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I. INTRODUCTION

Recent developments in string theory have revealed the need to study generalizations of
supersymmetry which lie beyond the realm of existing classifications of space—time supersymme-
try algebras. Space—time supersymmetry algebras/agraded super Lie algebras=gy® g,
having evengy, and oddg, subspaces, where the even pgyt(M)®(P)ah includes the gen-
erators of spacetime Lorentz transformatidvis translationsP, and a subspace of additional
“internal symmetries”h. The usual relation between spin and statistics implies that generators of
g, transform as half-integer spin representations under the Lorentz transformations. Traditional
classifications of spacetime supersymmetries were based on assumptions arising from the addi-
tional requirement that the supersymmetries act on either S-matrix eléroerts some physical
Hilbert space of particle statésn particular these restrict the maximum spin of the generators to
be one and require the internal symmetries to be “central” in the sense that they commute with all
other generators. Moreover, in four dimensional space—time, the realization of these algebras on
physical states restricts finite dimensional representations to contain fields of spin less than or
equal to two and the maximal numbkdrof independent superchargesgpnto eight.

There are several instances in which spacetime supersymmetries and representations more
general than those allowed in traditional settings occur. In M-theory, for instance, the internal
symmetries) do not commute with the Lorentz generatésse e.g., Ref.)3In N-extended super
self-dual theories in four dimensional Euclidean space, finite dimensional representations contain-
ing fields of spin higher than two do occur and there are consistent theories for any chhice of
In N=2 string theory, the absence of the usual relation between spin and statistics gives rise to a
realization of a purely even variant of supersymm@oy an infinite dimensional space of string
states. There are indications that this statistics-twisted version of supersymmetry is related to an
N—o extension of the super Poincaaégebra, which has a realization on A= self-dual
Yang—Mills supermultiplef. These examples show that there seems to be room for the study of
more general superalgebras containing @Neextendedl super Poincaralgebra or the super de
Sitter algebra as a subalgebra or as a contraction. The work of Fradkin and VésijewRef. 7
on higher spin superalgebras on anti de Sitter space is also noteworthy in this respect. The present
paper is a further contribution in this direction.

In a series of recent papérwe recently developed an approach to the study of generalized
super-Poincarelgebras containing generators having spins higher than one. We showed that,
contrary to common belief, such superalgebras indeed exist and are realizable in terms of vector
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fields on generalized superspaces having coordinates of higher spin which commute or anticom-
mute in accordance with their statistics. We constructed numerous examples of generalized supe-
ralgebras with generators having spins up to two.

In the present paper, we address ourselves to another type of generalization, concerning the
question of higher multiplicities of certain representations in the superalgebra. Theoried with
supercharges are of special interest. In these, there does not seem to be any principle which
distinguishes some of the supercharges from the others and field theories containing such super-
charges are usually taken to be invariant under permutation of the supercharges. In this paper, we
impose this permutation invariance at the level of the superalgebra, introducing what we will call
democratic superalgebraOur purpose here is not a complete classification of possibilities;
rather, we aim to show that under the impositiondgfmocracy even in the widely familiar
four-dimensional case, an investigation of super Jacobi identities yields some potentially interest-
ing democratic spacetime superalgebras which lie beyond known classifications. The main novel
feature which arises in our approach is that the algebra of Lorentz sd¢algeserated by the
superderivations is no longer either Abelian or in the center. &fthough democracy implies the
Coleman—Mandula requiremérthat the scalars commute witeven translations, they possibly
rotate spinor derivations among themselves.

II. DEMOCRATIC SUPERALGEBRAS

A. Four-dimensional space—time supersymmetry

Since our aim is to generalize traditional discussions and since our considerations are purely
algebraic, we restrict ourselves to the general complex setting. The question of the appropriate real
form depends in any case on the signature of the space—time on which the superalgebra is to be
realized; and this depends on the specific context of the application. We consider the Lorentz
group to be SO(4)), with complex generatorsl,,;,M,;, where there is of course no conjuga-
tion between dotted and undotted spinor indices.

We shall consideiZ,-gradedN-extended complex supersymmetry algebras of the fgrm
=go® g1, With even part

90:<Maﬁdeﬁivad>®bv (1)

whereV ,;, denotes the derivative vector fields generating translationsphdadhe subspace of
internal symmetries,

h=(Y,Zi=-2"; > Yi=0, X Z1=0,i,j=1,..N), (2)

spanned by a set of Lorentz scalar generatd¥s; 1) Y's and N—1)(N—2)/2Z’s.

The odd subspacg, is spanned byN copies of the two types of spinor representations of
so(4(), namely, the A fermionic operatorsV‘a,V'd (i=1,...N), which together with the
bosonic vectorial operatdr 5, form the set of superderivations acting onNextended super-
space. We denote the vector space of superderivations,

D=(V 3,V V) =Dy® Dy,

where the even and odd parts are spanned by the vector and spinor derivations, respectively. The
vector spaceD may be extended to include vector fields having higher spins on the lines of the
consideration in Ref. 8. For simplicity, however, we restrict ourselves here, to the consideration of
operators having spin less than or equal to one.

We shall assume that all the elementgihave commutation or anticommutation relations in
agreement with their statistics and with covariance under the Lorentz transformations with gen-

eratorsM 5, M.z, a,B,&,8=1,2 satisfying
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[MaﬁiMyﬁ]: éﬁyMa5+ 6a7M55+ Eﬁ&M a7+ eaﬁMB}H
[Mos,Mysl=€pM o5+ €0 M5t €55M o+ €,5M s, 3
[Mgp.M;5]=0.

Lorentz covariance, in particular, determines all commutators of the basic operators with the
namely,

(Mg V= €0 Vit €5,V [Mog,Vi1=0, [M,4,Yi1=0, [M,4,2"]=0,

. . A ’ (4)
[M5,V5]= ayvﬁﬂgyv'd, [M3.V,1=0, [M;;,Yi1=0, [M,j,Z]=0.

Given these commutation rules, all Jacobi identities involving at leastMwoare automatically
satisfied. Lorentz covariance also yields restrictions or{dh&)commutators of any two elements
of g. These guarantee that the Jacobi identities involving at leastvbrage also automatically
satisfied. o

The spinor derivation¥!, ,V'(-y are taken to transform under some group of automorphiEms
of the superalgebrag,

TV, T 1=UlV), TV T i=VIV], (5)

where the matriced),V are representations of the group elemeéntin this paper, we make
particular use of discrete transformations, takih@ndV to be permutation matrices on the index

i. When the automorphism group is continuous, the action of the group can be expressed in the
form of commutation relations with the generators of the group: for instance, the scalar generators
Y or Z which appear in32)—(37).

We_sha_ll also allow the possibility of generating scalars by anticommuting spinor derivations,
e.g.{V.,.,V }~e BZ” Traditionally! such Lorentz scalars are always taken to be central with
respect toD In our approach we do nat priori restrict the Lorentz scalars to be central. In fact
they rotate the spinor denva‘uofVé ,V' just as the automorphisn(S). This is the main source of
our novel examples of spacetime supersymmetrles

B. Democracy

1. Permutation invariants

We shall impose what we call democracy: we require the supercommutation relations to be
invariant under the combined permutations of thadices ofV!, and ofV'd. The group gener-
ating democracysy, is the diagonal group of two groups of permutations acting independently on
the two sets of spinors, with permutation matrit¢s V in (5).

The Clebsch—Gordon coefficients of the democratic group may be described as follows. The
permutation invariant coupling amonm(p>1) i type indices can be associated to Young-type

diagrams. Given a Young diagram wigh(p>0) boxes denotefim|=[my,m,,...,m], With m;
boxes in thejth row (Z;m;=p,m; ;<m;), we associate with it @-index tensoré"[ﬁr'1 m, mpl
defined by

ml WI2 WI3

IO S OO N TP . 1 i . . . .
2 = if i{=...=i =...= ki=...=k,, ,...=0 otherwise.
[mlmz...mp] L e J1 ‘1”’2’ L 32

(6)
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Note that these tensors clearly do not have the standard Young diagram symmetries. Frafn these
tensors, by permuting indices, all the invariant tensors of the permutation group can be con-
structed. For a Young-type diagram withboxes, ifn, is the number of rows having length,
=1, the number of independent invariant tensors is givempByIl,m.!'I1;n!).

~ Some of these tensors have a simple interpretation in terms of the familiar Kronecker tensor
&' In particular,

kI ki
0[2] 5|] glj 5|]5kl I[] mn_ 5|j§k|5mn (7)

correspond to the invariant tensors of N@( These are special cases of the identities,

i1 Im1m1+l Im1+m2"_ i Im1 m1+1 m1+m2 .
[mymymg:-] a[ml] 0[m2] Ofmay - (€S

One further useful identitywith summation over repeated indices assunisd
0y 01 =0l (9)
which is valid for allm>0 if we define
0[0] :=N. (10)

2. Trace conditions

We note that the tenscﬁ’[ll can be used to decompose tensors into their permutation irreduc-
ible parts. In particular, a vectdf has two irreducible components given by the scalar projection
Sa

S=6{y,V! 11

and its complementary piece, of dimensidn-1,
i—\i 1,

Similarly, a general antisymmetric tenspf can be decomposed under the permutation group into
two irreducible pieces. A piece of the for¥i is obtained by the projection

Yi= 6T, (13
which satisfies
0l Y =0. (14)

The other irreducible piec, of dimension N—1)(N—2)/2, can be defined by
20 =T — (61 Y1 = 6y Y) (15)
and satisfies
01,2 =0. (16)

We will generically call conditions imposed on the structure constants which guarantee the irre-
ducibility of the relevant tensorsace conditions The tensorsy in (12) and Z in (15) will be
calledtrace-free
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Since theY and thezX' need to satisfy the trace-free conditiqi§) and(14), it is convenient
to use some partially trace-free combinations of the invargateinsors with certain symmetries,

1
Jo.—pll _— _pl
t2 =0~ Oy

ijk

1 i
thiy: —9 21] N < 0r111)

K k Kj K K
tI[Je,] ” (19[2“1]+ al[le + ‘9I[211
(17

kI Kl okjil kI Kjil IKj Klij
I[122 0|[122 o 2”2] (9”211] ‘9[2“11] 0I[21]1 + 9[2‘11])
1 .

kI Kli KIj kmil | pikmil kI Klj ikmil | gikmil

IJ32]m' afszlm al[szlm 9{3?‘ + 9‘[3?1 (9][31|ﬂ - 9‘[31J£T]] o 3T1'] + 9I3r1n1])
1 jmilk imjlk jkilm __ pikjlm _ pjkiml ikjml _ plkimj Ikjmi mkil j
+ 1§ (1221 ~ 0221+ Oz21) — O221) — G221y + Op221) — Op22a) + Op22) + Op221)

kili Kil kil pilki IKj
— O221)) — N2(0[?11|1 al[?ln] 02111yt 0I[21T1)

kmil kmil kmil Imikn_, gilmik knil knjl iInik ilnjk kmil
tfz?zln'—alz?zl]n_elzrznzj]n 9f2n3|21n+9|[2n£]2]n 0{22|2m+‘9l[22]2m aj[znzlz]m_el[znz]z]m__(‘9j[2r2nllln

ikmjln jlmikn ilmjkn jknilm iknjlm Inikm ilnjkm limkjn kimljn
— 012211 — Ol2211) T Oj2201) — Ofaza1) + Op20ia) T 6”[2211 012911 — Op2211] + 012211)

+9I]mk|n 0k]m||n+almkjm aklnljm eljnklm 0kjn||m+0]mknll 0|mknj| ajmlnlk

[2211] [2211] [2211] — Y[2211] [2211] [2211] [2211] ~ Y[2211] [2211]
Injk kmil k 'I Imik Imjk
+ 03514 — Of5s1h) + O5501) + {5312 — 0351
These satisfy the useful identities,
tha+ =0, (18
s+ 135 m=0, 19
ij im _ 1iknipypjnm_
tiogtis — ity — SRt "=0, (20
Iel Iel kjl kpnl
) 3 — 5 t3E + FtishtBsh =0, (21)
1
knm njkskim pigygjpm_—_
S S + ot =0, (22
B+ BB (R =, 23
S+ P Y+ 55 R = . (24)

C. The supercommutators of the superderivations

Using the invariantd andt tensors, the most general permutation invariant and Lorentz
covariant supercommutation relations of the superderivations may be expressed,
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{V,.Vi= (azt[zﬁanei[jn])vaa, (29
{Vi. 5} (bzt[z]+b110i[j11])Ma5+ faﬁbzl(ti[gil]_t{gil])Yk"' faﬁbzzti[gizl]zkla (26)
{V ! } (bzt[z]+b110[11])Ma5+ Ea5b21(t[21] t[21])Yk+ faﬁgzzti[gjzl]zkla (27)
[V.,.V 5= fag(Czti[jz] + C119i[j11])VJ'B : (28
[Viiy Vsl= Ed'ﬁ(gzti[jz] +6119i[j11])vfg ; (29
[Vaa Vppl=r(€apgMopt €,5Map). (30)
Comments:
a e equations involvingy' andZ''= —Z' on the right-hand side have been written so as to
(@ Th i involviny' andZz" z! h ht-hand side h b

(b)

(©

(d)
(e

exhibit manifestly the irreducibility of these operators. In particular, use of the partially
trace-free invariant tensors as coefficients automatically yi¥ldsatisfying (14) and Z')
satisfying(16), since using these tensors guarantees that the relevant term vanishes when one
replacesZ*' by ¢fy;V' and independently® by ¢*S.

For theV' and theV' we have not separated the permutation-irreducible tensors explicitly.
However, the tensonsfrom (17) have been chosen to correspond to the decomposition into
the irreducible pieces.

That the two terms on the right-hand side(80) always have the same coefficient, can be
easily deduced from the Jacobi identity for thiég,’'s. The parameter distinguishes the

two main classes of supersymmetry algebras we shall consider: The contractionrto the
=0 case corresponds to tldgebras of super-Poincargypeand forr #0 we obtainalge-

bras of the super de Sitter typ®g/e shall not consider algebras of superconformal type,
which have a second element transforming as a Lorentz vector, the generator of conformal
transformations.

The right-hand sides involve the most general Lorentz covariant terms. This guarantees that
Jacobi identities involving on® are automatically satisfied.

The fifteen complex parametefs,,a;i}, {bs,b11,b21,b22F, {b5,b11,b21,b20}, {Cs,Cq4},
{C5,C44}, and{r} area priori independent. They are to be chosen so as to satisfy the super
Jacobi identities, which we shall consider in the next section.

D. The action of § on the superderivations

The most general commutation relations of the Lorentz scalar operdtarsd Z with the

superderivations compatible with Lorentz and permutation covariance, e.g.,

(Y, VL= (305 + 3,015, + d3, 05+ d5, 0143, + d11a6) 1) V., (3D

on imposition of the trace conditions, yield the following eight-parameter set of relations involving
the partially trace-free tensof&7):

[Y', V1= (datfsy+ d3qt b5, + dbpt sl VK, (32)
[V, VL]= (dati) + d3otihy + doatish Ve (33)
[Y'.V.:]=0, (34)
[Z1,VE]=f A5V, (35
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(21, V1=tV (36
[27,V,.]=0. (37)
We note that the Coleman—Mandula-type relat{dnDy]=0, is an immediate consequence of the

trace conditions. However, the internal symmetry can still act nontrivially on the odd derivations.

E. The commutators in b

The subalgebra of th¥¢’s andZ’s has the Lorentz and permutation covariant form satisfying
the trace-conditions,

YL Y ]=gti34'zm™, (39)
[Z11,YK] = houtl55 Y+ haotK5m 2™, (39
[29,24] = kool {535 "Z™". (40

In fact the Jacobi identities always imply thiaj,=0 (see below. This reduces the number of
parameters to three, which are constrained by the Jacobi identities.

Ill. DEMOCRATIC LIE ALGEBRAS g

The a priori Lorentz covariant commutators of olN-extended democratic algebras must
satisfy super Jacobi identities which guarantee that the products of the underlying operators are
associative. We shall now consider the constraints imposed on the paramég5s-i30), (32)—

(37), (38)—(40) by the super Jacobi identities. Let us first recall that, by construction, all the Jacobi
identities involving at least on®l are automatically satisfied. We begin with the subalgébra

A. Democratic Lie algebras §

To find all possibleSy democratic algebras containing tNéN —1)/2 generator¥ andZzZ, the
Jacobi identities fok38)—(40) need to be satisfied. These yield the following four conditions on
the four parameterg,,, h,,, hzs, Koos:

h32h2o= N3K2,=0,
hao(hoo— 2K225) =0, (41)
Ngoo 2o~ 2Kpp0) — 203,=0.
They generally imply thahz,=0, leaving the conditions

hoa(h2o—=2Ko9) =0,  gax(hpo—2kz55) =0. (42

These equations lead to a classification in five distinct categories:
(1a) Abelian b: all the scalar operators commute

920= No=Kp0=0 (43

and theY andZ can still be renormalized freely.
(1b) The Z's commute, they commute with thé's but the commutators of th€’'s generate the
Z’s. By renormalization of th&’s or theY’s, we find

920=1, hy=Kyp=0. (44)
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(2) The Z's form an sofN—1) algebra, withN—1 commutingY’s which moreover are s&(
—1) scalars, i.e., do not transform under theUsing the normalization freedom, we may write

920=h=0, kyp=1. (45)

(3a) The inhomogeneous sd(-1) case. By normalization of th&'s, the parameters can be
brought to

022=0, hyp=2, Kkyp=1. (46)

TheY’s behave as a vector under 8b{ 1) and commute. They behave as momenta with respect
to soN—1) and hence this corresponds to an inhomogeneows$-si] algebra. The normaliza-
tions of theY’s can still be adjusted freely.

(3b) The soN) case. We clearly have as maviyandZ operators as there are generators of\go(
which is indeed a particular democratic Lie algebran this case, by suitable renormalizations of
theY’s and theZ’s, the parameters can be brought to theif$pygalues, which we normalize as

920=1, hp=2, Kkpp=1 (47)

That these values correspond to Np(can be seen as follows. The commutation relations of the
N(N—1)/2 generatord/' =M of so(N) are usually written as,

Defining projections
i— gk naki ik— pgik 1 i \kpk \/i

we obtain that the subset of tHeoperators alone form a democratic Nof 1) subalgebrdwith
(N—1)(N—2)/2 independent operatdrsf the so(N) algebra. TheN\— 1 independenY operators
transform as a vector under the Bbf 1) subalgebra. Th& and theT satisfy precisely the
commutation relation$38)—(40) satisfied byY andZ, respectively, with

N 1
922= = 5 hy=1, kzzzzi- (49

Since there are possible arbitrary democratic rescalingg wiith respect toY and of T with
respect taZ, the algebra of the&/’s and theZ's corresponds to an sW algebra provided47)
holds.

B. Supersymmetry algebras g

The full discussion for the rest of the super Jacobi identities is rather intricate. We discuss the
full set of solutions in the Appendix, discussing the main features here.
We have chosen to discuss the general solution of the Jacobi identities in terms of two criteria:

(1) The first criterion is related to the appearance of the téf’ﬁﬂaa in the anticommutators of
V' with V' (parameter,) and of theY’s in the anticommutator of tw¥ ,'s (parameteb,,)
oroftwoV,'s (parametenbn).

(2) The second criterion reveals the structure of the alggboathe Lorentz scalar elements as
discussed in the preceding section.

We use the values of the parametears b,q, andEl as the basis of our classification. It
follows from (25), (26) and (27) that, if any of these three parameters is nonzero, it may be
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renormalized to one by rescaling the three superderivations democratically. Hence, using also the
fact that we have a natural symmetry under the interchange of the dotted and undotted operators,
we are led to six independent classes of superalgebras:

Class A: a,=1, by;=1, by=1,
Class B: a,=1, by=1, by;=0,
Class C:a,=0, by=1, 521= 1,

Class D: a,=1, by,;=0, 521=0,
_ (50)
Class E:a,=0, by,;=1, by;=0,

Class F:a,=0, by=0, b,;=0,

which we discuss in detail in the Appendix. Clas&sndE are chiral, not having the mirror
symmetry under the chirality interchanges between dotted and undotted indice&,(..) and
between the parametecs-c,... (for existing unbarred-barred pairdhe two further classes,

Class B: a,=1, by;=0, by=1,
_ (51)
Class E: a,=0, by;=0, by,;=1,

can clearly be obtained trivially from thB and E classes by performing the above chirality
exchanges; and we do not explicitly discuss these.

Within the above classes, the discussion is subdivided according to the vakygsaridh,,,
corresponding to the division in Sec. Il A,

Case 1: k222: O, h22:0,
Case 2: k222= 1, h22= 0, (52)

Case 3: k222:1, h22: 2.

C. Some solutions of the super Jacobi identities

In this section, we discuss the main noteworthy features revealed by our approach. Let us
consider Case A3 from the Appendix:

{Via:V{';,}:(ti[jz]+3119i[j11])vaa, (53
{v., !Vjﬁ} = 4(b22ti[jz] + alngZGi[jll]) Mg+ Eaﬁ((ti[léjl] - t{gil])Yk‘F bzzti[gjzl]zkl)a (54)
{Vig, ’V}B'} = 4(szti[jz] + a11b220i[j11]) Mg+ fab((ti[léjl] - t{'éill)Yk+Ezt‘['§iz']Zk'), (59
[V'a,vﬁ-ﬁ]=4eaﬁ( bzzt'[12]+wa'[llll)v'-ﬁ, (56)

| by
[V;,Vﬁb]:4edﬁ<b22t'[12]+Wo'[Jn])V'B, (57)
[Vair:V ps] = 1605005 €0sM o+ €25 o), (58)
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[Y',V.:l=0, (59
[Z1.V,:]=0, (60)
b22

[Y.Vi]= 4( b22allt[21 N I[lzkl]) Ve, (62)

[

[Y,V:]= 4( b22allt[21 N I[lzkl]) vE, (62
[Z1 V=255V, (63)
[Z1,vE]=2t53 V", (64)

[Y',Y)]=—4ayibodboat (35'2™, (65)
[Z1,YK]=2t[55,Y", (66)
[le Zkl] thmlIann (67)

The main unusual features displayed by this algebra are:

(1) Nontrivial action of the subalgebraon the vector space of superderivatidis
(2) Non-Abelian subalgebra of the Lorentz scalar generators;
(3) Occurrence of the,; term in (53).

The above example is of super de Sitter-type. A chiral super Poitgpeeexample, also
displaying these interesting features, is given by Case B3:

{Viavvjix}:(ti[jz]+3110i[j11])vaa, (68)
(V. V= (4byth) + NC1ja1 0 1) M 4ot €5 (15— t517) Yo+ ot 55 Z4), (69
(V.. Vii=0, (70)

[V, 5] = €ap(Abafsy + C1160ia) V], (71)
[V, Vs5]=0, (72
[Vaa:Vpp]=0, (73
[Y'Vaa]=0, (74
[2,V4:]=0, (79

[Y.V)]= bzzt 21]+N311011ti[|§j1] vy, (76)
[Y'V51= (= catsy + 4aubat{5h) Vs, (77
[ZV,VE]=2t{5,V,, (78)
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[Z1,VvE]=2t53 V!, (79
[YLY]=—N a11011b22ti[?2]]nzmnv (80
[Z,YK]=2tl55Y", (81)
(29,24 =t{s5"Z™. (82)

IV. CONCLUSION

The inclusion of multiplicities in our prografhextending in a Lorentz covariant way the
algebra of coordinates and derivatives, has been shown to exhibit interesting new features and a
rather rich structure of solutions for the super Jacobi identities. In order to obtain explicit solu-
tions, we have chosen to restrict ourselves in this article to a set of operators of spin less than or
equal to one and to imposkemocracy Within these restricted hypotheses, we have been able to
classify fully the allowed superalgebras of derivations and superderivations. Apart from the well-
known examples$? new and potentially interesting cases have been uncovered.
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APPENDIX

With classegA-F) defined in(50) and subcased -3 defined by(52) the full classification
of the democratic supersymmetry algebras is given below.

1. Class A

Imposing the super Jacobi identities together with the class A constrapgis], by,;=1,
b,,=1, yields the relations,

(v, .Vi}= (ti[jz] + allai[jll])vabz , (A1)
(V% Vi =4koos bostih; + angzzai[jn]) M oot €ap((tish =t Yot byt (552, (A2)

{Vigy :V],';} = 4k222(522ti[jz] + a11b220i[j11]) M5+ ézy'ﬁ((ti[gjl] - t{SQ])Y"+Ezt‘[§2']Z"'), (A3)

_ by ,
[V,.Vgsl= 46a,8k222( bt + N 6’I[lll]) Vfg . (A4)

. _ .. b22 .. .
(v, ,Vﬁﬁ]:Affabkzzz( baost o)+ N '9I[]11]) Vi, (AS5)
[V sV ] = 16805D50K35 o €0sM i+ €45M 1), (A6)
[Y'.V,a]=0, (A7)
[Z1.V,,]1=0, (A8)
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[Y,Vi]= 4k222< bZZallt[Zl] th[Jzkl])VI;1 (A9)

by,

[YLV!]= 4k222( bosaytysh — N tl[Jzkl])Vk (A10)
[Z,VE]=hytl55 V., (A11)
[z”,vz]=hzzt{§2w;, (A12)

[Y,Y]= _4311b22522k222t|22] zm, (A13)
[Z',YK]=hoatlss Y, (A14)
[Z1, 24 =Kot [555" 2™, (A15)

with the space of class A superalgebras defined by solutions of the system of quadratic equations,
D22 2kz22—h22) =0,
bos(2Kgz0—hyp) =0, (A16)

hoo(2Kp25—hyo) = 0.

We find three subcasgsee(52)]

Case Al:Sinceh,,=ky,=0, the parametera;;, b,,, andb,, are free. This includes the
standard super Poincaatgebra with Abelian algebr of central charges.

Case A2:Hereay; is free,k,,=1 and all other parameters are zero. There is ailsd()
subalgebrdsee(45)] of the Z's which decouples.

Case A3:This is a much less trivial cagsee Sec. Il ¢ and the full solN) algebra(49) is

included in the algebra. The independent parametersareb,,, by, while hy,=2, kyyo=1.

2. Class B
This class ischiral of super Poincarype:a,=1, b21=1,521= 0. It has relations
(Vi Vob =ty + 211601 Vo, (B1)

{V5 Vit = (4bykoodhy + Neyan 0 )M, €05 (t5h —tl51) Yo+ bt 5hZ4),  (B2)

(V. Vo= eupbat(hz", (83)

[V. vvﬁb]:€a3(4b22k222ti[jz]+0119i[j11])vjl‘;, (B4)
(V% Vss]=0, (B5)

[Vaa Vgsl=0, (B6)
[Y,Vaal=0, (B7)

[Z,V4:]=0, (B8)
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[YLVi]=| - %bZZkZZZti[jzkl]+Nallcllti[léj:l.] Ve, (B9)
% =de] =(- Cllti[j2k1] + 4allb22k222ti[|§j1])vz ' (B10)
[Z1,VE]=ht 55V, (B11)
[Z1,VE]=hatls5 Ve, (B12)
[Y\YI]=—Nayciibt 34z, (B13)
[Z1,Y¥]=hyutls5 Y, (B14)

[Z, 2= koot |555,"Z™, (B15)

Here the parameters are constrained by the system of equations,

bosho=baka0=0,

b2 2K00—hyy) =0, (B16)

hoo(2Kp25—h32) =0,

defining the space of class B superalgebras. They are all of chiral super Pdaypmr&here are
three subcases of solutiofsee(52)]:

Case B1:.The parametera;;, b,,, byy, andcy; are freeh,,=k,,,=0. TheZ’s are central,
not theY’s.

Case B2:The parameters,;, andc,; are free,k,o,=1 and the remaining are zero. The
subalgebray contains the sd{—1) of the Z's which decouples. The subalgebra of tiiks is
Abelian.

Case B3:The parametera;{, byy, andcq, are freeh,,=2, kyyo= 1,522=0 (see Sec. I

3. Class C

This class contains super algebras of the de Sitter-type. They allow contractions to super

Poincaretype algebras by setting, and/orc, to zero. The relationa,=0, b,;=1, Elz 1 yield
the superbrackets,

{V,.Vit= 311‘9[11Vaa, (CY
(V. Vit =a11Co 0 M o+ €, (15— tl51) YR+ bost 55, 74) (C2

11620111 M ot €45( (1127~ T2y 22L[22] )
(VL Vi =2a11Co0 M o+ e (5 — tfs1) YE+ bt {5571, (c3)
[V, Vﬁﬁ]—faﬁ(czt[2]+ N ‘9[11])ij, (C4H

LYo m e Tt + 2|

[Vao Vppl=CaCol€agMipt €:5Map), (Ce)
[Y'.V.:]=0, (C7)
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[Z7,V,4]=0, (C8
[Y,Vi]=a; Gt Vs, (C9
[Y' :Vj;l] = allczti[léjl]vz ; (C10
[Z1,V5]=ht 55V, (c11)
[Z1,VE]=haat]s5 V!, (C12)
[Y', Y/ ]= —ayb,Cot34'2™, (C13
[Z1,Y¥]=hytl50 Y, (C14
(21,24 = koo tl555"Z™". (C15

Here the parameters are constrained by the system of equations
by —026,=0,
D2oh20= D20K25= 0,
Ezzhzzz szkzzzz 0, (C16
a11C2022( 2Kz20— N22) =0,

hoo(2Kp25—h3o) =0.

We find three subcasg¢see(52)]:

Case C1We haveh,,=k,,,=0 while a,; is free andb,,, 522, C,, C,, are constrained by the
condition

bysCo=bysCs. (C1y

The Z's are central charges.
Case C2:The parameters;;, C,, C, are free,k,,,=1 and the remaining are zero. The
subalgebra s&{—1)CH of the Z's decouples.

Case C3:The parametera,;, C,, C, are free,n =2, kypo=1, andb,,=b,,=0.

4. Class D

This hasa,=1, b»;=0, b,;=0, yielding

{Vlavva}z(ti[jz]"‘auai[jn])vm, (DY)
{v,, ,Vfg}= fa,ebzzti[léjzl]zkly (D2)
(V. Vo= eapbat(h ", (D3)

[V%,Vz5]=0, (D4)
(Vi Vsl=0, (D5)
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[Vaa:Vppl=0, (D6)

[Y,Vaal=0, (D7)

[Z,V44]=0, (D8)

[Y', V4 ]1=(datis) + d3,tihy — NdBiaytish V', (D9)
(Y, VE 1= (—dat(h +d3,t 5, — Nag,d3t s Ve, (D10)
[Z1, V1=t 55V, (D11)
[Z1,VE]=fut)sy v, (D12)

(Y'Y =gp{3yzm™, (D13)
[Z1,Y¥]=haatfs Y, (D14)

(20,24 =kaost{355"Z™" (D15)

The remaining parameters must satisfy the 18 equations,

dsb,,=0, d3b,=0, dsf,,=0, d3h,,=0, (D16)
boof 25= 0, bashzo=0, baoka=0, byya1,d3,=0, (D17)
bosf 2= 0, bashp=0, bykyps=0, by811d3,=0, (D18
hoa(N2o—=2K229) =0, gox(hgr—2Kz09) =0, foxfro—2K505) =0, (D19)

a _ _ qa _ _ 2 3 aja _
21(f2o— ) =0, d5)(f2—hy) =0, d3+2NTfy0,,+ N7a;1d5;d5,=0. (D20)

We find seven essentially different subcage=e(52)]:
_ Case Dla:The parameteg,, is free while hy,=Kkyo=byo=byy="f2=0 anday,, ds, d3;,
a,, satisfy the condition

— dj
alldgldgl‘l‘ Wg =0. (D21)

Case D1b:The parameterb,,# 0, d3; andg,, are free,a;; anda‘g‘l are constrained by
d3ya1,=0 (D22

and the remaining parameters are zero.
Case D1c:The parameterb,,# 0, by,# 0, gy, are freea;q, d3;, d3, satisfy the conditions

dglan: 0, Ezilan: O, (D23)

and the remaining parameters are zero.

Case D2aHereky,,= 1, the parametera,,, ds, d5;, _52‘1 satisfy the conditioriD21) and the
remaining parameters are zero.
Case D2b:All the parameters are zero excépb,= 1, f,,=2 anda;; which is free.
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Case D3aAll the other parameters are zero exc&pt,= 1, h,,=2 anda,;, gy, which are

free.
Case D3bAll the parameters are zero excé@b,= 1, h,,=2, f,,=2 andg,,, a;1, d3;, Egl
satisfy
4g,,+N2ay,d3,d3,=0.
5. Class E

Imposinga,=0, by;=1, b,;=0, we obtain the chiral superalgebra,

{V,.Vi}= allai[jll]vad , (ED)

{v., VIB} Nallclla[ll]Ma,B+Eaﬁ((t”gl] 21])Yk+b22t”§]2|]zkl)a (E2
(V. Vo= eapbat(h ", (E3

[V, .V 5)= eap(Catiby +Cabli) V1, (E4)
(V% Vss]=0, (ES)
[Vaa:Vppl=0, (E6)
[Y'.V.:]=0, (E7)
[27,V,,]=0, (E9)
[Y,V,]= Nallcllti[gjl]vi , (E9)

[YL VL ]=amcotsh Ve, (E10
[Z1,V]=hot 55V, (E1D)
[Z0,VE]= 2tV (E12
[Y\,Y]=—Naygcyibot 33'z™, (E13
[Z7,Y¥]=haatf55 Y, (E14)
(27,24 =kot{55"Z™". (E15

Herea;; andc,; are free and the remaining parameters satisfy the constraints,

baaf 2= bashoo=boko0=0, (E16
DsCo=Dby5f 29=D2ooo=bykp=0, (E17)
haa Mg 2Ka29) = F ool F 09— 2Ka22) = Co((F 25— hpp) = 0. (E18

We find six essentially different subcases:
Case ElaThe parameterh,,= kzzz—fzz C2=0, andajq, b,,, b22, cqq are free.
Case E1bThe parameterh,,= kzzz—fzz— b22— 0, anday;, by, €y, €y are free.
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Case E2aHerek,,»=1, a4;, €11, andc, are free and the remaining parameters are zero.

Case E2bHerek,,,=1, f5»=2, a;1, 11 are free and the remaining parameters are zero.
Case E3aHereky,o=1,h,»=2, a;;, C1; are free and the remaining parameters are zero.

Case E3bHerek,,,=1, h,,=2,f,,=2, @41, €11, C, are free and the remaining parameters
are zero.

6. Class F
Class F has the following basic relatio@s=0, by;= 0,521=0, which yield the superalgebra

(VL Vit =16V e, (F1)

{V., vvjp}: fa,ebzzti[léjzl]zkly (F2)

(V. Vb= euibashz", (F3)

[V, V 5] = €ap(Catlhy +Caabliy VS, (F4)
[V%,.V 5] = €ap(Catily + Crabhap Vs, (F5)
[Vaa:Vepl=CaCol€,sM o5+ €,5M o), (F6)
[Y'.V.:]=0, (F7)
[27,V,4]=0, (F8)

[V, V),1= (dat{i + d3;t b5, + ddtsh VK, (F9)
[Y!, VL= (dat{s +d3,til, + dbytsl) VE (F10
PR E PR A (F11)
PARGAETI LA (F12

(YL Y= goti5drzm™, (F13
[Z,YK]=hat55 Y, (F14
[21,Z4=kyot {555 "Z™". (F15

For k,,,=h,,=0, i.e., case F1, we will limit ourselves to giving the conditions which have to be
fulfilled. In the cases F2, F3 whefe,,=1, we give a more precise discussion. There are many
subcases which we have classified as follows:

subcase a:a;;#0,
subcase b:a;;=0, f,,=0, f,,=0,
(F16)

subcase c:a;;=0, =2, f,=0,

subcase d:a;;=0, f,,=2, f_22=2.

With this in mind, we find nine essentially different subcases.
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Case F1:With hy,=ky0,=0, which impIiesf22=f_22= 0, the 20 conditions to be fulfilled are
bzzdglz 0, byd;=0,
b,d3,=0, bayds=0,
a;1c2=0, a;,€1;=0,
a1162=0, a;;€1;=0,

a,,d5,=0, allaéz‘l: 0,
_ (F17)
C2C2—N?c11€11=0, bpsCr—b26,=0,
Co(d3—dg) =0, C(d3—ds) =0,
Cod3;—Ncyyd3,=0, Cod5,— NCy;d5,=0,
Cod3;,—N 011621: 0, €,d3,— NEllEgl: 0,
d%— degldgl: 0, a%— Nzaeleagl: 0.

This leads to a rather long, easy but uninteresting discussion which we will not give.
Case F2a:Herekyo=1, a;1;#0, d'z’l, Egl, f,,, andf,, satisfy the following conditions:

faa(f2o—2)=0, f_zz(f_zz_z)zo,
- (F18
fzzdglz 0, fzzaEZ)l:O,
and the remaining parameters are zero.
Case F2bHerekyy,=1, C,, C11, Cp, C1q, d3;, db;, ds, d3;, db,, dj satisfy the conditions,
€262~ N%C11614=0,

co(d3—d3)=0, T(d3—d3)=0,

02@1_ Nc;,d5,=0, Ezagl_ NC;4d3,=0, (F19

cod5,—N Cllaglz 0, Cpd3;— Nﬁl@lz 0,
dg_ degldglz 0, a%_ Nzaglaglz 0,
and the remaining parameters are zero.

Case F2cAll the parameters are zero excégb,=1, f,,=2 andcy;, 11, ds, d3;, anddd,
which satisfy

€11€11=0, E%— Nzaglagl: 0,
. (F20
c14d%,=0, €3;,d3,=0.

Case F2dAll the parameters are zero excégb,— 1, f22=f_22=2 andc,, €44, Cy, Cq14 Which
satisfy the condition,
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c2C,—N?c11€1,=0. (F21

Case F3aAll the parameters are zero excépb,= 1, hp,=2, a,;#0, andd3,, dB,, f,,, 2,
andg,, which satisfy the conditions,

foo f2o—2) =0, fop(fpp—2)=0,
d9y(f22=2)=0, dby(f5~2)=0, (F22)

f22020=0, f_22922: 0.

Case F3bAll the parameters are zero except foh,= 1, h,,=2, g»,, andc,, c41, C», and
'c1; Which satisfy the condition,

C2C2—N%C11C14=0. (F23

Case F3cAll the parameters are zero excégb,= 1, h,,=2, f,=2, andc,4, Cq4, d3;, and
db, which satisfy the conditions,

€11€11=0, €3,03,=0, C1;d3,=0, (F24
and the dependent parameter,

N a b
922:Zd21d21- (F29

Case F3d:All the parameters are zero except fah,= 1, hy,,=2, f22=f_22= 2, andcqq, Co,
C11, Cp, d3;, d5; d3;, anddd, which satisfy the conditions,

Czaazll_ Nc;,d5,=0, Ezagl_ N?ndtz’f 0,
c,d5,—Ncy,d5,=0, T,d3,—NCy,d3,=0, (F26)
C,C;—N?cq1€4;=0, dgldgl_aglaglz 0,

and the dependent parameter,

N a b
922=Zd21d21' (F27)
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