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We study a family of fermionic extensions of the Camassa–Holm equation. Within
this family we identify three interesting classes:~a! equations, which are inherently
Hamiltonian, describing geodesic flow with respect to anH1 metric on the group of
superconformal transformations in two dimensions,~b! equations which are Hamil-
tonian with respect to a different Hamiltonian structure and~c! supersymmetric
equations. Classes~a! and ~b! have no intersection, but the intersection of classes
~a! and~c! gives a system with interesting integrability properties. We demonstrate
the Painleve´ property for some simple but nontrivial reductions of this system, and
also discuss peakon-type solutions. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1330196#

I. INTRODUCTION

Recently there has been substantial interest in the Camassa–Holm~CH! equation:1,2

ut2nuxxt5kux23uux1n~uuxxx12uxuxx!. ~1!

This equation has been proposed as a model for shallow water waves. It is believed to b
grable, having a bi-Hamiltonian structure, as was first observed by Fokas and Fuchsstein3 12
years prior to Camassa’s and Holm’s work. Due to the nonlinear dispersion term,uuxxx , it
exhibits more general wave phenomena than other integrable water wave equations such a
In particular, whenk50 it admits a class of nonanalytic weak solutions known aspeakons, as
well as finite time blow-up of classical solutions.1

Geometrically, the relationship of CH to KdV is rather deeper: Both are regularizations o
Euler equation for a one dimensional compressible fluid~Monge or inviscid Burgers equation!,

ut523uux . ~2!

A solution to this equation describes a geodesic on the group of diffeomorphisms of the
Diff( S1)4 with respect to a right-invariant metric induced by anL2 norm,*u2 dx, on the associ-
ated Lie algebra. If the group is centrally extended to the Bott–Virasoro group, the KdV equ
arises.5–8 On the other hand, if the metric is changed to one induced by anH1 norm, *(u2

1nux
2)dx, the CH equation arises.9–11 Both these ‘‘deformations’’ have a regularizing effect o

solutions of~2!, which exhibit discontinuous shocks.
Thus KdV and CH arise in a unified geometric setting; both are geodesic flows whic

integrable systems.~Here, and henceforth in this paper, when we refer to a ‘‘geodesic flow’’

a!Electronic mail: devchand@mpim-bonn.mpg.de
b!Electronic mail: schiff@math.biu.ac.il
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mean the evolutionary PDE which can be formally associated—in the manner we will see in
II—with any inner product on the Lie algebra of a diffeomorphism group, and which, at lea
the cases mentioned above, is known to describe geodesic flow, in the usual sense of the
with respect to the correpsonding right-invariant metric on the group. In the case of a genera
product, the existence of the corresponding geodesic flow, in the usual sense of the ph
highly nontrivial.! The following important question arises: What features of the underlying
ometry give rise to integrability? In general, geodesic flows arenot integrable: the Euler equatio
for fluid flow in more than one spatial dimension is an example.4 Indeed, for the latter, Arnold ha
suggested a relationship between negative sectional curvatures and nonpredictability of th
We feel that it ought to be possible to identify some other geometric property that ‘‘cau
integrability. In a remarkable recent paper,12 Fringer and Holm have shown that certain featu
usually considered to be hallmarks of integrable systems, such as elastic scattering and asy
sorting according to height, in fact, appear in geodesic flows on Diff(S1) with respect to a large
class of metrics. Thus, there may well be a hierarchy of geometric structures correspond
various degrees of integrability.

One further example of an integrable bi-Hamiltonian system arising as a geodesic flo
been discussed by Ovsienko and Khesin.5 Using the superconformal group with anL2 type metric,
they obtained the so-called kuper-KdV system of Kupershmidt.13 This is a fermionic extension o
KdV: it describes evolution of functions valued in~the odd or even parts of! a Grassmann algebra
In fact, as we will see below, taking a generalL2 type metric on the superconformal group giv
rise to a one parameter family of fermionic extensions of KdV, which includes not only ku
KdV, but also the super-KdV system of Mathieu and Manin–Radul.14,15The latter is integrable: it
has only a single Hamiltonian structure, but unlike kuper-KdV it is supersymmetric, a pro
which is widely believed to contribute to integrability. It remains a mystery as to why, of the
parameter family of geodesic flows associated withL2 type metrics on the superconformal grou
only two specific choices of the parameter give rise to integrable systems.

Our main purpose in this paper is to investigate geodesic flows obtained fromH1 type norms
on the superconformal group; more generally we consider the following family of fermi
extensions of CH:

ut2nuxxt5k1ux1k2uxxx1b1uux1b2uxuxx1b3uuxxx1g1jjxx1g2jxjxxx1g3jjxxxx,
~3!

j t2mjxxt5s1jx1s2jxxx1e1uxj1e2ujx1r1ujxxx1r2uxjxx1r3uxxjx1r4uxxxj.

Hereu(x,t) andj(x,t) are fields valued, respectively, in the even and odd parts of a Grass
algebra, and$n,m,k1 ,k2 ,b1 ,b2 ,b3 ,g1 ,g2 ,g3 ,s1 ,s2 ,e1 ,e2 ,r1 ,r2 ,r3 ,r4% are parameters. By
rescalingu andj it is possible to setb1523 andg152 ~assuming that they are nonzero!, and we
shall do this throughout. In addition it is possible to eliminate up to two further paramete
rescaling the coordinatesx,t.

We derive three interesting classes of systems of the form~3!. In Sec. II, we consider geodesi
flows on the superconformal group with anH1 type metric; the resulting systems have a natu
Hamiltonian structure, or more precisely, since the fields are Grassmann algebra valued, a
Hamiltonian structure. In Sec. III we identify a class of systems having a different Hamilto
structure. Unfortunately the latter has no intersection with the class of Sec. II, so there do
seem to be a bi-Hamiltonian fermionic extension of CH. In Sec. IV we consider systems o
form ~3! that are invariant under supersymmetry transformations betweenu andj. This class has
nontrivial intersections with both the classes of Secs. II and III. In particular there is a un
supersymmetric geodesic flow which is a candidate for being a new integrable system. We c
equationsuper-CH. In Sec. V we show that two reductions of super-CH have the Painleve´ prop-
erty, which is positive evidence for integrability. In Sec. VI we look for peakon-type solution
super-CH; as for CH, multipeakon solutions arise from the solutions of a system of ODEs, b
integrability of this unfortunately remains unclear.
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Super-CH is a supersymmetric geodesic flow whose bosonic part is integrable. While
paper we do not fully establish integrability of super-CH, we regard it as an interesting tes
to determine whether in general supersymmetric geodesic flows with integrable bosonic par
be integrable.

A trivial integrable CH system of the form~3!, which is not incorporated in the classes
Secs. II, III, and IV, and which we shall not discuss further, is the odd linearization of the bo
CH system~1!:

ut2nuxxt5kux23uux1n~uuxxx12uxuxx!,
~4!

j t2njxxt5kjx23~ju!x1n„juxxx1ujxxx12~jxux!x….

Replacingu by u1 k/3 and considering the limitn→0, k→`, with nk53, yields the system

ut523uux1uxxx ,
~5!

j t523~ju!x1jxxx .

This trivial fermionic extension of KdV has appeared often in the literature~see, e.g., Ref. 14!.

II. GEODESIC FLOWS ON THE SUPERCONFORMAL GROUP

An inner product̂ • , •& on a Lie algebrag determines a right-~or a left-! invariant metric on
the corresponding Lie groupG. The equation of geodesic motion onG with respect to this metric
is determined as follows.4 Define a bilinear operatorB: g3g→g by

^@V,W#,U&5^W,B~U,V!&, ; WPg. ~6!

Then geodesics are determined by solutions of the ‘‘geodesic flow,’’

Ut5B~U,U !. ~7!

In our case,g is the NSR superconformal algebra, consisting of triples„u(x),w(x),a…, whereu is
a bosonic field,w is a fermionic field anda is a constant. The Lie bracket is given by

@~u,w,a! , ~v,c,b!#5S uvx2uxv1
1

2
wc , ucx2

1

2
uxc2wxv1

1

2
wvx ,

E dxS c1uxvxx1c2uvx1c1wxcx1
c2

4
wc D D , ~8!

wherec1 ,c2 are constants. On this algebra, anH1 type inner product is given by

^~u,w,a! , ~v,c,b!&5E dx~uv1nuxvx1aw ]x
21c1amwxc!1ab

5E dx~uD0v1wD1c!1ab, ~9!

where

D0512n]x
2 , D15a~]x

212m]x!, ~10!

andm,n,a are further constants, all assumed nonzero.~See Ref. 5 for the definition of the natura
fermionic extension of the standardL2 inner product, to which the above reduces ifm5n50. The
natural fermionic extension of the standardH1 inner product is constructed, as for pure boso
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



m-

We
n
f the

263J. Math. Phys., Vol. 42, No. 1, January 2001 The supersymmetric Camassa–Holm equation

Downloaded
systems, by taking the sum of theL2 inner product for the functions involved with theL2 inner
product for the derivatives of the functions involved.! Writing U5(u,w,a) , V5(v,c,b), we find
B(U,V)5(B0 ,B1 ,0), where

D0B0~U,V!52~2vx D0u1v D0ux1 3
2 cx D1w1 1

2 c D1wx!21a~c1vxxx2c2vx!,

~11!

D1B1~U,V!52S 3

2
vx D1w1v D1wx1

1

2
c D0uD1aS c1cxx2

c2

4
c D .

The geodesic flows are therefore conveniently written in the form

D0ut5D0B0~U,U !,

D0w t5D1B1~U,U !, ~12!

at50.

Writing w5ljx , wherel is a constant satisfyingl254/3a, this yields the system

ut2nuxxt5k1ux1k2uxxx23uux1n~uuxxx12uxuxx!12jjxx1
2m

3
jxjxxx ,

~13!

j t2mjxxt5
k1

4a
jx1

k2

a
jxxx2

3

2
uxj2S 11

1

2a Dujx1mujxxx1
3m

2
uxjxx1

n

2a
uxxjx .

Herek1 ,k2 are independent parameters determined bya,c1 ,c2 . This is evidently a 5 parameter
class of systems of type~3!.

Settingj to zero in ~13! yields the CH result of Refs. 9–11. If instead we choosem,n to
vanish, theH1 norm becomes anL2 norm; then choosingk1 to be zero and rescalingk2 to 1 we
obtain the following 1 parameter fermionic extension of KdV:

ut5uxxx23uux12jjxx ,
~14!

j t5
1

a
jxxx2

3

2
uxj2S 11

1

2a Dujx .

Modulo rescalings, the super-KdV of Mathieu and Manin–Radul is obtained by takinga51. The

kuper-KdV system arises by takinga5 1
4, the choice made in Ref. 5. Other values of the para

eters give systems which are not believed to be integrable~see however Ref. 16!.

III. HAMILTONIAN EQUATIONS

Like KdV, CH has a bi-Hamiltonian structure, and this accounts for its integrability.
might hope that for some choices of parameters the system~13! should also have a bi-Hamiltonia
structure. One Hamiltonian structure follows automatically from the geometric origins o
system.4 Explicitly, introducing new variables,m5u2nuxx andh5j2mjxx , ~13! takes the form

S mt

h t
D5P2S dH2

dm

dH2

dh

D , ~15!

where
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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P25S k2]x
31k1]x2]xm2m]x

1

2
]xh1h]x

2]xh2
1

2
h]x

3

4a S k1

4
1k2]x

2D2
3

8a
m
D , ~16!

and the Hamiltonian functional is given succinctly by theH1 inner product on the algebra,

H25 1
2 ^U , U&5 1

2 E dx~u21nux
21 4

3 ~jxj1mjxxjx!!. ~17!

This generalizes the so-calledsecond Hamiltonian structureof KdV and its fermionic
extensions.13,14 Checking ~15! is straightforward: the Euler–Lagrange derivativ
dH2 /dm , dH2 /dh are defined by

dH25E dxS dH2

dm
dm1

dH2

dh
dh D , ~18!

from which it follows immediately thatdH2 /dm5u anddH2 /dh 5 4
3 jx .

To investigate the possibility of systems amongst~13! having another Hamiltonian form, we
look at systems of the form

S mt

h t
D5P1S dH1

dm

dH1

dh

D , ~19!

where

P15S ]x~12n]x
2! 0

0 2
e1

2
~12m]x

2!D . ~20!

Heree1 is a constant andH1 is a functional generalizing the KdVfirst Hamiltonian,

H15E dxS 2
1

2
u32

b3

2
uux

22
k2

2
ux

21
k1

2
u21

s1

e1
jjx1

s2

e1
jjxxx

12ujjx1~g22g3!ujxjxx1g3ujjxxxD . ~21!

This is the most general functional of this type, up to rescalings ofu and j. Since dm5(1
2n]x

2)du, we have (12n]x
2)(dH1 /dm)5 (dH1 /du), and similarly (12m]x

2)(dH1 /dh)
5 (dH1 /dj). Thus Eqs.~19! take the simple form

ut2nuxxt5]xS dH1

du D5k1ux1k2uxxx23uux1b3~2uxuxx1uuxxx!

12jjxx1g2jxjxxx1g3jjxxxx,
~22!

j t2mjxxt5e1S dH1

dj D5s1jx1s2jxxx1e1~uxj12ujx!1e1~2g32g2!ujxxx

1
3

2
e1~2g32g2!uxjxx1

1

2
e1~4g32g2!uxxjx1

1

2
e1g3uxxxj.
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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This is a 10 parameter class of systems of the form~3!. Comparing with~13!, we see that the only

bi-Hamiltonian systems occur when$m5n5b35g25g350, e152 3
2, s15k1 , s254k2%,

which is equivalent to~13! with $m5n50 , a5 1
4 % , i.e., the kuper-KdV system. Thus, no ne

bi-Hamiltonian systems arise.
We note that the systems~22! can be obtained from a Lagrangian. Introducing a potentiaf

defined byu5 f x , they are Euler–Lagrange equations for the functional

L5E dxS 1

2
~ f x2n f xxx! f t1

1

e1
~j2mjxx!j t1

1

2
f x

31
b3

2
f xf xx

2 1
k2

2
f xx

2 2
k1

2
f x

22
s1

e1
jjx

2
s2

e1
jjxxx22 f xjjx1~g32g2! f xjxjxx2g3f xjjxxxD . ~23!

IV. SUPERSYMMETRIC EQUATIONS

Define a fermionic superfieldF(x,q)5sj1qu and superderivativeD5 ]/]q 1q]x , where
s is a nonzero parameter andq is an odd coordinate. The most general superfield equation ha
a component content of the form~3! is the 8 parameter system,

~12nD4!F t5k1D2F1k2D6F2
2

s2 FD3F1S 2

s2 23DDFD2F1S g3

s2 1b3DDFD6F

2
g3

s2 FD7F1S b31
g32g2

s2 DD2FD5F1S b22b31
g22g3

s2 DD3FD4F,

~24!

where$n,s,k1 ,k2 ,b2 ,b3 ,g2 ,g3% are parameters. The component equations are

ut2nuxxt5k1ux1k2uxxx23uux1b2uxuxx1b3uuxxx12jjxx1g2jxjxxx1g3jjxxxx,
~25!

j t2njxxt5k1jx1k2jxxx2
2

s2 uxj1S 2

s2 23Dujx1S g3

s2 1b3Dujxxx

1S b22b31
g22g3

s2 Duxjxx1S g32g2

s2 1b3Duxxjx2
g3

s2 uxxxj.

These systems are by construction invariant under the supersymmetry transformations,

du5tjx , dj5
tu

s2 , ~26!

wheret is an odd parameter. The super-KdV limit, namely$n,b2 ,b3 ,g2 ,g3 ,k1% all zero, yields,
modulo rescalings, the one-parameter family of systems studied by Mathieu.14

By comparing~25! and~22! it is straightforward to extract systems which are both supers
metric and have Hamiltonian form~19!, ~20!. Taking s252 in ~25!, $n5m, s15k1 , s25k2 ,

e521% in ~22!, and$b252b3 , b35g22 5
2 g3% in both, we obtain the systems,

ut2nuxxt5k1ux1k2uxxx23uux1~g22 5
2 g3!~2uxuxx1uuxxx!

12jjxx1g2jxjxxx1g3jjxxxx,

j t2njxxt5k1jx1k2jxxx2uxj22ujx1~g222g3!ujxxx

1 3
2 ~g222g3!uxjxx1

1
2 ~g224g3!uxxjx2 1

2 g3uxxxj. ~27!
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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These may be expressed in superfield form~24! with the above choice of parameters. The ma
festly supersymmetric Hamiltonian form is given by

Mt5P̂1

dĤ1

dM
, M5F2nD4F, ~28!

with

P̂15D~12nD4!, ~29!

Ĥ15E dx dqS k1

2
FDF2

k2

2
D2FD3F2

1

2
F~DF!2

1
1

4
g3F~D3F!21

1

4
~g222g3!~DF!2D4F D . ~30!

Since the KdV reduction of~27! ~with k15g25g350) is not believed to be integrable, we ha
not explored this class of systems further.

In a similar fashion, we may look for choices of parameter sets for which the geodesic
of Sec. II are also supersymmetric. Comparing~13! with ~25!, we see that the choice$m5n, a
51 , k150% in the former and$s25 4

3, b252n, b35n, g252n/3, g35k150% in the latter, yields
the two-parameter system of supersymmetric geodesic flows:

ut2nuxxt5k2uxxx23uux12jjxx1n ~uuxxx12uxuxx!1
2n

3
jxjxxx ,

~31!

j t2njxxt5k2jxxx2
3

2
~uj!x1n S ujxxx1

3

2
uxjxx1

1

2
uxxjxD .

We shall call this system, withk250 andnÞ0, the supersymmetric Camassa–Holm equation
~super-CH!. The system~31! reduces to super-KdV, upon settingn to zero, and to CH, upon
settingj to zero and translatingu.

Not surprisingly, the systems~31! arise as geodesic flows precisely when the metric~9! on the
NSR superconformal algebra is supersymmetric. Then, the calculations of Sec. II can b
formed using superfields. Specifically, writingU5u1qf and V5v1qc , the bracket~8! takes
the form

@~U,a! , ~V,b!#5S UD2V2VD2U1
1

2
DUDV,c1E dx dq D2UD3VD , ~32!

and the inner product~9! may be written as

^~U,a! , ~V,b!&5E dx dq~UD21V1nD2UDV!1ab. ~33!

The superspace bilinear operatorB̂ is given byB̂„(U,a),(V,b)…5(B̂0,0), whereB̂0 satisfies

~12nD4!D21B̂05c1aD5V2 3
2 D2V~12nD4!D21U2 1

2 DV~12nD4!U2V~12nD4!DU.
~34!

Writing c1a5k2 andU5DF, the geodesic flows (Ut ,at)5B̂„(U,a),(U,a)… yield

~12nD4!F t5k2D6F2 3
2 ~FD3F1DFD2F!1n ~DFD6F1 1

2 D2FD5F1 3
2 D3FD4F!.

~35!
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We thus recover the subsystem of~24! having component content~31!. Equation ~35! has a
superfield Hamiltonian formulation,

Mt5P̂2

dĤ2

dM
, M5F2nD4F, ~36!

with

P̂25k2D52 1
2 DMD2D2M2MD2, ~37!

Ĥ25
1

2
^~DF,0! , ~DF,0!&5

1

2 E dx dqFDM . ~38!

V. PAINLEVÉ INTEGRABILITY OF SUPER-CH SYSTEMS

In this section we investigate, in more detail, the supersymmetric geodesic flow~31! with n
51 andk250,

mt522mux2umx12hj1 2
3 hxjx , m5u2uxx ,

~39!
h t52 3

2 hux2 1
2 mjx2uhx , h5j2jxx .

We shall consider the two simplest possible choices for the Grassmann algebra in which the
are valued, viz. algebras with one or two odd generators. Taking the algebra to be finite d
sional is a very convenient tool for preliminary investigations of systems with Grassmann alg
valued fields. Manton17 recently studied some simple supersymmetric classical mechanical
tems in this way and he introduced the term ‘‘deconstruction’’ to denote a component expa
in a Grassmann algebra basis. In Ref. 18 we investigate fermionic extensions of KdV in a s
fashion.

A. First deconstruction of super-CH

We first consider the super-CH system~39! with fields taking values in the simplest Gras
mann algebra with basis$1,t%, wheret is a single fermionic generator. In this case the fermio
fields may be expressed asj5tj1 , h5th1 , wherej1 and h1 are standard~i.e., commuting,
c-number! functions, as areu andm in this simple case. Sincet250, the fermionic bilinear terms
do not contribute and we are left with the system

mt522mux2umx , m5u2uxx ,
~40!

h1t52 3
2 h1ux2 1

2 mj1x2uh1x , h15j12j1xx .

Further analysis is simplified by changing coordinates as described in Ref. 19. Writingm5p2, the
first equation of~40! takes the formpt5(2pu)x , which suggests new coordinatesy0 ,y1 defined
via

dy05p dx2pu dt, dy15dt, ~41!

or dually, via

]

]x
5p

]

]y0
,

]

]t
5

]

]y1
2pu

]

]y0
. ~42!

Implementing this coordinate change and eliminating the functionsu and j1 , the remaining
equations forp andq[h1 are

p2ṗ92p~ ṗp91 ṗ8p8!1 ṗp8222p3p82 ṗ50, ~43!
 14 Dec 2001 to 131.220.120.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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q̇92
3p8

p
q̇82

3ṗ

2p
q91S 4p82

p2 2
2p9

p
2

1

p2D q̇1S 15p8ṗ

2p2 2
3ṗ8

p
2

p

2Dq8

13S ṗp912p8ṗ8

p2 2
4ṗp82

p3 2p8Dq50. ~44!

Here the dot and prime denote differentiations with respect toy1 andy0 , respectively. We note
~a! thanks to supersymmetry~26!, if p is a solution of~43!, thenq5p2 is a solution of~44!; and
~b! under the substitutionq5p3/2r , ~44! takes the substantially simpler form

ṙ 91S p82

4p2 2
p9

2p
2

1

p2D ṙ 2
p

2
r 82

3p8

4
r 50. ~45!

The system (43), (44) passes the WTC Painleve´ test.
Proof: Equation~43! is a rescaled version of the Associated Camassa–Holm equation of

19. The consideration of solutions withp(y0 ,y1);p0(y0 ,y1)f(y0 ,y1)n nearf(y0 ,y1)50, for
somen5” 0, yieldsn522 or n51 as the possible leading orders of Laurent series solutions.
need to perform the WTC Painleve´ test20 for both these types of series. The first type, name
Laurent series solutions exhibiting double poles on the singular manifoldf(y0 ,y1)50, have
already been considered in Ref. 21. These take the form

p5
2f8ḟ

f2 2
ḟ8

f
1p21p3f1p4f21..., ~46!

wheref,p2 ,p4 are arbitrary functions ofy0 ,y1 , and

p35
21

2f82ḟ2
„f82ḟ ṗ21f8ḟ2p282~f82f̈22f8ḟḟ81f9ḟ2!p2

2~f8ḟf̈92f8f̈ḟ92ḟf9f̈81f̈f9ḟ8!…. ~47!

We have, at present, no explanation of the remarkable symmetry of these expressions
interchange of the independent variables. The second type of solutions have a simple zero
singular manifoldf(y0 ,y1)50. They take the form

p56
f

f8
1p2f21p3f31..., ~48!

wheref,p2 ,p3 are arbitrary functions. The verification of the consistency of both these type
expansions is straightforward. This completes the WTC test for Eq.~43!.

It remains to look at Eq.~44!. Although linear inq, it is not automatically Painleve´. The
movable poles and zeros inp give rise to movable poles in the coefficient functions of the lin
equation forq, and we need to examine the resulting singularities ofq. If p has a pole onf
50, then nearf50 we havep;2ḟf8/f2, and Eq.~44! takes the form

q̇91S 6f8

f
1...D q̇81S 3ḟ

f
1...D q91S 4f82

f2 1...D q̇1S 11f8ḟ

f2 1...D q81S OS 1

f2D Dq50.

Thus the equation has a solution withq;fn if n(n21)(n22)19n(n21)115n50, giving n
524,22,0. It follows that in the case whenp is given by the series~46!, no inconsistencies will
arise near the double poles ofp if ~44! has a series solution of the form

q5
q0

f4 1
q1

f3 1
q2

f2 1
q3

f
1q41..., ~49!
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with q0 ,q2 ,q4 arbitrary. The consistency of such a solution can easilly be verified using a
bolic manipulator. UsingMAPLE we find that

q15
2f9q02f8q08

f82 . ~50!

The explicit expression forq3 is too lengthy to be given here.
Suppose now thatp has a zero onf50. Near this,p;6f/f8 and Eq.~44! has the structure

q̇92S 3f8

f
1...D q̇82S 3ḟ

2f
1...D q91S 3f82

f2 1...D q̇1S 15f8ḟ

2f2 1...D q82S 12f82ḟ

f3 1...D q50.

Thus ~44! has a solution withq;fn if n(n21)(n22)2 9
2 n(n21)1 21

2 n21250, giving n

5 3
2,2,4. Theappearance of a half-integer here is not considered a violation of the Painlev´ test

~see, e.g., Ref. 22!. The half-integer value ofn gives rise to a series solution of~44!, near a zero
of p, of the form

q5q0f3/21q1f5/21q2f7/21..., ~51!

with q0 arbitrary, andq1 ,q2 ,... determined byq0 @and the arbitrary functions arising in the seri
~48! for p#. The two integer values ofn tell us that we need to check the consistency of soluti
of ~44! taking the form

q5Q0f21Q1f31Q2f41..., ~52!

with two arbitrary functionsQ0 andQ2 . This is indeed consistent; usingMAPLE we obtain

Q1562f8Q0p22
1

3f82ḟ
~2f82Q̇012f9ḟQ01f8ḟQ0814f8ḟ8Q0!, ~53!

with the choice of6 depending on the choice in~48!. The general solution of~44! near a zero of
p, with three arbitrary functions, is a linear combination of the series~51! and ~52!. Thus the
system~43!, ~44! passes the WTC test. h

The WTC test is evidence for the complete integrability of the system~43!, ~44!. This in turn
suggests that super-CH indeed has some integrable content.

B. Second deconstruction of super-CH

We now consider the system~39! with fields taking values in a Grassmann algebra with t
anticommuting fermionic generators,t1 , t2 . Expanding in the basis$1,t1 ,t2 ,t1t2%,

u5u01t1t2 u1 , j5t1j11t2j2 ,
~54!

m5m01t1t2 m1 , h5t1h11t2h2 ,

where the functionsu0 ,u1 ,m0 ,m1 ,j1 ,j2 ,h1 ,h2 are all standard, we obtain the system

m0t522m0u0x2u0m0x , m05u02u0xx , ~55!

h i t52 3
2 u0xh i2

1
2 m0j ix2u0h ix , h i5j i2j ixx , i 51,2, ~56!

m1t522m1u0x22m0u1x2u0m1x2u1m0x

12~h1j22h2j1!1 2
3 ~h1xj2x2h2xj1x!, m15u12u1xx . ~57!
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Supersymmetry~26! tells us that given a solutionu0 ,m0 of ~55!, we can solve the remaining
equations by takingj i5a iu0 , h i5a im0 ( i 51,2), u15bu0x andm15bm0x , wherea1 ,a2 ,b are
arbitrary constants.

We handle the system~55!–~57! following the procedure of the previous section. Writin
m05p2 and changing coordinates toy0 ,y1 , the system can be written as

u085S 1

pD •, u05p22pS ṗ

pD 8
, ~58!

j i85
3h i ṗ

p4 2
2ḣ i

p3 , j i5h i1pS 3h i ṗ

p3 2
2ḣ i

p2 D 8
, i 51,2, ~59!

S m1

p2 D •52~2u1p!81S 8~ ḣ1h22ḣ2h1!

3p3 D 8
1S 4~h18h22h28h1!

3p3 D •,
~60!

m15u12p~pu18!8.

Applying the WTC Painleve´ test to this is a mammoth task, so instead we consider the Galil
invariant reduction and apply the Painleve´ test at this level. The Galilean-invariant reduction
obtained, as usual, by restricting all functions to depend on the single variablez5y02vy1 alone.
Evidently the first equations of both~58! and ~60! can be integrated once immediately. Th
eliminatingu0 from ~58!, j i from ~59! andm1 from ~60!, we obtain

S p8

p D 8
52

p

v
1

c1

p
2

1

p2 , ~61!

h i-2
9p8

2p
h i91S 11p

2v
2

5c1

p
1

4

p2 1
13p82

2p2 Dh i82
3p8

p S 2p

v
2

3c1

p
1

3

p2 1
p82

p2 Dh i50, i 51,2,

~62!

u191
p8

p
u181S 2p

v
2

1

p2Du15d11
4

p3 ~h1h282h2h18!, ~63!

wherec1 ,d1 are integration constants. The equation forp(z) may be integrated again after mu
tiplying both sides byp8/p; this gives

p825122c1p1c2p22
2

v
p3, ~64!

wherec2 is another integration constant. This equation is well known in KdV theory. Its gen
solution can be written in terms of the Weierstrass`-function,

p~z!522v`~z!1 1
6 c2v, ~65!

where the periods of̀ are determined by the coefficientsc1 ,c2 ,v. Using~64!, the coefficients in
~62! can be simplified. Further, we know from supersymmetry that this equation has a so
h i5p2. Substitutingh i5p2qi the equation becomes a second order equation forqi8 :

qi-1
3p8

2p
qi91S 2

3p

2v
2

3

2p2 1
c2

2 Dqi850, i 51,2. ~66!

Supersymmetry~26! allows a reduction of the order of~63! as well. It implies thatu15p8/p,
h i5p2 is a solution. So, writingu15rp8/p,h i5p2qi in ~63! yields a first order equation forr 8:

r 91S c2p2
4p2

v
2

1

pD r 8

p8
5

p

p8
~d114p~q1q282q2q18!!. ~67!
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Multiplying by the integrating factorp82/p and integrating, we obtain

r 85
p

p82 S d1p1d214E ~q1q282q2q18!pp8 dzD , ~68!

whered2 is a further constant of integration.
Thus the Galilean-invariant reduction of the second deconstruction of super-CH take

form of the three equations~64!, ~66!, ~68!, to which we now apply the Painleve´ test. All substi-
tutions hitherto have been ones which do not interfere with the test. Equation~64! has movable
double poles and movable simple zeros. Near a double pole atz0 , the series solution contains onl
even powers of (z2z0),

p~z!52
2v

~z2z0!2 1
c2v
6

1
12c12c2

2v

120
~z2z0!21

54

v
1c2

3v218c1c2

3024
~z2z0!41..., ~69!

and near a simple zero atz0 ,

p~z!56~z2z0!2
1

2
c1~z2z0!26

1

6
c2~z2z0!32

1

24S 6

v
1c1c2D ~z2z0!41... . ~70!

At both the zeros and poles ofp, Eq. ~66!, which is just a linear third order ODE, has regul
singular points. Checking the Painleve´ property for this reduces to doing the necessary Frobeni
Fuchs analysis at these regular singular points to check that no logarithmic singularities
solutionsqi arise. Finally, Eq.~68! gives an explicit formula forr involving two quadratures. Here
the necessary analysis involves writing series expansions for the integrands near the ze
poles ofp, and checking for the absence of 1/(z2z0) terms, which would give rise to logarithm
on integration. We do not present all these calculations in detail; with the aid of a sym
manipulator they are quite straightforward. We conclude that the Galilean-invariant reduct
the second deconstruction of super-CH has the Painleve´ property.

We note, in conclusion, that two of the equations we have encountered are interesting v
of the Laméequation: In~66!, the substitutionqi85p23/4hi yields

hi91
3

8 S p

v
2

c2

6
1

c1

p
2

7

2p2Dhi50, ~71!

and similarly, on writingu15p21/2k, the homogeneous part of~63! takes the form

k91S 3p

v
2

c2

4
2

3

4p2D k50. ~72!

By the arguments above, the latter is integrable by quadratures.

VI. SUPERPEAKON SOLUTIONS

As mentioned in the Introduction, one of the intriguing features of the CH equation is
existence of peakon solutions. One would hope that super-CH shares this property. Ho
peakon solutions are weak solutions, with a discontinuity in the first derivative; and the act
supersymmetry on such functions, for a general underlying Grassmann algebra, yields
which are not regular enough to be considered as weak solutions. So, CH peakon solutions
admit a general supersymmetrization. The above argument does not hold in the first deco
tion, because if there is only one fermionic generator, the supersymmetry transformation~26! does
not involve anx-derivative. So such supersymmetrized peakon solutions of the super-CH s
~39! do exist if the fields are restricted to take values in a Grassmann algebra with onl
fermionic generator.
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Consider Eqs.~40! of the first deconstruction. Supersymmetry implies that if (u,m) is a
solution of the first equation in~40!, then j15cu , h15cm ~where c is a constant! gives a
solution of the second equation. Thus, for example, the speedv traveling-wave peakon solution o
CH, u5v exp(2ux2vtu), can be supersymmetrized, as can any multipeakon solution. In fact,
also exist more general superpeakons. The superposition ansatz,

u~x,t !5(
i 51

N

pi~ t ! exp„2ux2qi~ t !u…, ~73!

j1~x,t !5(
i 51

N

r i~ t ! exp„2ux2qi~ t !u…, ~74!

gives a solution of the system~40! provided the functionsqi(t),pi(t),r i(t) ( i 51,...,N) satisfy the
ODE system,

qit5(
j 51

N

pj exp~2uqi2qj u!, ~75!

pit5( 8
j 51

N

sgn~qi2qj !pipj exp~2uqi2qj u!, ~76!

r it5
1

2
( 8
j 51

N

sgn~qi2qj !~pir j1pjr i !exp~2uqi2qj u!, ~77!

where the primed sums range over values ofj Þ i . Equations~75! and ~76! are the conditions
which determineu of the form~73! to be a multipeakon solution of CH. They describe geode
motion on anN-dimensional surface with coordinatesqi

1 and form an integrable Hamiltonia
system.23 The further equations~77! are linear equations for the functionsr i . Clearly, taking the
r i5cpi for some constantc gives a solution, these being the supersymmetrized multipea
solutions discussed before.More general solutions certainly exist. Since the system~75!–~76! is
integrable, integrability of the additionalN linear equations~77! depends on the existence ofN
21 independent conserved quantities depending on ther i . We have not settled this question
general, but we note that( i 51

N r i is a conserved quantity, just as the total momentum( i 51
N pi is also

conserved. This suffices for integrability whenN52, in which case the remaining equation f
r 12r 2 can be integrated explicitly. Note that unlike the existence of the superpeakons which
in virtue of supersymmetry transformations of CH peakons, the existence of this extra con
quantity depends critically on the coefficients of theh1 evolution equation in~40!. Even if the full
superpeakon system~77! proves not to be fully integrable, the geodesy and supersymmetry
ditions have certainly picked out an equation with some integrability properties~cf. Ref. 12!.

VII. OUTLOOK

In this paper we have examined fermionic extensions of the Camassa–Holm equati
particular we have identified the super-CH system~39!, which, for low dimensional Grassman
algebras displays some integrability properties and has peakon-type solutions. Further inv
tion is needed to determine whether the super-CH system is fully integrable.

Our work provides a further instance of integrability properties arising in the contex
geodesic flows on a group manifold, and in particular provides some evidence that supersym
geodesic flows whose bosonic part is integrable must also be integrable.

We note in closing that the KP~and super-KP! systems have yet to be presented as geod
flows. If such a presentation exists, it would have a bearing on the question of whether the
KP-type higher dimensional generalization of Camassa–Holm~arising in a way similar to that in
which KP generalizes KdV!.
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