
Correlation based modelling1

and separation of2

geomagnetic field components3

Matthias Holschneider1, Vincent Lesur2, Stefan Mauerberger1, and4

Julien Baerenzung15

1Institut für Mathematik, Universität Potsdam6

2Institut de physique du globe de Paris (IPGP)7

January 8, 20168

Abstract9

We introduce a technique for the modeling and separation of geomag-10

netic field components that is based on an analysis of their correlation11

structures alone. The inversion is based on a Bayesian formulation, which12

allows the computation of uncertainties. The technique allows the incor-13

poration of complex measurement geometries like observatory data in a14

simple way. We show how our technique is linked to other well known15

inversion techniques. A case study based on observational data is given.16

1 Introduction17

Modelling the Earth magnetic field is an essential step towards understanding18

the dynamic processes at work in the Earth’s outer core. There, is generated the19

core field that dominates the observed magnetic field at the Earth’s surface. Its20

rapid temporal variations in strength and direction, have been the focus of most21

of the modelling work over the last ten years. However, these variations remain22

poorly described and understood; they can be revealed only if contributions23

from the lithosphere, ionosphere, magnetosphere and other weaker signals are24

accounted for. The separation of these different contributions to magnetic field25

measurements remains one of the main challenges in building magnetic field26

models.27

Traditionally, models of the Earth’s core magnetic field have been built from28

observatory data. This carries the challenge of dealing with the sparseness of29

the observatory distribution as well as handling the unknown magnetic field30

generated locally by the rocks surrounding the observatories. However, models31

have been built this way, sometimes using also repeat station or other ground32
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survey data, catching the main behaviour of the field (see Gillet et al. (2009) for33

a review). In such models, contributions of the external fields have been mostly34

ignored.35

The Magsat mission was the first satellite mission providing vector magnetic36

data on global scales. The mission was very short, with only around 6 months37

of data. Nonetheless magnetic field models were derived by least squares us-38

ing a system of representation based on spherical harmonics (e.g. Langel et al.39

(1980)). The models typically included the main magnetic field and its secular40

variation, sometimes a large-scale external field with its induced counterpart,41

and also, due to the relatively low altitude of the satellite orbits, the litho-42

spheric field. The separation of the internal and external parts of the field was43

essentially based on strong smoothness assumptions on the internal field tem-44

poral behaviour, and a representation of the external fields using only the first45

spherical harmonic degrees.46

Since then, all models of the magnetic field derived from satellite data are47

relying on the same technique. Naturally, due to the significant increase of data48

quality during the Oersted and Champ satellite missions, the temporal resolu-49

tion of the internal field models has been significantly improved. Technically50

the most advanced models are using order 6 B-splines functions in time – e.g.51

the CHAOS (Olsen et al. (2006, 2009, 2010); Olsen et al. (2014)) and GRIMM52

(Lesur et al. (2008, 2010); Mandea et al. (2012); Lesur et al. (2015)) series of53

models, with nodes 6 months apart. Other approaches exist, like Sabaka et al.54

(2015) or Chulliat and Maus (2014). Nonetheless, smoothing constraints have to55

be applied to avoid leakage of the external field inside the internal field model.56

However it is clear that the external field parameterisation, as well as its in-57

duced counterpart is not able to explain the full complexity of the ionospheric58

and magnetospheric field behaviours. Furthermore, some types of signals – e.g.59

tidal signals, are generally not accounted for in the parameterisation. As a re-60

sult, there are remaining signals in the residuals of the least squares fit to the61

data, which are necessarily correlated in space and time. It is therefore a major62

challenge to statistically describe the prior covariance matrix of the residuals,63

aside form the fact that, due to the correlations, this matrix is full and cannot64

be easily handled on modern computers as soon as the number of data exceed65

few ten thousands. Without proper prior covariance matrix for the data, there66

is no hope to have a realistic estimate of the posterior covariance matrix of the67

magnetic field model.68

Indeed it has been very soon recognised that variances of the model pa-69

rameters – i.e. the Gauss coefficients, are heavily under-estimated. There has70

been a significant pressure from the user community – e.g. for using magnetic71

field models in assimilation framework or for industrial applications, to provide72

more information on the accuracy and reliability of the magnetic field models.73

Some models are provided with this information – e.g. (Lesur et al., 2010). The74

problem of the underestimation of the parameter variances and co-variances has75

also been independently studied by Lowes and Olsen (2004). When models are76

derived from observatory data (e.g. Wardinski and Lesur (2012)), the difficul-77

ties are the same. In Gillet et al. (2013) attempts are made to control better78
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the effect of the regularisation on the Gauss coefficient resolutions and accura-79

cies, but the difficulty associated with the separation of internal and external80

contributions remains unresolved.81

In short, when using the spherical harmonic representation of the magnetic82

field contributions, the separation of the external and internal fields requires an83

under-parameterisation of these contributions that precludes the derivation of a84

realistic posterior covariance matrix of the model. A possible way to circumvent85

this problem is to drop the usual spherical harmonic representation, and base86

the separation of external and internal field on other principles. In this paper we87

propose therefore to use a correlation-based technique, similar to the collocation88

methods in gravity, where harmonic spline representation is underpinning the89

calculation of these correlations and enable the separation of the external and90

internal contributions.91

Harmonic splines have been introduced for magnetic field modelling by Shure92

et al. (1982). They have been used mainly for interpolation purpose (e.g. Wessel93

and Becker (2008)) or to model the field on regional scale (Geese et al., 2010).94

The representer approach described in Parker (1994) is a related technique that95

has been used mainly for lithospheric field studies (Whaler and Langel, 1996;96

Whaler and Purucker, 2005). Another closely related technique has been pro-97

posed in Constable et al. (1993) and Jackson et al. (2007) to model the core98

field under topologic constraints. It has also been applied to the lithospheric99

field (Stockmann et al., 2009). To our knowledge harmonic splines have never100

been used to model together internal and external magnetic fields. Mathemat-101

ically, they are defined in a reproducing kernel Hilbert space, and the way the102

scalar product is defined in this space allows building harmonic splines that have103

specific characteristics. In particular, defining the behaviour of the spectra as104

a function of the wavelength at the core-mantle boundary, or at high altitude,105

allows separating the contribution of the internal and external sources to the106

magnetic field.107

The aim of this paper is mainly to describe the mathematical framework of108

this correlation-based technique for modelling the Earth’s magnetic field. After109

a short general first section, we construct explicit correlation kernels for all field110

components of the magnetic field. We show, how this formalism may be used111

to separate the various field components and demonstrate it on a data set made112

of magnetic field observatory monthly means (Macmillan and Olsen, 2013).113

2 Correlation based modelling of geomagnetic114

fields115

Usually, magnetic field models B are defined through the gradient of a potential116

B(x) = −∇Φ(x) . (1)
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The potential is usually given in terms of a collection of basis functions Fn and117

parametrized by coefficients αn:118

Φ(x) =
∑

αn Fn(x) . (2)

Typically, one uses spherical harmonics. Due to completeness reasons the sum119

in Equation 2 is a priori infinite, which leads to an underdetermined system.120

To restore uniqueness, regularisation is applied. It can be shown that there are121

effective basis functions for a regularisation based on generalised geomagnetic122

energies, such that this unique solution can also be found in terms of a finite123

expansion (Parker, 1994). These basis functions are the so-called reproducing124

kernels of the smoothing spline. In that case the sum of basis functions Fn125

contains as many terms as we have observations.126

In the following, we propose an approach which does not use a parametrisa-127

tion of the form outlined above, but is closely related to harmonic splines. The128

modelling is purely based on correlation structures of the magnetic field and129

its observables. We present a coherent formulation that does not appeal to a130

particular parametrisation, but focuses on the physics of the problem.131

Suppose, an a priori correlation structure of the magnetic potential Φ is132

known. This correlation structure includes all our physical knowledge and can133

be used to estimate the magnetic field from measurements. The correlation is134

determined by a correlation kernel135

K(x, y) = E
[(

Φ(x)− Φ(x)
)(

Φ(y)− Φ(y)
)]

, (3)

where E[·] denotes the calculation of the expectation and Φ = E[Φ] refers to136

the potential’s mean value. The correlation kernel incorporates knowledge of137

the order of magnitude of the magnetic fields (i.e. the diagonal part of K) as138

well as the typical length scale over which the fields are correlated. It may even139

contain information about the geometry of the source distributions. In this140

paper however we will not consider this aspect.141

Let us assume that the magnetic field is caused by four source regions: the142

core, the lithosphere, the ionosphere and the magnetosphere. Then, the poten-143

tial Φ consists of four parts:144

Φ = ΦC + ΦL + ΦI + ΦM (4)

Subscripts C, L, I and M refer to core, lithosphere, ionosphere and magneto-145

sphere, respectively. Neglecting for now all kinds of induction effects, we can146

assume these component sources are uncorrelated. Under this assumption, the147

correlation structure of Φ is simply the sum of the correlations of its components:148

K(x, y) = α2
CKC(x, y) + α2

LKL(x, y) + α2
IKI(x, y) + α2

MKM (x, y) . (5)

The amplitude factors α2 could in principle be absorbed into each of the ker-149

nel. However it is very convenient to leave them that way so that the a priori150
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amplitudes of each of the components can be adjusted easily without changing151

the shape of the correlation of the component.152

Since these components show distinct statistical characteristics with respect153

to strength and correlation length, a statistical procedure to separate them154

becomes available.155

We use Bayesian analysis to obtain, from the prior knowledge imbedded in156

the correlation kernel and from vector magnetic field observations, information157

about these components.158

Away from its sources, the magnetic field is the negative gradient of its159

potential and it can be observed at a series of N observation points:160

B(xk) = −∇Φ(xk) for k = 1, · · · , N . (6)

The correlation structure of the magnetic potential implies the correlation of161

the magnetic field:162

E
[(

B(x)−B(x)
)(

B(y)−B(y)
)t]

=

= E
[(
∇Φ(x)−∇Φ(x)

)(
∇Φ(y)−∇Φ(y)

)t]
= ∇K(x, y)∇t ,

(7)

where K(x, y) refers to the kernel defined in equation 5. We use the following163

convention: A nabla operator on the left acts on the kernel’s first argument164

whereas the second argument of the kernel is subject to the gradient on the165

right hand side. The superscript t indicates the transpose.166

To obtain information on the magnetic field we need to compute the field’s167

conditional probability given the set of N magnetic vector field observations.168

For example, the information about the core component of the potential we169

obtain from the observations is170

P(ΦC |{B(xk)}k=1,N ) , (8)

i.e. the probability to have a potential ΦC knowing the 3N observables B(xk)171

with k = 1, . . . , N . Note that each vector component of B is an observable in its172

own. To give another example, we can express our knowledge about the Gauss173

coefficients gC;`,m of the main field in the same way174

P(gC;`,m|{B(xk)}k=1,N ) . (9)

Assume the magnetic potential Φ to be the realisation of a Gaussian random175

field. Then, since the Gauss coefficients depend linearly on the potential, these176

conditional probabilities are again Gaussian distributed and fully determined177

by their mean and covariance.178

The computation of those means and covariances is based on the following
theorem. Let m and B be random vectors such that their joint V = [mt,Bt]t is
a multivariate Gaussian random vector. Then, m and B are Gaussian random
variables, as well, and determined by

E(m) = m and E(B) = B (10)
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for their means, and179

E[(m−m)(m−m)t] = Cov[m,m] = Σmm

E
[
(B−B)(B−B)t

]
= Cov[B,B] = ΣBB

E
[
(m−m)(B−B)t

]
= Cov[m,B] = ΣmB ,

(11)

for their correlations. The conditional distribution for m, given the observed180

magnetic field B̃ – i.e. we observed that the random variable B takes the actual181

value B̃, is again a Gaussian distribution and is therefore fully determined by182

its mean and covariance, which may be computed by standard theorems on183

multivariate Gaussians:184

m|B̃ = m + ΣmBΣ−1
BB(B̃−B)

Σmm|B̃ = Σmm − ΣmBΣ−1
BBΣtmB,

(12)

where m|B̃ and Σmm|B̃ are the posterior mean and covariance of m knowing B̃.185

All the information about m, as a Gaussian model of the field (e.g. the186

Gauss core field coefficients or core field snapshot values), can be obtained from187

observations B̃ that depend linearly on the magnetic potential (e.g. a finite188

collection of field measurements which are the gradients of Φ at some points)189

from the Bayesian posterior distribution defined through equation 12.190

3 Explicit correlation structures for the mag-191

netic potential192

In this section we propose a family of correlation structures based on the assump-193

tion that the Gauss coefficients describing a magnetic potential are uncorrelated194

on a sphere of given radius. We start with potentials for fields of internal ori-195

gin and then introduce the relations for fields of external origin. The link to196

geomagnetic norms is also described.197

3.1 Correlation structures for internal potentials198

Suppose that Φ is a potential function outside some sphere of radius R

∆Φ(x) = 0 |x| > R . (13)

Like any other potential, Φ can be calculated everywhere outside its source199

region from its value on the surface of the sphere SR of radius R. This is done200

using the (exterior) Poisson kernel P (x, ζ) given by:201

P (x, ζ) =
|x|2 − 1

|x− ζ|3
= |x| > 1

=
∑
`,m

2`+ 1

4π|x|`+1
Y`,m(x̂)Y`,m(ζ) x̂ =

x

|x|
,

(14)
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where ζ is a vector on the unit sphere in direction θ, φ, and the Schmidt nor-
malised spherical harmonics Y`,m(θ, φ) are written Y`,m(ζ). The potential out-
side the sphere of radius R is then:

Φ(x) =

∫
S1

P (x/R, ζ)Φ(Rζ)dΩ1(ζ) (15)

=

2π∫
0

π∫
0

P (x/R, θ, φ) Φ(R, θ, φ) sin(θ) dθ dφ . (16)

It follows that if the correlation structure of the potential Φ on the sphere SR is
known, it is possible to calculate it everywhere outside the sphere. Lets assume
that on the sphere SR:

E[Φ] = 0 , E[Φ(Rζ) Φ(Rη)] = k(ζ, η) , (17)

where η is another vector on the unit sphere. Then the correlation outside the202

sphere is:203

[Φ(x)Φ(y)] =: K(x, y)

=

∫
S1

∫
S1

P (x/R, ζ) k(ζ, η)P (y/R, η) dΩ1(ζ) dΩ1(η) .
(18)

It remains to define a correlation k(ζ, η) for the magnetic potential on the204

sphere SR. For this we consider the Gauss coefficients of the magnetic potential:205

g`,m =
2`+ 1

4πR

∫
S1

Y`,m(ζ)Φ(Rζ)dΩ1(ζ) . (19)

The potential on the sphere of SR is therefore:206

Φ(Rζ) = R
∑
`,m

g`,mY`,m(ζ) . (20)

Assuming a correlation structure on the sphere SR defined in terms of the degree
variance λ2

` of the Gauss coefficients:

E[g`,m] = 0 , E[g`,m g`′,m′ ] = λ2
` δ`,`′ δm,m′ , (21)

it leads through equations 17 and 20 to the correlation function k(ζ, η) equal207

to:208

k(ζ, η) = R2
∑
`,m

λ2
`Y`,m(ζ)Y`,m(η) . (22)

At any two points outside the sphere SR the correlation of the magnetic potential
defined in equation 18 is therefore:

E [Φ(x) Φ(y)] = R2
∑
`,m

λ2
` Y`,m(x̂)Y`,m(ŷ)

(
R2

|x||y|

)`+1

(23)

= R2
∑
`

λ2
` P`(x̂ · ŷ)

(
R2

|x||y|

)`+1

. (24)
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In Section 4 we show how to derive simple analytic expressions for the correlation209

functions K(x, y).210

3.2 Interior to exterior mapping211

We consider now the magnetic potential Φ inside a sphere of radius R.

∆Φ(x) = 0 , |x| < R . (25)

Using the (interior) Poisson kernel P (x, ζ):

P (x, ζ) =
∑
`,m

(2`+ 1)|x|`

4π
Y`,m(x̂)Y`,m(ζ) , |x| < 1, x̂ = x

|x| , (26)

we immediately obtain the equivalent of equation 23 for any point inside the212

sphere SR:213

E[Φ(x)Φ(y)] = R2
∑
`

λ2
` P`(x̂ · ŷ)

(
|x||y|
R2

)`
. (27)

Hereinafter we call KE(x, y) (resp. KI(x, y)) the correlation structure for po-214

tential of external (resp. internal) origin and define the position in space of x̃,215

the mirror image of x relative to the sphere SR:216

x̃ =
xR2

|x|2
. (28)

It follows that:217

KE(x, y) =
|x̃||ỹ|
R2

KI(x̃, ỹ) . (29)

On SR the correlations KE and KI coincide.218

3.3 Links with generalised geomagnetic energies219

The order of magnitude of fields is measured by generalized geomagnetic norms220

or energies. In this section we show how this concept fits to our correlation221

structures. Let us introduce the vector of Gauss coefficients which is denoted222

by g = [g`,m]{`,m} for all degrees ` and orders m. For the Gauss coefficients a223

covariance matrix Σgg can be defined by considering Equation 21. Clearly, Σgg224

is diagonal.225

The degree variance λ2
` associated with the Gauss coefficients g`,m is inde-226

pendent of the order m as is expected for an isotropic correlation structure.227

Gauss coefficients are zero mean Gaussian random variables with probability228

density distribution229

p(g) ∝ e− 1
2 Γ[g] (30)

where Γ[g] refers to a quadratic form. Γ[g] is equivalent to a so called generalized230

energy and is given by231

Γ[g] = gt · Σ−1
gg · g = [g`,m]t{`,m} · Σ

−1
gg · [g`,m]{`,m} =

∑
`,m

|g`,m|2

λ2
`

(31)
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depending on the choice of λ`. Let us introduce a scalar product based on the
spatial average value of the magnetic potential over the sphere SR

〈Φ1,Φ2〉 =
1

4πR2

∫
SR

Φ1(x) Φ2(x) dΩR(x) (32)

=
1

4π

∫
S1

Φ1(Rζ) Φ2(Rζ) dΩ1(ζ) . (33)

The generalized energy of a field Φ with Gauss coefficients g can then be written232

using an operator Ξ as follows233

Γ[Φ] = Γ[Φ,Φ] = 〈Φ,ΞΦ〉 = 〈Ξ1/2Φ,Ξ
1/2Φ〉 = Γ[g] . (34)

Such an operator always exists since the energy is a positive definite quadratic234

form. An explicit expression can be obtained as follows. Note that the scalar235

product can be expressed in terms of Gauss coefficients236

〈Φ1,Φ2〉 = R2
∑
`,m

g1;`,m g2;`,m

2`+ 1
(35)

where we considered Schmidt semi-normalization of spherical harmonics. There-237

fore defining Ξ in terms of the mapping of the Gauss coefficients, the operator238

will satisfy the above equations for:239

Ξ : g`,m 7→
2`+ 1

R2λ2
`

g`,m. (36)

In general this all we can say. However for the choices of λ` that we are consid-240

ering below, more explicit expressions are possible.241

In the following we show the corresponding operators Ξ for three choices of242

degree variances:243

A- For potentials of internal origin ΦI and choosing the degree variance λ2
` =244

1/(`+ 1), the corresponding operator can be identified through the following245

calculus:246

Γ[ΦI ] =
1

4π R2

∫
SR

|∇ΦI(x)|2 dΩR(x) =
∑
l,m

(`+ 1)|g`,m|2. (37)

We write this symbolically as Ξ1/2 = ∇. By considering the correlation of247

potentials with internal origin – defined in Equation 23, we get248

KI(x, y) = R2
∑
`

1

(`+ 1)
P`(x̂ · ŷ)

(
R2

|x||y|

)`+1

(38)

which is directly associated with the generalized energy Γ[ΦI ] in Equa-249

tion 37.250
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B- Choosing λ2
` = 1/l along with potentials of external origin, the operator is251

Ξ1/2 = ∇ as well (in the sense that Eq 37 holds) and the energy is252

Γ[ΦE ] =
∑
l,m

` |g`,m|2 = Γ[g] . (39)

The associated correlation kernel is derived from Equation 27 and reads253

KE(x, y) = R2
∑
`

1

`
P`(x̂ · ŷ)

(
|x||y|
R2

)`
, (40)

again, this holds for external origin and degree variance λ` = 1/̀ .254

C- The operator Ξ = −(I+2r∂r) for internal fields, respectively Ξ = (I+2r∂r)255

for external fields, is related with the degree variance λ2
` = 1 and the256

energy is257

Γ[Φ] =
∑
l,m

|g`,m|2 = Γ[g] (41)

for both, internal and external origins. The associated correlation kernels
for magnetic potentials follow from equations 23 and 27. They are

KI(x, y) = R2
∑
`

P`(x̂ · ŷ)

(
R2

|x||y|

)`+1

(42)

KE(x, y) = R2
∑
`

P`(x̂ · ŷ)

(
|x||y|
R2

)`
. (43)

4 Some explicit kernels258

In the following we are going to derive explicit kernel functions for the three259

correlation structures given in the previous section. In addition we consider260

the monopole and dipole case. These explicit formulas allow for an efficient261

numerical implementation of the kernels which avoids the computation of large262

sums of spherical harmonics. In fact by this technique we can effectively sum263

up all degrees without truncation.264

4.1 Scalar kernels265

Let us start with some introductory math. The degree variance we introduced
in Equation 21 does not depend on the Gauss coefficient’s order m. As a con-
sequence, kernels K(x, y) are rotational invariant – i.e. they depend only on
rotational invariant quantities. These quantities are the scalar product xty and
the product magnitudes |x||y|. For both, potentials with internal or external
origin, let us introduce a function F (a, t) such that:

K(·)(x, y) = R2 F(·)(a, t) with a =
|x||y|
R2

and t =
xty

R2
(44)
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where the subscript (·) refers to an internal origin (I) or an external origin (E).
For the kernels introduced in Equations 23 and 27 the functions F are

FI(a, t) =

∞∑
`=0

λ2
` a
−(`+1)P`(t/a) |x| > R (45)

FE(a, t) =

∞∑
`=0

λ2
` a

`P` (t/a) = 1
aFI (1/a, t/a2) |x| < R (46)

again, subscripts I and E refer to internal or an external origin, respectively.266

For the so called monopole (λ` = δ`,0) and the dipole (λ` = δ`,1) it is trivial267

to derive kernel functions from Equations 45 and 46. We have for the internal268

and external monopole269

FI(a, t) =
1

a
, FE(a, t) = 1 (47)

and for the internal and external dipole270

FI(a, t) =
t

a3
, FI(a, t) = t. (48)

Let us proceed with the analysis of Equations 45 and 46. Both can further be271

simplified by taking the Legendre Polynomial’s generating function into account272

∞∑
`=0

ρ`P`(µ) =
1√

1− 2ρµ+ ρ2
(49)

with −1 ≤ µ ≤ 1 and 0 < ρ < 1.273

Now, let λ` = 1. Substituting ρ = a and µ = t
a in Equation 49 we obtain274

FI(a, t) = FE(a, t) =
1√

1− 2t+ a2
=: L(a, t) (50)

which is referred to as the Legendre kernel (LK). In geomagnetic application we
might want to get rid of the monopole contained in LK. This can be achieved
by subtracting the monopole terms from Equation 50, which results in

FI(a, t) = L(a, t)− 1

a
and FE(a, t) = L(a, t)− 1 (51)

for internal and external origin, respectively.275

Lets continue our analysis with a more complex degree variance λ2
` = (` +276

1)−1, λ0 = 0. We again make use of the generating function employing a little277

trick. Integrating Equation 49 with respect to ρ results in278 ∫ ρ

0

1√
1− 2rµ+ r2

dr =

∞∑
`=0

∫ ρ

0

r`P`(µ) dr =

∞∑
`=0

1

`+ 1
ρ`+1P`(µ) . (52)
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Substituting ρ = 1/a together with subtracting the monopole term yields279

∞∑
`=1

(`+ 1)−1a−(`+1)P`(µ) =

1/a∫
0

1√
1− 2rµ+ r2

dr − 1

a
(53)

and we realize that this is almost the kernel function for internal sources we are280

looking for. The integral in Equation 53 can be solved paying attention to the281

case µ = 1 – i.e. a = t. By another substitution µ = t/a we obtain282

FI(a, t) =

{
− log(a− t) + log

(
1− t+

√
1− 2t+ a2

)
− 1/a a 6= t

log(a− 1)− log(a)− 1/a a = t
. (54)

Now, we consider the case λ2
` = `−1 without monopole term λ0 = 0. Our283

calculus is similar to the previous case. First, we subtract the term for ` = 0,284

than we factor out an a binging it to the other side. An integration by ρ and a285

substitution yields286

∞∑
`=1

`−1a`P`(µ) =

∞∑
`=1

∫ a

0

1

r
r`P`(µ)dr

∫ a

0

1

r

(
1√

1− 2rµ+ r2
− 1

)
dr (55)

which is the kernel function for external sources. By solving the integral we get287

FE(a, t) = − log
(

1− t+
√

1− 2t+ a2
)

. (56)

The presented analysis establishes a series of analytic expressions for cor-288

relation functions of internal and external origins which correspond to kernels289

introduced in Equations 38, 40, 42 and 43.290

4.2 Vector fields291

Magnetic vector field observations, make the calculation of the kernel’s gradient292

necessary. As we will show in Equations 63 and 64, the correlation matrix293

consists of the gradient with respect to locations x and y of the kernel K(x, y) =294

R2F (t, a). To calculate gradients it is convenient to introduce the following295

quantities:296

∇a =
x̂|y|
R2

, a∇t =
|x|ŷt

R2
, ∇a∇t =

x̂ŷt

R2
,

∇t =
y

R2
, t∇t =

xt

R2
, ∇t∇t =

I
R2

.

(57)

Then, the kernel’s gradient can be expressed through partial derivatives Fa =297

∂aF , Faa = ∂2
aF , Ft = ∂tF , Ftt = ∂2

t F , Fta = ∂t∂aF where F refers either to298

FI or FE . Having all these quantities defined, gradients can be expressed as299

follows:300

∇K(x, y) = R2 (∇a Fa +∇t Ft) = x̂|y| Fa + y Ft (58)
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and301

∇K(x, y)∇t = x̂ŷt(Fa + aFaa) + ŷx̂taFtt + (x̂x̂t + ŷŷt)aFta + IFt. (59)

and Legendre Kernel.302

Numerical calculation requires some caution because of F ’s singularities that303

may occur when t = a. However, these singularities are well resolved when304

taking the derivatives – e.g. see Shure et al. (1982).305

5 How to work with these kernels306

The following section describes the entire workflow to invert for a model of the307

magnetic field from magnetic vector field observations B̃. To keep that section308

concise we assume the magnetic field consists of three parts only:309

Φ = ΦI + ΦE + ε (60)

One field/potential of internal origin (I), one field of external origin (E) and ob-310

servational noise. For simplicity measurement noise is assumed to be i.i.d. Gaus-311

sian distributed with known variance. In Section 6, our case study, we present312

an extension to a higher number of source regions.313

We start with a model that is defined by the magnetic field at locations of314

observation. In the next subsections we also consider a model based on the315

magnetic field on a series of points on the sphere. Finally a model predicting316

Gauss coefficients will be presented.317

In Appendix A, we show in which sense the solutions we obtain are equal to318

those, one obtains using harmonic splines with norm minimising regularisation.319

5.1 modelling magnetic field components at observation320

points321

If we neglect coupling effects between the internal and external fields, we as-322

sume each component to be modelled by distinct correlation kernels. Then the323

correlation of the total field is simply the sum of both kernels. By introducing324

adjustable scaling factors αI and αE we the field’s total kernel reads325

K = α2
IKI + α2

EKE . (61)

In their abstract forms, the correlation kernels KI and KE are given by Equa-326

tions 23 and 27, however, to use them, some parameters need to be determined327

first:328

• The reference radii RI and RE .329

• Scaling amplitudes αI and αE .330

• The degree variances λ2
` .331
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In principle, the degree variances can be specified a priori. As already outlined332

in Section 3.3, common choices in magnetic field modelling are λ2
` = (l+1)−1 for333

internal sources (Eq. 38) (Shure et al., 1982), and λ2
` = l−1 for external sources334

(Eq. 40). For λ` = 1 the kernels are easier to implement numerically. These335

degree variances lead to closed form expressions which, in addition, produce336

acceptable a priori models of the potential. Reference radii and scaling factors337

can be retrieved from observations. In order to do so we propose a maximum338

likelihood estimate (see Section 6.1).339

As already mentioned, we consider a dataset of magnetic vector field ob-340

servations B̃ = [B(xk)]k=1,...,N at N sampling points xk (e.g. the observatory341

sites). Which means to measure a 3N values i.e. three components at each342

location. Those components are determined by three directions en e.g. north,343

east and down components. Once we got a reasonable estimate of the Kernels’344

parameters we proceed in building the correlation matrices. The kernel function345

for fields of internal origin is defined by346

E[ΦI(x) ΦI(y)] = α2
IKI(x, y) . (62)

Then the elements of the correlation matrix CI for magnetic vector field obser-347

vations is given by348

CIk,k′ = α2
I

(
etk · ∇KI(xk, xk′)∇t · ek′

)
(63)

where ek and ek′ are the vector directions of observations at the N sampling349

points xk and xk′ , respectively. In the same manner we derive the correlation350

matrix for the component of external origin:351

CE = α2
E

[
etk · ∇KE(xk, xk′)∇t · ek′

]
{k,k′} (64)

Again, because we do not consider coupling amongst components – e.g. in-352

duction effects – the total covariance matrix for our set of observations is353

ΣBB = CI + CE + Cε , (65)

where CI and CE are the observational correlation matrices for fields of internal354

and external origin and Cε the covariance matrix related to measurement noise.355

Typically, noise is assumed to be uncorrelated, thus, the matrix Cε is diagonal.356

Therefore, ΣBB is not singular and can be inverted without major difficulties.357

Once we have the data’s correlation matrix, we proceed with the approach358

outlined in Section 2 and compute the conditional distribution (Eq. 12) knowing359

B̃. At points of observations the total field is decomposed into its components360

by361

B
I

|B̃ = CI Σ−1
BB B̃

B
E

|B̃ = CE Σ−1
BB B̃

B
ε

|B̃ = Cε Σ−1
BB B̃ .

(66)

Clearly the components sum up to the total observed field by the definition362

of ΣBB. The posterior covariances which quantify the uncertainties of these363
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components are given by364

CI
|B̃ = CI −CI Σ−1

BB CI

CE
|B̃ = CE −CE Σ−1

BB CE

Cε
|B̃ = Cε −Cε Σ−1

BB Cε .

(67)

The above, presents a method to separate field components, however, at points365

of observation only. The following Section shows how to predict the magnetic366

field at a set of so called design points which do not coincide with the points of367

observations.368

5.2 Estimating field components outside of observation369

points370

Now we want to estimate the magnetic field components at locations for which371

there are no observations. Therefore we define a set of design points {ym},372

m = 1, . . . ,M , e.g. a regular grid. At those design points, the three component373

vector of the magnetic field are defined by three directions em e.g. unit vectors374

of a Cartesian reference frame. The predicted 3M components of the magnetic375

field at the M observation points ym are collected in a vector m. As before,376

we adopt notations introduced in Section 2 (Eqs. 10 and 11). The correlation377

matrix, linking the observations with predictions at the design points, is378

ΣmB = α2
(·)
[
etm · ∇K(·)(ym, xk)∇t · ek

]
{m,k} (68)

where index k = 1, . . . , N and direction ek refer to the observations B(xk) and379

the free subscript denotes for internal or external origin.380

If we again assume the a priori potential to be of zero mean – i.e. Φ = 0 –381

then m = 0 and B = 0. Following Equation 12, the posterior expectation at382

points were we want to predict is383

m|B̃ = ΣmB Σ−1
BB B̃ . (69)

The field-component’s prior correlation matrix is given by384

Σmm =
[
etm · ∇K(·)(ym, ym′)∇t · em′

]
{m,m′} , (70)

where ym and em refer to our design points together with directions and m,m′ =385

1, . . . , 3M . Following once more Equation 12 leads to the posterior correlation386

matrix387

Σmm|B̃ = Σmm − ΣmBΣ−1
BBΣtmB . (71)

Note that this relation holds for given radii and scaling factors. Taking un-388

certainties in those quantities into account renders the posterior non-Gaussian.389

This, however, will be subject to a forthcoming publication.390
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5.3 Estimating other linear observables391

It is possible to generalize the above approach for linear functionals, where392

linearity is considered with respect to the magnetic potential Φ. In the following,393

we illustrate this by giving two examples. First, we show how to estimate the394

potential it self. Second, we predict the potential’s Gauss coefficients.395

For estimating the components of the magnetic potential we consider the396

same M design points {ym}, introduced in the previous section. m = 1, . . . ,M .397

Let us call p, a model that consists of magnetic potential values at the modelling398

points. Then, to find a solution for such a model, the equations 69 and 71 should399

be used replacing ΣmB by:400

ΣpB = α2
I [KI(ym, xk)∇txk

· ek]{m,k} , (72)

and Σmm by:401

Σpp = [KI(ym, ym′)]{m,m′} . (73)

Because we keep observations untouched, the matrix ΣBB remains as in Equa-402

tion 65.403

The relation between the Gauss coefficients and the magnetic potential is404

given by equation 19. To find the correlation between the Gauss coefficients405

and the magnetic field measurements, one has to use the relation 72, expend406

the expression of the kernel given in equation 23, and integrate over the sphere407

of radius R. If we call g the model vector made of Gauss coefficients of degree408

and order {l,m}, it is obtained:409

ΣgB = α2
I [R {λ2

` Y`,m(x̂k)

(
R

|x|

)`+1

}∇txk
· ek]{l,m,k} , (74)

where the reference radius of the Gauss coefficients is R. By construction, it is410

obvious that the correlation matrix of the model is:411

Σgg = [λ2
` δ`,`′δm,m′ ]{`,m,`′,m′} . (75)

The solution is as before defined by the posterior expected values and the co-412

variances of the Gauss coefficients. These are obtained from equations 69 and 71,413

replacing ΣmB and Σmm by ΣgB and Σgg respectively.414

6 A case study for field inversion415

To illustrate how this technique can be used to separate various field com-416

ponents, hourly mean observatory data, as provided by Macmillan and Olsen417

(2013) are used. We estimated the average of these means over January 2001.418

By taking an average over a month the contribution of the induced fields is419

significantly reduced. Any observatory presenting a crustal offset larger than420

1500nT in intensity, as estimated with the GRIMM model (Lesur et al., 2015),421

is discarded. This leads to a total of N = 105 observatory, providing each three422

component vector measurements.423

16



As already introduced in Section 2, we consider in our modelling approach424

four magnetic field components with observational noise atop. Those compo-425

nents are the core field, the lithospheric field, the ionospheric and magneto-426

spheric contributions. In addition, due its dominance, the core field’s dipole427

component is treated separately. Again, we are neglecting any coupling effects428

– i.e. we a priori assume components to be independent from one another. Ac-429

cordingly, the total covariance structure is of the following form:430

K = α2
CKC + αDC

2
KD
C + α2

LKL + α2
IKI + α2

MKM + σ2KN (76)

(compared with equation 5 a noise and dipole component had been set in). The431

measurement noise is assumed to be known and set to σ2 = (4 nT)2. Thus,432

coefficients αC , αDC , αL, αI and αM are necessary to adjust for the contribu-433

tion of the core, lithospheric, ionospheric and magnetospheric fields. For the434

correlation structures we consider the Legendre Kernel (LK) without monopole435

contributions. We prefer, LK due to simpler equations and slightly better con-436

ditioned correlation matrices. Since our kernels K(·) have a dependence on the437

radius R(·), each component has an additional parameter. These are RC (for the438

core field and its dipole), RL, RI , and RM , associated with their correspond-439

ing correlation structures. Note that these are not necessarily the true position440

of the sources, but rather an effective radius which explains best the observed441

correlations.442

6.1 Parameter estimation443

To estimate the 9 parameters defining the correlation structures – the four
radii and five factors – we use a maximum likelihood approach. The a priori
covariance structure of the field observations B̃(xm) is obtained by evaluating
the gradients of the kernels at the points of observations xm, m = 1, . . . ,M .
Supposing we have measured all 3 components at each of the points xm, we
have N = 3N measurements Bk at position xk, k = 1, . . . ,K = 3M . Note that
the same position appears thre times in this list. Then the correlation matrix
reads

C
(·)
k,k′ = α2

(·)
{
etk · ∇K(·)(xk, xk′)∇t · ek′

}
with k = 1, . . . , N (77)

where (·) refers to core, core dipole, lithosphere, ionosphere and magnetosphere,444

respectively. The total correlation structure reads445

C = CC + CC,D + CL + CI + CM + σ2I (78)

where I denotes the 3N × 3N identity matrix. For our Gaussian model, the
likelihood function reads

L
(
θ = (RC , RL, RI , RM , αC , α

D
C , αL, αI , αM )

∣∣∣{B̃(xk)}k=1,...,N

)
∝

∝ 1√
det C

exp
{
− 1

2B̃tC−1B̃
}

(79)
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Core RC = 2658.2 km αC = 84478.0 αDC= 226351.0
Lithosphere RL = 6340.6 km αL = 0.1318
Ionosphere RI = 6377.6 km αI = 0.00019

Magnetosphere RM= 24002.5 km αM= 0.00013
Noise σ2 = 16.0

Table 1: Parameters we find by maximizing the likelihood function (Eq. 79).

In order to estimate the parameters, we maximize the likelihood function446

θ̂mle = arg max
θ

L
(
θ
∣∣∣{B̃(xk)}k=1,...,N

)
(80)

where θ denotes for the nine parameters to adjust. Instead of trying to derive447

a closed-form solution to the maximization problem, we are using numerical448

optimization methods to find the Maximum Likelihood Estimator (MLE). The449

values we obtained are given in Table 1.450

6.2 Field inversion451

The radii and magnitudes found previously and given in Table 1 are now used as452

prior information for the evaluation of the core, lithospheric, iononspheric and453

magnetospheric field models. A first inversion is performed at the observatories454

locations (shown with red triangles in figure 2) as detailed in section 5.1. The455

mean fields and posterior covariances are then considered to build a spherical456

harmonics model as presented in section 5.3. However the posterior variances457

of the lithospheric, iononspheric and magnetospheric field are so large that no458

useful information can be extracted on them. Therefore, we focus on the mean459

core field that we refer as BC . The latter is expanded in spherical harmonic460

up to degree 30 and its coefficients are evaluated at the level of the Earth’s461

surface. The results we obtained are compared to the core field model GRIMM462

3 of Mandea et al. (2012) for the epoch 2001.0 and referred as BG.463

In figure 1 the energy spectrum of BC and BG are respectively plotted with464

a black line and with circles. The behaviour of both spectra is similar up to465

spherical harmonic degree l = 7. From there, the spectrum of BC decreases at466

a much faster rate than the spectrum of BG. When looking at the posterior467

variance (dashes), one can clearly observe that from degree l = 8, it becomes468

more intense than the energy contained in the scales of the mean core field itself.469

At high degree, the posterior variance tends towards the prior variance (dotted470

line), indicating that the data do not carry information on the core field at these471

degree.472

The posterior variance provides an estimate of the uncertainties associated473

with the mean field. Since magnetic field model derived from satellite data,474

such as the GRIMM 3 model, are much more precise than our model derived475

from observatory data, we can consider that it is a good approximation of the476

real magnetic field. Therefore the difference between BC and BG should be of477
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Figure 1: Energy spectra at the Earth’s surface of BC (black line) and GRIMM3
core field (circles). Prior variances (dotted line) and posterior variances (dashes).
Spectrum of the difference between the core field of GRIMM3 and BC (crosses).

the order of the predicted uncertainties. Yet, the energy spectrum associated478

with the error field BC−BG, is slightly spreading around the posterior variance,479

showing that the posterior statistics we obtain are realistic.480

Having access to the full posterior distribution of the core magnetic field, it481

is possible to study locations where the field model is more or less accurate. In482

figure 2, iso-contour of the declination and inclination are respectively displayed483

on the top left and on the bottom left, together with their 90% confidence in-484

tervals in degree (color maps). A strong correlation between high observatory485

density and accuracy of the declination and inclination can be observed. Indeed,486

in the northern hemisphere, which is well covered by observatories, declination487

and inclination present a low posterior variability. On the contrary, in areas488

of poor coverage, such as in the Pacific ocean or in the southern part of the489

Atlantic, uncertainties become large. When looking at the difference in abso-490

lute value between the declination and inclination associated with BC and the491

ones associated with BG (top right and bottom right of figure 2 respectively),492

one can see that areas of weak posterior variability correspond to areas where493

the difference is weak, whereas locations where the difference is large, always494

correspond to locations where the predicted variability was large.495

7 Discussion and conclusion496

We have shown how to define and use kernel based correlation structures to497

model internal and external magnetic field components.498

We originally started this work with the objective of approaching the geo-499
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Figure 2: Iso lines: declination (top) and inclination (bottom) associated with
the BC field (left) and the GRIMM3 core field (right). Color maps: 90% confi-
dence on the declination (top left) and inclination (bottom left) in degree, and
difference between the GRIMM3 and BC ’s declinations (top right) and incli-
nations (bottom right) in degree. The red triangles indicate the locations of
observatories used in the inversion.

magnetic field modelling using a technique where all constraints applied on the500

model are explicit. This is in contrast to the usual spherical harmonic represen-501

tation method where models are arbitrarily truncated to low degrees, and time502

dependences strongly reduced or smoothed. The approach we proposed uses503

correlation structures. In principle these could be derived from the physics of504

the sources contributing to the magnetic field – e.g. correlation structures can505

be derived from numerical dynamo codes for the contribution of the core field506

(Aubert, 2014). If the source is not known well enough, we propose and use507

correlation structures that, each, require only two parameters: a radius where508

the Gauss coefficients are uncorrelated and a scaling factor. We have shown509

that these correlation structures have the same form as harmonic splines (Shure510

et al., 1982), and that the approach we propose is strictly equivalent to the usual511

constrained least-squares approach used with these types of basis functions. We512

nonetheless extend this technique for all type of sources either from internal and513

external origins.514

As explained, the correlation structures we defined rely on three points:515

- the assumption that it exist a spherical surface where the Gauss coeffi-516

cients are uncorrelated for all SH degrees,517

- the radius of this surface,518

- and a scaling factor for the obtained correlation structure.519
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These radius and the scaling act as tuning parameters that define the spatial520

correlation length of the signal at observation points and its energy. Whatever521

value is given to the former parameter – i.e. the radius, the correlation structure522

of a given source can be used to model the full data set, independently of the523

types of signals that contribute to these data. However, modelling a signal from524

external origin using e.g. the correlation structure of the core field, requires525

the core field to have unrealistic energy. The energy associated with a source526

is controlled through the scaling factor. So, given a data set with a character-527

istic distance between sampling points, the signals of all sources that have long528

enough correlation length can be separated between them and from the noise,529

if their scaling factor is properly set. We have therefore a new technique to effi-530

ciently separate contributions from internal and external origins in observatory531

and satellite data.532

We applied the technique to a set of three component magnetic field monthly533

averages made from observatory hourly mean data. This data set was analysed534

assuming four sources; the core, lithosphere, ionosphere and magnetosphere.535

We neglected the induced field to avoid having to deal with contributions from536

internal and external origin correlated in space and time. To separate the four537

contributions, we were planning to impose the radii and scaling factors by hand,538

but it turns out that these can be estimated from the magnetic data themselves.539

The separation of the core field and magnetospheric field is likely due to the540

fact that the largest wavelengths of an external field (SH degree 1 and 2) cannot541

be easily described by an internal field (Lesur et al., 2008). These two first SH542

degrees define therefore the magnetospheric correlation structure radius and543

scaling. The core field radius and scaling are robustly imposed by the internal544

field signals from SH degree 1 to 7. The separation with the lithospheric field545

is only possible due to a detectable internal signal at higher SH degree that546

is not compatible with the correlation structure of the core field. This signals547

can be detected only by observatories in Europe and Northern America where548

the observatory density is high enough to reveal relatively short wavelengths.549

The separation of the lithosphere and ionosphere contributions and the noise is550

not possible with the data set in hand, so the noise level has to be imposed by551

hand, and we find equivalent energies for the ionosphere and lithosphere. These552

two later contributions are not well separated. We have not accounted for the553

local lithospheric field component at the observatory locations – i.e. the crustal554

offsets, and we have noticed a related noise at SH degree 7 to 9 in the core field555

model. A field model of higher quality would be obtained if these offsets are556

estimated independently and subtracted.557

The technique we proposed and describe in this paper allow potentially sig-558

nificant progress in magnetic field modelling. It first permit a separation of559

contributions from field of internal and external origins in a consistent and well560

controlled way. Particularly, the spherical harmonic expansion for each model561

component is infinite, and not, as in classic models, truncated to the few first562

SH degree for the magnetospheric component. These infinite expansions can563

nonetheless be computed explicitly and are numerically easy to implement. The564

main limitation of the method is that the number of parameter of the model is,565

21



as for collocation methods in gravity, as large as the number of sampling points.566

The method is therefore particularly well suited for observatory data analysis,567

but its application to satellite data remains a challenge.568

We have mainly shown here examples and applications that involved linear569

relationship between correlation structures and observable. The method can570

also, in principle, be applied to none-linear data as the magnetic inclination,571

declination and total intensity. This is a prerequisite to apply this modelling572

technique to historical records and paleomagnetic data.573

Finally we point out that by using a Bayesian approach to model the mag-574

netic field, we do not define a specific set of parameters for a model, as it is575

done with a classic least squares approach. Rather, we define a Gaussian distri-576

bution of models, fully described by its mean and variance. A model, made of577

the combination of correlation structures for the different sources is valid, if the578

posterior distributions of each of the model component are in agreement with579

their prior distributions. If a model is valid, then we have realistic information580

on the variance of the output mean model. This is an information that is not581

provided by any of the other modelling approach proposed so far.582
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A Link between correlation and spline modelling592

techniques593

Classical spline modelling finds a model that is a compromise between smooth-594

ness and fit to the data. This is the approach used for most of the magnetic field595

models established in the recent years. The relation between spline modelling596

and our correlation approach can be summarised by saying that the spline solu-597

tion is simply the posterior expected value of the model that is derived through598

the correlation approach, given the observations. In the following we present599

this statement in greater details. We present first the case of perfect data and600

then the case of uncertain data.601

First note the following particularity of the scalar product associated with602

the energy Γ in equation 34. The scalar product of two kernels at distinct603

positions x and y is604

Γ[K(·, x),K(·, y)] = K(x, y) (81)
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which is the reproducing kernel equation. Any function Φ(x) that can be written605

as the superposition of kernels Φ(x) =
∑
αkK(x, xk), therefore, satisfies the606

equation607

Φ(x) = Γ[K(x, y),Φ(y)] . (82)

Integration here is understood with respect to y. Actually, all functions that608

have finite generalised energy can be approximated arbitrarily well by such a609

superposition of kernels. The closure of these sums forms the Hilbert space610

associated with the reproducing kernel K.611

Let assume that are given K, noise free measurements B̃k, k = 1, . . . ,K of612

the magnetic field B at points xk, in direction ek:613

B̃k = −etk · ∇Φ(xk) . (83)

The interpolatory spline solution is then the magnetic potential Φ that mini-614

mizes the energy Γ[Φ] given in equation 34, under the observational constraints.615

Introducing the constraints in equation 82 gives:616

etk · ∇Φ(xk) = Γ[etk · ∇K(xk, x),Φ(x)] = Γ[Φ(x),K(x, xk)∇t · ek], (84)

and the optimization problem is reduced to the problem of minimising Γ[Φ] =617

Γ[Φ,Φ] under the constraints:618

Γ[Φ(x),K(x, xk)∇t · ek] = −B̃(xk). (85)

As for any scalar product, the solution Φ̂ to this constrained optimisation prob-619

lem is a linear combination of kernels:620

Φ̂(x) =
∑
k

αkK(x, xk)∇t · ek, (86)

and the observational constraints are:621

B̃k = −etk · ∇Φ̂(xk) for k = 1, · · · ,K,
= −

∑
k′ Ck,k′ αk′

(87)

with the elements of the matrix C being:622

Ck,k′ = etk · ∇K(xk, xk′)∇t · ek′ . (88)

We note that C is the a priori correlation matrix between the field components623

at the observation points (see e.g. equation 63). As long as the observations are624

all different, it can be inverted and:625

[αk]{k} = C−1 · [B̃k]{k}. (89)

Therefore, the expression 86 giving the solution of the optimisation problem is626

also the posterior expectation for the magnetic potential, given the observations:627

Φ̂(x) = E(Φ(x)|{B̃k}k) . (90)
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The magnetic field is obtained by:628

B̂(x) = −etk · ∇Φ̂(x)

= E(B(x)|{B̃k}k) ,
(91)

and at the observation points and directions,629

[B̂k]{k} = C · [αk]{k}. (92)

Finally, the expression for the generalized energy as a function of the αk is:630

Γ[Φ,Φ] = [αk]t{k} ·C · [αk]{k}. (93)

Now we consider the case of noisy observations:631

B̃k = −etk · ∇Φ(xk) + εk, (94)

where the measurement errors are normally distributed with zero mean and632

with a correlation:633

E(εk, εk′) = σ2
k,k′ . (95)

We seek the noise free values of the magnetic field at the observation points and634

directions: [Bk]{k}. As before, the correlation matrix between the observations635

is:636

ΣBB = C + Cε, (96)

where we assume that the measurement errors are not correlated to the magnetic637

field and that Cε is the covariance matrix of the noise defined in equation 95.638

Because we want to obtain noise free values of the magnetic field components at639

observation points, the correlation between model and observation is ΣmB = C640

and thus the expected value for the model is:641

E([Bk]{k}|{B̃k}k) = C · (C + Cε)
−1 · [B̃k]{k}, (97)

if we assume that the vectors [Bk]{k} and [B̃k]{k} have zero prior expected value.642

On the other hand the spline solution consists in minimizing a compromise643

between fit to the data and generalized energy644

E = Γ[Φ,Φ] +
∑
k′,k

(−ek′ · ∇Φ(xk′)− B̃k′)(−ek · ∇Φ(xk)− B̃k)

σk′,k
(98)

Using equations 92 and 93, this energy can be expressed in matrix form:645

E = [αk]t{k} ·C · [αk]{k}

+
(

[B̃k]{k} −C · [αk]{k}

)t
·C−ε ·

(
[B̃k]{k} −C · [αk]{k}

)
,

(99)

where C−ε is the inverse of the matrix Cε. Minimizing this energy for the αk646

leads to the usual solution:647

[α̂k]{k} =
(
Ct ·C−ε ·C

)−1
Ct ·C−ε · [B̃k]{k} , (100)
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and, through equation 92, to the solution – i.e. the noise free magnetic field648

components at the sampling points:649

[B̂k]{k} = C ·
(
Ct ·C−ε ·C

)−1
Ct ·C−ε · [B̃k]{k} . (101)

Using the Woodburry matrix identity, it is obtained that this solution is the650

same as equation 97. This shows again that the spline solution B̂(x) is again651

the posterior mean of the distribution solution of our correlation based method:652

B̂(xk′) = E(B(xk′)|{B̃k}k) . (102)

Generalisation to more complex models is cumbersome but straightforward. The653

key point here is that the solution of the optimisation problem can be computed654

as a superposition of kernels, as in equation 86.655
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