e f(Q.)) =P(ePB,,(f(Q.))) holds, we get
:PI)Z(M) (Q = Q/L) =1 P-a.s.

In particular Z = Z(u) P-a.s.
Let A" = {Pe C, nC|Q. = P P-as.} be the essential part of the Martin-Dynkin

boundary associated to H.

Theorem 4. The essential part of the Martin-Dynkin boundary of © consists of all

Poisson processes with intensity measure p, for z € [0,1] and d = 3,
A" ={p 0<><1}

Proof. As already seen, P,. € C(7'), and clearly Q,, = P,

P e A" we have

P, -a.s.For arbitrary

z

/AH P(e)VF(dP) =P(p) = Q.(¢)  P-as.

This implies VP = op,_ -
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Remark 3. Finally note that, starting with the intensity measure p,s for 2z’ < 1, the

calculations stay the same in principle. The difference is that the Lagrange multiplier

z, which occures during the minimisation procedure using p, will be, given p./, some

Z related to z via z = 2’2. In particular, the analysis is not restricted to d = 3 and

applies in this fashion, using the intensity measure p,. for some 2’ < 1 instead of p and

u® = 00, to the one- and two-dimensional Ginibre gas. In contrast to the cases d > 3,

d = 1,2 do not show the critical behaviour.
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