
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 475209 (8pp) doi:10.1088/1751-8113/42/47/475209

Ternutator identities

Chandrashekar Devchand1, David Fairlie2, Jean Nuyts3 and
Gregor Weingart4

1 Institut für Mathematik der Universität Potsdam, Am Neuen Palais 10,
D-14469 Potsdam, Germany
2 Department of Mathematical Sciences, University of Durham, Science Laboratories,
South Rd, Durham DH1 3LE, UK
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Abstract
The ternary commutator or ternutator, defined as the alternating sum of the
product of three operators, has recently drawn much attention as an interesting
structure generalizing the commutator. The ternutator satisfies cubic identities
analogous to the quadratic Jacobi identity for the commutator. We present
various forms of these identities and discuss the possibility of using them to
define ternary algebras.

PACS number: 02.10.Ud
Mathematics Subject Classification: 16R10

1. Introduction

Some time ago Nambu [1] introduced antisymmetric brackets depending on three functions
and a derivation, generalizing the Poisson bracket and satisfying the Nambu identity, which
generalizes the Jacobi identity. These brackets have been discussed, for example, in [2–4].
Nambu also considered the possible quantization of his brackets: for three arbitrary operators
A1, A2, A3 (with an associative product) in an arbitrary vector space, he defined the related
ternary commutator [A1, A2, A3], which we call the ternutator, by the alternating sum over
the permutations of (1, 2, 3),

[A1, A2, A3] := A1A2A3 + A2A3A1 + A3A1A2 − A1A3A2 − A2A1A3 − A3A2A1

=:
∑
π∈S3

sgn(π)Aπ(1)Aπ(2)Aπ(3). (1)
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This can be expressed in terms of the commutator as

[A1, A2, A3] = A1[A2, A3] + A2[A3, A1] + A3[A1, A2]

= [A2, A3]A1 + [A3, A1]A2 + [A1, A2]A3. (2)

The ternutator is trilinear in the operators and has the property of being totally skew-symmetric,

[A1, A2, A3] = −[A2, A1, A3] = −[A3, A2, A1], (3)

which leads to the cyclic property, [A1, A2, A3] = [A2, A3, A1] = [A3, A1, A2]. This bracket,
as a particular case of those introduced by Fillipov in [5], has recently attracted renewed
interest in the physics literature (e.g. [6–11]). Earlier physical applications of ternary algebraic
structures are reviewed in [12].

The ternutator generalizes the commutator, which is the binary operation underlying Lie
algebras. The Jacobi identity plays a crucial role in the classification of Lie algebras. In
this paper, we present identities for the ternutator, analogous to the Jacobi identity for the
commutator. This problem has also been discussed by others, e.g. [13, 14]. All n-linear
brackets defined by the alternating sum of the product of any odd number n � 5 of operators
have recently been shown [15] to satisfy similar identities. Just as the Jacobi identity provides
the defining relations for Lie algebras, we discuss the possibility of using the ternutator
identities to define ternary algebras. Some specific examples of sets of structure constants
satisfying the ternutator identity are given in section 4.

2. Ternutators and their identities

The Jacobi identity for commutators, i.e. the equality of the two ways of writing the ternutator
in terms of the commutator in (2), can be expressed as an alternating sum over permutations
of (1, 2, 3), ∑

ι∈S3

ει1ι2ι3 [[Aι1 , Aι2 ], Aι3 ] = 2
∑
ι∈S3
ι1<ι2

ει1ι2ι3 [[Aι1 , Aι2 ], Aι3 ] = 0, (4)

where the second sum is over all permutations (ι1, ι2, ι3) of (1, 2, 3) satisfying the condition
ι1 < ι2 and ει1ι2ι3 is the completely antisymmetric Levi Civita symbol.

The following result for the ternutator (1) is well known (e.g. [13]).

Lemma 1. There are no identities of second order in the ternutator.

Proof. The most general second-order identity is∑
ι∈S5

ι1<ι2<ι3 ,ι4<ι5

c(ι1, ι2, ι3)[[Aι1 , Aι2 , Aι3 ], Aι4 , Aι5 ] = 0, (5)

where the sum is over all permutations (ι1, . . . , ι5) of (1, . . . , 5) satisfying the conditions
ι1 < ι2 < ι3 and ι4 < ι5. This has ten summands, multilinear in the five operators
Ai, i = 1, . . . , 5. It is easy to check that these ten terms are linearly independent. Hence the
ten coefficients c(ι1, ι2, ι3) must be zero. �

There are two types of monomials cubic in the ternutator, both involving seven operators.
Label any set of seven operators (not necessarily linearly independent) A1, . . . , A7 and define

T1(A1, . . . , A7) := [[[A1, A2, A3], A4, A5], A6, A7] (6)

T2(A1, . . . , A7) := [[A1, A2, A3], [A4, A5, A6], A7]. (7)
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In virtue of the symmetry properties of the ternutator, there are 210 independent monomials
of the form T1(Aι1 , Aι2 , Aι3 , Aι4 , Aι5 , Aι6 , Aι7) labelled by the permutations of (ι1, . . . , ι7) of
(1, . . . , 7) satisfying (ι1 < ι2 < ι3), (ι4 < ι5) and (ι6 < ι7), and 70 monomials of the form
T2(Aι1 , Aι2 , Aι3 , Aι4 , Aι5 , Aι6 , Aι7), with conditions (ι1 < ι2 < ι3), (ι4 < ι5 < ι6), (ι1 < ι4).
An identity cubic in ternutators, if it exists, is a linear dependence amongst these 280 terms:

∑
ι∈S7

ι1<ι2<ι3 ,ι4<ι5 ,ι4<ι6<ι7

c1(ι1, ι2, ι3, ι4, ι5) T1(Aι1 , Aι2 , Aι3 , Aι4 , Aι5 , Aι6 , Aι7)

+
∑
ι∈S7

ι1<ι2<ι3 ,ι1<ι4<ι5<ι6

c2(ι1, ι2, ι3, ι7) T2(Aι1 , Aι2 , Aι3 , Aι4 , Aι5 , Aι6 , Aι7) = 0, (8)

where the sums are over all permutations ι ∈ S7, ι : n �→ ιn, n ∈ {1, . . . , 7}, satisfying the
given restrictions. The following result was also known to Bremner [13].

Theorem 1. Among any seven operators, there exist precisely seven independent identities
cubic in the ternutator.

In order to prove this, we have used REDUCE and independently MAPLE to find that
the 280 coefficients in (8) are constrained by 273 independent linear relations leaving a seven-
parameter space of identities. Hence there is a basis of seven independent identities, which
generalize the usual Jacobi identity for commutators.

Consider seven arbitrary operators and label them Ai, i = 1, . . . , 7. Pick out one of them,
say A7, and consider the following alternating sums of T1 and T2, (skew) symmetric under
permutations of the remaining six operators:

I1(ι1, . . . ι6; 7) =
∑
ι∈S6

ι1<ι2<ι3 ,ι5<ι6

ει1ι2ι3ι4ι5ι6 [[[Aι1 , Aι2 , Aι3 ], Aι4 , A7], Aι5 , Aι6 ]

I2(ι1, . . . ι6; 7) =
∑
ι∈S6

ι1<ι2<ι3 ,ι4<ι5

ει1ι2ι3ι4ι5ι6 [[Aι1 , Aι2 , Aι3 ], [Aι4 , Aι5 , A7], Aι6 ]. (9)

The identity is then

I = I1 + I2 ≡ 0. (10)

An alternative way of writing the identity is as follows. Take seven operators
Aa,Ab,Ac,Ad,Ae,Af ,Ag and single out Ag. We can write the identity I as the alternating
sum over all permutations of the six indices (a, b, c, d, e, f ),

12 I =
∑

S(a,b,c,d,e,f )

sgn(π) ([[[Aa,Ab,Ac], Ad,Ag], Ae, Af ]

+ [[Aa,Ab,Ac], [Ad,Ae,Ag], Af ]) ≡ 0, (11)

where sgn(π) is the sign of the permutation. The factor 12 here is the number of times a
given term is repeated in the sum over all permutations. The seven independent identities
correspond to the seven possibilities of singling out any one, say Ag. These seven identities
transform under S7 as the direct sum of the representations associated with the Young
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tableaux

(12)

These identities were known to Bremner [13] in a slightly different form. They were
independently rediscovered in this explicit form by one of us (JN). There exist further
equivalent expressions for these identities. Again singling out A7, we may write

3
∑
μ∈S6

μ1<μ2<μ3, μ4<μ5<μ6, μ1<μ4

εμ1μ2μ3μ4μ5μ6 [[Aμ1 , Aμ2 , Aμ3 ], [Aμ4 , Aμ5 , Aμ6 ], A7]

=
∑
μ∈S7

μ1<μ2<μ3 , μ4<μ5<7, μ6<μ7

εμ1μ2μ3μ4μ5μ6μ7 [[[Aμ1, Aμ2 , Aμ3 ], Aμ4 , Aμ5 ], Aμ6 , Aμ7 ]

− 2
∑
μ∈S7

μ1<μ2<μ3, μ5=7, μ6<μ7

εμ1μ2μ3μ4μ5μ6μ7 [[[Aμ1, Aμ2 , Aμ3 ], Aμ4 , Aμ5 ], Aμ6 , Aμ7 ]. (13)

The left-hand side has ten summands. In the first term of the right-hand side there are 150
summands and in the second term 60 summands. This linear dependence amongst monomials
cubic in the ternutator has alternative expression:

3
∑
μ∈S6

μ1<μ2<μ3 , μ4<μ5<μ6, μ1<μ4

εμ1μ2μ3μ4μ5μ6 [[Aμ1, Aμ2 , Aμ3 ], [Aμ4 , Aμ5 , Aμ6 ], A7]

=
∑
μ∈S6

μ1<μ2, μ3<μ4 , μ5<μ6

εμ1μ2μ3μ4μ5μ6 [[[Aμ1, Aμ2 , A7], Aμ3 , Aμ4 ], Aμ5 , Aμ6 ]

+
∑
μ∈S6

μ1<μ2<μ3, μ4<μ5,

εμ1μ2μ3μ4μ5μ6 [[[Aμ1, Aμ2 , Aμ3 ], Aμ4 , Aμ5 ], Aμ6 , A7]

− 2
∑
μ∈S6

μ1<μ2<μ3, μ5<μ6

εμ1μ2μ3μ4μ5μ6 [[[Aμ1, Aμ2 , Aμ3 ], Aμ4 , A7], Aμ5 , Aμ6 ]. (14)

Here, there are ten summands on the left-hand side, 90 terms in the first part of the right-hand
side, 60 terms in the second part and 60 in the third part.

3. Ternary algebras

A ternary algebra is a vector space in which a ternary composition is given by the ‘ternutation
relations’,

[ei, ej , ek] = tijk
mem, (15)

where ei are basis elements and the structure constants tijk
m are completely antisymmetric

in i, j, k and transform as (3, 1)-tensors under a nonsingular change of basis, e′
j = Sk

j ek,
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det(S) �= 0 . Inserting these basis elements in the polynomials I1 and I2 in (9) yields cubic
polynomials in the structure constants,

I1(t; a, b, c, d, e, f ; g, q) =
∑

S(a,b,c,d,e,f )

sgn(π) tabc
p tpdg

n tnef
q

I2(t; a, b, c, d, e, f ; g, q) =
∑

S(a,b,c,d,e,f )

sgn(π) tabc
mtdeg

ntmnf
q, (16)

where the sum is over all permutations of (a, b, c, d, e, f ). The ternutator identities (11) then
yield identities for the structure constants tijk

m,

I (t; a, b, c, d, e, f ; g, q) := (I1 + I2)(t; a, b, c, d, e, f ; g, q) = 0. (17)

Just as a set of structure constants satisfying the Jacobi identities converts a vector space
into a Lie algebra, it would be interesting if the identities (17) similarly provide necessary and
sufficient conditions for a set of structure constants {tijk

m} to define a ternary algebra with
relations (15).

The associativity of the multiplication implies the quadratic Jacobi identity for the
commutator (4) as well as the cubic identities (11) for the ternutator. If we lift associativity,
both these identities do not hold. For the alternative multiplication for the basis elements of
the imaginary octonions, eiej = −δij + ψijkek , the left-hand side of the Jacobi identity (4)
is proportional to the associator (ei, ej , ek) = (eiej )ek − ei(ej ek) = ϕijklel , where both ψijk

and ϕijkl are completely antisymmetric. The ternutator [ei, ej , ek] is also proportional to the
associator, and we have verified by direct calculation using REDUCE that the G2-invariant
structure constants of the associator algebra ϕijkl = 1

6εijklmnpψmnp with nonzero components,

ϕ1234 = ϕ1256 = ϕ1357 = ϕ1476 = ϕ2376 = ϕ2475 = ϕ3456 = 1, (18)

corresponding to the octonion structure constants {ψ127 = ψ163 = ψ154 = ψ253 = ψ246 =
ψ347 = ψ567 = 1} indeed do not satisfy the identities (17). Instead, the two polynomials in
(16) evaluated for ϕ are equal.

Indeed, in dimensions 6 and 7, for antisymmetric t’s, the values of the two polynomials
in (16) are equal, so in these dimensions the identities (17) are equivalent to either I1 = 0
or I2 = 0. We have checked explicitly that the equality I1 = I2 �= 0 also holds for the
components of the Spin(7)-invariant 4-form [16, 17] defined by (18) together with the further
nonzero components ϕijk8 = ψijk , namely, ϕ1278 = ϕ1386 = ϕ1485 = ϕ2385 = ϕ2468 = ϕ3478 =
ϕ5678 = 1, and hence this 4-form also does not satisfy the ternutator identity.

Let π be a permutation of the four indices (a, b, c, d). The following quadratic equations
in the structure constants∑

π∈S(a,b,c,d)

sgn(π)tabc
mtmdg

q = 0 (19)

are related to the above-mentioned Nambu identity and have been advocated [11] as defining
conditions for algebras (1). These equations are by no means necessary conditions for the
existence of the ternary algebra since the ternutator does not satisfy a quadratic identity (see
theorem 1). However, it is readily seen that if (19) holds then our cubic necessary conditions
(11) are satisfied. Hence the relations (19) could be sufficient (but by no means necessary) to
guarantee the existence of the corresponding ternary algebra.

The Cartan–Killing metric plays a crucial role in the classification of Lie algebras. There
are several tensors, constructed from the structure constants tijk

m, which possibly could play
a similar role for ternary algebras. For Lie algebras, in terms of the adjoint map of element
ej with respect to an element ei defined by adei

ej ;= [ei, ej ], the Cartan–Killing form is given

5
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by g(ei, ej ) := Tr(adei
◦ adej

). In terms of the structure constants of the Lie algebra we have
gij = fim

nfjn
m. Using the ternutation relations (15) to define an analogous endomorphism

of the ternary algebra, Xei,ej
ek := [ei, ej , ek], yields the most natural candidate for a ‘metric’,

namely Tr(Xei ,ej
◦ Xek,el

), which is clearly antisymmetric in ij , antisymmetric in kl and
symmetric under interchange of these ordered pairs (in other words, it has the symmetries of
the Riemann tensor). This object has components

gij,kl = tijn
m tklm

n (20)

and can serve as a metric on the N(N−1)/2-dimensional space of 2-forms indexed by
{ij}, i < j . If this metric is invertible, its inverse gij,kl then satisfies∑

k<l

gij,kl g
kl,mn = δm

i δn
j (21)

and affords the construction of the further symmetric tensor,

gpq = 1

2

(
tijk

pgij,kq + tijk
qgij,kp

)
, (22)

which is a candidate for a metric in the linear space of the operators.
If a Lie algebra is semi-simple, a particularly important subset of Lie algebras, it is well

known that the metric gij = fia
bfjb

a formed from the structure constants is nonsingular and
that fijk = gkafij

a is completely antisymmetric in its indices. It would be remarkable if
analogous statements hold for ternary algebras. In particular, we expect a special role for
ternary algebras having the following two properties:

(a) there exists a basis in the space of operators such that the structure constants are completely
antisymmetric,

[ei, ej , ek] = tijkmem, with tijkm antisymmetric, (23)

(b) in this basis, a metric appears in the form∑
a<b<c

tiabctjabc = λδij . (24)

4. Examples

The conditions (17) are so overdetermined that a complete classification of solutions, without
imposing further conditions, seems to be a rather difficult task. However, isolated solutions
in lower dimensions can certainly be found. We display four solutions in six dimensions
with the structure constants being given by components of a 4-form tijkm, which satisfy the
identities (17). It is convenient to use the Hodge-dual 2-form t̃ = ∗ t with components
t̃a1a2 = 1

4!εa1a2a3a4a5a6 ta3a4a5a6 .

Example 1

t̃12 = −̃t13 = −̃t14 = t̃15 = −̃t23 = −̃t24 = t̃26 = t̃35 = −̃t36 = t̃45 = −̃t46 = t̃56 = 1. (25)

Example 2

− t̃12 = t̃13 = t̃14 = −̃t15 = t̃26 = −̃t36 = −̃t46 = t̃56 = 1. (26)

Example 3

t̃14 = t̃15 = −̃t16 = −̃t24 − t̃25 = t̃26 = t̃34 = t̃35 = −̃t36 = 1. (27)

6
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Example 4

t̃46 = −1, t̃56 = 1,

t̃36 = x1, t̃26 = −x3, t̃35 = −x2, t̃34 = x2,

t̃25 = x4, t̃24 = −x4, t̃23 = x4x1 − x2x3. (28)

In the first three examples, the structure constants satisfy the calibration criterion

t3
abcd = tabcd 
⇒ t̃3

ab = t̃ab. (29)

Example 4 does not seem to be a calibration.

5. Conclusions

Ternutators and ternary algebras generalize the familiar commutators and Lie algebras and
have recently appeared in various contexts in the literature (see e.g. [18]). In this paper, we
have obtained explicit forms of the seven identities, cubic in ternutators, which are obeyed
by any seven operators with an associative product. We have shown that these identities
exhaust the space of identities for seven operators. It remains an open question whether
higher order (q � 4) identities involving 2q + 1 operators are trivial consequences of the
seven basic identities. The seven independent identities for seven operators clearly imply
identities (of fourth order in the ternutator) for nine operators. As is clear from (11), the
former seven identities can be considered as operations X(B1, . . . , B6;B7), depending on
seven operators, skew-symmetric in the first six. Amongst the identities for any given
choice of nine operators Ai, i = 1 . . . 9 there exist those having one of the following
structures: A = [X(A1, . . . , A6;A7), A8, A9], B = X(A1, . . . , A6; [A7, A8, A9]), C =
X(A1, . . . , A5, [A6, A8, A9];A7). There are 7·(9

2

) = 252 identities of type A, and
(9

3

) = 84
identities of type B and type C. So altogether 420 identities amongst 9 operators have their
origins in the identities for seven operators. Are there any further identities?

As a consequence of these identities, the structure constants of ternary algebras must obey
cubic relations, which are highly overdetermined. We have given some examples of solutions
of these identities in six dimensions.
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