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We study a family of fermionic extensions of the Camassa—Holm equation. Within
this family we identify three interesting classéa) equations, which are inherently
Hamiltonian, describing geodesic flow with respect td-Hnmetric on the group of
superconformal transformations in two dimensigi$ equations which are Hamil-
tonian with respect to a different Hamiltonian structure d@odsupersymmetric
equations. Classds) and (b) have no intersection, but the intersection of classes
(a) and(c) gives a system with interesting integrability properties. We demonstrate
the Painleveproperty for some simple but nontrivial reductions of this system, and
also discuss peakon-type solutions. 2001 American Institute of Physics.
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[. INTRODUCTION

Recently there has been substantial interest in the Camassa-(Bblnequation*?
Ui — PUy = KUy — 3UUy+ V(UUyyy 2UyUyy) (1)

This equation has been proposed as a model for shallow water waves. It is believed to be inte-
grable, having a bi-Hamiltonian structure, as was first observed by Fokas and Fuch&dt2iner
years prior to Camassa’s and Holm’s work. Due to the nonlinear dispersion tery,, it
exhibits more general wave phenomena than other integrable water wave equations such as KdV.
In particular, whenk=0 it admits a class of nonanalytic weak solutions knowrpaakons as
well as finite time blow-up of classical solutiohs.

Geometrically, the relationship of CH to KdV is rather deeper: Both are regularizations of the
Euler equation for a one dimensional compressible fiMdnge or inviscid Burgers equatign

U= —3uuy. 2

A solution to this equation describes a geodesic on the group of diffeomorphisms of the circle
Diff( S')* with respect to a right-invariant metric induced by lahnorm, fu? dx, on the associ-
ated Lie algebra. If the group is centrally extended to the Bott—Virasoro group, the KdV equation
arisess™® On the other hand, if the metric is changed to one induced bytamorm, [(u?
+vu?)dx, the CH equation arisés'! Both these “deformations” have a regularizing effect on
solutions of(2), which exhibit discontinuous shocks.

Thus KdV and CH arise in a unified geometric setting; both are geodesic flows which are
integrable systemgHere, and henceforth in this paper, when we refer to a “geodesic flow” we
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mean the evolutionary PDE which can be formally associated—in the manner we will see in Sec.
Il—with any inner product on the Lie algebra of a diffeomorphism group, and which, at least in
the cases mentioned above, is known to describe geodesic flow, in the usual sense of the phrase,
with respect to the correpsonding right-invariant metric on the group. In the case of a general inner
product, the existence of the corresponding geodesic flow, in the usual sense of the phrase, is
highly nontrivial) The following important question arises: What features of the underlying ge-
ometry give rise to integrability? In general, geodesic flowsratdantegrable: the Euler equation
for fluid flow in more than one spatial dimension is an exantpteleed, for the latter, Arnold has
suggested a relationship between negative sectional curvatures and nonpredictability of the flow.
We feel that it ought to be possible to identify some other geometric property that “causes”
integrability. In a remarkable recent pagéiringer and Holm have shown that certain features
usually considered to be hallmarks of integrable systems, such as elastic scattering and asymptotic
sorting according to height, in fact, appear in geodesic flows on Siff(vith respect to a large
class of metrics. Thus, there may well be a hierarchy of geometric structures corresponding to
various degrees of integrability.

One further example of an integrable bi-Hamiltonian system arising as a geodesic flow has
been discussed by Ovsienko and Khesiising the superconformal group with &R type metric,
they obtained the so-called kuper-KdV system of Kupershfidihis is a fermionic extension of
KdV: it describes evolution of functions valued (e odd or even parts p& Grassmann algebra.
In fact, as we will see below, taking a genetal type metric on the superconformal group gives
rise to a one parameter family of fermionic extensions of KdV, which includes not only kuper-
KdV, but also the super-KdV system of Mathieu and Manin—R&8tiThe latter is integrable: it
has only a single Hamiltonian structure, but unlike kuper-KdV it is supersymmetric, a property
which is widely believed to contribute to integrability. It remains a mystery as to why, of the one
parameter family of geodesic flows associated wifttype metrics on the superconformal group,
only two specific choices of the parameter give rise to integrable systems.

Our main purpose in this paper is to investigate geodesic flows obtainedHtaype norms
on the superconformal group; more generally we consider the following family of fermionic
extensions of CH:

Ug— VUyy= KUy KoUyyxt B1UUF BolyUyyt BaUlyyxt Y1880t Y26xExxxt ¥3€Exxxxs

)

Et— mxxt= T1Ex T 028y €1UEF €U+ p1U& it polyEyxt paUsxéxt Palyyé-

Hereu(x,t) and &(x,t) are fields valued, respectively, in the even and odd parts of a Grassmann
algebra, an({V,/.L, K1,K2 iﬂl !BZ 1B3 »Y1:Y2:Y3:01,02,€1,€2,01,P2:P3 ,PA} are parameters' By
rescalingu andé¢ it is possible to seB; = —3 andy;=2 (assuming that they are nonzgrand we

shall do this throughout. In addition it is possible to eliminate up to two further parameters by
rescaling the coordinatest.

We derive three interesting classes of systems of the {8ynin Sec. Il, we consider geodesic
flows on the superconformal group with &t type metric; the resulting systems have a natural
Hamiltonian structure, or more precisely, since the fields are Grassmann algebra valued, a graded
Hamiltonian structure. In Sec. Il we identify a class of systems having a different Hamiltonian
structure. Unfortunately the latter has no intersection with the class of Sec. Il, so there does not
seem to be a bi-Hamiltonian fermionic extension of CH. In Sec. IV we consider systems of the
form (3) that are invariant under supersymmetry transformations betwesard £. This class has
nontrivial intersections with both the classes of Secs. Il and Ill. In particular there is a unique
supersymmetric geodesic flow which is a candidate for being a new integrable system. We call this
equationsuper-CH In Sec. V we show that two reductions of super-CH have the Paipeys
erty, which is positive evidence for integrability. In Sec. VI we look for peakon-type solutions of
super-CH; as for CH, multipeakon solutions arise from the solutions of a system of ODEs, but the
integrability of this unfortunately remains unclear.
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Super-CH is a supersymmetric geodesic flow whose bosonic part is integrable. While in this
paper we do not fully establish integrability of super-CH, we regard it as an interesting test case
to determine whether in general supersymmetric geodesic flows with integrable bosonic parts must
be integrable.

A trivial integrable CH system of the forr(8), which is not incorporated in the classes of
Secs. I, Ill, and 1V, and which we shall not discuss further, is the odd linearization of the bosonic
CH system(1):

U;— PUy = KUy — 3UUy+ 1(UUyy i+ 2Uy Uy ),

(4)
E— V€= KEx— 3(EU)+ v(EUyyxt Uyxxt 2(ExUy) ).

Replacingu by u+ «/3 and considering the limit— 0, k—2, with vk=3, yields the system

Up= —3UUy+ Uyyy,

)
&= —3(&U)x+ Exxx-

This trivial fermionic extension of KdV has appeared often in the literatsee, e.g., Ref. 14

Il. GEODESIC FLOWS ON THE SUPERCONFORMAL GROUP

An inner product- , -) on a Lie algebrg determines a righttor a left-) invariant metric on
the corresponding Lie group. The equation of geodesic motion @with respect to this metric
is determined as follow&Define a bilinear operatds: gx g—g by

([V.W]L,U)=(W,B(U,V)), V Weg. (6)

Then geodesics are determined by solutions of the “geodesic flow,”
U,=B(U,U). (7)
In our caseg is the NSR superconformal algebra, consisting of triglgx), ¢(x),a), whereu is

a bosonic fieldg is a fermionic field anda is a constant. The Lie bracket is given by

1 1 1
[(u,p,a), (v,l//,b)]I(uvx—uxv+ S @Y U= U= @xv + 5 Uy,

J dx(cluxvxx+ CoUvyt+ Crpxifxt %@'ﬁ) , (8
wherec, ,c, are constants. On this algebra, ldh type inner product is given by
((u,e,a), (v,l//.b)>=J dx(uv + vUw+ @ dy L+ apeg) +ab
=f dx(uAgv+ @A ) +ab, 9
where
Ag=1-vdy, Ar=a(dy = pdy), (10

andu,v,a are further constants, all assumed nonzéBee Ref. 5 for the definition of the natural
fermionic extension of the standakrd inner product, to which the above reduceg.i v=0. The
natural fermionic extension of the standafd inner product is constructed, as for pure bosonic
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systems, by taking the sum of theé inner product for the functions involved with the inner
product for the derivatives of the functions involve@/riting U= (u,¢,a) , V= (v, #,b), we find
B(U,V)=(By,B;,0), where

AoBo(U,V)=—(2v,Agu+v Aguy+ g‘/’xAl(P+ %lpAl‘Px)_ +a(C1Uyxx— C2Ux),

(13)
3 1 Cs
AB1(U,V)=— 5Ux Arptv Ao+ E%”AOU +a| Cih Y
The geodesic flows are therefore conveniently written in the form
Agui=A0Bo(U,U),
Appr=A1B1(U,U), (12
alzo.
Writing ¢=\&,, where\ is a constant satisfyiny?=4/3«, this yields the system
2
Up— PUyy = KUy T KUy = 3UUyF (Ut 2UyUyy) + 286+ ?gxgxxw
(13

K1 K2 3
&~ /Udgxxt:ﬂgxdl' ;gxxx_ Euxg_

3u v
Ut uU&yyut 7ux§xx+ Zuxxfx-

1-|—1
2a

Here x4, k, are independent parameters determinedmy,c,. This is eviden§y a 5 parameter
class of systems of type).

Setting £ to zero in(13) yields the CH result of Refs. 9—11. If instead we chopse to
vanish, theH! norm becomes ah? norm; then choosing; to be zero and rescaling, to 1 we
obtain the following 1 parameter fermionic extension of KdV:

Ug= Uyxx— 3UUy+ 2885k,
(14

1 3 1
gtzzgxxx_iuxg_ 1+Z Uéy -
Modulo rescalings, the super-KdV of Mathieu and Manin—Radul is obtained by takint The

kuper-KdV system arises by taking= 3, the choice made in Ref. 5. Other values of the param-
eters give systems which are not believed to be integr@gle however Ref. 16

lll. HAMILTONIAN EQUATIONS

Like KdV, CH has a bi-Hamiltonian structure, and this accounts for its integrability. We
might hope that for some choices of parameters the sy&8&nshould also have a bi-Hamiltonian
structure. One Hamiltonian structure follows automatically from the geometric origins of the
system? Explicitly, introducing new variablesn=u— vu,, and 7= é— u&,,, (13) takes the form

oH,
(m‘) P om 15
7l =2\ em, | (15
on

where
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K2(73+ K1dy— dyM—mdy = dyn+ nd

P,= (16)

1 3
_&xn_in&x E

— 4 k92| — =—m
Kza ) a
and the Hamiltonian functional is given succinctly by #Hé inner product on the algebra,

H2:%<U ) U>: %J dX(U2+VU)2(+ %(§x§+ﬂgxx§x))- (17

This generalizes the so-calledecond Hamiltonian structureof KdV and its fermionic
extensiong>'* Checking (15) is straightforward: the Euler—Lagrange derivatives
OH,I/6m, 6H, /67 are defined by

5H—fd M st 212 s 18
27 X 5m m 57] /am ( )

from which it follows immediately thatH,/dm=u and H,/ 57 = 3&,.
To investigate the possibility of systems amon@sd) having another Hamiltonian form, we
look at systems of the form

oHy
(mt) P om 19
7 - 5Hl 1 ( )
on
where
A (1—vd?) 0
Pr= €, (20
0 -5 (1= pud)
Here e, is a constant an@, is a functional generalizing the Kdfirst Hamiltonian
1 Bs K K1 o1 o2
_ _ -3 _P3 2 "2 .5 *1 5 Y1 et
H, f dx( 2u > uuy 5 uy + 5 uc+ o EEF . & x
+2u&é,+ (72— v3)Uééuxt YaUEExxx] - (21)

This is the most general functional of this type, up to rescalings @nd & Since Sm=(1
—vd?)éu, we have (t vd2)(6H,/ém)= (6H,/6u), and similarly (1 wd?)(SH,!67)
= (6H/56€). Thus Eqs(19) take the simple form

OH1
Up = PUyxt= &x( Su = KUy F KoUyyy— 3UUyxF B3(2UyUyy+ Ulyyy)

+28&0t v2Ex€xxxt Y36 Exxxxs
(22

oH
& = 61(5_;) =018t 026t €2(UéE+2U€,) + €1(2y3— y2) Uik

3 1 1
+ E €1(2y3— y2)Uyéyxt E €1(4y3— ¥2)Usxéxt E €1Y3Uxxx-
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This is a 10 parameter class of systems of the f8mComparing with(13), we see that the only
bi-Hamiltonian systems occur whefu=v=83=17v,=7v3=0, e,=— 3, 01=k1, 0,=4K,},
which is equivalent tq13) with {u=»r=0, a= 3}, i.e., the kuper-KdV system. Thus, no new
bi-Hamiltonian systems arise.

We note that the systen{&2) can be obtained from a Lagrangian. Introducing a poteiftial
defined byu=f,, they are Euler—Lagrange equations for the functional

E:f dx(i(fx_”fxxx)ft"' —(§—pé)éit Bsf f2 2f>2<x_ﬂf>2<_ﬁ§§x
2 ST
_ :—fggm— 2 1t (73— 72) o Yl 23

IV. SUPERSYMMETRIC EQUATIONS

Define a fermionic superfield (x, ) =sé+ du and superderivativ® = 9/ 90 + 949, , where
s is a nonzero parameter anfdis an odd coordinate. The most general superfield equation having
a component content of the for(8) is the 8 parameter system,

>+ B3| DDPDOD

2
(1—vD* D=k, D?P + k,DP — ?CIDD3CI>+

)DCIDDZCI>+

7’3

V3 V3~
- ?¢D7(I>+ B3+

)DZCDD5<I>+(,82 B3+ ) SODP,
(24)
where{v,s,k1,k2,B2,83,v2, Y3} are parameters. The component equations are

Ug— VUyy = KUy T KUy 3UUyF BolyUyyt BaUUyyxt 2EExxT Y2ExExxT Y3EExxxs

(29)
3uéyet

2
&= V&= K1€x Tt Koyxx™ ?Uxf‘f' 2 +:83)u§xxx

:8 :83 ) xgxx

+:83) xxgx 2 uxxxg

These systems are by construction invariant under the supersymmetry transformations,

Su=r1é,, O&= g; (26)

whereris an odd parameter. The super-KdV limit, namglyB,,83,v2,v3, 1} all zero, yields,
modulo rescalings, the one-parameter family of systems studied by Mafhieu.

By comparing(25) and(22) it is straightforward to extract systems which are both supersym-
metric and have Hamiltonian forrl9), (20). Takings?>=2 in (25), {v=u, 01=K1, 0»=kK>,

e=—1}in (22), and{B,=2B3, B3=v>— 3y} in both, we obtain the systems,
U= PUyyt= K1 Uy + KUy~ UL+ (y2— % ¥3) (2UyUy Ulyy)
+28&t Y28x€xxxt Y36 Exxxxs
&= v&xit™ K1&xT Koy Ux§— 2UE,+ (72— 2y3) Ui

+ %(72_273)ux§xx+ %(72_473)uxx§x_ %'ysuxxxg- (27)
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These may be expressed in superfield f@@#) with the above choice of parameters. The mani-
festly supersymmetric Hamiltonian form is given by

. SH, .
M=Py 5t M=0—wD P, (28)
with
P1=D(1-vD%), (29)

~ K1 K2 1
lef dx dﬁ(;(IJD(D—?DZCDD?’CD—E(D(D@)Z
1 3 2 1 214
+;173<I>(D ) +Z(72—273)(D<I>) D ® . (30

Since the KdV reduction of27) (with ;= y,= vy3=0) is not believed to be integrable, we have
not explored this class of systems further.

In a similar fashion, we may look for choices of parameter sets for which the geodesic flows
of Sec. Il are also supersymmetric. Compar{a8) with (25), we see that the choidg.=v, «
=1, k;=0} in the former ands?=4%, B,=2v, Bs=v, v,=2v/3, y3=k,=0} in the latter, yields
the two-parameter system of supersymmetric geodesic flows:

2v
U= PUyy = KoUyxx— SUUy+ 2EE 0+ v (Ulgyy+ 2UyUy,) + ?gxgxxx-
31
3 3 1 @D
& v Ko™ E(Ug)x"— V| Uuxxt Euxgxx'l' Euxxfx .

We shall call this system, witlkk,=0 and v+ 0, the supersymmetric Camassolm equation
(super-CH. The system(31) reduces to super-KdV, upon settingto zero, and to CH, upon
setting & to zero and translating.

Not surprisingly, the system81) arise as geodesic flows precisely when the mé&ion the
NSR superconformal algebra is supersymmetric. Then, the calculations of Sec. Il can be per-

formed using superfields. Specifically, writidg=u+ 3¢ and V=v + 9, the bracke(8) takes
the form

1
[(Ua), (VDb)]= (UDZV— VD2U+ EDL{DV,clf dx do DZUD3V> ) (32
and the inner produd®) may be written as
((U,a), (v,b)>=f dx d3(UD ~V+vD2UD V) +ab. (33

The superspace bilinear operafdiis given byB((i4,a),(V,b))=(B,,0), whereB, satisfies

(1-vDHD 'By=c,;aD®V— :D?W(1—vD*D '/~ 1DWV(1- vD*HU~-V(1—- vD*)DU.
(34

Writing cia= k, andU/=D®, the geodesic flowslf; ,at)=l§((u,a),(u,a)) yield

(1— vDH D= k,DP— 3(PD3P+DPD?P)+ v (DPDOD + ID2OD D+ :D3PD*D).
(39
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We thus recover the subsystem @4) having component conter{Bl). Equation(35) has a
superfield Hamiltonian formulation,

~ 57’:{2 4
M=P, 7, M=0—vD, (36)
with
P,=k,D°~ :DMD—-D2M~MD?, 37
.1 1
H2=§<(D<p,o),(D<I>,O))=§f dx d9®DM. (38)

V. PAINLEVE INTEGRABILITY OF SUPER-CH SYSTEMS

In this section we investigate, in more detail, the supersymmetric geodesi¢Fowvith »
=1 and K2:0,

mt:_zmux_umx+277§+%77x§x’ M=U~—Uyy,

. . (39
Mm=— 3 MU= sM§—Uny,, n=E— &y

We shall consider the two simplest possible choices for the Grassmann algebra in which the fields
are valued, viz. algebras with one or two odd generators. Taking the algebra to be finite dimen-
sional is a very convenient tool for preliminary investigations of systems with Grassmann algebra-
valued fields. MantoH recently studied some simple supersymmetric classical mechanical sys-
tems in this way and he introduced the term “deconstruction” to denote a component expansion
in a Grassmann algebra basis. In Ref. 18 we investigate fermionic extensions of KdV in a similar
fashion.

A. First deconstruction of super-CH

We first consider the super-CH systéB9) with fields taking values in the simplest Grass-
mann algebra with basid,r}, whereris a single fermionic generator. In this case the fermionic
fields may be expressed &s-7¢,, »=1717,, where¢; and », are standardi.e., commuting,
c-numbej functions, as are andm in this simple case. Sincg=0, the fermionic bilinear terms
do not contribute and we are left with the system

mt:_zmux_umxv m:U—Uxx,
3 1 (40)
Nu=— 2 MUx— 2ME— U1k, 71 &1~ Eaxxe

Further analysis is simplified by changing coordinates as described in Ref. 19. Whitipg, the
first equation 0f40) takes the fornp,=(—pu),, which suggests new coordinatgs,y,; defined
via

dyo=p dx—pudt dy,=dt, (41)
or dually, via

é‘_ J 19_ Jd J 42
x Payy dt oy PUayg 42

Implementing this coordinate change and eliminating the functiorend &;, the remaining
equations folp andgq= 7, are

p%p"—p(pp+p'p’)+pp’'2—2p%p’ —p=0, “3
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3p’ . 3p (410’2 2p” 1). (15p’|b 3p" p
’ — g+ q _ ’

- gl )
pp’+2p'p’  4pp’? |
+3< D2 T -p )q:o_ (44)

Here the dot and prime denote differentiations with respegt tandy,, respectively. We note:
(a) thanks to supersymmet(6), if p is a solution of(43), thenq=p? is a solution of(44); and
(b) under the substitutiog=p®?%, (44) takes the substantially simpler form
12 " 1 3 ’
.r,,+<p p )._p, p

sr'——r=0. 45

The system (43), (44) passes the WTC Paintese

Proof: Equation(43) is a rescaled version of the Associated Camassa—Holm equation of Ref.
19. The consideration of solutions with(yq,Y1) ~Po(Yo,Y1) #(Yo.Y1)" near ¢(yq,y1) =0, for
somen#0, yieldsn=—2 orn=1 as the possible leading orders of Laurent series solutions. We
need to perform the WTC Painletest® for both these types of series. The first type, namely,
Laurent series solutions exhibiting double poles on the singular maniig,y,) =0, have
already been considered in Ref. 21. These take the form

2 ! !
DZ%—%+pz+ps¢+p4¢2+..., (46)

where ¢,p,,p,4 are arbitrary functions of,,y,, and

Po=———— (¢ %pPo+ ¢’ $2p5~ (/4= 20" $' + ¢ $2)p;

2¢/2¢

—(¢' P — ' b — "'+ dd"P")). (47)

We have, at present, no explanation of the remarkable symmetry of these expressions under
interchange of the independent variables. The second type of solutions have a simple zero on the
singular manifoldé(yq,y1) =0. They take the form

p=ii+pz¢2+p3¢3+..., (48)

where ¢, p,,p; are arbitrary functions. The verification of the consistency of both these types of
expansions is straightforward. This completes the WTC test for(43).

It remains to look at Eq(44). Although linear ing, it is not automatically PainleveThe
movable poles and zeros pgive rise to movable poles in the coefficient functions of the linear
equation forq, and we need to examine the resulting singularitieg|.off p has a pole onp

=0, then neay=0 we havep~2¢a’'/$?, and Eq.(44) takes the form

60’ 3¢ 4¢'? (11¢'éz>

q’+ 7+ q+|—+... q”+( PR +oat $?

O

+...]q"+

1
é ?))qzo'

Thus the equation has a solution wijr- ¢" if n(n—1)(n—2)+9n(n—1)+15n=0, giving n
=—4,—-2,0. It follows that in the case whemis given by the serie§l6), no inconsistencies will
arise near the double poles pfif (44) has a series solution of the form

o d1  O2 O3
=+ —s+—gt—+qut..., 49
q ¢4 ¢3 ¢2 ¢ q4 ( )

Downloaded 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 42, No. 1, January 2001 The supersymmetric Camassa—Holm equation 269

with qq,0,,04 arbitrary. The consistency of such a solution can easilly be verified using a sym-
bolic manipulator. UsingnapLE we find that

g, =290 4'%

1 ¢/2 *
The explicit expression fog; is too lengthy to be given here.
Suppose now that has a zero op=0. Near thisp~ * ¢/ ¢’ and Eq.(44) has the structure
(30|, (34 (15¢'£zs ) (12¢'2¢

Tl | =t ———+...|q' —

(50

3¢/2
¢2

q'+ +...]+

+...)q=0.

Thus (44) has a solution withg~¢" if n(n—1)(n—2)— 3n(n—1)+ ¥n—12=0, giving n
= 2 2,4. Theappearance of a half-integer here is not considered a violation of the Paiaktve

(see, e.g., Ref. 22The half-integer value af gives rise to a series solution ¢f4), near a zero
of p, of the form

a=0od**+ a1 6%+ 0"+ ..., (51)

with qq arbitrary, andy,,q5,... determined by, [and the arbitrary functions arising in the series
(48) for p]. The two integer values of tell us that we need to check the consistency of solutions
of (44) taking the form

0=Qo¢p*+ Q1>+ Qup*+ ..., (52
with two arbitrary functiongQ, andQ,. This is indeed consistent; usingaPLE we obtain

1

b2

(2¢'2Qo+2¢" Qo+ ¢’ pQu+46’ ¢’ Qo), (53

Q1=*2¢"Qops—
3

with the choice oft depending on the choice {@8). The general solution d44) near a zero of
p, with three arbitrary functions, is a linear combination of the seffd$ and (52). Thus the
system(43), (44) passes the WTC test. O

The WTC test is evidence for the complete integrability of the sy (44). This in turn
suggests that super-CH indeed has some integrable content.

B. Second deconstruction of super-CH

We now consider the syste(89) with fields taking values in a Grassmann algebra with two
anticommuting fermionic generators, , 7,. Expanding in the basi§l,r,,7,, 7,75},

U=Ugt+ 77Uy, &=+ 1és,

(54)
Mm=mMo+ 717, My, 7=T7171+ 7272,
where the functionsiy,u;,mg,mq,¢,,&,, 71,7, are all standard, we obtain the system
Mot = —2MgUox— UpMox,  Mo=Uo— Uoxx: (59
M= 3Uox7i— 2Mofix—UoTix, Mm=&—&ixx, 1=12, (56)
M= — 2MyUox— 2MgUy1x — UgMyx— U3 Moy
+2(mér— méD) + 5 (Mixéox— M2xér),  ME=Up—Ugyy. (57
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Supersymmetry26) tells us that given a solutiony,my of (55), we can solve the remaining
equations by taking; = «;ug, ;= aimqg (i=1,2), u;= Bug, andm,; = Bmy, , Wherea,,a,,[ are
arbitrary constants.

We handle the systert65)—(57) following the procedure of the previous section. Writing
my=p? and changing coordinates ¥@,y;, the system can be written as

1\ p\’
up=|=|, up=p?— (—) : 58
0 (p) 0=pP°—p 0 (58
3nip 27, (377ip 257i>' .
' —Z3, G=nmitpl - 5|, i=12, 59
&i p4 p3 &=ni+p p3 p2 (59

8(m17m2— ﬁzﬂl))'
3p°

ml)' A(mymo— ném))'
— | =—(2up)’ + ’
( p ( lp) 3p3

, (60)

m;=Uu;—p(puy)’.
Applying the WTC Painlevéest to this is a mammoth task, so instead we consider the Galilean-
invariant reduction and apply the Painletest at this level. The Galilean-invariant reduction is
obtained, as usual, by restricting all functions to depend on the single varialylg— vy, alone.
Evidently the first equations of bot{68) and (60) can be integrated once immediately. Then
eliminatingug from (58), & from (59) andm; from (60), we obtain

P’y p ¢ 1
—| ===+ =-5, 61
(p v p p? ey
., 9" , (11p 5¢; 4 13p'% | 3p’(2p 3¢; 3 p'? _
7 _%Wi'F(E_T*‘F"’Z—pz (e 7_T+F+F 71=0, I—l,(Zbiz)
u”+p—,u’+ Q—i)u =d +i( 5= 7271) (63
1 p 1 v pz 1= U1 p3 M2 M271)»

wherec,,d; are integration constants. The equation fi¢z) may be integrated again after mul-
tiplying both sides byp'/p; this gives

2
p'?=1-2cip+cop®~ —p, (64)

wherec, is another integration constant. This equation is well known in KdV theory. Its general
solution can be written in terms of the Weierstrasfunction,

p(z)=—2vp(2)+ §Cyv, (65)

where the periods qf are determined by the coefficierts,c,,v. Using(64), the coefficients in
(62) can be simplified. Further, we know from supersymmetry that this equation has a solution
7= p>. Substitutingz; =p?q; the equation becomes a second order equationfor

" 3p’ n 3p 3 C2
4t Zp +(_5_2_pZ+?

q/=0, i=1.2. (66)

Supersymmetry(26) allows a reduction of the order @¢63) as well. It implies thatu;=p’/p,
7;=p? is a solution. So, writingi;=rp’/p, ;= p2q; in (63) yields a first order equation far':

n 4p2 1 r’ p ! !
r'+ Czp_T_B F=F(d1+4p(Q1Q2—Q2Q1))- (67)
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Multiplying by the integrating factop’?/p and integrating, we obtain

r'= % d1p+dz+4f (0102~ 020;)pp’ dz|, (68)
whered, is a further constant of integration.

Thus the Galilean-invariant reduction of the second deconstruction of super-CH takes the
form of the three equation®4), (66), (68), to which we now apply the Painléwest. All substi-
tutions hitherto have been ones which do not interfere with the test. Equédomas movable
double poles and movable simple zeros. Near a double palg #te series solution contains only
even powers of{—z;),

54 4
—+ CZU - 1&:102

_ 2v Cov 1201—C§v ) A 69
p(z)= mﬂ-?‘f‘l—zo(z Zg)“+ 3024 (z—zp)*+..., (89
and near a simple zero a§,
1 , 1 ; 16 .
p(z)=t(z—zo)—§c1(z—zo) igcz(z—zo ~ %4 ;+clc2 (z—2zp)*+.... (70

At both the zeros and poles @f Eq. (66), which is just a linear third order ODE, has regular
singular points. Checking the Painlepeoperty for this reduces to doing the necessary Frobenius—
Fuchs analysis at these regular singular points to check that no logarithmic singularities in the
solutionsg; arise. Finally, Eq(68) gives an explicit formula for involving two quadratures. Here
the necessary analysis involves writing series expansions for the integrands near the zeros and
poles ofp, and checking for the absence of 44z;) terms, which would give rise to logarithms
on integration. We do not present all these calculations in detail; with the aid of a symbolic
manipulator they are quite straightforward. We conclude that the Galilean-invariant reduction of
the second deconstruction of super-CH has the Pairgesgerty.

We note, in conclusion, that two of the equations we have encountered are interesting variants
of the Lameequation: In(66), the substitutiorg, =p~*h; yields

p ¢ ¢ 7

3

L N T

)hiZO, (77)

and similarly, on writingu;=p~ Y%, the homogeneous part 3) takes the form

3 c 3
—p——z——z)kzo. (72)

k+v 4 4p

By the arguments above, the latter is integrable by quadratures.

VI. SUPERPEAKON SOLUTIONS

As mentioned in the Introduction, one of the intriguing features of the CH equation is the
existence of peakon solutions. One would hope that super-CH shares this property. However,
peakon solutions are weak solutions, with a discontinuity in the first derivative; and the action of
supersymmetry on such functions, for a general underlying Grassmann algebra, yields objects
which are not regular enough to be considered as weak solutions. So, CH peakon solutions do not
admit a general supersymmetrization. The above argument does not hold in the first deconstruc-
tion, because if there is only one fermionic generator, the supersymmetry transfort2éjidoes
not involve anx-derivative. So such supersymmetrized peakon solutions of the super-CH system
(39 do exist if the fields are restricted to take values in a Grassmann algebra with only one
fermionic generator.
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Consider Eqs(40) of the first deconstruction. Supersymmetry implies thatufnf) is a
solution of the first equation if40), then & =cu, n;=cm (wherec is a constantgives a
solution of the second equation. Thus, for example, the spdral/eling-wave peakon solution of
CH, u=v exp(—|x—ut]), can be supersymmetrized, as can any multipeakon solution. In fact, there
also exist more general superpeakons. The superposition ansatz,

u(x,t)=iEN1 pi(t) exp(—[x—ai(D)]), (73)
N
E000=2, ri(t) exp(— [x—ai(v))), (74)
gives a solution of the syste(d0) provided the functions;(t),p;(t),r;(t) (i=1,... N) satisfy the
ODE system,
N
Qit=j§=:1 p; exp(—[ai—q;]), (75
N
Pic= 2, sgrici—a;)pip; exp— i —q]), (76)
N
ritzajzl’ sgr(q;—q;)(pirj+p;jri)exp —|di—q;)), (77)

where the primed sums range over valueg #fi. Equations(75) and (76) are the conditions
which determineu of the form(73) to be a multipeakon solution of CH. They describe geodesic
motion on anN-dimensional surface with coordinates' and form an integrable Hamiltonian
systent® The further equationé77) are linear equations for the functions Clearly, taking the
ri=cp; for some constant gives a solution, these being the supersymmetrized multipeakon
solutions discussed befor®lore general solutions certainly exissince the systertir5)—(76) is
integrable, integrability of the addition& linear equationg77) depends on the existence Nf

—1 independent conserved quantities depending om;th&/e have not settled this question in
general, but we note thax ,r; is a conserved quantity, just as the total momentijin,p; is also
conserved. This suffices for integrability whéh=2, in which case the remaining equation for
r,—r, can be integrated explicitly. Note that unlike the existence of the superpeakons which arise
in virtue of supersymmetry transformations of CH peakons, the existence of this extra conserved
quantity depends critically on the coefficients of thgevolution equation ir{40). Even if the full
superpeakon systefT7) proves not to be fully integrable, the geodesy and supersymmetry con-
ditions have certainly picked out an equation with some integrability propdcdfeRef. 19.

VIl. OUTLOOK

In this paper we have examined fermionic extensions of the Camassa—Holm equation. In
particular we have identified the super-CH syst%), which, for low dimensional Grassmann
algebras displays some integrability properties and has peakon-type solutions. Further investiga-
tion is needed to determine whether the super-CH system is fully integrable.

Our work provides a further instance of integrability properties arising in the context of
geodesic flows on a group manifold, and in particular provides some evidence that supersymmetric
geodesic flows whose bosonic part is integrable must also be integrable.

We note in closing that the KRand super-KPsystems have yet to be presented as geodesic
flows. If such a presentation exists, it would have a bearing on the question of whether there is a
KP-type higher dimensional generalization of Camassa—Hahising in a way similar to that in
which KP generalizes KdV/
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