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Let M be a manifold with Grassmann structure, i.e., with an isomorphism of the
cotangent bundleT* M>E^ H with the tensor product of two vector bundlesE
and H. We define the notion of a half-flat connection¹W in a vector bundleW
→M as a connection whose curvatureFPS2E^ L2H ^ End W , L2T* M
^ End W. Under appropriate assumptions, for example, when the Grassmann struc-
ture is associated with a quaternionic Ka¨hler structure onM , half-flatness implies
the Yang–Mills equations. Inspired by the harmonic space approach, we develop a
local construction of~holomorphic! half-flat connections¹W over a complex mani-
fold with ~holomorphic! Grassmann structure equipped with a suitable linear con-
nection. Any such connection¹W can be obtained from a prepotential by solving a
system of linear first order ODEs. The construction can be applied, for instance, to
the complexification of hyper-Ka¨hler manifolds or more generally to hyper-Ka¨hler
manifolds with admissible torsion and to their higher-spin analogs. It yields
solutions of the Yang–Mills equations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1622999#

I. INTRODUCTION

The Yang–Mills self-duality equations have played an important role in field theory an
differential geometry. They are the main source of examples of solutions of the Yang–
equations on four-dimensional manifolds.1 The self-duality equations* F¹5F¹ mean that the
curvatureF¹ of a connection¹ over a Riemannian four-foldM is an eigenvector of the Hodg
star operator, associated with the volume four-form, which acts on two-forms. This appa
four-dimensional construction has an analog in Riemannian manifoldsM of arbitrary dimensions.
Any four-form V on M defines an endomorphismBV of the space of two-forms and one ca
define~V,l!-self-duality as the condition,BVF¹5lF¹, that the curvature is an eigenvector ofBV

with eigenvaluel5constÞ0. Under appropriate assumptions onV ~for example, if it is co-
closed! this implies the Yang–Mills equations, just as in four dimensions. For instance, this w
for a constantV in flat space2,3 and for a parallel four-form on a Riemannian manifold with spec
holonomy~some examples are discussed in Refs. 4–8!. If V is, for example, the canonical paralle
four-form associated to a quaternionic Ka¨hler manifoldM of dimension 4m, then the eigenspace
of BV are the irreducible Sp(m)•Sp(1)-submodules of the space of two-forms. In terms of
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c!Author to whom correspondence should be addressed. Electronic mail: devchand@math.uni-bonn.de
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associated locally defined Grassmann structureT* CM5E^ H, i.e., the identification of the com
plexified cotangent bundleT* CM with a tensor product of two vector bundlesE andH of rank 2m
and 2, respectively, the eigenspace decomposition is given by

L2T* CM5S2E^ L2H % L0
2E^ S2H % vE^ S2H,

with correspondingBV-eigenvaluesl151,l2521/3,l352(2m11)/3.3,9 HerevE andvH are
two-forms onE* andH* such that the complex metric onTCM is given byvE^ vH andL0

2E
denotes the traceless part ofL2E with respect tovE . The eigenspaces ofBV can thus be de-
scribed in terms of the Grassmann structure, which is a natural generalization of the well-k
spinor decomposition of a vector in four dimensions. A two-form on any manifold with Gr
mann structure is called half-flat if it belongs to the eigenspaceS2E^ L2H and a connection¹
with half-flat curvature is called half-flat. If the Grassmann structure is associated with the q
nionic Kähler structure, then a half-flat connection is the same as an (V,l1)-self-dual connection
and hence satisfies the Yang–Mills equations. Inspired by the harmonic space approac10 we
develop a construction of locally defined holomorphic half-flat connections on a manifoldM with
holomorphic admissible half-flat Grassmann structure, namely, a holomorphic Grassmann
tureT* M5E^ H with holomorphic connections¹E and¹H in the bundlesE andH, respectively,
such that¹H is flat and the torsion of the linear connection¹5¹E

^ Id1Id^ ¹H has no compo-
nent in S3H ^ E* ^ L2E. The construction associates to a holomorphic prepotential a hal
connection through the solution of a system of linear first order ODEs. The construction c
applied, for instance, to the complexification of hyper-Ka¨hler manifolds or, more generally, t
hyper-Kähler manifolds with admissible torsion. Our construction of gauge fields on such cu
backgrounds extends that of Ref. 10, where flat torsion-free backgrounds were considered
over, we provide a geometric description of the harmonic space method of Ref. 10.

We note that using analytic continuation any real analytic connection¹ over a real analytic
Grassmann manifold allows extension to a holomorphic connection¹C over a holomorphic Grass
mann manifold and¹ can be reconstructed from¹C in terms of some antiholomorphic involution

The main idea of our construction is to pull-back a half-flat connection¹ in a holomorphic
vector bundlen:W→M to the harmonic spaceSH . The latter is the space of all symplectic fram
h5(h1 ,h2) in the vector bundleH* . The group Sp~1,C! acts freely onSH , with the orbit space
SH /Sp(1,C)5M . Hence, the projectionp:SH→M is an Sp~1,C!-principal bundle. Choosing a
~local! trivialization, M{x°(h1(x),h2(x))PSH , of p we can make the identificationSH

5Sp(1,C)3M . There exists a canonical decomposition,

TSH5TvSH % D1 % D2 ,

of the ~holomorphic! tangent bundle into the vertical subbundleTvSH and two ~holomorphic!
distributionsD1 andD2 spanned, respectively, by vector fieldsX1

e andX2
e canonically associated

with sectionse of the bundleE* . If the Grassmann structure is admissible and half-flat,
distributionsD1 andD2 are integrable. The vertical distributionTvSH is spanned by vector field
]0 ,]11 ,]22 , which correspond to the standard generators of the Lie algebrasp~1,C!. A half-flat
connection¹ in the bundlen:W→M induces the pull-back connectionp* ¹ in the pull-back
bundlep* n:p* W→SH . Since¹ is half-flat, the curvatureF of p* ¹ satisfies certain equation
~see Definitions 6 and 7!. A connection inp* n satisfying these equations is called a half-fl
connection overSH and is gauge equivalent to the pull-back of a half-flat connection overM . Any
half-flat connection overSH is flat along the leaves of the integrable distribution^D1 ,]0& spanned
by ]0 andD1 . We can therefore choose a frame of the vector bundlep* n which is parallel along
its leaves. Such a frame is called an analytic frame. With respect to such a frame a h
connection has no potentials in the directions of the distribution^D1 ,]0&. Starting from a matrix-
valued function~prepotential! A11 on SH , which is constant along the leaves of the distributi
D1 and satisfies the homogeneity condition]0A1152A11 , we construct a connection whic
satisfies almost all the conditions of half-flatness. We call such a connection an almost h
connection. It is half-flat if and only if its curvature satisfies the equationF(]22 ,D2)50. The
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construction of an almost half-flat connection reduces to the solution of first order linear O
Assuming that the almost half-flat connection¹ is defined globally along the fibers~over p21U,
whereU,M is a domain inM ) we can modify¹ to a half-flat connection overSH which is the
pull-back of a half-flat connection overM . In order to do this, we rewrite¹ with respect to a
‘‘central frame,’’ namely, a frame parallel along the fibers ofp. The transformation from the
analytic to the central frame reduces to the solution of the system of equations

]11F52A11F, ]0F50.

With respect to the central frame the potentialC(X1
e ) of the connection¹ in the direction of the

vector field X1
e PD1 has the formC(X1

e )5u1
a Ca

e , whereCa
e are matrix-valued functions on

M5M3$Id%,M3Sp(1,C) and u6
a ,a51,2, are matrix coefficients of Sp~1,C!. The matrix-

valued functionsC1
e ,C2

e define the desired half-flat connection onM given by

¹e^ h1

M 5e^ h11C1
e , ¹e^ h2

M 5e^ h21C2
e .

Moreover, any half-flat connection may be obtained in this way.
The above construction allows generalization to manifolds with spinm/2 Grassmann struc

ture. This means that the cotangent bundle is identified asT* M5E^ F5E^ SmH, whereE and
H are~holomorphic! vector bundles of rankp and 2, respectively. If a connection¹E on E and a
flat connection¹H on H are given, then the Grassmann structure is called half-flat. The conne
¹H defines a flat connection¹F on F5SmH and the linear connection¹5¹E

^ Id1Id^ ¹F. The
associated harmonic spacep:SH→M is defined as above, as the space of all symplectic fra
h5(h1 ,h2) in H* . Its tangent space has decomposition

TSH5TvSH % %
k50

m

Dk1 % %
k51

m

Dk2 .

Under certain conditions on the torsion of¹ the distributionD (1)
k

ª% i 50
k D(m22i )1 , k<m/2, is

integrable. Such a half-flat Grassmann structure is calledk-admissible. Generalizing the notion o
a half-flat connection, we may define ak-partially flat connection¹ over a manifold with half-flat
spin m/2 Grassmann structure such that the pull-back connectionp* ¹ has no curvature in the
directions of D (1)

k . The harmonic space method can be applied to constructk-partially flat
connections overk-admissible half-flat spinm/2 Grassmann manifolds. In the final section w
consider the case ofm53 and sketch the construction of zero- and one-partially flat connect
The latter are Yang–Mills connections.

II. GENERALIZED SELF-DUALITY FOR MANIFOLDS OF DIMENSION GREATER THAN
FOUR

A. Yang–Mills data

Let n:W→M be a real vector bundle overM and¹ a connection inn, that is a bilinear map

¹:X–~M !3G~n!→G~n!,

~X,s!°¹Xs,

which is C`(M )-linear in the vector fieldXPX–(M ) and satisfies the Leibniz rule¹X( f s)
5(X f )s1 f ¹Xs, for any functionf PC`(M ) and any section,sPG(n), of n. The map¹ can be
extended to a complex bilinear map,

¹:X–C~M !3G~WC→M !→G~WC→M !,

~X,s!°¹Xs, ~1!
 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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where X–C(M ) is the space of complex vector fieldsX1 iY ; X,YPX–(M ) and WC→M is the
complexification of the vector bundlen. Note that¹ satisfies the reality condition

¹X̄s̄5¹Xs, XPX–C~M ! , sPG~WC→M ! , ~2!

where the bar denotes complex conjugation. Conversely, anyC-bilinear map ~1! which is
X–C(M )-linear and satisfies the Leibniz rule and the reality condition~2! defines a connection¹ in
the real vector bundlen. If the reality condition~2! is dropped, then~1! defines a connection in th
complex vector bundleWC→M .

Let w5(w1 , . . . ,w r) denote a local frame ofn such that for any sectionsPG(n), s
5(siw i5

..w•s, where si are the coordinates ofs with respect to the framew and s
5(s1, . . . ,sr) t. Then the connection¹ in n has local expression

¹Xs5¹X~siw i !5w•¹XsªS Xsi1(
j

Aj
i ~X!sj Dw i ,

where Aj
i (X)5(¹Xw j ,w i) and w* 5(w1, . . . ,w r) denotes the dual frame. The locally define

matrix-valued one-formA5(Aj
i ):M→gl(r ,R) is called the Yang–Mills potential with respect t

the framew. If the vector bundlen has structure groupG, i.e., if it is a bundle associated with
principal G-bundleP→M and a representationr:G→GL(r ,R), such thatW5P3GRr , then we
may always choose a framew for which the potential takes values in the Lie algebrag
5Lie r(G),gl(r ,R). We will symbolically write¹X5X1A , A5Aw. A change of frame~gauge
transformation! w85wU induces changess85U21s and w8(X1A8(X))s8 5 w8¹Xs8 5 w¹Xs
5 w(X1A(X))s 5w8U21(X1A(X))Us8, yielding the transformation rule for the potential,

A85U21~XU!1U21A~X!U5U21¹XU . ~3!

The curvature of the connection¹, F5F¹PVM
2 (End W)5G(L2T* M ^ End W), is given by

F~X,Y!5@¹X ,¹Y#2¹[X,Y]5XA~Y!2YA~X!1@A~X!,A~Y!#2A~@X,Y# !.

The Jacobi identity for¹X is equivalent to the Bianchi identity,d¹F¹50. Here the covariant
derivatived¹:Vp(End W)→Vp11(End W) is defined by

d¹~v ^ C!5dv ^ C1~21!pv∧¹C,

wherev is a p-form andC is a section of EndW. ~The connection¹ on W induces a connection
on EndW denoted by the same symbol.!

On any n-dimensional oriented pseudo-Riemannian~or complex Riemannian! manifold,
(M ,g) using the canonical volume form volgPLnT* M , we define the Hodge* operator which
interchanges forms of complementary degree,* :LpT* M→Ln2pT* M , by the relation
^a,b&volg5a∧* b , wherea,bPLpT* M and ^. , .& is the natural scalar product onLpT* M
induced by the metricg. We define * :LpT* M ^ End W→Ln2pT* M ^ End W by * (v ^ C)
ª(* v ^ C).

Definition 1: Let n:W→M be a real vector bundle over a pseudo-Riemannian mani
(M ,g). A YM connection ¹ in n is one which satisfies the Yang–Mills equation

d¹* F¹50.

On a closed manifold this is the Euler–Lagrange equation for the YM functional

iF¹i25E
M

uF¹u2 volg, ~4!
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where the norm onL2T* M ^ End W is induced by the pseudo-Riemannian metric onM and the
natural metric on EndW.

B. Self-duality conditions

On a Riemannian four-manifold, the* operator maps two-forms to two-forms and has eig
values61. The curvature tensor therefore has decomposition into the eigenspaces of the* opera-
tor,

F¹5F11
¹

% F21
¹ PVM

1~End W! % VM
2~End W!.

This splitting corresponds to the decomposition of the SO~4!-module L2R45L1
2

% L2
2 >so(4)

5sp(1)% sp(1) into its irreducible submodules. We call¹ and F¹ self-dual or anti-self-dual if
F21

¹
ª

1
2(F

¹2* F¹)50 or F11
¹

ª

1
2(F

¹1* F¹)50, respectively. For~anti-!self-dual connections
the YM equation,d¹* F¹50, is an immediate consequence of the Bianchi identity,d¹F¹50. On
closed manifolds~anti-! self-dual connections in fact minimize the YM functional~4!, since the
inequality

iF¹i25iF11
¹ i21iF21

¹ i2>uiF11
¹ i22iF21

¹ i2u58p2uc2~W!@M #u

is saturated. Herec2(W)@M #5 (1/8p2) *Mtr F¹∧F¹ is the evaluation of the second Chern cla
of the bundleW on the fundamental cycle.

The apparently four-dimensional notion of self-duality has an analog in higher dimens
The construction originally given in Ref. 2 for flat spaces extends to arbitrary manifolds (M ,g), of
dimension greater than four, as follows.

For VPV4(M ) we define a symmetric tracefree endomorphism fieldBV :L2T* M
→L2T* M by

BVvª* ~* V∧v! , ~5!

wherevPL2T* M . This endomorphism is zero if and only if the four-formV is zero. Moreover,
we have the following.

Lemma 1: Let

V5( V i jkl e
i∧ej∧ek∧el , v5( v i j e

i∧ej

be the expressions forV and v with respect to a frame ei of T* M . Then BV is given as the
contraction

BVv512( gii 8gj j 8 V i jkl v i 8 j 8 ek∧el .

Proof: It is sufficient to check the above formula for decomposable formsV5ei∧ej∧ek∧el

andv5em∧en, where theei form an orthonormal basis ofT* M . h

Definition 2: A four-form VPV4(M ) on a pseudo-Riemannian manifold M is calledappro-
priate if there exists a nonzero real constant eigenvaluel of the endomorphism field BV .

We note that on a Riemannian manifold the eigenvalues ofBV are real for any four-formV.
A generalization of the four-dimensional notion of self-duality may now be defined:

Definition 3: LetV be an appropriate four-form on a pseudo-Riemannian manifold(M ,g)
andlÞ0PR. A connection¹ in a vector bundlen:W→M is „V,l…-self-dual if its curvature F¹

satisfies the linear algebraic system

BVF¹5lF¹, ~6!
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~d* V!∧F¹50 . ~7!

Theorem 1: Let (M ,g) be a pseudo-Riemannian manifold with an appropriate four-formV.
Then any~V,l!-self-dual connection¹ is a YM connection.

Proof: Using ~6! and ~5! we obtain

d¹* F¹5
1

l
d¹* BVF¹56

1

l
d¹~* V∧F¹!56

1

l
~~d* V!∧F¹1* V∧d¹F¹!50,

in virtue of ~7! and the Bianchi identityd¹F¹50. h

Examples of manifolds admitting appropriate four-forms are easily obtained. LetV be a
pseudo-Euclidean vector space andG,SO(V) be a linear group preserving a nonzero elem
V0PL4V. Denote byV i jkl the components ofV0 with respect to an orthonormal basis ofV.
Given a manifoldM with a G-structure,p:P→M , i.e., a principalG-subbundle of the bundle o
frames onM , we can define a four-formVª(V i jkl e

i∧ej∧ek∧el , where (e1,...,en) is a coframe
dual to aG-frame p5(e1 ,...,en)PP. Since G,SO(V), M has the structure of an oriente
pseudo-Riemannian manifold and we can define the operatorBV . The matrix components o
BV5(Bi j

klei∧ej
^ ek∧el are constant for anyG-frame and so are its eigenvalues. HenceV is

appropriate if the endomorphismBV0
PL4V has a nonzero real eigenvaluel. This is automatic in

the Riemannian case.
There exist many examples of subgroupsG,SO(V) admitting nonzeroG-invariant four-

forms, as shown by the following construction. LetG,SO(V) be a closed subgroup of th
pseudo-orthogonal group SO(V) and g,so(V)>L2V* its Lie algebra. Assume thatg admits a
G-invariant symmetric nondegenerate bilinear formBPS2(g* )G, whereWG denotes the space o
G-invariant elements of aG-module W. We can then identifyg with its dual g* via B and
considerB as an element of (S2(g))G,(S2L2V* )G. A G-invariant four-form is then defined by
V0

G
ªaltBP(L4V* )G, where alt:S2L2V* →L4V* denotes alternation. We denote the cor

sponding four-form on a manifold withG-structure byVG. The following variant of a theorem by
Kostant11 provides a wealth of examples of nonzeroV0

G ’s.
Theorem 2: Let G,SO(V) be a closed subgroup whose Lie algebrag admits a nondegen

erate G-invariant bilinear form BP(S2g)G. If the G-module V is not equivalent to the isotrop
module of a pseudo-Riemannian symmetric space, then the four-formV0

G
ªaltBP(L4V)G is

nonzero.
Proof: Recall that the SO(V)-moduleS2L2V decomposes according toS2L2V5R(so(V))

1L4V, whereR(so(V)) denotes the space of curvature tensors of typeso(V), i.e., the space of
two-forms fulfilling the first Bianchi identity or the kernel of the map alt:S2L2V→L4V. If
V0

G5altB50, then B is a nonzero element ofR(so(V))ùS2(g)G5R(g)G. Since B is a
G-invariant two-form onV with values ing it can be used to define a Lie bracket@ • , • # on the
vector spacel5g% V thus,

~i! g is a subalgebra ofl,
~ii ! V is a g-submodule with action defined by the inclusiong,so(V), and
~iii ! @u,v#ªB(u,v)Pg if u,vPV.

The Jacobi identity follows from the Bianchi identity and theG-invariance. LetL be the simply
connected Lie group with Lie algebral. ThenL/G0 is a Riemannian symmetric space withV as its
isotropy module, whereG0,L is the connected Lie subgroup with LieG05g. h

Clearly, ~7! is automatic if the four-formV is co-closed,d* V50. This is the case, for
example, ifV is parallel. In the Riemannian case the Berger list of irreducible holonomy grou12

and a theorem of Kostant11 yield the following result.
Theorem 3: Let M be a complete simply connected irreducible Riemannian manifol

dimension n>4 with holonomy groupHol,SO(n), HolÞSO(n). Then M admits a nontrivial
parallel four-form if one of the following holds: (i) M is not a symmetric space or (ii) M is
symmetric space and has a nonsimple holonomy or, equivalently, isotropy group.
 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: By Berger’s theorem on Riemannian irreducible holonomy groups,12 we have

~a! M is not a symmetric space and its holonomy group is one of U(n/2), SU(n/2),
Sp(n/4)Sp(1), Sp(n/4), G2 , Spin~7!, or

~b! M is a symmetric space.

All the groups in~a! admit invariant four-forms. These are given below. A theorem of Kosta11

states that a simply connected irreducible Riemannian symmetric spaceG/K has no nonzero
parallel four-form if and only if the isotropy groupK is simple. h

In the following examples we explicitly describe parallel~hence appropriate! four-formsV on
Riemanniann-manifolds with holonomy groups HolÞSO(n) from Berger’s list.

~1! Kähler manifolds, Hol,U(m),SO(2m), n52m: V5v∧v, wherev is the Kähler form.
One can check that this is proportional toVSU(m) and that any parallel four-form is proportional t
v∧v if the holonomy group is SU(m) or U(m). If Hol,Sp(k),SU(2k),SO(4k), n54k.4,
i.e., if the manifold is hyper-Ka¨hler, there exist three skewsymmetric parallel complex structu
Ja ,a51,2,3. Then there exist six independent parallel four-formsva∧vb , a,b51,2,3, where
va is the Kähler form associated toJa . For low dimensional examples, eigenvalues and eige
paces ofBV are given in Ref. 2.

~2! Quaternionic Ka¨hler manifolds, Hol,Sp(m)Sp(1),SO(4m), n54m. In this case there
exist three locally defined almost complex structuresJa , with corresponding Ka¨hler formsva ,
such that the four-formVª(ava∧va is globally defined and parallel. This will be discussed
more detail in Sec. II C.

~3! Hol,G2,SO(7). LetV5O5R11Im O5R% R75R8 be the algebra of octonions. Reca
thatG25Aut(O) is the group of automorphisms of the octonions. We can decompose the pr
of two octonionsa,b into its real and imaginary parts as follows:

ab5a•b5^a,b&11 1
2 @a,b#,

where^a,b& is the scalar product and@a,b#5ab2ba is the commutator. We define a three-for
w and a four-formc on ImO5R7 by the formulas

w~x,y,z!ª^x•y,z&5 1
2 ^@x,y#,z&

c~x,y,z,w!ª^@x,y,z#,w& ,

where @x,y,z#5(xy)z2x(yz) is the associator. It is known thatc5* w. Notice thatG2 is the
group of isometries ofO5R8 which fix the identity element 1 and preserve the three-formw ~or
equivalently the four-formc! on ImO. The four-form c defines a parallel four-form on an
Riemannian seven-fold with holonomyG2,SO(7). It is known13 that L4R75Rc % V7(p1)
% V27(2p1), whereVd(p) is thed-dimensional real irreducible representation ofG2 with highest
weightp andp i denotes thei th fundamental weight ofG2 . From this it follows that the four-form
V0

G2 coincides withc up to scaling. The corresponding endomorphismBc of L2R75g2% R7 has
two distinct eigenvalues which correspond to the two irreducibleG2-submodulesg2 and
R7,L2R7 ~see Ref. 2!.

~4! Hol,Spin(7),SO(8). Using the three- and four-formsw andc on R7 introduced in the
G2-case, we construct the four-form

V5dt∧w1c,

wheret is the first coordinate onR85R11R7. In particular,

V~1,x,y,z!5w~x,y,z!, V~x,y,z,w!5c~x,y,z,w! , x,y,z,wPR7.

This four-form V defines a parallel four-form on any Riemannian eight-fold with holono
Spin(7),SO(8). It isknown thatL4R85RV % V7(p1) % V27(2p1) % L4R7. From this it follows
 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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that the four-formV0
Spin(7) coincides withV up to scaling. The corresponding endomorphismBV

of L2R85spin7% R7 has two distinct eigenvalues which correspond to the two irreduc
Spin~7!-submodulesspin7 andR7,L2R8 ~see Ref. 2!.

C. Quaternionic Ka¨hler case

Now we discuss in more detail the case of quaternionic Ka¨hler manifolds~Example 2 above!.
Riemannian manifolds (M ,g) with holonomy group Hol,Sp(m)Sp(1) are called quaternioni
Kähler manifolds. A quaternionic Ka¨hler manifold with holonomy group Hol,Sp(m) is called
hyper-Kähler. On any quaternionic Ka¨hler manifoldM , there exists a rank 3 vector subbund
Q,End TM, invariant under parallel transport, which is locally spanned by three almost com
structures (Ja)5(J1 ,J2 ,J35J1J252J2J1). The latter are in general only locally defined. Th
~globally defined! vector bundleQ is called thequaternionic structure of M . A local frame (Ja)
as above is called astandard frame for Q. Similarly, astandard basisof Q at mPM is a triple
I ,J,K5IJ52JIPQm of complex structures onTmM . A quaternionic Ka¨hler manifold is hyper-
Kähler if and only if there exists a globally defined parallel standard frame (Ja)5(J1 ,J2 ,J3

5J1J252J2J1).
Given a standard frame, we may locally define three nondegenerate two-formsvaªg(Ja•,

•). The four-form

Vª(
a

va∧va

is independent of the choice of standard frame and defines a global parallel four-form.
To describe the eigenspace decomposition ofV it is convenient to use the Grassmann stru

ture ~i.e., generalized spinor decomposition! of a quaternionic Ka¨hler manifold. Recall that a
Grassmann structureon a~real! manifoldM is defined as an isomorphismT* CM>E^ H of the
complexified cotangent bundle with the tensor product of two complex vector bundlesE andH
over M . Any quaternionic Ka¨hler manifold admits a~locally defined! Grassmann structure
T* CM5E^ H, whereH has rank 2, such that the holonomy group Hol,Sp(E) ^ Sp(H). This
follows from the fact that any complex irreducible representation of the group Sp(m)3Sp(1) is a
tensor product of irreducible representations of its factors.

The complex extensiongC of the Riemannian metric defines a complex bilinear metric
TCM , which locally factorizes asgC5vE^ vH , wherevE andvH are sections ofL2E andL2H,
defining complex symplectic forms on the fibers ofE* andH* , respectively. We callvE andvH

the symplectic forms of the symplectic vector bundlesE* andH* .
In terms of the Grassmann structure the eigenspacesVl of the endomorphismBV onL2T* CM

are given by3,9

Vl1
5S2E^ vH , Vl2

5L0
2E^ S2H, Vl3

5vE^ S2H,

whereL0
2E is the space ofvE-traceless two-forms and the eigenvalues arel151, l252 1

3 and
l352(2m11)/3. In particular thel1-self-duality condition takes the form

F¹PS2E^ vH ^ End W . ~8!

Note that sinceV is parallel it is appropriate and co-closed and hence the~V,l!-self-duality
equations~Definition 3! reduce to~6!, which implies the Yang–Mills equation. It is known~see
Theorem 1 of Ref. 4! thatl1- andl3-self-dual connections correspond to absolute minima of
Yang–Mills functional on compact quaternionic Ka¨hler manifolds.
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D. Self-duality as half-flatness

The l1-self-duality equation~8! in fact depends only on the existence of the factorizat
T* CM>E^ H and the symplectic structure inH* . A connection¹ in a vector bundleW over a
manifold M with a Grassmann structure is calledhalf-flat if its curvature satisfies the condition

F¹PS2E^ L2H ^ End W . ~9!

In general such half-flat connections arenot YM connections~with respect to some metric!, but it
is possible to impose further conditions onF¹ in order to enforce the YM equation. In fact, it i
the half-flatness of the connection, rather than the YM property, which is crucial for our cons
tion of solutions.

Proposition 1: A connection¹ in a vector bundle W→M over a quaternionic Ka¨hler manifold
is half-flat if and only if it isl1-self-dual. Hence any such connection is a Yang–Mills connection.

Proof: The result follows from~8! and~9! sinceL2H is the line bundle generated byvH .h
The Levi-Civita connection on a hyper-Ka¨hler manifold is an example of a half-flat linea

connection. Its complexification gives an example of what we call an admissible half-flat G
mann structure in the next section.

III. MANIFOLDS WITH HALF-FLAT HOLOMORPHIC GRASSMANN STRUCTURE

Our goal is to give a construction of half-flat connections in a vector bundlen:W→M over a
manifoldM . If all objects are real analytic, using analytic continuation we may obtain corresp
ing complex analytic objects. Specifically, assume that the manifoldM and the bundlen are real
analytic. ThenM is defined by an atlas of charts with analytic transition functions. Extend
these functions to complex holomorphic functions, we may extendM to a complex manifoldMC

with antiholomorphic involutiont such thatM5(MC)t, the fixed point set oft. Similarly, a real
analytic vector bundlen:W→M can be extended to a holomorphic vector bundlenC:WC→MC.
Moreover, an analytic connection¹ in n can be extended to a holomorphic connection¹ in nC. A
holomorphic extension of a Yang–Mills connection is also a Yang–Mills connection. In the re
this article, we shall assume that all objects~manifolds, bundles and connections! are holomorphic.
In Sec. IV we shall give a construction of half-flat connections in a holomorphic bundleW→M
over a complex manifoldM with holomorphic Grassmann structure. Now we describe the
quired geometrical notions. In particular, we provide a description of the harmonic spaces o
10 in geometric language. Our description affords application to the construction of ha
connections over more general manifolds than the flat torsion-free backgrounds previousl
sidered in the harmonic space literature~see, e.g., Ref. 10!.

A. Grassmann structure

Let M be a complex manifold with holomorphic Grassmann structureT* M5E^ H, the
isomorphism of the holomorphic cotangent bundle overM with the tensor product of holomorphi
vector bundlesE andH over M of rank p andq, respectively. ThenTM5E* ^ H* . A holomor-
phic linear connection¹ on M is called aholomorphic Grassmann connectionif it preserves the
holomorphic Grassmann structure. This means that for any vector fieldX on M and local sections
ePG(E) andhPG(H),

¹X~e^ h!5¹X
Ee^ h1e^ ¹X

Hh,

where¹E,¹H are connections in the bundlesE,H, respectively.
Definition 4: A holomorphic Grassmann structure, T* M5E^ H, on a complex manifold M

with a holomorphic Grassmann connection¹5¹E
^ Id1Id^ ¹H is calledhalf-flat if the connec-

tion ¹H in the holomorphic vector bundle H→M is flat. A manifold with such a half-flat holo
morphic Grassmann structure is called ahalf-flat Grassmann manifold.

Assumption:In this section we assume thatM is a manifold with a half-flat holomorphic
Grassmann structure (T* M5E^ H ,¹5¹E

^ Id1Id^ ¹H), such thatH has rank 2 and that a
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¹H-parallel nondegenerate fiber-wise two-formvHPG(L2H) in the bundleH* is fixed. If, in
addition, a¹E-parallel nondegenerate two-formvEPG(L2E) is fixed, then we can define
¹-parallel complex Riemannian metricg5vE^ vH on M . We do not assume, in general, that t
linear connection¹ is torsion-free.

The torsion of a linear connection belongs toTM ^ L2T* M . SinceT* M5E^ H, we have the
decomposition

TM ^ L2T* M5TM ^ ~L2E^ S2H % S2E^ L2H !

5E* H* ~L2ES2H % S2EvH!

>E* L2E~S3H % vHH ! % E* S2EvHH, ~10!

where we omit thê ’s and we identifyH* with H usingvH .
Definition 5: A half-flat connection is calledadmissibleif its torsion tensor has no componen

in E* ^ L2E^ S3H. A half-flat Grassmann manifold(M ,¹) is calledadmissible if ¹ is admis-
sible.

We remark that if the torsion of a half-flat connection isE-symmetric, i.e., if it belongs to
TM ^ S2E^ L2H5TM ^ S2E^ vH , then the connection is admissible. It follows from the abo
decomposition that the torsion tensor of any admissible connection can be written as

T~e^ h,e8^ h8!5T1~e,e8! ^ vH~h,h8!h11T2~e,e8! ^ vH~h,h2!h81T2~e,e8! ^ vH~h8,h2!h,

wheree,e8 are sections ofE* , h1 ,h2 are fixed sections ofH>H* , T1PG(E* ^ S2E) and T2

PG(E* ^ L2E). This shows that admissibility of the connection means that the torsion ca
represented as the sum of two tensors linear invH .

B. Harmonic space

Let M be a half-flat Grassmann manifold. We denote bySH the Sp~1,C!-principal holomorphic
bundle overM consisting of symplectic bases ofHm* >Hm>C2 , mPM ,

SH5$s5~h1 ,h2! u vH~h1 ,h2!51%.

The bundleSH→M is calledharmonic space.10 A parallel ~local! section

m°sm5~h1~m!,h2~m!!PSH

defines a trivialization

M3Sp~1,C!>SH ,

given by

~m,U!°smU5S h15 (
a51

2

hau1
a , h25 (

a51

2

hau2
a D , U5S u1

1 u2
1

u1
2 u2

2 D ;det U51.

We denote by]11 ,]22 ,]0 the fundamental vector fields onSH generated by the standard ge
erators of Sp~1,C!,

]11;S 0 1

0 0D , ]22;S 0 0

1 0D , ]0;S 1 0

0 21D .

They satisfy the relations

@]11 , ]22#5]0 , @]0 , ]11#52]11, @]0 , ]22#522]22 .
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Consider Mat~2,C!, the vector space of two by two matrices. The matrix coefficientsu6
a are

coordinates on this vector space. One can easily check that the vector fieldsu1
a ]/]u2

a , u2
a ]/]u1

a

and u1
a ]/]u1

a 2u2
a ]/]u2

a annihilate the function detU5ebgu1
b u2

g , whereebg are the matrix
coefficients of the standard symplectic form ofC2. Therefore these vector fields are tangent to
submanifold Sp(1,C)5$detU51%,Mat(2,C). One can easily prove the following lemma.

Lemma 2: In terms of the identification, SH>M3Sp(1,C), the fundamental vector fields o
SH generated by the standard generators ofSp~1,C! may be written

]115u1
a ]

]u2
a , ]225u2

a ]

]u1
a , ]05u1

a ]

]u1
a 2u2

a ]

]u2
a .

We say that a functionf on SH haschargec if ]0f 5c f . The charge measures the difference in t
degrees of homogeneity inu1 andu2 .

Note that any frame (h1 ,h2)PSH defines an isomorphismC2 →̃ Hm* given by
(z1,z2)°z1h11z2h2 . This induces an isomorphism

sp~1,C!5sp~C2!>S2C2 →̃ S2Hm* 5spanC$h1
2 , h2

2 , h1∨h2%,

where we have identifiedsp(C2) with S2C2 using the symplectic form ofC2. The generators of
sp~1,C! corresponding to h1

2 , 2h2
2 , 2h1∨h2 under this identification are precisel

]11 , ]22 , ]0 respectively.

C. Canonical distributions on harmonic space

Let SH5$(h1 , h2)uh65u6
a ha ,(u6

a )PSp(1,C)% be the harmonic space associated to a h
flat Grassmann manifoldM . Here we have fixed a parallel symplectic frame (h1 ,h2) of H* which
defines the trivializationSH5M3Sp(1,C) of the holomorphic bundleSH . In particular, the matrix
coefficientsu6

a of Sp~1,C! will be considered as holomorphic functions onSH . Together with local
coordinates (xi) of M , we obtain a system (xi ,u6

a ) of local ~nonhomogeneous–homogeneou!
coordinates onSH .

For any sectionePG(E* ) we define vector fieldsX6
e PX–(SH) by the formula

X6
e u(h1 ,h2)5e^ h6̃,

whereỸ stands for the horizontal lift of a tangent vectorY on M with respect to the connectio
¹H. Since the frameha is parallel, this horizontal lift coincides with the horizontal lift wit
respect to the splittingSH5M3Sp(1,C). This shows that the vector fieldsX6

e are tangent toM

3$(h1 ,h2)% and hence annihilateu6
a . If h65u6

a ha , thenX6
e 5u6

a Xa
ẽ , whereXa

e
ªe^ ha .

There exists a canonical decomposition

TSH5TvSH % D1 % D2

of the ~holomorphic! tangent bundle into the vertical subbundleTvSH and two ~holomorphic!
distributionsD1 and D2 spanned, respectively, by vector fieldsX1

e and X2
e associated with

sectionse of the bundleE* . The vertical distributionTvSH is spanned by the vector field
]0 ,]11 ,]22 , which correspond to the standard generators of the Lie algebrasp~1,C!.

Lemma 3: The vector fields X6
e PX–(SH) satisfy the following commutation relations:

@]0 ,X6
e #56X6

e , @]66 ,X6
e #50, @]66 ,X7

e #5X6
e ,

@X1
e ,X2

e8#5X
2

¹p
*

X
1
e e8

2X
1

¹p
*

X
2
e8e

2T̃~p* X1
e ,p* X2

e8!, ~11!
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@X6
e ,X6

e8#5X
6

¹p
*

X
6
e e8

2X
6

¹p
*

X
6
e8e

2T̃~p* X6
e ,p* X6

e8!,

where T is the torsion of the Grassmann connection, T̃(X,Y)ªT(X,Y)̃ denotes the horizontal lift
of the vector T(X,Y) and we have used the abbreviation¹Xeª¹X

Ee .
Proof: The first three equations follow fromX6

e 5u6
a e^ hã and the expression for the fun

damental vector fields given in Lemma 2. To prove the last equation we first compute th
bracket of two vector fieldsX5e^ h andX85e8^ h on M , whereh is parallel:

@X,X8#5¹XX82¹X8X2T~X,X8!5~¹Xe82¹X8e! ^ h2T~X,X8! . ~12!

Using this we calculate the commutator

@X6
e , X6

e8#5u6
a u6

b ~¹X
a
eXb

e8̃2¹X
b
e8Xa

ẽ2T̃~Xa
e ,Xb

e8!!

5~¹p
*

X
6
e e8^ h6!;2~¹p

*
X

6
e8e^ h6!;2u6

a u6
b T̃~Xa

e ,Xb
e8!

5X
6

¹p
*

X
6
e e82¹p

*
X

6
e8e

2T̃~p* X6
e ,p* X6

e8!.

The expression for@X1
e ,X2

e8# follows similarly. h

We shall use the abbreviationT(X6
e ,X6

e8)ªT̃(p* X6
e ,p* X6

e8).
Proposition 2: The following conditions are equivalent:

(i) For any parallel section hPG(H* ) the distribution E* ^ h on M is integrable.
(ii) The distributionD1 @associated to any parallel frame(h1 ,h2)] on SH is integrable.
(iii) The distributionD2 on SH is integrable.
(iv) The holomorphic Grassmann structure is admissible, i.e., it has admissible connect.

Proof: The formula~12!, whereh is parallel, shows that the distributionE* ^ h is integrable
if and only if

T~E* ^ h,E* ^ h!,E* ^ h . ~13!

Using the decomposition~10!, one can check that this condition is satisfied for all parallel sect
h if and only if the connection is admissible. This proves the equivalence of (i ) and (iv). Since
p* (X1

e u(h1 ,h2))5e^ h1 , the last equation in~11! shows that the distributionD1 is integrable if
and only if ~13! holds for allh. Thus (i ) is equivalent to (i i ). The equivalence of (i ) and (i i i ) is
proved similarly. h

IV. CONSTRUCTION OF HALF-FLAT CONNECTIONS OVER HALF-FLAT GRASSMANN
MANIFOLDS

A. Half-flat connections over half-flat Grassmann manifolds

In this section we describe theharmonic space method10 for constructing half-flat connection
¹ ~Definition 6 below! in a holomorphic vector bundlen:W→M over a complex manifoldM with
admissible half-flat holomorphic Grassmann structure. The basic ingredient of the construc
the lift of geometric data fromM to SH via p:SH→M . Let ¹ be a holomorphic connection in
holomorphic vector bundlen:W→M . Its curvature

F~e^ ha , e8^ hb!5vH~ha ,hb!F (ee8)1Fab
[ee8] , ~14!
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where (h1 ,h2) is the fixed parallel local frame ofH* and e,e8 are local sections ofE* . The

curvature componentF (ee8) is symmetric ine,e8 andFab
[ee8] is skew ine,e8 and symmetric ina,b.

Lifting ~14! to SH we obtain the curvature of the pull-back connectionp* ¹ in p* n:p* W→SH

with components,F(v , • )50 , ;vPTvSH , together with

F~X6
e ,X6

e8!5F66
[ee8]

ªu6
a u6

b Fab
[ee8] ,

F~X1
e ,X2

e8!5F (ee8)1F12
[ee8]

ªF (ee8)1u1
a u2

b Fab
[ee8] .

Definition 6: A holomorphic connection¹ in a holomorphic vector bundlen:W→M over a
complex manifold M with holomorphic Grassmann structure, T* M5E^ H, is calledhalf-flat if
its curvature F satisfies the equation

F~e^ ha , e8^ hb!5vH~ha ,hb!F (ee8) , ~15!

where(h1 ,h2) is a parallel local frame of H* and F(ee8) is symmetric in the local sections e,e8
of E* .

Note that~15! is equivalent to~9!. From this definition it follows that for anyhPH* we have
F(e^ h , e8^ h)50 .

Definition 7: A connection in a holomorphic vector bundle W→SH over harmonic space SH is
called half-flat if its curvature F satisfies the equations

F~X1
e ,X1

e8!50,

F~X1
e ,X2

e8!5F (ee8),
~16!

F~X2
e ,X2

e8!50,

F~v , • !50, ;vPTvSH,

where F(ee8) is symmetric in the local sections e,e8 of E* .
Definition 8: Let n:W→M be a holomorphic vector bundle and¹ a connection in

p* n:p* W→SH , wherep:SH→M . A local frame ofp* n defined onp21(U), where U is an
open subset of M, is called acentral frame with respect to¹ if it is parallel along the fibers of
the bundlep:SH→M .

Remark:If x5(x1 ,...,x r) is a local frame ofn, thenp* x will be a central frame with respec
to the pull-backp* ¹ of any connection¹ in n. The connection one-formA of p* ¹ with respect
to the framep* x satisfiesA(v)50 , A(X6

e )5u6
a Aa

e , where v is any vertical vector andAa
e

5A(Xa
ẽ) is a matrix-valued function onM . Conversely, any connection satisfying these con

tions is the pull-back of the connection overM with potentialA(Xa
e)5Aa

e .
Proposition 3: Letp:S→M be any fiber bundle with simply connected fibers over a sim

connected manifold M. There is a natural one-to-one correspondence between gauge equiva
classes of connections¹M in the trivial bundleCr3M and gauge equivalence classes of conn
tions ¹S in Cr3S satisfying the curvature constraint F(v, • )50 for all vertical vectorsv.

Proof: It is clear that the pull-back¹S5p* ¹M to S of a connection¹M defined overM
satisfies the curvature constraint. To prove the converse, we will apply the following eleme
lemma to the connection one-formA of a connection¹ over N5S.

Lemma 4: Letp:N→M be a submersion with connected fibers anda a p-form on N. Thena
is the pull-backp* b of a p-form b on M if and only if the inner productsiva5ivda50 for all
vertical tangent vectorsv.

Since the connection¹S is flat along the~simply connected! fibers ofp there exists a centra
framec5(c1 ,...,c r) for ¹S. Let A be the connection one-form of¹S with respect to this centra
 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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frame. We then haveA(v)50 for any vertical vectorv and the curvature conditionF(v, • )50
impliesdA(v, • )50. Now the above lemma shows thatA is the pull-back of a one-formB on M ,
which defines a connection¹M in the trivial bundleCr3M . Since any two central frames differ b
a gauge transformation which is a matrix-valued function onM the connection¹M is well defined
up to a gauge transformation. The pull-backp* ¹M is gauge equivalent to¹S since it has the same
expression with respect to the standard frame ofCr3S ~which is the pull-back of the standar
frame ofCr3M ) as¹S with respect to the central framec. It is clear that the pull-backs of gaug
equivalent connections overM are gauge equivalent connections overS. Applying a gauge trans-
formation to a connection¹S which has connection one-formA with respect to a central framec
we get a new connection (¹S)8, which has the same connection formA with respect to the
transformed framec8. The framec8 is therefore central with respect to (¹S)8 and the two
connections¹S and (¹S)8 define the same gauge equivalence class of connections overM . h

Proposition 4: Letn:W5Cr3M→M be a trivial vector bundle over a complex manifold M
with admissible half-flat holomorphic Grassmann structure andp* n:p* W5Cr3SH→SH its
pull-back to SH . Then any half-flat connection over SH is gauge equivalent to the pull-back of
half-flat connection over M.

Proof: It is clear that the pull-back of a half-flat connection is half-flat. To prove the conve
we apply Proposition 3, by which a half-flat connection¹S over SH is gauge equivalent to a
pull-back connectionp* ¹M, which is necessarily half-flat. This implies that¹M is half-flat. In
fact, if the connection¹M were not half-flat, then it would have a nontrivial curvature compon

Fab
[ee8] which would imply that its pull-backp* ¹M has, for instance, a nonzero curvature comp

nentF11
[ee8] . But this is impossible sincep* ¹M is half-flat. h

Corollary 1: The connection one-form A of a half-flat connection over SH with respect to a
central framec has the form

A~v !50, A~X6
e !5u6

a Aa
e ,

wherev is any vertical vector and Aa
e5A(Xa

ẽ) is a matrix-valued function on M.
Remark:This shows that the half-flat connection is completely determined by the potent

the D1-direction,A(X1
e )5u1

a Aa
e , with respect to a central frame.

Proof: This follows from Proposition 4 and the remark following Definition 8. h

B. The construction

In this section we construct half-flat connections in a bundlen:W→M over a manifoldM
with a half-flat admissible Grassmann structure. First we define the weaker notion of an a
half-flat connection overSH and show how to construct all such connections from appropr
prepotentials. Then we show that any almost half-flat connection overSH may be used to construc
a half-flat connection onM . Since our construction is local inM , we shall assume that the bundle
p, n andp* n are trivial, i.e.,p:M3Sp(1,C)→M , n:M3Cr→M and p* n:SH3Cr→SH .

1. Construction of almost half-flat connections

The restriction of a half-flat connection to a leaf of the integrable distribution^D1 ,]0& is
clearly flat.

Definition 9: A framew1 , . . . ,w r in the holomorphic vector bundlep* n:Cr3SH which is
parallel along leaves of the integrable distribution̂D1 ,]0& is called ananalytic frame.

With respect to an analytic frame a connection in the vector bundlep* n has components

¹]0

S 5]0 ,

¹X
1
e

S
5X1

e ,

¹]11

S 5]111A11 ª]111A~]11!,
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¹]22

S 5]221A22 ª]221A~]22!,

¹X
2
e

S
5X2

e 1A~X2
e !.

Definition 10: A connection¹S over SH is calledalmost half-flat if its curvature satisfies the
following equations:

F~X1
e , X1

e8!5F~X1
e , v !50, ;vPTvSH ,

~17!
F~]11 , • !5F~]0 , • !50 .

In fact, these equations are not independent; for instance the Bianchi identity with argu
(X1 ,]11 ,]22) together with F(]11 ,]22)5F(]66 ,X1

e )50 implies the equation
F(]11 ,X2

e )50.
Proposition 5: Any almost half-flat connection satisfies the following equation:

F~X1
e ,X2

e8!5F~X1
e8 ,X2

e !.

Proof: Using the integrability ofD1 andF(X1
e ,X1

e8)5F(]22 ,X1
e )50, we obtain

05@¹]22

S , F~X1
e ,X1

e8!#

5@¹]22

S , @¹X
1
e

S
, ¹

X
1
e8

S
##2@¹]22

S , ¹
[X

1
e , X

1
e8]

S
#

5@¹X
2
e

S
, ¹

X
1
e8

S
#1@¹X

1
e

S
, ¹

X
2
e8

S
#2¹

[X
2
e , X

1
e8]

S
2¹

[X
1
e , X

2
e8]

S

5F~X2
e ,X1

e8!2F~X2
e8 ,X1

e ! .
h

It follows that an almost half-flat connection is a generalization of a half-flat connection, satis
only those equations in~16!, that involve curvatures with]0 ,]11 or X1

e in one of the arguments
Proposition 6: An almost half-flat connection is half-flat if and only if it satisfi

F(]22 ,X2
e )50.

Proof: By Proposition 5 an almost half-flat connection is required to satisfy all the h
flatness equations~16! with the exception of

F~]22 ,X2
e !50 and F~X2

e ,X2
e8!50. ~18!

The second equation here follows from the first by virtue of the Bianchi identity with argum

(X1
e ,X2

e8 ,]22). h

The following proposition shows that an almost half-flat connection is completely determ
by the potentialsA11 andA22 with respect to an analytic frame.

Proposition 7: Let¹S be an almost half-flat connection in the vector bundlep* n:Cr3SH

→SH with potentials A11 , A22 and A(X2
e ) in an analytic frame. Then we have following.

( i ) The potential A11 is analytic and has charge12, i.e.,

X1
e A1150, ]0A1152A11 . ~19!

( i i ) The potential A22 satisfies

]11A222]22A111@A11 ,A22#50, ]0A22522A22 . ~20!

( i i i ) The potential A(X2
e ) is determined by A22 and has charge21:
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A~X2
e !52X1

e A22 , ]0A~X2
e !52A~X2

e ! . ~21!

Conversely, any matrix-valued potentials A11 , A22 and A(X2
e ) satisfying~19!–~21! define an

almost half-flat connection.
Proof: ~i! The curvature constraintsF(X1

e , ]11)50 , F(]0 , ]11)50, in an analytic frame,
take the form~19!.

~ii ! The further almost half-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give Eqs.
~20! for the potentialA22 .

~iii ! Having obtained A22 , we can find A(X2
e ) from the equationsF(X1

e , ]22)
5F(]0 , X2

e )50 , which take the form

X1
e A225A~@X1

e ,]22# !52A~X2
e !, ]0A~X2

e !52A~X2
e ! . ~22!

The second equation follows from the first. h

We can now write an algorithm for the construction of all almost half-flat connections:
Theorem 4: Let A11 be an analytic prepotential, i.e., a matrix-valued function on a dom

U5p21(V),SH , where V,M is a simply connected domain, satisfying (19). LetF be an
invertible matrix-valued function on U which satisfies the equations

]11F52A11F , ]0F50 . ~23!

It always exists. The pair(A11 ,F) determines an almost half-flat connection¹S5¹ (A11 ,F). Its
potentials with respect to an analytic frame are given by A11 , A2252(]22F)F21 and
A(X2

e )52X1
e A22 . Conversely, any almost half-flat connection is of this form.

Proof: We consider the connection defined byA11 and A(]0)50 along an orbitsB of the
Borel subgroup of SL~2,C!,

B5H S t0 t1

0 t0
21DU t0PC* , t1PCJ >C* 3C ~diffeomorphic!.

It is flat since the second equation of~19! is equivalent toF(]0 , ]11)50 ~vanishing of the
curvature alongsB). Moreover, it has trivial holonomy since the fundamental group ofB>C*
3C coincides with the fundamental group of theC* -factor and the potential is zero in the directio
of ]0 which is tangent toC* . An invertible solution to the system~23! exists and defines a paralle
frameF with respect to the flat connection with trivial holonomy defined along each orbit of
Borel group. Since the space of Borel orbits inU is diffeomorphic toV3CP1 and is therefore
simply connected, a solutionF exists on the domainU. Now, given any such solution of~23!, we
defineA22ª2(]22F)F21. This solves~20!, sinceF(]66 ,]0)5F(]11 ,]22)50 is the inte-
grability condition for the system]66F52A66F, ]0F50. Finally, we defineA(X2

e )
ª2X1

e A22 , obtaining an almost half-flat connection by Proposition 7. Now the converse s
ment follows also from Proposition 7. h

2. Transformation to the central frame

Since an almost half-flat connection¹5¹S is flat in vertical directions, it admits a centra
framec. The following lemma shows that the solutionF of Eq. ~23! gives a gauge transformatio
from an analytic framew to a central framec5wF for the almost half-flat connection¹ (A11 ,F).

Lemma 5: Let¹5¹ (A11 ,F) be the almost half-flat connection associated to the anal
prepotential A11 with respect to the analytic framew and an invertible solutionF of (23). Then
the framecªwF is a central frame for the connection¹, i.e., the potentials C(]66) and C(]0)
with respect to that frame vanish.

Proof: The result follows from the pure gauge form ofA(]66) andA(]0) and the transfor-
mation law~3! for potentials. h
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With respect to the central framec, the almost half-flat connection constructed above ta
the form

¹X
1
e

S
5 X1

e 1C~X1
e !5 X1

e 1F21 X1
e F,

¹X
2
e

S
5 X2

e 1C~X2
e ! 5 X2

e 1F21X2
e F1F21X1

e ~]22FF21!F,

¹]11

S 5 ]11, ¹]22

S 5 ]22, ¹]0

S 5 ]0 .

Moreover, the equationsF(]11 , X1
e )5F(]0 , X1

e )50 imply that the potentialC(X1
e ) satisfies

the equations

]11C~X1
e !50, ]0C~X1

e !5C~X1
e !. ~24!

3. Construction of half-flat connections

We assume now that the analytic prepotentialA11 is defined globally along the fibers o
p:SH→M . Then, restrictingM to an appropriate domain, we may assume thatA11 is defined
globally onSH . The previous construction then provides an almost half-flat connection overSH .
Using this connection, we may construct a half-flat connection onM . The crucial point is the
following:

Proposition 8: The potential C(X1
e ) of an almost half-flat connection¹ with respect to a

central frame is linear in u1
a , namely,

C~X1
e !5u1

a C~Xa
ẽ !5..u1

a Ca
e , ~25!

where(xi ,u6
a ) are the local coordinates associated with the trivialization SH5M3Sp(1,C) and

Ca
e5Ca

e(xi) is a matrix-valued function on M.
Proof: Due to Eqs.~24!, the result follows from Lemma 6.
Lemma 6: (i) If a holomorphic function f1 , defined on some domain

U,$u1
2 Þ0%,Sp~1,C!5H U5S u1

1 u2
1

u1
2 u2

2 D ;detU51J ,

satisfies

]11 f 150, ]0f 15 f 1, ~26!

then f15u1
a f a(u1

1 /u1
2 ). Here fa(u1

1 /u1
2 ) are holomorphic functions on U invariant under th

right action of the Lie algebra of upper-triangular matrices.
(ii) Moreover, if the function f1 is globally defined, then it is linear in u1

a , i.e., f 1

5u1
a f a , f a5const.
Proof: ~i! One can immediately check thatf 15u1

a f a(u1
1 /u1

2 ) is a solution of~26!. We note
that the quotient of any two solutions of~26! is a solution of the corresponding homogeneo
system,

]11 f 50, ]0f 50. ~27!

It is sufficient to check that any solution of~27! is a function ofu1
1 /u1

2 . To prove this we use the
local factorization of Sp~1,C! into the product of a Borel subgroupB and a nilpotent subgroup a
follows:
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S u1
1 u2

1

u1
2 u2

2 D 5S 1 0

c21 1D S a b

0 a21D , B5H S a b

0 a21D J .

Then c5u1
1 /u1

2 and ]0 ,]11 are generators of the right action ofB. This implies that the
solutions of~27! are precisely the local functions on Sp~1,C! invariant under the right action ofB.
In terms of the local coordinate system (a,b,c) on Sp~1,C! such functions are functions ofc
5u1

1 /u1
2 alone.

~ii ! The restrictionVuSp(1) to Sp~1! of any irreducible Sp~1,C!-module V of holomorphic
functions is a~finite dimensional! irreducible Sp~1!-module of smooth functions on Sp~1!. The
condition ~26! shows thatf 1 is a highest weight vector with weight11. Hencef 1 generates a
two-dimensional submodulêf 1&5span$ f 1 , f 2ª]22 f 1% of holomorphic functions. It remains
to show that any two-dimensional module of holomorphic functions on Sp~1,C! is spanned by
linear functions. We know two such modules, generated by the highest weight vectorsu1

1 andu1
2

respectively. On the other hand, by the Peter–Weyl theorem the multiplicity of the
dimensional irreducible representation of Sp~1! in L2(Sp(1)) is 2. h

Using Proposition 8, with respect to a central frame, we can write¹X
1
e 5X1

e 1u1
a Ca

e where the

coefficientsCa
e5Ca

e(xi) are matrix valued functions of coordinatesxi on M . Using them we
define a new connection in the trivial bundleCr3SH over SH by

¹̂X
6
e 5X6

e 1u6
a Ca

e ,

¹̂]66
5]66, ¹̂]0

5]0.

Our main result now follows:
Theorem 5: Let M be a complex manifold with a half-flat admissible Grassmann struct

Let A11 be an analytic prepotential, i.e., a solution of (19), andF an invertible solution of (23).

Then the connection¹̂5¹̂ (A11 ,F) constructed from the data(A11 ,F) is a half-flat connection in
the trivial vector bundleCr3SH→SH and it is the pull-back of the following half-flat connectio
¹M in the bundleCr3M→M :

¹X
a
e

M
5Xa

e1Ca
e . ~28!

Conversely, any half-flat connection over S~or M ) is gauge equivalent to one obtained from t
above construction.

Proof: The remark after Definition 8 shows that the connection¹̂ is the pull-back of the

connection¹M. It suffices now to show that¹M is half-flat. Note that the connections¹ and ¹̂
coincide in the direction ofX1

e . Hence, usingC1
e
ªu1

a Ca
e , we have

05F¹~X1
e ,X1

e8!5F ¹̂~X1
e ,X1

e8!5X1
e C1

e82X1
e8C1

e 1@C1
e , C1

e8#2C~@X1
e , X1

e8# !

5u1
a u1

b ~Xa
eCb

e82Xb
e8Ca

e1@Ca
e , Cb

e8#2C~@Xa
e , Xb

e8# !!

5u1
a u1

b F¹M
~Xa

e , Xb
e8! ,

sinceX1
e u1

b 50. This shows that the curvatureF¹M
(Xa

e , Xb
e8) is skew-symmetric ina,b, i.e., it

belongs toL2H ^ S2E^ End W. In other words, the connection¹M is half-flat.
Conversely, let¹S be a half-flat connection overSH . By Proposition 4 we may assume that

is a pull-back of a half-flat connection¹M over M . Since the restriction of¹S to the leaves of
^D1 ,]0& is flat, there exists an analytic frame@i.e., a frame such thatA(X1

e )5A(]0)50, in which
the potentialA(]11) satisfies the equations~19!#. Since¹S is flat along the~simply-connected!
fibers, there exists an invertible solutionF to the system
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]11F1A11F5]22F1A22F5]0F50.

This shows that¹S is gauge-equivalent to the almost half-flat connection¹ (A11 ,F)5¹̂ (A11 ,F).h

C. Application to hyper-Ka ¨hler manifolds with admissible torsion

The above construction can be applied to the complexification of hyper-Ka¨hler manifolds.
Recall that any hyper-Ka¨hler manifold admits a~locally defined! Grassmann structureT* CM
5E^ H, such that the Levi–Civita connection on the cotangent bundle¹5¹E

^ Id1Id^ ¹H is
half-flat, i.e., the connection¹H is flat. Since the hyper-Ka¨hler metric is Ricci flat, hence analytic
we may, using analytic continuation, extend the manifoldM to a complex manifoldMC with
holomorphic extension of the hyper-Ka¨hler structure, in particular, we have a holomorphic Ric
flat metric onMC with holonomy in Sp(n,C) and half-flat Grassmann structure. This Grassma
structure is admissible since the Levi–Civita connection onMC has no torsion. Hence we ca
apply the harmonic space method to construct half-flat connections on holomorphic vector b
W→MC. The complex version of Proposition 1 shows that such connections are Yang–
connections. More generally, the method of construction of half-flat connections extends t
analytic ~possibly indefinite! hyper-Kähler manifolds with admissible torsion, i.e., with torsio
which has zero component inS3H ^ E* ^ L2E. A hyper-Kähler manifold with admissible tor-
sion is defined as a pseudo-Riemannian manifold (M ,g) with a linear metric connection¹ with
holonomy in Sp(k,l ) which has admissible torsion. As in the~torsion-free! hyper-Kähler case
there exists a parallel four-form given byV5(ava∧va , vaªg(Ja•,•), and half-flat connec-
tions are characterized as connections with curvature inVl1

^ End W, where Vl1
is the

l1-eigenspace of the endomorphismBV associated toV. If the form V is co-closed, then any
half-flat connection will be (V,l1)-self-dual and thus a Yang–Mills connection. We remark t
co-closedness ofV is equivalent to a linear Sp(k,l )-invariant condition on the torsion.

V. GENERALIZATION TO HIGHER-SPIN GRASSMANN MANIFOLDS

A. Higher-spin Grassmann structures

The construction discussed in the previous section is in fact them51 specialization of a more
general construction of connections onspin m/2 Grassmann manifolds, which we discuss in this
section. These manifolds were considered in Ref. 14.

Definition 11: Aspin m/2 Grassmann structureon a (complex) manifold M is a holomorphi
Grassmann structure of the form T* M>E^ F5E^ SmH, with a holomorphic Grassmann con
nection ¹5¹E

^ Id1Id^ ¹F, where H is a rank 2 holomorphic vector bundle over M w
holomorphic symplectic connection¹H and symplectic formvHPG(L2H), and ¹F is the con-
nection in F5SmH induced by¹H. M is calledhalf-flat if the connection¹F is flat.

The bundleSmH is associated with the spinm/2 representation of the group Sp~1,C!. Any
frame (h1 ,h2) for H* defines a frame forSmH* (hAªha1

ha2
¯ham

), where the multi-indexA

ªa1a2¯am , a i51,2. The¹H-parallel symplectic formvH on H* induces a bilinear formvH
m

on F* 5SmH* given by

vH
m~hA ,hB!ªS

A
S
B

vH~ha1
,hb1

!vH~ha2
,hb2

!¯vH~ham
,hbm

!,

whereSA denotes the sum over all permutations of thea’s. This form is skew-symmetric ifm is
odd and symmetric ifm is even. To any sectionePG(E* ) and multi-indexA we associate the
vector fieldXA

e
ªe^ hA on M .

The construction of half-flat connections described in Sec. IV B may be adapted to o
certain ‘‘partially flat’’ connections in vector bundlesW→M , provided that the torsion of¹ obeys
certain admissibility conditions.

Definition 12: Let(M ,¹) be a half-flat spin m/2 Grassmann manifold. For any section
PG(E* ) we define vector fields
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X(m22i )1
e

ªu
2

a1
¯u

2

a iu
1

a i 11
¯u

1

amXA
e if m22i>0,

X(2i 2m)2
e

ªu
2

a1
¯u

2

a iu
1

a i 11
¯u

1

amXA
e if m22i ,0,

on the principal bundle SH of symplectic frames in H. The distribution spanned by these vect
fields is denoted byDk1ª ^Xk1

E & for k>0 , k[m mod 2 and Dk2ª ^Xk2
E & for k.0 , k

[m mod 2.We define also

D (6)
k

ª%
i 50

k

D(m22i )6 .

The Grassmann connection¹ is calledk-admissible if it preserves the distributionD (6)
k , i.e.,

T~D (6)
k ,D (6)

k !,D (6)
k . ~29!

The Grassmann manifold(M ,¹) is calledk-admissible if the connection¹ is k-admissible.
For smallm we shall writeX0

e , X1
e , X2

e , X11
e , etc. instead ofX01

e , X11
e , X12

e , X21
e , etc.

Proposition 9: Let(M ,¹) be a half-flat spin m/2 Grassmann manifold. Then the distributio
D (6)

k is integrable if and only if the torsion of the Grassmann connection¹ satisfies Eq. (29).
The proof is similar to that of Proposition 2.

B. Partially flat connections over higher-spin Grassmann manifolds

Let (M ,¹) be a half-flat spinm/2 Grassmann manifold andn:W→M a holomorphic vector
bundle. Since our constructions are local we will assume thatW is trivial. In the higher spin (m
.1) case, there exists, as a natural generalization of the notion of a half-flat connection, th
refined notion of ak-partially flat connection inn. The space of two-formsL2T* M has the
following decomposition intoGL(E) ^ Sp(1,C)-submodules:

L2T* M5L2~E^ SmH !5L2E^ S2SmH % S2E^ L2SmH,

where

S2SmH5S2mH % vH
2 S2m24H %¯% vH

2[m/2]S2m24[m/2]H,

L2SmH5vHS2m22H % vH
3 S2m26H %¯% vH

2[m/2]11S2m24[m/2]22H.

Here we use the convention thatSlH50 if l ,0.
Let ¹ be a connection in the vector bundleW→M . Its curvature has the following decom

position, corresponding to the above decomposition ofL2T* M into irreducible
GL(E)•Sp(1,C)-submodules:

F~XA
e ,XB

e8!5S
A
S
B

(
k50

[m/2]

~vH~ha1
,hb1

!¯vH~ha2k
,hb2k

! F
~2k!

a2k11¯amb2k11¯bm

[ee8]

1vH~ha1
,hb1

!¯vH~ha2k11
,hb2k11

! F
~2k11!

a2k12¯amb2k12¯bm

(ee8) !, ~30!

where the tensorsF (2k)PG(L2E^ S2m24kH) andF (2k11)PG(S2E^ S2m24k22H).
We note that half-flat connections are those which satisfy the conditions

F
~2i !

50 , for all i PN. ~31!
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For m.1 these conditions are not suitable for application of the harmonic space method.
ever, the following more refined restrictions on the curvature are amenable to the method~cf. Ref.
15!.

Definition 13: A connection¹ in the vector bundlen:W→M is called k-partially flat if
F ( i )50 for all i <2k. Here 0<k<@(m12)/2#.

Clearly, @(m12)/2#-partially flat connections are simply flat connections. We note that
m51 , zero-partially flat connections are precisely half-flat connections. For general odm
52p11 , zero-partially flat connections in a vector bundlen over flat spaces with spinm/2
Grassmann structure were considered by Ward.3 He choseE to be a rank 2 flat bundle and showe
that zero-partially flat connections, form.1, do not correspond to Yang–Mills connection
Therefore, in our more general setting, we clearly cannot expect zero-partially flat connecti
satisfy the Yang–Mills equations form.1. On the other hand, the penultimate case,k5@m/2#, is
particularly interesting for oddm:

Theorem 6: Let M be a half-flat spin m/2 Grassmann manifold M. If m is odd and the vector
bundle E* →M admits a ¹E-parallel symplectic formvE , then M has canonicalSp(E)
•Sp(H)-invariant metric g5vE^ vH

m and four-form VÞ0. If V is co-closed with respect to th
metric g, then any(m21)/2-partially flat connection¹ in a vector bundle W over M is (V,l)-
self-dual and hence it is a Yang–Mills connection.

Proof: To describeV we use the following notation:ea is a basis ofE* , ha is a basis ofH* ,
hA is the corresponding basis ofSmH* and XaAªea^ hA is the corresponding basis ofTM
5E* ^ SmH* . With respect to these bases, the skew symmetric formsvE , vH and vH

m are
represented by the matricesvab , vab andvAB , respectively. We defineV by

Vª( vab vcd vAC vBD XaA∧XbB∧XcC∧XdD,

whereXaA is the basis dual toXaA . This form is obviously Sp(E)•Sp(H)-invariant since we used
only vE and vH in the definition. One can easily check thatVÞ0. The connection¹ is (m
21)/2-partially flat if and only if its curvatureF belongs to the space

S2E^ vH
m

^ End W, S2E^ L2SmH ^ End W, L2~E^ SmH ! ^ End W.

Here we use the decomposition

L2SmH5vHS2m22H % vH
3 S2m26H %¯% CvH

m .

The Sp(E)•Sp(H)-submoduleS2E^ vH
m,L2T* M is irreducible. Therefore it is contained in a

eigenspaceVl of the Sp(E)•Sp(H)-invariant operatorBV :L2T* M→∧2T* M . It remains to
check thatlÞ0. By Lemma 1 it suffices to compute the contractionK5KcCdDXcCXdD of a tensor
S5SabvABeaeb

^ hAhB in S2E^ vH
m with V:

2KcCdD5SabvAB~vabvcdvACvBD1vacvdbvADvCB1vadvbcvABvDC2vbavcdvBCvAD

2vbcvdavBDvCA2vbdvacvBAvDC2vcavbdvCBvAD2vcbvdavCDvBA

2vcdvabvCAvDB1vdavbcvDBvAC1vdbvcavDCvBA1vdcvabvDAvCB!

54~m11!ScdvCD .

Herevab andvAB denote the inverses ofvab andvAB andSab5vaa8vbb8Sa8b8 . We have used
that SabvAB is skew-symmetric under interchange ofaA with bB and thatvABvAB52(m
11). The above calculation shows thatl524(m11)Þ0 and hence any (m21)/2-partially flat
connection is~V,l!-self-dual and is a Yang–Mills connection by Theorem 1. h

The analogous result does not hold ifm is even.
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Proposition 10: If m is even and the vector bundle E* →M admits a¹E-parallel metricgE ,
then M has canonicalSO(E)•Sp(H)-invariant metric g5gE^ vH

m and four-formVÞ0.
Proof: Analogously to the case ofm odd, we can defineV by

Vª( gab gcd vAC vBD XaA∧XbB∧XcC∧XdD.

Here gab5gE(ea ,eb) and we recall that for evenm the bilinear formvH
m is symmetric:vAB

5vBA . h

For evenm, a connection¹ in a vector bundleW over M is m/2-partially flat if and only if
its curvatureF belongs to the space

~L2E^ vH
m

% S2E^ S2H ^ vH
m21! ^ End W,~L2E^ S2SmH % S2E^ L2SmH ! ^ End W

5L2~E^ SmH ! ^ End W.

The SO(E)•Sp(H)-submoduleL2E^ vH
m

% S2E^ S2H ^ vH
m21,L2T* M is not irreducible, so un-

like the oddm case we cannot conclude that it is contained in an eigenspaceVl of the SO(E)
•Sp(H)-invariant operatorBV :L2T* M→L2T* M . In fact, examples are known~see Appendix B
of Ref. 16! whereBV has different eigenvalues on each irreducible summand ofL2T* M . There-
fore, in the case of evenm we cannot expect thatm/2-partial flatness implies the Yang–Mill
equations.

C. Construction of partially flat connections over higher spin Grassmann manifolds

Now we generalize the construction of half-flat connections over admissible half-flat G
mann manifolds to the case ofk-partially flat connections overk-admissible higher spin Grass
mann manifoldsM . The natural extension of the harmonic construction given in Sec. IV B yi
k-partially flat connections in the vector bundlen over thek-admissible spinm/2 Grassmann
manifold M . Again, we lift the geometric data fromM to SH via the projectionp:SH→M . The
pull backp* ¹ of a k-partially flat connection¹ in the trivial vector bundlen:W5Cr3M→M is
a connection in the vector bundlep* n:p* W→SH which satisfies equations defining the notion
a k-partially flat gauge connection onSH . One can also define the weaker notion of an alm
k-partially flat connection inp* n:p* W→SH . The latter may be constructed from a prepoten
and it affords the construction of ak-partially flat connection in the bundleW→M . To simplify
our exposition we explain the construction in them53 case. Here the decomposition~30! of the
curvature tensor takes the form

F~Xa1a2a3

e ,Xb1b2b3

e8 !5S
A

S
B

~ F
~0!

a1a2a3b1b2b3

[ee8] 1vH~ha1
,hb1

! F
~1!

a2a3b2b3

(ee8)

1vH~ha1
,hb1

!vH~ha2
,hb2

! F
~2!

a3b3

[ee8]

1vH~ha1
,hb1

!vH~ha2
,hb2

!vH~ha3
,hb3

! F
~3!

(ee8)!. ~32!

In this case we have two nontrivial notions of partial flatness:

zero-partial flatness: F
~0!

50, ~33!

one-partial flatness: F
~0!

5 F
~1!

5 F
~2!

50. ~34!

Clearly, two-partial flatness is tantamount to flatness. By Theorem 6, a one-partially flat co
tion is a Yang–Mills connection.
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1. Construction of zero-partially flat connections

Let M be a zero-admissible spin 3/2 Grassmann manifold with a zero-partially flat conne
¹ @satisfying~33!# in a holomorphic vector bundleW→M . The pull-back of such a connection¹
to a connection in the bundlep* W→SH , wherep:SH→M , has curvatureF with components
given by

F~X666
e ,X666

e8 !50,

F~X666
e8 ,X6

e !5u
6

a1u
6

a2u
6

a3u
6

b1u
6

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !

5612F
~1!

a1a2b1b2

(ee8) u
6

a1u
6

a2u
6

b1u
6

b25..612F
~1!

6666
(ee8) ,

F~X6
e ,X6

e8!5u
6

a1u
6

a2u
7

a3u
6

b1u
6

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !528 F
~2!

a1b1

[ee8]u
6

a1u
6

b15..28 F
~2!

66
[ee8] ,

F~X111
e ,X222

e8 !5u
1

a1u
1

a2u
1

a3u
2

b1u
2

b2u
2

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !

536~ F
~1!

a1a2b1b2

(ee8) u
1

a1u
1

a2u
2

b1u
2

b21 F
~2!

a1b1

[ee8]u
1

a1u
2

b11 F
~3!

(ee8)!

5.. 36~ F
~1!

0
(ee8)1 F

~2!

0
[ee8]1 F

~3!

0
(ee8)!, ~35!

F~X666
e ,X7

e8!5u
6

a1u
6

a2u
6

a3u
6

b1u
7

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !5624F
~1!

66
(ee8)112F

~2!

66
[ee8] ,

F~X1
e ,X2

e8!5u
1

a1u
1

a2u
2

a3u
1

b1u
2

b2u
2

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !512F
~1!

0
(ee8)24 F

~2!

0
[ee8]212F

~3!

0
(ee8) ,

F~v , • !50,

where v,v8 are vertical vector fields onSH . The form of these components lead us to t
following definition.

Definition 14: A connection in a holomorphic vector bundle W→SH is zero-partially flat if
its curvature satisfies the equations

F~X666
e ,X666

e8 !50,

F~X666
e ,X6

e8!5F~X666
e8 ,X6

e !,

F~X6
e ,X6

e8!52F~X6
e8 ,X6

e !,

F~v , • !50, ;vPTvSH .

The restriction of a zero-partially flat connection to a leaf of the integrable distribution^D31 ,]0&
is clearly flat. In this case, ananalytic frame in the holomorphic vector bundlep* n:Cr3SH

→SH is a frame which is parallel along leaves of this integrable distribution. With respect to
a frame, a connection in the vector bundlep* n can be written as
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¹]0

S 5]0 ,

¹X
111
e

S
5X111

e ,

¹X
6
e

S
5X6

e 1A~X6
e !,

¹]66

S 5]661A~]66!,

¹X
222
e

S
5X222

e 1A~X222
e !.

Definition 15: A connection¹S over SH is calledalmost zero-partially flat if its curvature
satisfies the following equations:

F~X111
e ,X111

e8 !5F~X111
e ,v !5F~X6

e ,v !50, ;vPTvSH ,
~36!

F~]11 , • !5F~]0 , • !50 .

Following the construction of almost half-flat connections, we may construct almost
partially flat connections, which allow deformation to a zero-partially flat connection. As in
case of a half-flat connection~cf. Proposition 7!, an almost zero-partially flat connection is com
pletely determined by the potentialsA665..A(]66) with respect to an analytic frame.

Proposition 11: Let¹ be an almost zero-partially flat connection in the vector bun
p* n:Cr3SH→SH with potentials A11 , A22 , A(X6

e ) and A(X222
e ) in an analytic frame. Then

we have the following.
(i) The potential A11 is analytic and has charge2, i.e.,

X111
e A1150, ]0A1152A11 . ~37!

(ii) The potential A22 satisfies

]11A222]22A111@A11 ,A22#50, ]0A22522A22. ~38!

(iii) The potentials A(X6
e ) and A(X222

e ) are then recursively determined as follows:

A~X1
e !52 1

3 X111
e A22 ,

A~X2
e !5 1

2 ~]22A~X1
e !2X1

e A221@A22 ,A~X1
e !# !, ~39!

A~X222
e !5]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#,

and they have charges11,21, and 23, respectively, i.e.,

]0A~X6
e !56A~X6

e !, ]0A~X222
e !523A~X222

e !. ~40!

Conversely, any set of matrix-valued potentials A11 , A22 , A(X6
e ) and A(X222

e ) satisfying
(37)–(40) define an almost zero-partially flat connection.

Proof: ~i! The curvature constraintsF(X1
e , ]11)50 , F(]0 , ]11)50, in an analytic frame,

take the form~37!.
~ii ! The further almost zero-partial-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give

Eqs.~38! for the potentialA22 .
~iii ! Having obtainedA22 , we can findA(X6

e ) andA(X222
e ) from the equations
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F~]22 ,X111
e !50⇔2X111

e A225A~@]22 ,X111
e # !53A~X1

e !,

F~]22 ,X1
e !50⇔]22A~X1

e !2X1
e A221@A22 ,A~X1

e !#5A~@]22 ,X1
e # !52A~X2

e !,

F~]22 ,X2
e !50⇔]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#5A~@]22 ,X2
e # !5A~X222

e !.

Equations~40! follow from ~39!. h

Now, using this proposition, a modification of Theorem 4 gives an algorithm for the cons
tion of all almost zero-partially flat connections.

Theorem 7: Let A11 be an analytic prepotential, i.e., a matrix-valued function on a dom
U5p21(V),SH , V,M a simply connected domain, satisfying (37), andF an invertible matrix-
valued function on U which satisfies the equations

]11F52A11F , ]0F50 . ~41!

Such a functionF always exists. Then the pair(A11 ,F) determines an almost zero-partially fla
connection¹S5¹ (A11 ,F). Its potentials with respect to an analytic frame are given by A11 ,
A2252(]22F)F21 and (39). Conversely, any almost zero-partially flat connection is of
form.

The proof follows that for Theorem 4 and uses Proposition 1.1.
To deform an almost zero-partially flat connection into a zero-partially flat connection

need to find a transformation from the above analytic frame to a central frame. Analogou
Lemma 5 we may prove the following.

Lemma 7: Let¹5¹ (A11 ,F) be the almost zero-partially flat connection associated to
analytic prepotential A11 with respect to the analytic framew and an invertible solutionF of
(41). Then the framecªwF is a central frame for the connection¹, i.e., the potentials C(]66)
and C(]0) with respect to that frame vanish.

With respect to the central framec, the above almost zero-partially flat connection then ta
the form

¹X
111
e

S
5 X111

e 1C~X111
e !5X111

e 1F X111
e F21,

¹X
6
e

S
5X6

e 1C~X6
e !,

¹X
222
e

S
5X222

e 1C~X222
e !,

¹]11

S 5]11, ¹]22

S 5]22 , ¹]0

S 5]0 ,

where in terms of the analytic frame potentialsA(X), the central frame potentialsC(X) are given
by C(X)5F21A(X)F1F21(XF). Moreover, the equationsF(]11 , X111

e )5F(]0 , X111
e )

50 imply that the potentialC(X111
e ) satisfies the equations

]11C~X111
e !50, ]0C~X111

e !53C~X111
e ! . ~42!

The following proposition is analogous to Proposition 8 in the half-flat case.
Proposition 12: The potential C(X111

e ) of an almost zero-partially flat connection¹ with
respect to a central frame is cubic in u1

a ,

C~X111
e !5u1

a u1
b u1

g C~Xabg
ẽ !5u1

a u1
b u1

g Cabg
e , ~43!
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where the coefficients Cabg
e 5Cabg

e (xi), symmetric ina,b,g , are matrix valued functions of co
ordinates xi on M and (xi ,u6

a ) are the local coordinates associated with the trivialization SH

5M3Sp(1,C).
With respect to a central frame, we can therefore write¹X

111
e 5X111

e 1u1
a u1

b u1
g Cabg

e .

Using Cabg
e , we now define a new connection inp* n over SH by

¹̂X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e ,

¹̂X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e ,

¹̂X
2
e 5X2

e 1u2
a u2

b u1
g Cabg

e ,

¹̂X
222
e 5X222

e 1u2
a u2

b u2
g Cabg

e ,

¹̂]11
5]11 , ¹̂]22

5]22 , ¹̂]0
5]0 .

The following theorem is the analog of Theorem 5 in the half-flat case.

Theorem 8: The constructed connection¹̂ is a 0-partially flat connection inp* n over SH

and it is the pull-back of the following 0-partially flat connection¹M in n over M:

¹X
abg
e

M
5Xabg

e 1Cabg
e .

Proof: As in Lemma 1 we may show that the connection¹̂ is the pull-back of the connection

¹M. It then suffices to show that¹M is zero-partially flat. The connections¹ and¹̂ coincide in the
direction ofX111

e . Hence, usingC111
e

ªu
1

a1u
1

a2u
1

a3Ca1a2a3

e , we have

05F¹~X111
e ,X111

e8 !5F ¹̂~X111
e ,X111

e8 !

5X111
e C111

e8 2X111
e8 C111

e 1@C111
e , C111

e8 #2C~@X111
e , X111

e8 # !

5u
1

a1u
1

a2u
1

a3u
1

b1u
1

b2u
1

b3~Xa1a2a3

e Cb1b2b3

e8 2Xb1b2b3

e8 Ca1a2a3

e

1@Ca1a2a3

e , Cb1b2b3

e8 #2C~@Xa1a2a3

e , Xb1b2b3

e8 # !!

5u
1

a1u
1

a2u
1

a3u
1

b1u
1

b2u
1

b3 F¹M
~Xa1a2a3

e , Xb1b2b3

e8 !,

sinceX111
e u1

b 50. This shows that the componentF (0)50 in the decomposition~32!, i.e., the
connection¹M is zero-partially flat. h

2. Construction of one-partially flat connections

Let M be a one-admissible spin 3/2 Grassmann manifold with a one-partially flat conne
¹ @satisfying~34!# in a holomorphic vector bundleW→M . The pull-back of such a connection t
a connection in the bundlep* W→SH , wherep:SH→M , has curvatureF with components given
by

F~X666
e ,X666

e8 !50,

F~X666
e8 ,X6

e !50,
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F~X6
e ,X6

e8!50,

F~X111
e ,X222

e8 !536F
~3!

(ee8), ~44!

F~X666
e ,X7

e8!50,

F~X1
e ,X2

e8!5212F
~3!

(ee8),

F~v , • !50,

where v is any vertical vector field onSH . A connection in a holomorphic vector bundleW
→SH is one-partially flat if its curvature satisfies the above equations. The restriction o
one-partially flat connection to a leaf of the integrable distribution^D31 ,D1 ,]0& is clearly flat. In
this case, ananalytic frame in the holomorphic vector bundlep* n:Cr3SH→SH is a frame which
is parallel along leaves of this distribution. With respect to such a frame, a connection in the
bundlep* n can be written as

¹]0

S 5]0 ,

¹X
111
e

S
5X111

e ,

¹X
1
e

S
5X1

e ,

¹]11

S 5]111A11 ,

¹]22

S 5]221A22 ,

¹X
222
e

S
5X222

e 1A~X222
e !,

¹X
2
e

S
5X2

e 1A~X2
e !,

with potentialsA(X111
e )5A(X1

e )5A(]0)50. We look for solutions of the system~44! in this
analytic gauge.

Definition 16: A connection¹S over SH is called almost one-partially flat if its curvature
satisfies the equations

F~X111
e ,X111

e8 !5F~X111
e ,X1

e8!5F~X1
e ,X1

e8!50,
~45!

F~X111
e ,v !5F~X6

e ,v !5F~]11 , • !5F~]0 , • !50, ;vPTvSH .

In virtue of these equations, the potentialsA665..A(]66) determine all other potentials:
Proposition 13: Let¹ be an almost one-partially flat connection in the vector bun

p* n:Cr3SH→SH with potentials A11 , A22 , A(X2
e ) and A(X222

e ) in an analytic frame. Then
we have the following.

(i) The potential A11 is analytic and has charge2, i.e.,

X111
e A1150, X1

e A1150, ]0A1152A11 . ~46!

(ii) The potential A22 satisfies
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]11A222]22A111@A11 ,A22#50, ]0A22522A22. ~47!

(iii) The potentials A(X2
e ) and A(X222

e ) are then recursively determined as follows:

A~X2
e !52 1

2 X1
e A22 ,

~48!
A~X222

e !5]22A~X2
e !2X2

e A221@A22 ,A~X2
e !#,

and they have charges21 and 23, respectively; i.e.,

]0A~X2
e !56A~X2

e !, ]0A~X222
e !523A~X222

e !. ~49!

Conversely, any set of matrix-valued potentials A11 , A22 , A(X2
e ) and A(X222

e ) satisfying
(46)–(49) define an almost one-partially flat connection.

Proof: ~i! Equations~46! are equivalent toF(]11 ,X111
e ) 5 F(]11 ,X1

e ) 5 F(]0 ,]11)
50.

~ii ! The further almost one-partial-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give
Eqs.~47!.

~iii ! Having obtainedA22 , we can findA(X2
e ) andA(X222

e ) from the equations

F~]22 ,X1
e !50⇔2X1

e A225A~@]22 ,X1
e # !52A~X2

e !,

F~]22 ,X2
e !50⇔]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#5A~@]22 ,X2
e # !5A~X222

e !.

The equations~49! follow from ~48!. h

Now, starting from a prepotentialA11 , which solves~46!, we may construct an almos
one-partially flat connection. The potentialA2252(]22F)F21 is determined, as before, from
solutionF of ~41!. Then, with the remaining potentials in an analytic frame being given by~48!
and satisfying~49!, all the other equations in~45! follow. This shows that an almost one-partial
flat connection is determined by an arbitrary analytic prepotentialA11 and an invertible solution
F of ~41!. As before,F is a transition function from an analytic frame to a central frame, in wh
the above almost one-partially flat connection takes the form

¹X
111
e

S
5X111

e 1C~X111
e !5X111

e 1F X111
e F21,

¹X
1
e

S
5X1

e 1C~X1
e !5X1

e 1F X1
e F21,

¹X
2
e

S
5X2

e 1C~X2
e !,

¹X
222
e

S
5X222

e 1C~X222
e !,

¹]11

S 5]11, ¹]22

S 5]22 , ¹]0

S 5]0.

Moreover, the equationsF(]11 , X111
e )5F(]0 , X111

e )50 imply that the potentialC(X111
e )

satisfies the equations

]11C~X111
e !50, ]0C~X111

e !53C~X111
e !.

Proposition 14: The potentials C(X111
e ) and C(X1

e ) of an almost one-partially flat connec
tion ¹ with respect to a central frame have the form

C~X111
e !5u1

a u1
b u1

g Cabg
e , C~X1

e !5u1
a u1

b u2
g Cabg

e ,
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where Cabg
e is a function on M, symmetric ina,b,g.

With respect to a central frame, we can therefore write

¹X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e , ¹X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e .

We define a modified connection in the bundlep* n over SH by

¹̂X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e ,

¹̂X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e ,

¹̂X
2
e 5X2

e 1u2
a u2

b u1
g Cabg

e , ~50!

¹̂X
222
e 5X222

e 1u2
a u2

b u2
g Cabg

e ,

¹̂]11
5]11, ¹̂]22

5]22, ¹̂]0
5]0 .

As in the zero-partially flat case, we have the following.

Theorem 9: The constructed connection¹̂ is a one-partially flat connection inp* n over SH

and it is the pull-back of the following one-partially flat connection¹M in n over M:

¹X
abg
e

M
5Xabg

e 1Cabg
e . ~51!

Proof: As before one shows that the connection¹̂ is the pull-back of the connection¹M. It
remains to show that¹M is one-partially flat. Since any almost one-partially flat connection
almost zero-partially flat, we haveF (0)50 by Theorem 8. Next we show thatF (1)50. The

connections¹ and ¹̂ coincide in the direction ofX111
e andX1

e . Hence, using Eq.~35!, which
holds for zero-partially flat connections, we have

05F¹~X111
e ,X1

e8!5F ¹̂~X111
e ,X1

e8!512F
~1!

a1a2b1b2

(ee8) u
1

a1u
1

a2u
1

b1u
1

b2 .

This shows that the componentF (1) in the decomposition~32! vanishes. Similarly,

05F¹~X1
e ,X1

e8!5F ¹̂~X1
e ,X1

e8!528 F
~2!

a1b1

[ee8]u
1

a1u
1

b1

implies F (2)[ee8]50, and hence that¹̂ is one-partially flat. h

By Theorem 6, the one-partially flat connection¹X
abg
e

M
in ~51! is a Yang–Mills connection.
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