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The condition on the polynomial P for a Hirota equation Pr - 7 = 0 to have an N-soliton solution

for arbitrary & is examined and simplified.

I. INTRODUCTION

While the role of affine Lie algebras in explaining many
of the miracles of soliton mathematics is understood,' the
Hirota conditions have so far eluded interpretation. These
relations express the condition under which a given partial
differential equation, when expressed in Hirota or quadratic
(homogeneous) form, has an N-soliton or N-phase rational
solution. It is generally agreed, although not rigorously
proved, that, if these conditions hold for arbitrary N, the
evolution equation is completely integrable and belongs to a
commuting family, each of whose members is also a com-
pletely integrable soliton equation. The goal of this paper is
to simplify the Hirota conditions and to express them in a
way that may lead to an algebraic interpretation. In particu-
lar, we build on the idea, first expressed by one of the authors
in Ref. 4, that the phase shift function plays a central role in
identifying the members of a particular family of soliton
equations. This function is common to each of the equations
in the commuting family and measures the phase shift expe-
rienced by two colliding solitons. The fact that the same
phase shift, which is a function of the two-soliton ampli-
tudes, is shared by each of the members of the family is a
simple consequence of the commutability of the flows.

The Hirota formalism homogenizes the partial differen-
tial equation by converting it into a bilinear, and in some
cases a quadratic, equation. For example, the transforma-
tion

q(x,t)=28—21nr (1.1)
ox?
converts the Korteweg—de Vries equation
9 + 649, + Guxx =0 (1.2)
into the form
TTe — TuTy 4 T — 4T Txx + 372, =0. (1.3)

Hirota developed a very neat way of writing this equation by
introducing a derivative operator D, , which acts on ordered

pairs of functions as follows:
D.o(x) - m(x) =1imia(x+6)1-(x—e) (1.4)
€—0 ae

and in general
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D% - D3o(x,) - 7(x,)
n a,

= [] lim

F=1 60 56:1'

(1.5)

o(x, +€)7(x, —€,).

The right-hand sides of (1.4) and (1.5) are exactly the same
as the Leibnitz formula for derivatives of products except for
certain sign changes. Using this notation, Eq. (1.3) may be
written (call f = ¢;)

(DD, +D})r-7=0. (1.6)

Associated with the Korteweg—de Vries equation is the po-
lynomial x,x; + x} (x, = x, x5 = t;). Each member of the
Korteweg-de Vries (KdV) family of equations may be writ-
ten in quadratic form. The next member in the family, desig-
nated KdV 5, is

qt, T Grxxxx — zoqqux - loqqxxx - 3Oqqu = 07 (17)
and, using (1.5), this may be written
(DD, —D¢ +3i(D, D, +D33))~r-*r=0. (1.8)

Notice that in order to write KdV 5 in quadratic form, one
needs to include the KdV 3 time variable ¢, in addition to the
time 5 that appears in (1.7). The Hirota equations for
KdV 5 are the pair of equations (1.6) and (1.8). We also
observe that these two examples of Hirota equations are even
and homogeneous under the weight assignment W(D )
=2k + 1.

Other well-known equations that have Hirota form are
the Sawada—Kotera equation, ¢, = x,

Dk 41

(D¢ +9D,D, )r-7=0; (1.9)
the Ramani equation

(D} —5D}D, —5D})r-7=0; (1.10)
the Ito equation

(D} +2D,D})r-7=0; (L11)
and the Kadomtsev—Petviashvili equation

(u, +uu, +uy,), +u, =0, (1.12)
which is transformed by (1.1) into

(GD:—D,D, +1D¥)r-7=0. (1.13)

One of the advantages of the Hirota formalism is that it
isrelatively easy to find expressions for the multisoliton solu-
tion. The reason for this is that the N-phase multisoliton
solution, which for the KdV family is given by
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T(x = tl’t3’t5"")

-2

o z Aﬂﬂj l‘l):
Up =0,

IKj<IKN
(1.14)

consists of sums of exponentials and the Hirota operator D
acts in a simple way on ordered pairs of exponentials, e.g.,

N
exp ( > w6+
=

D7l ek = (ky — ky)mek* T kX, (1.15)
In (1.14),

6, = i(—l)"k}"“tz,,H, t=x, (1.16)
The phase :hift Aj is given by

e = ((k; — k,)/(k; + k)P, (1.17)

and the first sum is taken over all configurations of the y;,
j = 1,...,N, each choice being either a zero or a one.

We emphasize that (1.14) provides the common N-soli-
ton solution for all members of the KdV family. As we have
mentioned, they all share the same phase shift, a property
that can be deduced readily from the fact that the flows
4, ,»r =0,1,..., commute. The general formula analogous
to (1.15) is

P(D, ,D,z,..,)eel L% = P(k, — k, Y&+

where

(1.18)

P(k; — k) =Plk; — Ky (= D(RFH = k31,0
(1.19)

We now ask a natural question. Given an even homo-
geneous polynomial P, (D, ,D, ,...D,, ) of weight 2L,
under what conditions does the corresponding Hirota equa-
tion

Py DD, .0, I7T-7=0 (1.20)
having an N-soliton solution for arbitrary N ? The one-soli-
ton form

r=1+¢€°,

with

(1.21)

6= Sk®+r, |, 1,=x (122)
[¢]

is a solution provided that the vector {k ?"+ D} lies on the

manifold (which we call the dispersion relation)

Py (KWk®,  k@r+D )y =0, (1.23)

We are going to confine ourselves in this paper to the class of
Hirota equation for which (1.23) is satisfied by Xk ?"* ! be-
ing a power of a single parameter k:

KW=k k@&+D=(_1)ykx+!, (1.24)

This corresponds to evolution equations like the Korteweg~
de Vries equation, which describe how a function of x = ¢,
evolves with respect to a sequence of times ,, , ,. The Ka-
domtsev—Petviashvili (KP) equation, on the other hand, is
part of a family for which the equations describe the evolu-
tion in times #5,Z,,... of a function ¢(x = ¢, y = £,,45,t,,...) of
x = t, and y = t,. The dispersion relative for (1.13) is satis-
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fied by expressing each X (here @ = £k” ¢, ) as a function
of two parameters

K=y 2, k9=4 0.,

These equations are associated with the Lie algebra gl( oo )
corresponding to the infinite-dimensional linear group. On
the other hand, the KdV hierarchy, which is recovered from
the KP hierarchy by setting v = — u = k /2 and writing
ty,1as(—1)"2"+'t, ., isassociated with a subalgebra
of gl( « ), namely the Kac—-Moody algebra A{" associated
with s1(2). '
The two-soliton solution

kV=u—y,

r=14e" 4% ettt o (1.25)
is a solution of (1.20) with
91‘ = Z (— l)rk_l?’+1t2r+l
4]
provided the phase shift is chosen as
elr= — P, (k; —k,)/Py (k, + k), (1.26)

where P(k, + k,) is defined by (1.19). The coefficients of
&*® and €*% are zero because of (1.18) and the fact that
P, (0) is zero. The coefficient of €2 * % is zero because
P,; (k,) =Py, (ky, — k3,k3,...)iszero. Thus, Hirotaequa-
tions in quadratic form always have a two-soliton solution.
For a three-soliton solution, there is an additional con-
straint, obtained by demanding that the coefficient of
€% * %+ % in the expression

P(D,I Dy )T T

be zero. This condition can be written
Pi2s{Por (ky — k) Py (ky + k)

X Py (ky + k) Py (K — ky — ky)}

+ Py (k; — k3) Py (ks — k)

X Py (k, — k) P(k; +k, +k;) =0,
where
P(k, +k; +k;)

=Pk, +k,+k;,—k} —k3 —k3,..,

X(—=1)(k]+k5+k5),.)

and p,,, is the permutation over 1,2,3. For an N-soliton solu-
tion, the condition, originally derived by Hirota,’ is

N
ZP(Z pjkj) 1 Ptnkn —pikptsps, =0.  (1.28)
H; 1 m>1

The summation in (1.28) is over all sequences
(1t estbyy ), Where u; = + 1,j = 1,...,N. In each term of
the summation,

N
P (2 ,ujk,-) III P(pt Ky — K hifs

all the u’s are determined once a particular choice of the
sequence (fq,i,,...,1ix ) of plus and minus ones is made.
Equation (1.28) is known as the Hirota condition and we
call a homogeneous polynomial P of even degree that satis-
fies this condition for all N a Hirota polynomial. It is the
expression (1.28) that we aim to simplify. In particular, we

(1.27)
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would like to find an algorithm to determine all polynomials
of weight 2L that satisfy it.

Il. DISCUSSION OF RESULTS

The first curious fact about (1.28) is that it is not, on the
surface, linear. And it should be, because integrable evolu-
tion equations come in families and therefore linear combi-
nations of these flows should also be integrable and satisfy
(1.28) for every N. However, recall that all the members of a
commuting family share the same phase shift
e Pk, —k;) _ P, (k, —k) ’ 21

Pk, +k;) Pk, + k)

where 2M is the lowest weight of any number of the integra-
ble family. For example, the lowest weight of the KdV family
(1.9) is that of the KdV equation itself, namely 4. The
Sawada—Kotera family of integrable equations begins at lev-
¢l 6. Therefore in (1.28), we can replace the second P, which
contains differences on two k’s only, with P,,,, because di-
viding (1.28) acrossby P,; (k; + k,, ) gives an equation lin-
ear in P,; (2u,k;) with coefficients of functions of the
phase shifts, which are the same for every L in the commut-
ing family of Hirota equations. With this observation, the
Hirota condition for a given P,, can now be written

Q(ky,ky)
N
= ZPZL (Z:ujkj)

X I Pore Wk — ik dptspt, = 0.

m>1

(2.2)

What we will show is that if Q(k,,....,k;) = 0 for s N — 1,
then (2.2) has a factor

N
k11V+1 ...k%*“ H (k?n —k?)z
m>1
of degree 3N > — N. But, from (2.2), astraightforward count
shows that Q(k,,....ky ) hasdegree 2L + MN(N — 1). Thus
if

3N?—N>2L + MN(N - 1), (2.3)

Q(k,,....kx ) must be identically zero. For cases in which
M = 2or 3, that is, in those cases for which the lowest weight
member of the integrable sequence is 4 or 6, this condition is
nontrivial and tells us that after one establishes that P,, has
an r-soliton solution, 3<r<N,, where N is the maximum
integer for which (2.3) holds, then it has an N-soliton solu-
tion for arbitrary N. For M =2, Ny = [(— 1 +J1 + 8L)/
2] and for M = 3, N, = L. In actual fact one simply has to
establish that P,, hasan N-soliton solution because, by sim-
ply allowing several soliton amplitudes to decay or their lo-
cations to move to infinity, the fact that P,; has an N-soli-
ton solution implies that it has an r-soliton solution
3I<r< N,

Let us look at several consequences of this result. De-
note by P{3* the polynomial weight 2L, which has the
phase shift function given by (2.1). Then we have the follow-
ing.

(i) If M = L =2, (2.3) holds for every N>2. It follows
that
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Py(D,,D,)r-7=0

has an N-soliton solution for all N. This is the well-known
result that the KdV 3 equation has an N-soliton solution.

(ii) If M = L = 3, then (2.3) is satisfied for any N> 3.
This implies that if

Py(D,,D, D, )r-7=0

has a three-soliton solution, then it has an N-soliton solution
for arbitrary N.

(iii) In the case M = 3, when N > L, (2.3) holds. There-
fore, if

PP (D, D, ,.)r-7=0

has an L-soliton solution, then it has an N-soliton solution
for arbitrary N.
(iv) In the case M = 2, (2.3) is satisfied provided

N> [(=1+JT+8L)/2] =N,
Therefore, if

PEZ)(DA\,D(,,"-)T'T=0 (24)

has a N-soliton solution, then it has an N-soliton solution
for arbitrary N. For instance, when L = 3,4,5, (2.4) has an
N-soliton solution for arbitrary N; when L = 6,7,8,9,if (2.4)
has a three-soliton solution, then it has an N-soliton solution
for arbitrary N.

Because we have assumed the dispersion relation (1.23)
is satisfied by (1.24), this last result refers to members of the
KdV family. It shows that, contrary to the conjecture stated
by the first author in Ref. 4, the Hirota polynomials (that is,
the polynomials that have N-soliton solutions for arbitrary
N) are not completely determined by the phase shift func-
tion. Namely, just because P,; satisfies (2.1) with M = 2is
not sufficient to guarantee it is a Hirota polynomial. As we
have just mentioned, it is sufficient for L = 3,4,5 that is, for
polynomials of weights 6, 8, and 10. For polynomials of
weights 12-18, P,, needs also to satisfy the three-soliton
condition. For a polynomial of general weight 2L, P,, must
satisfy (2.2) forall Nupto [ ( — 1 + 1+ 8L)/2].

Since the general form of the polynomial at any weight
level is a linear combination of all products of odd weights
that add to 2L, these constraints leads to a set of homogen-
eous linear algebraic equations on the W, coefficients,
where W, is the number of ways an even number 2L can be
decomposed into a sum of odd numbers less than 2L. It is
reasonable to conjecture that these equations will contain
information about the underlying algebraic structure of the
equation family whose phase shift function is given by (2.1).

Il. PROOF OF MAIN RESULT
Consider the equation in Hirota form

P2L(Dt,sDz,r")7"T=0: 3.1)
with the phase shift function given by
o Puli—k) Pk
PZL(kl+k2) PZM(kl+k2)
(3.2)
where P,; and P,,, satisfy the conditions
A. C. Newell and Z. Yunbo 2018



P, (-D,,-D,,.)="P;D,,D,,..), (3.3)

P, (00,...) =0, (3.4)

P, (k) = Py, (k, - k3k>,..) =0, (3.5)
and we define
P2i(kl + kz) = Pzi(kl + kz’ - (k? + k; ) N

X (= 1) (k¥+1 4 k¥+h, ). (3.6)

The condition that (3.1) has an N-soliton solution is

> Py (E ik )jl'[ Py (K, —pk)dpa; =0,
which is equivalent to [using (3.2)]
Y Py (Zu, )HPZM(.”;k —pkpu, =0,  (3.7)

j>i

where the sum is taken over all sequences (u;)Y_, of plus
and minus ones. It is easy to see that (3.7) can be rewritten as

Oy = Q(kysoskn)
- 3§

= -1l

HPZM(,u,k ,u,k)H,u -1=0, (3.8)

J>i
In the following proof, we follow closely the ideas used by
Hirota® for proving that the KdV equation has an N-soliton
solution. The Q has the following properties.
(i) When N is odd, Qy is even in the k;; when N is even,
Qu is odd in each of the k,, i.e,,

It is clear from (3.5) and (3.8) that

Q(k,) =Py (k) =0, (3.11)
Q(kyky) = Py (ky + k) Py (k) — k)
— Py, (ky — k) Pop (ky + k) =0. (3.12)
Theorem: Provided
@k, k) =0, iKN—-1, (3.13)
then
Q(Kkyyeesky)
=k N+ LN ﬁ (k2 — kD)?Q(kyy.rky),
j>i
(3.14)
and if N,L, M satisfy
3N?2—-N>2L+MN(N—1), (3.15)
then
Q(ky,-ky) =0. (3.16)
Proof: (3.5) implies
Py (pk;) =0, (3.17)
which yields
Po (K, — k) = kjkiFZM (1 tiky k).
Hence we obtain from (3.8) that
Qkyyosky) =k e KN 10(Kyynky).  (3.18)

By using (3.13) and (3.17) and noting that (3.3) implies

P(uk, —u,k;) =Pk, —pu,uk,), (3.19)
Ok ey — Ky = (= 1YY= 1Q K ooy ) 7~ s~ Hill
and
3.9) P (K — 1K)
(ii) Qu is a homogeneous symmetric polynomial in the e ,ujdli il
k;’s, i.e., i k=0
OKsyesyeyrekiy) = QCKsreeprineony). _ 9P 2M“‘fd - Pty ki)
(3.10) ‘ k=0
. . . dPZM(kj -_ ki) :
The result (3.9) is easily seen by replacing k, by — k; and g, =pp ————— , (3.20)
by — u, (dummy index) in (3.8). Also, (3.10) can be veri- dk; k=0
fied by interchanging k;, k;, and u; ;. we find
J
dN_ lQ(klr"-ka)
dk ! k=0
N N dPon(uk, — k)
= Y Py (2 ,uik,.) II Poar (ks —pik;) H”‘ 'TI 2 \Hy%) — HiKy
=—l i==2 i>i>2 i=1 j=2 dkl k=0
N 4P, (k, —k,) N
=2 [] ———— P ( ; ) P, k, —uk; N-2
j];__Iz dk, . _0”1_2;“ 2L 2/‘ j>1:!2 2 (K — )il;lzl‘x
Jj>1
N dP,. (k. —k,)
=2]] Bl e B S Q(k,,...ky) =0. (3.21)
j=2 dkl

k=0

According to (3.9) and (3.18), Oy can be written as

Q(kyysky) =k Y7 'Ry(Kpyosky) + KV 1R (Kgpeusky) + kN H 3R (Kpyehiy ) + oo

Using (3.21), we obtain
Rl(kz”"’kN) = 0

2019 J. Math. Phys., Vol. 27, No. 8, August 1986
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and
Qlkyyenky) = kY7 Ry (kyyoosky) + kY TR (Kgyoskiy) + oo = kYT IR (K koynky).
Therefore, from the properties (3.9) and (3.10), it follows that

Q(kl’"wkN) =k 11v+ Lo k%+ l@(kpm,k,v)’ (3.22)
where the polynomial @( Kys.-sKn ) is even and symmetric in the k,’s.
Next, evaluate Q) when &k, = k,:
N N
Ok k) = 5 Por (S k) T " T Pas iy — b Pos sk, — k)
2 = Hy 1 i=3 >t
Zj=ﬁil,l j‘>2 ky =k,
N N
+ 2 Py (Zl‘ik:‘) I'Iﬂfv_,(“l)zval H Popg (K — pk;)
o= — gy 1 i=3 j>i»3
M= — 1,1
X H [Pone (K + 121K Py (K, — p, Ky ) [ Popg (21K + 1k )
>3 k, =k,
N N
= 2 Py (E ,u‘iki) Hﬂfv—l H Pops (i — p1,k;)
oy = i==3 i=s3 J>i>3
#= — 11
X(—D¥! H [Pane (K; + g2 ;R Pypg (K — gy p;K0) [ Pogg (uiky + k)
>3
=(—1D""12 H [Porr (k; + k) Pops (kK — k) | Py (kg + k) Q( ks, k) =0. (3.23)

Jj>3

Since @y is a symmetric polynomial in the k,’s, (3.23) im-
plies that for any 7, /,

Q(kyyesky ) i, = i, =0,
and from (3.22) this yields
OCky.kiy) i, =i, =0.
Hence @N is certainly factorized by (k; — k;) and therefore

Qu, as a symmetric polynomial in the &,’s, must be factor-
ized by

I Gi—k) or [k —ko>

fje=1 j>i
% .
But since @y is even in the k;, Q) must be factorized by

[T k7—kD%

i>1
This implies that (3.14) holds. So the order of @, must be at
least 3¥ 2 — N. However the order of P,, is 2L and the order
of the polynomial product

N
H Py (ﬂjkj — k)

i>i
is MN(N — 1); hence according to (3.8) the order of Q
must be at most 2L + MN(N — 1). Clearly, if Qy 540, it
must satisfy that

3N?% — N<order(Qy)<2L + MN(N —1).

Therefore, if 3N2 — N> 2L + MN(N — 1), there is a con-
tradiction and we must conclude that Q(k,,...,kx) =0.
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IV. FURTHER SIMPLIFICATION AND EXAMPLES

The previous section has pointed out that in order to see
whether the equations

PYWD, D, ,.)r-7=0 (4.1)
or

P, D, ,.)r-7=0 (4.2)

has an N-soliton solution for arbitrary N, we only need to
check whether it has an »-soliton solution < N,. However, it
is not trivial to check the condition (3.8) for some r and
therefore it is useful to simplify it further.

If H(k,,....,ky ) is a polynomial of k,,....k ,

H(kyysky) = 3 allyye iy Yo 3o 2
+ Zb(jl"")jlv)kfj"*l ..,kij?N+l

+ 3 clipeninVe i kY,

where some of the i,,...,i,, in the last sum are even and some
of them are odd.
Define the operators L, and L, as follows:

L H(K ki) = 3 alypedy Yo 3 o k3,

LoH(klr'-'ykN) == Z b(jl,...,jN)kfj‘ +1 .., kg”* t

Proposition: The condition (3.8) that (3.1) has an N-
soliton solution is equivalent to

A. C. Neweli and Z. Yunbo 2020



L, [PzL(zk)HPw(k —k;)| =0, when Nisodd,

j>i

(4.3)

La[ oL (Zk)HPZM(k ~k;)| =0, when Niseven.

I>1

(44)

Proof: 1t is easy to see from the definition for the opera-
tors L, and L, that

L [P (S ) TT Ponc s

j>i

=L [P (S %) 1Pk - )|

j>i

F’lki)]

and
N

L [le. (z.u'iki) H Por (1k; —l‘iki)]
1

= M ud. [P (Zk)an(k —k.

i=1 i>i
Since Qy is even in k; when N is odd we have, for N odd,
QK sskn)
= LeQ(kv ’kN)

= 3 L [P (k) TPty — )

p= —11 j>i

= 2L, [Pu (zk)HP(k —k)]

J>i

When N is even, Q, is odd in k;, hence we get

Qkyseenskn)
=1L Q(kl’ ’kN

- [ o)

w= =11
X IIPZM(ﬂjkj —pik;) H /-‘i]

J>i i=1

= 3 I, [PZL(Zk)HPm(k ~k;) ﬁu?

y]_—ll J>i i=1

=2, [ L (ZR)HPZM(R —k,.)].

>t
As an example, we will use these simplifications to identify
all equations with weight level 6 with the Hirota property.
The most general form of P, is

D, D, +aDi + bD,3,D,3 +cD‘,5.. (4.5)
From (3.5), a,b,c, must satisfy
l4a—b+4+c=0. (4.6)

The theorem given in the previous section told us that
(4.5) has an N-soliton solution for arbitrary N if it has a
three-soliton solution. Therefore the condition that (4.5)
has an N-soliton solution reads
L, [Pg(k, + k; + k3) Ps(k; — k;)

X Pg(k; — k) Ps(k, — k;)] =0. (4.7)

2021 J. Math. Phys., Vol. 27, No. 8, August 1986

Notice that this expression is considerably simpler than
(1.7). Using (4.6) and (4.7), a little calculation shows

Ba+6c+1)9%c—1)
X[@+ (Te+2)a+c*+2c+1)] =0. (4.8)

This implies that all the Hirota equations at weight level 6
are the following equations: (i) KdV equation,

(D, D, + (—4—2c)D7}
+@—c)D}D, +cD{)r-T=0;
and
(ii) (D, D, +aD} + (¥ +a)
XD}D, +4D7)yr-7=0.
Taking a— o0, we get Ito’s equation from (4.10),
(D} +2D}D,)r-r=0.
(iii) (D, D,, + ( —3c — 1 + y45¢” + 20c)D?},
+ (—3c +445¢* +20c)D;} D,
+eDi)yr-7=0. (4.11)

Takingc = — 1, (4.11) yields the Sawada—Kotera equation
after rescaling the variables

(D7 +9D, D, )r-7=0.
We obtain the Ramani equation by taking c— e in (4.11),
(D —5D}D, —5D})r-7=0. (4.12)

We emphasize that this is a complete list of all Hirota
polynomials of weight 6 that satisfy the conditions (3.3)-
(3.5).

4.9)

(4.10)
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