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Let M be a manifold with Grassmann structure, i.e., with an isomorphism of the
cotangent bundlf*M=E®H with the tensor product of two vector bundI&s
andH. We define the notion of a half-flat connecti&’ in a vector bundlen

—M as a connection whose curvatuteée SEQ A’H®EndW C A’T*M

®End W. Under appropriate assumptions, for example, when the Grassmann struc-
ture is associated with a quaternionicter structure orM, half-flatness implies

the Yang—Mills equations. Inspired by the harmonic space approach, we develop a
local construction ofholomorphig half-flat connection& " over a complex mani-

fold with (holomorphi¢ Grassmann structure equipped with a suitable linear con-
nection. Any such connectioR"’ can be obtained from a prepotential by solving a
system of linear first order ODEs. The construction can be applied, for instance, to
the complexification of hyper-Kder manifolds or more generally to hyperdar
manifolds with admissible torsion and to their higher-spin analogs. It yields
solutions of the Yang—Mills equations. @003 American Institute of Physics.
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[. INTRODUCTION

The Yang—Mills self-duality equations have played an important role in field theory and in
differential geometry. They are the main source of examples of solutions of the Yang—Mills
equations on four-dimensional manifoli§he self-duality equations F¥=F' mean that the
curvatureF" of a connectiorV over a Riemannian four-fol is an eigenvector of the Hodge
star operator, associated with the volume four-form, which acts on two-forms. This apparently
four-dimensional construction has an analog in Riemannian maniféld$ arbitrary dimensions.

Any four-form () on M defines an endomorphisB, of the space of two-forms and one can
define(Q,\)-self-duality as the conditioBoF¥=\F", that the curvature is an eigenvectoraf

with eigenvalue A =const0. Under appropriate assumptions on(for example, if it is co-
closed this implies the Yang—Mills equations, just as in four dimensions. For instance, this works
for a constanf) in flat spac&®and for a parallel four-form on a Riemannian manifold with special
holonomy(some examples are discussed in Refs. 4 #8&) is, for example, the canonical parallel
four-form associated to a quaternionici{er manifoldM of dimension 4n, then the eigenspaces

of B, are the irreducible Spf) - Sp(1)-submodules of the space of two-forms. In terms of the
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associated locally defined Grassmann strucTreM =E®H, i.e., the identification of the com-
plexified cotangent bundl&* “M with a tensor product of two vector bundlEsandH of rank 2m
and 2, respectively, the eigenspace decomposition is given by

A’T**"M=S’E®@ A’H® AJE® S"H® wp® S?H,

with correspondindd-eigenvalues\;=1,\,= —1/3,x3= — (2m+1)/3.3° Here wg andwy, are
two-forms onE* andH* such that the complex metric oM is given by we® wyy and A3E
denotes the traceless part AFE with respect towg . The eigenspaces &, can thus be de-
scribed in terms of the Grassmann structure, which is a natural generalization of the well-known
spinor decomposition of a vector in four dimensions. A two-form on any manifold with Grass-
mann structure is called half-flat if it belongs to the eigensgi@&®® A?H and a connectiolV

with half-flat curvature is called half-flat. If the Grassmann structure is associated with the quater-
nionic Kahler structure, then a half-flat connection is the same af€|an {)-self-dual connection

and hence satisfies the Yang—Mills equations. Inspired by the harmonic space apPnwach,
develop a construction of locally defined holomorphic half-flat connections on a maMfaelith
holomorphic admissible half-flat Grassmann structure, namely, a holomorphic Grassmann struc-
tureT* M =E®H with holomorphic connectiongE andVH in the bundle€ andH, respectively,

such thatV! is flat and the torsion of the linear connecti®r- VE®Id+1d® VH has no compo-

nent in SSH®E* ® A%E. The construction associates to a holomorphic prepotential a half-flat
connection through the solution of a system of linear first order ODEs. The construction can be
applied, for instance, to the complexification of hypeika manifolds or, more generally, to
hyper-Kzler manifolds with admissible torsion. Our construction of gauge fields on such curved
backgrounds extends that of Ref. 10, where flat torsion-free backgrounds were considered. More-
over, we provide a geometric description of the harmonic space method of Ref. 10.

We note that using analytic continuation any real analytic connedtiover a real analytic
Grassmann manifold allows extension to a holomorphic conneEtiocover a holomorphic Grass-
mann manifold an& can be reconstructed froRi" in terms of some antiholomorphic involution.

The main idea of our construction is to pull-back a half-flat connectian a holomorphic
vector bundlev:W— M to the harmonic spac®, . The latter is the space of all symplectic frames
h=(h, ,h_) in the vector bundlédi*. The group Sfl,C) acts freely onS,, with the orbit space
S, /Sp(1£)=M. Hence, the projectionr:S;—M is an Si1,C)-principal bundle. Choosing a
(local) trivialization, M = x—(h4(x),hs(x)) € Sy, of = we can make the identificatioSs,
=Sp(1L) X M. There exists a canonical decomposition,

TS,=T'S 0D.aD_,

of the (holomorphi¢ tangent bundle into the vertical subbundléS, and two (holomorphig
distributionsD,, andD_ spanned, respectively, by vector field$ andX® canonically associated

with sectionse of the bundleE*. If the Grassmann structure is admissible and half-flat, the
distributionsD, andD_ are integrable. The vertical distributid¥ Sy is spanned by vector fields
do,d+ + ,d_ _, which correspond to the standard generators of the Lie algelta’). A half-flat
connectionV in the bundler:W—M induces the pull-back connection*V in the pull-back
bundlew* v:m*W—S,. SinceV is half-flat, the curvatur& of #*V satisfies certain equations
(see Definitions 6 and)7A connection in7* v satisfying these equations is called a half-flat
connection ove5, and is gauge equivalent to the pull-back of a half-flat connection kekny
half-flat connection ove®,, is flat along the leaves of the integrable distribut{@n, ,d,) spanned

by d, andD, . We can therefore choose a frame of the vector buadle which is parallel along

its leaves. Such a frame is called an analytic frame. With respect to such a frame a half-flat
connection has no potentials in the directions of the distributidn, dy). Starting from a matrix-
valued function(prepotentigl A, . on S, which is constant along the leaves of the distribution
D, and satisfies the homogeneity conditiégA, ., =2A, ., we construct a connection which
satisfies almost all the conditions of half-flatness. We call such a connection an almost half-flat
connection. It is half-flat if and only if its curvature satisfies the equaki¢n__ ,D_)=0. The
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construction of an almost half-flat connection reduces to the solution of first order linear ODEs.
Assuming that the almost half-flat connectiBris defined globally along the fibefever = U,
whereUCM is a domain inM) we can modifyV to a half-flat connection oves, which is the
pull-back of a half-flat connection ovevl. In order to do this, we rewrit& with respect to a
“central frame,” namely, a frame parallel along the fibers mf The transformation from the
analytic to the central frame reduces to the solution of the system of equations

9, d=—A, D, g,d=0.

With respect to the central frame the poten@4X$ ) of the connectiorV in the direction of the
vector field XS e D, has the formC(X%)=u¢C¢, where CS are matrix-valued functions on

M=MXx{ld}CM X Sp(1L) and u§ ,a«=1,2, are matrix coefficients of &hC). The matrix-
valued functions<C$,C$ define the desired half-flat connection bhgiven by

V2A®h1:e®hl+ci, V2A®h2:e®h2+cg

Moreover, any half-flat connection may be obtained in this way.

The above construction allows generalization to manifolds with gpid Grassmann struc-
ture. This means that the cotangent bundle is identifieti*ad =E® F=E® S™H, whereE and
H are (holomorphig vector bundles of rank and 2, respectively. If a connectidif on E and a
flat connectiorW™ onH are given, then the Grassmann structure is called half-flat. The connection
VH defines a flat connectioi” on F=S"H and the linear connectiovi=VE&Id+Id@VF. The
associated harmonic spaeeS,— M is defined as above, as the space of all symplectic frames
h=(h,,h_) in H*. Its tangent space has decomposition

m m
TS=T'Sqe P Do P D .
k=0 k=1

Under certain conditions on the torsion %fthe distributionD'(‘+):zeaik:(ﬂ)(m_Zi)Jr , k=sm/2, is
integrable. Such a half-flat Grassmann structure is c&ladmissible. Generalizing the notion of

a half-flat connection, we may definekgartially flat connectiorV over a manifold with half-flat
spin m/2 Grassmann structure such that the pull-back conneetioVi has no curvature in the
directions ofD‘(‘ﬂ. The harmonic space method can be applied to conskypartially flat
connections ovek-admissible half-flat spirm/2 Grassmann manifolds. In the final section we
consider the case ah=3 and sketch the construction of zero- and one-partially flat connections.
The latter are Yang—Mills connections.

II. GENERALIZED SELF-DUALITY FOR MANIFOLDS OF DIMENSION GREATER THAN
FOUR

A. Yang—Mills data

Let v:W—M be a real vector bundle ovét andV a connection irv, that is a bilinear map
V:E(M)XT(v)—T'(v),
(X,O’)HV)(O',

which is C*(M)-linear in the vector fieldXe 2(M) and satisfies the Leibniz rul&(fo)
=(Xf)o+fVxo, for any functionf e C*(M) and any sectiony € I'(v), of ». The mapV can be
extended to a complex bilinear map,

V:24M)XT(W'=M)—T(W'—M),

(X,0)—>Vo, )
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where £“(M) is the space of complex vector fields+iY ; X,Y e £(M) and W—M is the
complexification of the vector bundle Note thatV satisfies the reality condition

Wo=Vea, XeX(M), cgel(W'-M), ¥)

where the bar denotes complex conjugation. Conversely, @bjlinear map (1) which is
£%M)-linear and satisfies the Leibniz rule and the reality condit®rdefines a connectio in
the real vector bundle. If the reality condition(2) is dropped, theifl) defines a connection in the
complex vector bundI&V‘— M.

Let o=(¢1,...,0;) denote a local frame o¥ such that for any sectiomel'(v), o
=3s'¢;=p-s, where s' are the coordinates ofr with respect to the framep and s
=(st,....s"". Then the connectioR in v has local expression

Vxo=Vu(s'¢) = ¢- Vsi=( XS+ 2 Ai(X) | @i,
J

where A}(X)=(Vx<pj @) and o*=(¢t, ...,¢") denotes the dual frame. The locally defined
matrix-valued one—forrTA=(A}):M—>g[(r,]R) is called the Yang—Mills potential with respect to
the framee. If the vector bundlev has structure grouf®, i.e., if it is a bundle associated with a
principal G-bundleP— M and a representatign G— GL(r,R), such thaW=PXsR", then we
may always choose a frame for which the potential takes values in the Lie algehya
=Lie p(G)Cgl(r,R). We will symbolically writeVy=X+A , A=A?. A change of framégauge
transformatioh ¢’ = U induces changes' =U s and ¢’ (X+A’(X))s' = ¢'Ws' = ¢Ws

= p(X+A(X))s =¢'U Y(X+A(X))Us', yielding the transformation rule for the potential,

A'=U"YXU)+U AX)U=U"VU. ©)
The curvature of the connectidh, F=F" e Q% (End W) =T (A?T*M®End W), is given by
FOXY) =V, W= Vix v = XAY) = YAX) + [ACX),ACY) ] = A([X,Y]).

The Jacobi identity folVy is equivalent to the Bianchi identitydVFY=0. Here the covariant
derivatived": QP(End W) — QP*Y(End W) is defined by

dY(0®C)=dw®C+(—1)PwlVC,

wherew is ap-form andC is a section of EndV. (The connectiorV on W induces a connection
on EndW denoted by the same symbol.

On any n-dimensional oriented pseudo-Riemanni@r complex Riemannignmanifold,
(M,g) using the canonical volume form ¥et A"T*M, we define the Hodge operator which
interchanges forms of complementary degree APT*M—A""PT*M, by the relation
(a,B)vol9= a0+ B, wherea,Be APT*M and(.,.) is the natural scalar product chPT*M
induced by the metrigg. We define *:APT*M®EndW—A""PT*M®EndW by *(0®C)
=(*w®C).

Definition 1: Let»:W—M be a real vector bundle over a pseudo-Riemannian manifold
(M,g). A YM connection V in v is one which satisfies the YadAgills equation

d"*F¥=0.

On a closed manifold this is the Euler—Lagrange equation for the YM functional

||FV||2=JM IEY[2 vole, 7

Downloaded 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 12, December 2003 Yang—Mills connections 6051

where the norm o\ >T* M ® End W is induced by the pseudo-Riemannian metric\drand the
natural metric on Endv.

B. Self-duality conditions

On a Riemannian four-manifold, theoperator maps two-forms to two-forms and has eigen-
values= 1. The curvature tensor therefore has decomposition into the eigenspaces afpbia-
tor,

FV=F},0F", e Qu(EndW)®Q,,(EndW).

This splitting corresponds to the decomposition of the(@@nodule A’R*=A% & A2 =s0(4)
=sp(1)@sp(1) into its irreducible submodules. We c8llandFY self-dual or anti-self-dual if
FY :=3FV—*F")=0 or F} :==3FY++F")=0, respectively. Fofanti-self-dual connections,
the YM equation,d"* F¥V=0, is an immediate consequence of the Bianchi ident®FV=0. On
closed manifoldganti-) self-dual connections in fact minimize the YM functior(d), since the
inequality

[FFIZ=IFT P+ IFY 2= (IF T2 FY 1)1 = 82 co(W) M|

is saturated. Here,(W)[M = (1/872) [uytr FYOFY is the evaluation of the second Chern class
of the bundleW on the fundamental cycle.

The apparently four-dimensional notion of self-duality has an analog in higher dimensions.
The construction originally given in Ref. 2 for flat spaces extends to arbitrary manifglds)( of
dimension greater than four, as follows.

For QeQ%M) we define a symmetric tracefree endomorphism fi@g :A%T*M
—A?T*M by

Bow:=*(*Q0w), )

wherew e A?T*M. This endomorphism is zero if and only if the four-fohis zero. Moreover,
we have the following.
Lemma 1: Let

QZE Qijk|ei|:|ej[|ek|:|el, w=2 wijeiEIej

be the expressions fd? and w with respect to a frame'eof T*M. Then B, is given as the
contraction

ng=122 gii,gjj, Qijk| Wjrjr ekDel.

Proof: It is sufficient to check the above formula for decomposable foftrse' Oel Deke!
and w=eMe", where thee' form an orthonormal basis af* M. O

Definition 2: A four-form Q e Q*(M) on a pseudo-Riemannian manifold M is calkggpro-
priate if there exists a nonzero real constant eigenvaluef the endomorphism field R

We note that on a Riemannian manifold the eigenvalug3phre real for any four-forn{}.
A generalization of the four-dimensional notion of self-duality may now be defined:

Definition 3: Let() be an appropriate four-form on a pseudo-Riemannian manifdidg)
and\#0e R. A connectiorV in a vector bundles:W— M is (Q,\)-self-dual if its curvature F'
satisfies the linear algebraic system

BoFY=\FY, (6)
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(d*Q)OFV=0. (7)

Theorem 1: Let (M,g) be a pseudo-Riemannian manifold with an appropriate four-férm
Then any(Q,\)-self-dual connectiolV is a YM connection
Proof: Using (6) and(5) we obtain

1 1 1
A7 FV=—d"*BoF ' == -d"(*QOFY) = +—((d* Q)OF+*Q0d"FY) =0,

in virtue of (7) and the Bianchi identitgVF¥=0. O
Examples of manifolds admitting appropriate four-forms are easily obtainedVle¢ a
pseudo-Euclidean vector space &Bd SO(V) be a linear group preserving a nonzero element

Qoe A%V. Denote byQ;i the components of), with respect to an orthonormal basis 6f
Given a manifoldM with a G-structure,m:P— M, i.e., a principalG-subbundle of the bundle of
frames onM, we can define a four-form =50, €' De/ e Te', where €%,... ") is a coframe
dual to aG-frame p=(ey,...,e,) € P. Since GCSO(V), M has the structure of an oriented
pseudo-Riemannian manifold and we can define the opeBajor The matrix components of
BQ=EBikj'ei Oel®e, e are constant for any-frame and so are its eigenvalues. Herfds
appropriate if the endomorphisBy, e A*V has a nonzero real eigenvalheThis is automatic in
the Riemannian case.

There exist many examples of subgroups- SO(V) admitting nonzerdG-invariant four-
forms, as shown by the following construction. L&tC SO(V) be a closed subgroup of the
pseudo-orthogonal group S@) and gCso(V)=A?V* its Lie algebra. Assume that admits a
G-invariant symmetric nondegenerate bilinear fdBra S?(g* )¢, whereW® denotes the space of
G-invariant elements of &-module W. We can then identifyy with its dual g* via B and
considerB as an element of%(g))©C (S?A2V*)C. A G-invariant four-form is then defined by
O§:=altB e (A*V*)®, where altS?A?V* —A%V* denotes alternation. We denote the corre-
sponding four-form on a manifold witB-structure by . The following variant of a theorem by
Kostant! provides a wealth of examples of nonzed§ ’s.

Theorem 2: Let GCSO(V) be a closed subgroup whose Lie algelgradmits a nondegen-
erate Ginvariant bilinear form Be (S?g)®. If the G-module V is not equivalent to the isotropy
module of a pseudo-Riemannian symmetric space, then the four(iZ(ﬁ“maItBe(A“V)G is
nonzero

Proof: Recall that the SO()-module S?’A?V decomposes according t82A2V="R(so(V))

+ A%V, whereR(so(V)) denotes the space of curvature tensors of g4{®), i.e., the space of
two-forms fulfilling the first Bianchi identity or the kernel of the map &kA2V—A%V. If
OS=altB=0, then B is a nonzero element ofR(so(V))NS*(g)®=R(g)®. SinceB is a
G-invariant two-form onV with values ing it can be used to define a Lie bracket, - ] on the
vector spacé=ga®V thus,

(i) g is a subalgebra of,
(i) Vs ag-submodule with action defined by the inclusiga so(V), and
(iii) [u,w]:=B(u,v)egif uveV.

The Jacobi identity follows from the Bianchi identity and tBeinvariance. Let. be the simply
connected Lie group with Lie algebfaThenL/G is a Riemannian symmetric space wittas its
isotropy module, wher&,CL is the connected Lie subgroup with Gg=g. O

Clearly, (7) is automatic if the four-form() is co-closed,d*)=0. This is the case, for
example, ifQ) is parallel. In the Riemannian case the Berger list of irreducible holonomy gfoups
and a theorem of Kostaltyield the following result.

Theorem 3: Let M be a complete simply connected irreducible Riemannian manifold of
dimension =4 with holonomy groupgHolC SO(n), Hol#SO(n). Then M admits a nontrivial
parallel four-form if one of the following holds: (i) M is not a symmetric space or (i) M is a
symmetric space and has a nonsimple holonomy or, equivalently, isotropy. group
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Proof: By Berger’s theorem on Riemannian irreducible holonomy grdépge have

(@ M is not a symmetric space and its holonomy group is one of/2)( SUMN/2),

Sp(n/4)Sp(1), Sp(/4), G,, Spin7), or
(b) M is a symmetric space.

All the groups in(a) admit invariant four-forms. These are given below. A theorem of KoStant
states that a simply connected irreducible Riemannian symmetric $péd€ehas no nonzero
parallel four-form if and only if the isotropy groulg is simple. O

In the following examples we explicitly describe paralleénce appropriaidour-forms() on
Riemanniam-manifolds with holonomy groups H&lSO(n) from Berger’s list.

(1) Kahler manifolds, Hot- U(m) C SO(2m), n=2m: Q= wlw, wherew is the Kanler form.
One can check that this is proportional®3Y™ and that any parallel four-form is proportional to
wUw if the holonomy group is SUf) or U(m). If HolC Sp(k) CSU(2k) CSO(4k), n=4k>4,
i.e., if the manifold is hyper-Kialer, there exist three skewsymmetric parallel complex structures
J,,a=1,2,3. Then there exist six independent parallel four-formslw,, a,8=1,2,3, where
w, is the Kanler form associated td, . For low dimensional examples, eigenvalues and eigens-
paces ofB(, are given in Ref. 2.

(2) Quaternionic Kaler manifolds, HotZ Sp(m)Sp(1)C SO(4m), n=4m. In this case there
exist three locally defined almost complex structubgs with corresponding Kialer formsw,,,
such that the four-fornf):=> ,w ,Ow,, is globally defined and parallel. This will be discussed in
more detail in Sec. Il C.

(3) HOIC G,C SO(7). Letv=0=R1+Im0O=Ra&R’=R® be the algebra of octonions. Recall
that G,=Aut(0) is the group of automorphisms of the octonions. We can decompose the product
of two octonionsa,b into its real and imaginary parts as follows:

ab=a-b=(a,b)1+ 3[a,b],

where(a,b) is the scalar product arff,b]=ab—ba is the commutator. We define a three-form
¢ and a four-formy on ImO=R" by the formulas

(,D(X,y,Z) :=<X' y,Z> = %([X!y]vz>

P(x,y,z,W) =([x.y,Z],W) ,

where[X,y,z]=(xy)z—x(y2) is the associator. It is known thagt=+* ¢. Notice thatG, is the
group of isometries of)=R® which fix the identity element 1 and preserve the three-farfor
equivalently the four-formy) on ImO. The four-form ¢ defines a parallel four-form on any
Riemannian seven-fold with holonom@,CSO(7). It is known® that A*R”=Ry@ V()
®V?(27;), whereVY( ) is thed-dimensional real irreducible representatiorGyf with highest
weight 7 and 7; denotes théth fundamental weight &, . From this it follows that the four-form
QOGZ coincides withys up to scaling. The corresponding endomorphBjnof A2R"=g,@R" has
two distinct eigenvalues which correspond to the two irreduciBlesubmodulesg, and
R’CA®R’ (see Ref. 2

(4) HolC Spin(7)C SO(8). Using the three- and four-forms and ¢ on R’ introduced in the
G,-case, we construct the four-form

Q=dtOe+ ¢,
wheret is the first coordinate oft®=R1+ R’. In particular,
Q(LxY,2)=e(X,y,2), Q(XY,z,W)=¢(X,y,Z,W), XY,zzweR’.

This four-form Q) defines a parallel four-form on any Riemannian eight-fold with holonomy
Spin(7)CSO(8). It isknown thatA*R8=RQ & V'(7;) @ VZ(2m,) @ A*R’. From this it follows
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that the four-formﬂgpi”m coincides with() up to scaling. The corresponding endomorphBm
of A2R8=spin,®R’ has two distinct eigenvalues which correspond to the two irreducible
Spin(7)-submodulespin, and R’C A2R® (see Ref. 2

C. Quaternionic Ka hler case

Now we discuss in more detail the case of quaternionikl&amanifolds(Example 2 above
Riemannian manifolds\,g) with holonomy group Hal Sp(m)Sp(1) are called quaternionic
Kahler manifolds. A quaternionic Kaer manifold with holonomy group HolC Sp(m) is called
hyper-Kanler. On any quaternionic Keéer manifold M, there exists a rank 3 vector subbundle
QCENdTM, invariant under parallel transport, which is locally spanned by three almost complex
structures J,) =(J1,J5,J3=J1J,=—J,J;). The latter are in general only locally defined. The
(globally defined vector bundleQ is called thequaternionic structure of M. A local frame (,)
as above is called standard frame for Q. Similarly, astandard basisof Q atme M is a triple
1,J,K=1J=—1JleQ,, of complex structures ofi,,M. A quaternionic Kaler manifold is hyper-
Kahler if and only if there exists a globally defined parallel standard frathg=(J;,J5,J3
:J]_Jz: _Jle).

Given a standard frame, we may locally define three nondegenerate two-dgrmg(J, -,

-). The four-form

Q:zE 0, v,

is independent of the choice of standard frame and defines a global parallel four-form.

To describe the eigenspace decompositiofi)df is convenient to use the Grassmann struc-
ture (i.e., generalized spinor decompositioof a quaternionic Kaler manifold. Recall that a
Grassmann structure on a(rea) manifoldM is defined as an isomorphisif “M=E®H of the
complexified cotangent bundle with the tensor product of two complex vector buBdes H
over M. Any quaternionic Khler manifold admits a(locally defined Grassmann structure
T*“M=E®H, whereH has rank 2, such that the holonomy group E8p(E)® Sp(H). This
follows from the fact that any complex irreducible representation of the groum)SpSp(1) is a
tensor product of irreducible representations of its factors.

The complex extensiog" of the Riemannian metric defines a complex bilinear metric on
T“M, which locally factorizes ag"= wg® oy , Wwherewg andwy, are sections ol °E and A2H,
defining complex symplectic forms on the fibersef andH*, respectively. We callog and wy
the symplectic forms of the symplectic vector bundigsandH*.

In terms of the Grassmann structure the eigenspdges the endomorphisrB, on A2T*“M
are given by®°

V\,=SE®wy, V,,=AJE®@S?H, V, =wg®SH,

whereAgE is the space ofvg-traceless two-forms and the eigenvalues dye 1, A\,=— 1 and
N3=—(2m+1)/3. In particular the\ ;-self-duality condition takes the form

FVe SPEQ wy®ENdW. (8)

Note that sincel) is parallel it is appropriate and co-closed and hence (fb@)-self-duality
equationg(Definition 3 reduce to(6), which implies the Yang—Mills equation. It is knowsee
Theorem 1 of Ref. ¥ithat\ ;- andA s-self-dual connections correspond to absolute minima of the
Yang—Mills functional on compact quaternionic lar manifolds.
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D. Self-duality as half-flatness

The \-self-duality equation8) in fact depends only on the existence of the factorization
T*“M=E®H and the symplectic structure H*. A connectionV in a vector bundléN over a
manifold M with a Grassmann structure is callbdlf-flat if its curvature satisfies the condition

FVe SPEQ A’HQENdW. 9

In general such half-flat connections @@t YM connections(with respect to some metjichut it
is possible to impose further conditions BN in order to enforce the YM equation. In fact, it is
the half-flatness of the connection, rather than the YM property, which is crucial for our construc-
tion of solutions.

Proposition 1: A connectio in a vector bundle WM over a quaternionic Khaler manifold
is half-flat if and only if it is\ ;-self-dual. Hence any such connection is a Yavigls connection

Proof: The result follows from(8) and(9) sinceA?H is the line bundle generated Iy, .[]

The Levi-Civita connection on a hyper-Ker manifold is an example of a half-flat linear
connection. Its complexification gives an example of what we call an admissible half-flat Grass-
mann structure in the next section.

[ll. MANIFOLDS WITH HALF-FLAT HOLOMORPHIC GRASSMANN STRUCTURE

Our goal is to give a construction of half-flat connections in a vector bunddé— M over a
manifold M. If all objects are real analytic, using analytic continuation we may obtain correspond-
ing complex analytic objects. Specifically, assume that the manibland the bundle are real
analytic. ThenM is defined by an atlas of charts with analytic transition functions. Extending
these functions to complex holomorphic functions, we may exMnid a complex manifoldM“
with antiholomorphic involutionr such thatM =(M")7, the fixed point set of. Similarly, a real
analytic vector bundle:W—M can be extended to a holomorphic vector buneffien"— M*®.
Moreover, an analytic connectidhin » can be extended to a holomorphic connecfioim v“. A
holomorphic extension of a Yang—Mills connection is also a Yang—Mills connection. In the rest of
this article, we shall assume that all obje@tsnifolds, bundles and connectigmase holomorphic.

In Sec. IV we shall give a construction of half-flat connections in a holomorphic buifeiev

over a complex manifoldM with holomorphic Grassmann structure. Now we describe the re-
quired geometrical notions. In particular, we provide a description of the harmonic spaces of Ref.
10 in geometric language. Our description affords application to the construction of half-flat
connections over more general manifolds than the flat torsion-free backgrounds previously con-
sidered in the harmonic space literatisee, e.g., Ref. 10

A. Grassmann structure

Let M be a complex manifold with holomorphic Grassmann strucflitél =E®H, the
isomorphism of the holomorphic cotangent bundle dMewith the tensor product of holomorphic
vector bundle€ andH overM of rankp andq, respectively. TheM M=E* ® H*. A holomor-
phic linear connectiolv on M is called aholomorphic Grassmann connectionf it preserves the
holomorphic Grassmann structure. This means that for any vecto{ieldM and local sections
eel'(E) andheTI'(H),

Vy(e®h)=Vieoh+ea Vih,

whereVE,VH are connections in the bundl&sH, respectively.

Definition 4: A holomorphic Grassmann structule*M=E®H, on a complex manifold M
with a holomorphic Grassmann connectiBr= VE@ Id+1d® V" is calledhalf-flat if the connec-
tion V" in the holomorphic vector bundle HM is flat. A manifold with such a half-flat holo-
morphic Grassmann structure is calledhalf-flat Grassmann manifold.

Assumption:In this section we assume th&t is a manifold with a half-flat holomorphic
Grassmann structurelt M=E®H ,V=VE®Id+Ide V"), such thatH has rank 2 and that a
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VH-parallel nondegenerate fiber-wise two-fowp, € I'(A?H) in the bundleH* is fixed. If, in
addition, aVE-parallel nondegenerate two-formg e I'(AE) is fixed, then we can define a
V-parallel complex Riemannian metrig= wg® wy onM. We do not assume, in general, that the
linear connectiorV is torsion-free.

The torsion of a linear connection belongsitM® A%T* M. SinceT*M =E®H, we have the
decomposition

TMRA’T*M=TM®(A’E® SPH® SPE® A°H)
=E*H*(A’ESH® S’Ewy)
=E* A’E(S*H® wyH)®E* SPEwyH, (10

where we omit the®’s and we identifyH* with H usingwy, .

Definition 5: A half-flat connection is calleatmissibleif its torsion tensor has no component
in E*® A°2E®@SPH. A half-flat Grassmann manifolM,V) is called admissibleif V is admis-
sible.

We remark that if the torsion of a half-flat connectiondssymmetric, i.e., if it belongs to
TMeSPE® A’2H=TM® S’E® wy, then the connection is admissible. It follows from the above
decomposition that the torsion tensor of any admissible connection can be written as

T(e@h,e,®h,):Tl(e,e’)®(J)H(h,h’)hl"l‘Tz(e,e’)®wH(h,h2)h’+T2(e,e’)®wH(h’,h2)h,

wheree,e’ are sections oE*, h;,h, are fixed sections ofl=H*, T, eI'(E*®S’E) and T,
eI'(E*®A2E). This shows that admissibility of the connection means that the torsion can be
represented as the sum of two tensors lineanin

B. Harmonic space

Let M be a half-flat Grassmann manifold. We denoteShythe S§1,C)-principal holomorphic
bundle overM consisting of symplectic bases Hff,=H,=(?, meM,

Su={s=(hy ,h_) | wy(h, h )=1}
The bundleS,— M is calledharmonic space'® A parallel (local) section
mM— sy, = (hy(m),hy(m)) e Sy
defines a trivialization
MXSp1,0)=S,,

given by

a=1

2 2 1 Ui
(m,L[)'—>smL{=(h+=E hu¢ , h_=>, hau“), u:( N uz);det U=1.
a=1 _

We denote by, , ,d__,dq the fundamental vector fields @8 generated by the standard gen-

erators of Sfl,C),
0 1 0 0 1 O
o o/ 1 o) ?lo -1

They satisfy the relations

[d++,0--1=d0, [do,0++1=20+4, [dg,d--]=—20-_.
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Consider Maf2,C), the vector space of two by two matrices. The matrix coefficiarftsare

coordinates on this vector space. One can easily check that the vectoufielti® , u® g/gu?

and u$dlouf —u®alou® annihilate the function deéi= eﬂyuﬁuz , Whereeg, are the matrix

coefficients of the standard symplectic form(@t Therefore these vector fields are tangent to the

submanifold Sp(L))={deti/=1}CMat(2,). One can easily prove the following lemma.
Lemma 2: In terms of the identificatipB,=M X Sp(1({’), the fundamental vector fields on

Sy generated by the standard generatorsSgf1,C) may be written

; o w o a? ]
=uUl—>70, __=uU_—7, =uU.——Uu_ .
T aue u?’ "0 Ttour TTau”

We say that a functiof on S, haschargec if dyf =cf. The charge measures the difference in the
degrees of homogeneity in, andu_ .

Note that any frame H,,h_)eSy defines an isomorphismC?= H} given by
(z},2%)—2zth, +7%h_. This induces an isomorphism

sp(1,0)=sp((?) =525 SPH* =span{h? ,h?  h,0h_},

where we have identifiesip(C?) with S?C? using the symplectic form of?. The generators of
sp(1,C) corresponding to h?,—h?,—h,Oh_ under this identification are precisely
dyy,d__,dy respectively.

C. Canonical distributions on harmonic space

Let Sy={(h,,h_)|h.=u%h,,(u%) e Sp(1L)} be the harmonic space associated to a half-
flat Grassmann manifolldl. Here we have fixed a parallel symplectic franhe (h,) of H* which
defines the trivializatiosy = M X Sp(1(’) of the holomorphic bundI&,; . In particular, the matrix
coefficientsu of Sp(1,C) will be considered as holomorphic functions 8. Together with local
coordinates X') of M, we obtain a systemx{,u?) of local (nonhomogeneous—homogeneous
coordinates org, .

For any sectioree I'(E*) we define vector fieldXS e £(S) by the formula

Xil(h+,h_)=€@ﬁ,

whereY stands for the horizontal lift of a tangent vectdron M with respect to the connection

VH. Since the frameh,, is parallel, this horizontal lift coincides with the horizontal lift with

respect to the splitting, =M X Sp(1{). This shows that the vector field€. are tangent tiv

x{(h, ,h_)} and hence annihilate? . If h.=u%h,, thenX$ =u$ X%, wherex$:=e®h, .
There exists a canonical decomposition

TS =T'Sy@D,aD_

of the (holomorphi¢ tangent bundle into the vertical subbundieS, and two (holomorphig
distributions D, and D_ spanned, respectively, by vector field§ and X® associated with
sectionse of the bundleE*. The vertical distributionT’S,, is spanned by the vector fields
dg,d+ 4+ ,d__, which correspond to the standard generators of the Lie algeloiz().

Lemma 3: The vector fieldsSx %(S,) satisfy the following commutation relations:

[d0, XE]==XE, [0++,X2]=0, [d+x XT]=XE,

’ \vj ee! V. e’ ~ ’
[XS XEJ=X T =X =T (XS X, (1
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[XS X=X X T T (X2 m, XY,

where T is the torsion of the Grassmann connegficiX, Y) :z?(XTf) denotes the horizontal lift
of the vector TX,Y) and we have used the abbreviatiﬁ;ae:Vf(e.

Proof: The first three equations follow fronX$ =u$e®h, and the expression for the fun-
damental vector fields given in Lemma 2. To prove the last equation we first compute the Lie
bracket of two vector fieldX=e®h andX’'=e’®h on M, whereh is parallel:

[X,X']= VX' — Vo X—T(X,X") = (Vye' — Vy,e)®@h—T(X,X') . (12)

Using this we calculate the commutator

[X5, XS J=usu (VeXg — B Xs - T(XS X5)
=(V,, xe€ ®h.)"—(V, xeedh.)” —ufulT(X$,X5)
=X TS T XS, XS,

The expression fofX¢ ,X¢'] follows similarly. O
We shall use the abbreviatioh(X%. , X% ):=T (7, X% , 7, X%).
Proposition 2: The following conditions are equivalent:

® For any parallel section ke I'(H*) the distribution EE®h on M is integrable

(i)  The distributionD, [associated to any parallel fram,,h,)] on S is integrable

(i)  The distributionD_ on &, is integrable

(iv)  The holomorphic Grassmann structure is admissible, i.e., it has admissible connection

Proof: The formula(12), whereh is parallel, shows that the distributid* ® h is integrable
if and only if

T(E*®h,E*®h)CE*®h. (13

Using the decompositiofiL0), one can check that this condition is satisfied for all parallel sections
h if and only if the connection is admissible. This proves the equivalence)a&r(d (v). Since
w*(Xi|(h+ h_y)=eeh,, the last equation i11) shows that the distributio®, is integrable if
and only if (13) holds for allh. Thus () is equivalent toij). The equivalence ofif and (ii) is
proved similarly. O

IV. CONSTRUCTION OF HALF-FLAT CONNECTIONS OVER HALF-FLAT GRASSMANN
MANIFOLDS

A. Half-flat connections over half-flat Grassmann manifolds

In this section we describe ttiermonic space methdtfor constructing half-flat connections
V (Definition 6 below in a holomorphic vector bundle: W— M over a complex manifol/ with
admissible half-flat holomorphic Grassmann structure. The basic ingredient of the construction is
the lift of geometric data fronM to S, via m:Sy— M. Let V be a holomorphic connection in a
holomorphic vector bundle:W— M. Its curvature

F(eoh,, e’ ®hg)=wu(h, hp) FE+FIET (14
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where 4,h,) is the fixed parallel local frame dfi* ande,e’ are local sections oE*. The
curvature componerﬂ(ee') is symmetric ine,e’ andF[f;'] is skew ine,e’ and symmetric iny,.
Lifting (14) to S, we obtain the curvature of the pull-back connectiehV in 7* v: 7* W— S,

with componentsfF(v, - )=0,Vv e T'S,, together with
e ye'y_plee]l,_ @ BEle€]
F(Xi7xi)_Fit '_uiuiFaﬁ ’
F(X2 X®)=FE)+Fleelopee) 1 ygyPFlee]

Definition 6: A holomorphic connectio¥ in a holomorphic vector bundle:W— M over a
complex manifold M with holomorphic Grassmann structdfeM = E®H, is called half-flat if
its curvature F satisfies the equation

F(e®h,, e ®hg)=wy(h,,hgFE), (15)

where(h,h,) is a parallel local frame of H and Fee) is symmetric in the local sectionseg
of E*.

Note that(15) is equivalent tq9). From this definition it follows that for anie H* we have
F(e®h,e’'®h)=0.

Definition 7: A connection in a holomorphic vector bundle-Y%,, over harmonic space,Sis
called half-flat if its curvature F satisfies the equations

F(X® ,X%)=0,

F(XS ,X®)=F(),
(16)
F(X‘i ,X‘i)=0,

F(v,- )=0, VYueT’S,,

where F¢€) is symmetric in the local sectionses of E*.

Definition 8: Let »:W—M be a holomorphic vector bundle an¥ a connection in
7 vim*W—S,, where 7:S;—M. A local frame of#* v defined onz~1(U), where U is an
open subset of Mis called acentral frame with respect toV if it is parallel along the fibers of
the bundler:Sy—M.

Remark:lf y=(x1,...,x;) is a local frame ofy, then=* y will be a central frame with respect
to the pull-backs* V of any connectiorV in v. The connection one-fori of 7* V with respect
to the framen* y satisfiesA(v)=0,A(X$)=ulAS, wherev is any vertical vector and\’
=A(f>?fy) is a matrix-valued function oM. Conversely, any connection satisfying these condi-
tions is the pull-back of the connection ovér with potential A(XS) =A% .

Proposition 3: Let7:S—M be any fiber bundle with simply connected fibers over a simply
connected manifold MThere is a natural one-to-one correspondence between gauge equivalence
classes of connectiori8 in the trivial bundleC’ X M and gauge equivalence classes of connec-
tions VS in C'X S satisfying the curvature constrain{#, - )=0 for all vertical vectorsv.

Proof: It is clear that the pull-backS=7*VM to S of a connectionvVM defined overM
satisfies the curvature constraint. To prove the converse, we will apply the following elementary
lemma to the connection one-forf of a connectiorV overN=S.

Lemma 4: Letm:N— M be a submersion with connected fibers and p-form on N Thena
is the pull-backs* B of a p-form 8 on M if and only if the inner products,a= ¢,da=0 for all
vertical tangent vectors.

Since the connectioR S is flat along thesimply connectepfibers of 7 there exists a central
framey=(i,...,1;) for VS, Let A be the connection one-form 8 with respect to this central
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frame. We then havéA(v)=0 for any vertical vectov and the curvature conditioR(v, - )=0
impliesdA(v, - )=0. Now the above lemma shows thfais the pull-back of a one-forrB on M,
which defines a connectiod™ in the trivial bundleC’ X M. Since any two central frames differ by
a gauge transformation which is a matrix-valued functiorvbthe connectioV™ is well defined
up to a gauge transformation. The pull-baekVM is gauge equivalent t6° since it has the same
expression with respect to the standard frameZ'of S (which is the pull-back of the standard
frame of (" X M) asVS with respect to the central framg It is clear that the pull-backs of gauge
equivalent connections ovéft are gauge equivalent connections o8e”pplying a gauge trans-
formation to a connectio S which has connection one-forf with respect to a central framg
we get a new connectionVf)’, which has the same connection fornwith respect to the
transformed framay’. The framey’ is therefore central with respect t&%)’ and the two
connectionsV® and (VS)’ define the same gauge equivalence class of connectionsdvbver]

Proposition 4: Letr:W=C"XM—M be a trivial vector bundle over a complex manifold M
with admissible half-flat holomorphic Grassmann structure awty: 7* W=_C'XS,—S, its
pull-back to §. Then any half-flat connection oveg$ gauge equivalent to the pull-back of a
half-flat connection over M

Proof: It is clear that the pull-back of a half-flat connection is half-flat. To prove the converse,
we apply Proposition 3, by which a half-flat connecti®f over S is gauge equivalent to a
pull-back connection* VM, which is necessarily half-flat. This implies that! is half-flat. In
fact, if the connectioV™ were not half-flat, then it would have a nontrivial curvature component

FLe;'] which would imply that its pull-backr* VM has, for instance, a nonzero curvature compo-

nentF[ff] . But this is impossible since* V™ is half-flat. O
Corollary 1: The connection one-form A of a half-flat connection ovgemfth respect to a
central framey has the form

A(v)=0, A(XL)=ulAjf,

wherev is any vertical vector and 2=A(X¢%) is a matrix-valued function on M

Remark:This shows that the half-flat connection is completely determined by the potential in
the D, -direction, A(XS)=u$AS , with respect to a central frame.

Proof: This follows from Proposition 4 and the remark following Definition 8. O

B. The construction

In this section we construct half-flat connections in a bund/— M over a manifoldM
with a half-flat admissible Grassmann structure. First we define the weaker notion of an almost
half-flat connection ove, and show how to construct all such connections from appropriate
prepotentials. Then we show that any almost half-flat connection®yeray be used to construct
a half-flat connection oM. Since our construction is local M, we shall assume that the bundles
@, vand 7* v are trivial, i.e.,m:M XSp(1£)—M, v:MXC"—M and 7*v:Syx(C'—S,.

1. Construction of almost half-flat connections

The restriction of a half-flat connection to a leaf of the integrable distribuf®n ,dy) is
clearly flat.

Definition 9: A frameg,, .. .,p, in the holomorphic vector bundle* v:C" X S, which is
parallel along leaves of the integrable distributiofiD, ,dy) is called ananalytic frame.

With respect to an analytic frame a connection in the vector bundile has components

S _
Vﬁo_&O’

S
Vz9++:‘9++'|'A++ =04+ A4 4),

Downloaded 20 Nov 2003 to 131.220.120.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 12, December 2003 Yang—Mills connections 6061

VS =0 +A__ =0 _+A(d_),

S _
X&

Vi =X® +A(X).

Definition 10: A connectioi S over S, is calledalmost half-flat if its curvature satisfies the
following equations:

F(XS,X%)=F(X%,v)=0, VueT’S,,

17
F((?++ v )ZF(aO! ! )ZO .

In fact, these equations are not independent; for instance the Bianchi identity with arguments
(X4 ,0.,,0__) together with F(d,.,,0__)=F(d++,X5)=0 implies the equation
F(d,.,X%)=0.

Proposition 5: Any almost half-flat connection satisfies the following equation:

F(XS ,X®)=F(X% ,X%).
Proof: Using the integrability ofP, andF (X% ,X%)=F(d__,X%)=0, we obtain

0=[VS ,F(X%,X%)]

S

_rvSs S S 19_rvs

_[V577 1 [in ’ in’]] [V(777 ’ V[Xi‘xi’]]

oS oS S oS . oS oS
_[VX‘i'ij’]Jr[VXi’VxE'] V[x‘i,xi’] V[xi,xi’]

=F(X® ,X8)—F(X® ,X%) .
O

It follows that an almost half-flat connection is a generalization of a half-flat connection, satisfying
only those equations il6), that involve curvatures with,,d., . or X$ in one of the arguments.
Proposition 6: An almost half-flat connection is half-flat if and only if it satisfies
F(o__,X%)=0.
Proof: By Proposition 5 an almost half-flat connection is required to satisfy all the half-
flatness equation&l 6) with the exception of

F(o__ ,X®)=0 and F(X®,X®)=0. (18)

The second equation here follows from the first by virtue of the Bianchi identity with arguments
(X8 X ,0_). O

The following proposition shows that an almost half-flat connection is completely determined
by the potentialA, , andA_ _ with respect to an analytic frame.

Proposition 7: LetVS be an almost half-flat connection in the vector bundfer:CM xS,
— Sy, with potentials A , , A__ and A(X®) in an analytic frame. Then we have following

(i) The potential A . is analytic and has charge-2, i.e.,

XiA++=0, oA+ +=2A . (19
(ii) The potential A _ satisfies
I A =0 A +H[AL L, A__]=0, JA__=—-2A__. (20

(iii) The potential AX®) is determined by A_ and has charge-1:
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AXE)=—XSA__, JoA(X®)=—A(X®) . (21)

Conversely, any matrix-valued potentials A, A__ and A(X®) satisfying(19)—(21) define an
almost half-flat connection

Proof: (i) The curvature constrain&(X$ , 9, ,)=0,F(dy, d,,)=0, in an analytic frame,
take the form(19).

(i) The further almost half-flatness conditiors(d, . ,d__)=F(dy,d__)=0, give EQs.
(20) for the potentialA_ _ .

(i) Having obtained A__, we can find A(X®) from the equationsF(X%,d__)
=F(dp, X2)=0, which take the form

XEA__=A(XE,d__N=—A(X2), dAX)=—A(X%). (22

The second equation follows from the first. O
We can now write an algorithm for the construction of all almost half-flat connections:
Theorem 4:Let A, , be an analytic prepotential, i.e., a matrix-valued function on a domain
U==m1(V)CSy, where \CM is a simply connected domain, satisfying (19). detbe an
invertible matrix-valued function on U which satisfies the equations

9, d=—A,,®, 9P=0. (23

It always exists. The paifA. . ,®) determines an almost half-flat connectiBi=V*++®)_ |ts
potentials with respect to an analytic frame are given by A A__=—(d__d)d ! and
A(X%)=—-X%A__. Conversely, any almost half-flat connection is of this form

Proof: We consider the connection defined Ay , and A(dy)=0 along an orbitsB of the
Borel subgroup of S(2,0),

to 13
B=110o ty!

It is flat since the second equation (f9) is equivalent toF(dy, . ;) =0 (vanishing of the
curvature alongsB). Moreover, it has trivial holonomy since the fundamental grouBefC*

X C coincides with the fundamental group of ttie-factor and the potential is zero in the direction
of d, which is tangent td>* . An invertible solution to the systeli23) exists and defines a parallel
frame ® with respect to the flat connection with trivial holonomy defined along each orbit of the
Borel group. Since the space of Borel orbitsUnis diffeomorphic toVx CP! and is therefore
simply connected, a solutioh exists on the domaild. Now, given any such solution ¢23), we
defineA__=—(d__®)® L. This solves20), sinceF (9 ,do)=F(d4, ,d__)=0 is the inte-
grability condition for the systeny..®=-A..®, 9,®=0. Finally, we defineA(X®)
:=—X$A__, obtaining an almost half-flat connection by Proposition 7. Now the converse state-
ment follows also from Proposition 7. O

toeC*, ty e L] =(C*Xx(C (diffeomorphig.

2. Transformation to the central frame

Since an almost half-flat connectidh=V* is flat in vertical directions, it admits a central
frame . The following lemma shows that the solutidnof Eq. (23) gives a gauge transformation
from an analytic framep to a central framay= ¢® for the almost half-flat connectiofi(*++®),

Lemma 5: LetV=V®A++®) pe the almost half-flat connection associated to the analytic
prepotential A , with respect to the analytic framg and an invertible solutiorb of (23). Then
the framey:=¢® is a central frame for the connectidn, i.e., the potentials G- ..) and C(dy)
with respect to that frame vanish

Proof: The result follows from the pure gauge form AfJ....) andA(dy) and the transfor-
mation law(3) for potentials. O
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With respect to the central framg the almost half-flat connection constructed above takes
the form

Viiz Xe+C(X8)= XS +d 1 X° @,

S _
x&

v XE+C(X%) = X+ D XD+ IXS (9. 2D D,

VS =dve, V5 =0, V5 =0

Moreover, the equation(d, , , X5)=F(dy, X5)=0 imply that the potentiaC(X%) satisfies
the equations

2+ +C(X3)=0, 3C(X3)=C(X3). (24)

3. Construction of half-flat connections

We assume now that the analytic prepotenfial, is defined globally along the fibers of
m:Sy— M. Then, restrictingM to an appropriate domain, we may assume fhat is defined
globally onS,,. The previous construction then provides an almost half-flat connectionSpver
Using this connection, we may construct a half-flat connectiorMonThe crucial point is the
following:

Proposition 8: The potential (X%) of an almost half-flat connectioR with respect to a
central frame is linear in ¢ , namely

C(X®)=uC(X®)=u“Ce, (25)

where(x',u?) are the local coordinates associated with the trivializatiop=aM X Sp(1() and
Ce=C8(x') is a matrix-valued function on M

Proof: Due to Eqs.(24), the result follows from Lemma 6.

Lemma 6: (i) If a holomorphic function,f, defined on some domain

ulout
U= det/=1,,
uz u?

+

UC{u?#0}CSp1,0)=

satisfies
dy f.=0, gpf,=1,, (26)

then f,=u?f,(ul/u?). Here f,(ul/u?) are holomorphic functions on U invariant under the
right action of the Lie algebra of upper-triangular matrices

(i) Moreover, if the function f is globally defined, then it is linear in 4, i.e, f.
=u¢f,,f,=const

Proof: (i) One can immediately check that, =u“f (u’/u?) is a solution of(26). We note
that the quotient of any two solutions (26) is a solution of the corresponding homogeneous
system,

dr+f=0, gpof=0. (27)
It is sufficient to check that any solution ¢7) is a function ofu’ /u? . To prove this we use the

local factorization of S(,C) into the product of a Borel subgroupand a nilpotent subgroup as
follows:
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ul out 1 0) (a b )

ui ur) ettt ’ B{Oal}'
Then c=u1/u2+ and dy,d, . are generators of the right action & This implies that the
solutions 0of(27) are precisely the local functions on @) invariant under the right action @.
In terms of the local coordinate systera,p,c) on Sg1,C) such functions are functions af
=ul/u? alone.

(i) The restrictionv|5p(l) to Spgl) of any irreducible S(,C)-moduleV of holomorphic
functions is a(finite dimensionaglirreducible Sl)-module of smooth functions on 8p. The
condition (26) shows thatf , is a highest weight vector with weight 1. Hencef , generates a
two-dimensional submoduléf , y=spardf, ,f_:=g__f .} of holomorphic functions. It remains
to show that any two-dimensional module of holomorphic functions ofi,8pis spanned by
linear functions. We know two such modules, generated by the highest weight vel:tarmlui
respectively. On the other hand, by the Peter—Weyl theorem the multiplicity of the two-
dimensional irreducible representation of(Bpin L2(Sp(1)) is 2. O

Using Proposition 8, with respect to a central frame, we can W;Jic,t X§ +u$ CE where the

coefficientsC®=C¢(x') are matrix valued functions of coordinatgson M. Using them we
define a new connection in the trivial bundl&x S, over Sy by

a b
0 a!

Our main result now follows:

Theorem 5: Let M be a complex manifold with a half-flat admissible Grassmann structure.
Let A, , be an analytic prepotential, i.e., a solution of (19), abdan invertible solution of (23).
Then the connectiol = VA++® constructed from the dat@ , , ,®) is a half-flat connection in
the trivial vector bundleC’ X S;— Sy, and it is the pull-back of the following half-flat connection
VM in the bundleC' XM —M:

Vie=XS+CE. (28)

Conversely, any half-flat connection ovel(@& M) is gauge equivalent to one obtained from the
above constructian
Proof: The remark after Definition 8 shows that the connectioris the pull-back of the

connectionVM. It suffices now to show tha& ™ is half-flat. Note that the connectioNsand V
coincide in the direction oK . Hence, usingC$ :==u$C¢, we have

0=F"(X$ ,X$)=F"(X$ ,X§)=X3CY =X§ CE +[CT, CT1-C((XT, XS 1)
=uSuf(XSCH —X§ Co+CS, Ch1-C(XE, X5 1)
o M !
=ufufFY (XS, X5)
sinceX® u? =0. This shows that the curvatuFeVM(Xi , X%’) is skew-symmetric inw,8, i.e., it
belongs toA2H® S’E® End W. In other words, the connectio@™ is half-flat.
Conversely, leVS be a half-flat connection ové;, . By Proposition 4 we may assume that it
is a pull-back of a half-flat connectiofi™ over M. Since the restriction oV® to the leaves of
(D, ,do) is flat, there exists an analytic frarfiee., a frame such th&(X%)=A(dg) =0, in which

the potentialA(d. ) satisfies the equatior(d9)]. SinceVS is flat along the(simply-connected
fibers, there exists an invertible solutidnto the system
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9, D+A, D= _O+A__d=3gyd=0.
This shows tha¥ S is gauge-equivalent to the almost half-flat conneciéf + @ =V A+

C. Application to hyper-Ka ~hler manifolds with admissible torsion

The above construction can be applied to the complexification of hypeleKananifolds.
Recall that any hyper-Kder manifold admits alocally defined Grassmann structur@* “M
=E®H, such that the Levi—Civita connection on the cotangent buRdtevE® Id+1de V" is
half-flat, i.e., the connectioki" is flat. Since the hyper-Kaer metric is Ricci flat, hence analytic,
we may, using analytic continuation, extend the manifbldto a complex manifoldV® with
holomorphic extension of the hyper-Klar structure, in particular, we have a holomorphic Ricci
flat metric onM " with holonomy in Spf,C) and half-flat Grassmann structure. This Grassmann
structure is admissible since the Levi—Civita connectionMn has no torsion. Hence we can
apply the harmonic space method to construct half-flat connections on holomorphic vector bundles
W—M". The complex version of Proposition 1 shows that such connections are Yang—Mills
connections. More generally, the method of construction of half-flat connections extends to real
analytic (possibly indefinit¢ hyper-Kanler manifolds with admissible torsion, i.e., with torsion
which has zero component B*H® E* ® A’E. A hyper-Kahler manifold with admissible tor-
sion is defined as a pseudo-Riemannian manifdtl,§) with a linear metric connectioN with
holonomy in Spk,l) which has admissible torsion. As in tl{torsion-free hyper-Kanler case
there exists a parallel four-form given §y=2 0, Jw,, o,:=9(J,-,-), and half-flat connec-
tions are characterized as connections with curvatureVin® EndW, where V, is the
\,-eigenspace of the endomorphidg, associated td). If the form Q) is co-closed, then any
half-flat connection will be Q,\;)-self-dual and thus a Yang—Mills connection. We remark that
co-closedness df) is equivalent to a linear SR(l)-invariant condition on the torsion.

V. GENERALIZATION TO HIGHER-SPIN GRASSMANN MANIFOLDS
A. Higher-spin Grassmann structures

The construction discussed in the previous section is in faahnthd specialization of a more
general construction of connections gipin N2 Grassmann manifoldsvhich we discuss in this
section. These manifolds were considered in Ref. 14.

Definition 11: Aspin m/2 Grassmann structureon a (complex) manifold M is a holomorphic
Grassmann structure of the formtM=E®F=E®S™H, with a holomorphic Grassmann con-
nection V=VE®Id+1d® V", where H is a rank 2 holomorphic vector bundle over M with
holomorphic symplectic connectidi! and symplectic formw, e I'(A?H), and VF is the con-
nection in F=S™H induced byV". M is called half-flat if the connectiorVF is flat

The bundleS™H is associated with the spim/2 representation of the group @g). Any
frame (4,h,) for H* defines a frame fo8"H* (ha=h, h, --h, ), where the multi-indexA
=aqay an, a;=1,2. TheV-parallel symplectic formwy on H* induces a bilinear fornaw;
on F*=S"H* given by

wm(hA!hB):=66 wH(hallhﬁl)wH(hazlhﬁz).“wH(ham!hﬁm)!
A B

where&, denotes the sum over all permutations of t& This form is skew-symmetric ifn is
odd and symmetric ifn is even. To any sectioae I'(E*) and multi-indexA we associate the
vector fieldXz:=e@h, on M.

The construction of half-flat connections described in Sec. IVB may be adapted to obtain
certain “partially flat” connections in vector bundl&— M, provided that the torsion &f obeys
certain admissibility conditions.

Definition 12: Let(M,V) be a half-flat spin "2 Grassmann manifold. For any section e
eI'(E*) we define vector fields
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X{m—2iy+ =utuluf+tufm™Xgif  m—2i=0,

XCgi—my—s=utuufi o ufmxg if  m—2i<0,

on the principal bundle $ of symplectic frames in HThe distribution spanned by these vector
fields is denoted byDy. :=(XE,) for k=0, k=mmod 2 and D,_:=(XE_) for k>0, k
=mmod 2.We define also

The Grassmann connectidhis calledk-admissible if it preserves the distributioﬁ)'(‘t), ie.,
T(D{.) D{e))CDL, . (29

The Grassmann manifolgM,V) is calledk-admissible if the connectiorV is k-admissible
For smallm we shall writeXg, X5, X, X% ., etc. instead oKg, , X7, , X]_, X5, , etc.
Proposition 9: Let(M,V) be a half-flat spin 2 Grassmann manifold. Then the distribution
D‘(‘i) is integrable if and only if the torsion of the Grassmann connecYicsatisfies Eq. (29)
The proof is similar to that of Proposition 2.

B. Partially flat connections over higher-spin Grassmann manifolds

Let (M,V) be a half-flat spirm/2 Grassmann manifold anetW— M a holomorphic vector
bundle. Since our constructions are local we will assume\théd trivial. In the higher spinif
>1) case, there exists, as a natural generalization of the notion of a half-flat connection, the more
refined notion of ak-partially flat connection inv. The space of two-form&\?T*M has the
following decomposition intd5 L(E) ® Sp(1{)-submodules:

A’T*M=A%(E®S"™H)=A%E®S?’S"Ha® S’E® A2S™H,
where
SS"H=S"He 0" *He & ol MM 4mAY,
A2STH = stzm—zH ® waszm—eaH ERE wa[m/2]+1szm—4[m/2]—2H _

Here we use the convention th@iH=0 if | <0.

Let V be a connection in the vector bundlé— M. Its curvature has the following decom-
position, corresponding to the above decomposition APT*M into irreducible
GL(E) - Sp(1{)-submodules:

F(x;‘i,xg'):e?c: go (0n(haphg)  ou(h,, hg ) F L

o1 ¥mBok+1 " Bm

(2k+1)
e (e€)
tou(he hg)on(he,  Ng,,.) sz by B (30
where the tensors(®¥ e I'(A2E® S?™ *kH) and F(?k* D e ['(SPE® SPM42H),
We note that half-flat connections are those which satisfy the conditions
(2i)
F =0, foralliel. (31
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For m>1 these conditions are not suitable for application of the harmonic space method. How-
ever, the following more refined restrictions on the curvature are amenable to the rfefthef.
15).

Definition 13: A connectiorV in the vector bundlev:W—M is called k-partially flat if
F(O=0 for all i <2k. Here 0<k<[(m+2)/2].

Clearly, [ (m+2)/2]-partially flat connections are simply flat connections. We note that for
m=1, zero-partially flat connections are precisely half-flat connections. For generamodd
=2p+1, zero-partially flat connections in a vector bundlever flat spaces with spim/2
Grassmann structure were considered by Wate.choseE to be a rank 2 flat bundle and showed
that zero-partially flat connections, fan>1, do not correspond to Yang—Mills connections.
Therefore, in our more general setting, we clearly cannot expect zero-partially flat connections to
satisfy the Yang—Mills equations fon>1. On the other hand, the penultimate cdse[ m/2], is
particularly interesting for oddh:

Theorem 6:Let M be a half-flat spin 2 Grassmann manifold MIf m is odd and the vector
bundle B —M admits a VE-parallel symplectic formwg, then M has canonicalSp(E)
-Sp(H)-invariant metric g= wg® wyy and four-form Q+#0. If Q is co-closed with respect to the
metric g, then any(m— 1)/2-partially flat connectionV in a vector bundle W over M iX,\)-
self-dual and hence it is a Yaniylills connection

Proof: To describe) we use the following notatiore, is a basis oE*, h, is a basis oH*,

h, is the corresponding basis & H* and X, .:=e,®h, is the corresponding basis dtM
=E*®S™H*. With respect to these bases, the skew symmetric foims wy and oy are
represented by the matrices,,, o,z andw,g, respectively. We defing by

0=, wap weq wac wpp XAAOXPBOXCCOXIP,

whereX?” is the basis dual t&,,. This form is obviously SgE) - Sp(H)-invariant since we used
only wg and wy in the definition. One can easily check that=0. The connectiorV is (m
—1)/2-partially flat if and only if its curvatur& belongs to the space

SPE@ wl® EndWC S’PE®A?S"H®ENdWC A%(E®S™M)®EndW.
Here we use the decomposition
A?S"H= 0, S ?Ho 0} S *He:- @ Cof .

The SpE)- Sp(H)-submoduleS’E® wfiC A2T*M is irreducible. Therefore it is contained in an
eigenspaceV, of the SpE)-Sp(H)-invariant operatorB, :A’T*M—[?T*M. It remains to
check that #0. By Lemma 1 it suffices to compute the contractios K .cqpX X 9P of a tensor
S=S,,wae?e®@h*hB in SPE® 0]} with Q:

_cab AB
—Kecdp™ S0 @ap0cd®ac®BD T @ac®@db®ADPCBT ©ad@hc®ABPDC ™ Wba®cd@BCPAD
T WphcWdaWBDWCA™ WpdWac®WBAWDC™ Weca®WhdWCBWAD ~ Wch@daWCDWBA
~ WedWapWCAWDR T Wda@hcWDBWACT Wdp@ca®Wpc@WpAT Wc@ab®@DA®CE)
:4(m+ 1)ScdwCD .
. ! ’

Here »® and w”® denote the inverses @,, and w,g and S?°= w3 w°?'S,,,, . We have used
that S**w”® is skew-symmetric under interchange aA with bB and thatw”Bwag=—(m
+1). The above calculation shows that —4(m+1)#0 and hence anynf— 1)/2-partially flat

connection igQ,N)-self-dual and is a Yang—Mills connection by Theorem 1. O
The analogous result does not holdrfis even.
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Proposition 10: If m is even and the vector bundie-EM admits aV E-parallel metric yg,
then M has canonicaBO(E) - Sp(H)-invariant metric g= ye® wy} and four-formQ # 0.
Proof: Analogously to the case af odd, we can defin€) by

Q=D Yap Yed @ac @pp X2AOXPBOXCOXID,

Here yap=ye(€a,6p) and we recall that for evem the bilinear formey} is symmetric:wag
= wga- O

For evenm, a connectiorV in a vector bundldV over M is m/2-partially flat if and only if
its curvatureF belongs to the space

(AN’E@ oo PEQ SPHR 0l 1)@ End WC (AE® SPS"H® SPE® A2S™H) @ End W
=A?(E® S"H)®End W.

The SOE) - Sp(H)-submoduleA’E® e SPE®@ SPH® o] *C A?T*M is not irreducible, so un-
like the oddm case we cannot conclude that it is contained in an eigenspaad the SOE)
-Sp(H)-invariant operatoBg, : A>T* M — A2T* M. In fact, examples are knowsee Appendix B
of Ref. 16 whereB, has different eigenvalues on each irreducible summant?@ M. There-
fore, in the case of evem we cannot expect that/2-partial flatness implies the Yang—Mills
equations.

C. Construction of partially flat connections over higher spin Grassmann manifolds

Now we generalize the construction of half-flat connections over admissible half-flat Grass-
mann manifolds to the case &fpartially flat connections ovet-admissible higher spin Grass-
mann manifoldsvi. The natural extension of the harmonic construction given in Sec. IV B yields
k-partially flat connections in the vector bundieover the k-admissible spirm/2 Grassmann
manifold M. Again, we lift the geometric data froMl to S, via the projectionm:S;,—M. The
pull back7* V of ak-partially flat connectiorV in the trivial vector bundle:W=C"XM—M is
a connection in the vector bundie® v: 7* W— S,; which satisfies equations defining the notion of
a k-partially flat gauge connection dB,. One can also define the weaker notion of an almost
k-partially flat connection inr* v: #* W— S, . The latter may be constructed from a prepotential
and it affords the construction oflapartially flat connection in the bund/— M. To simplify
our exposition we explain the construction in time=3 case. Here the decompositi(B0) of the
curvature tensor takes the form

(0) (1)
e e’ _ [e€] (e€')
F(X%“z”‘s 'XB1B2,83) QAS S (F “1“2“33132ﬁ3+ wH(h“l’hﬂl) F aa3frpB3

@
+w(haphg)op(he,hg,) FES)

(3)
+on(Nayhg)on(ha, g ou(he hg ) FC). (32)

In this case we have two nontrivial notions of partial flatness:

(0)

zero-partial flatness: F =0, (33
0 @1 (2
one-partial flathess: F=F =F =0. (34

Clearly, two-partial flatness is tantamount to flatness. By Theorem 6, a one-partially flat connec-
tion is a Yang—Mills connection.
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1. Construction of zero-partially flat connections

Let M be a zero-admissible spin 3/2 Grassmann manifold with a zero-partially flat connection
V [satisfying(33)] in a holomorphic vector bund#/— M. The pull-back of such a connectidh
to a connection in the bundle* W—S,,, wherew:S;— M, has curvaturd- with components

given by
F(X%.. ,X2..)=0,
ezlazasﬁlﬁzﬁs e e
F(X+++,X:) ulfucuttulfus F(Xalazas Xﬁlﬁzﬁs)
(ee) ay ap By B - (e€’)
— 1 2 1 2.
+12Fa1a23132u7 uLluituP=212F U1
e’ ay @ az B B B3 e [ee] ay B, [ee]
F(XS X)) =uTufPuZuu2u? F(Xalazas Xﬁlﬁzﬁa) 8Falﬁlu us 8F++,
e’ ay ap ag By By B3 e
F(XS 44 X8 )=uTufuTuu™2u’ F(Xalaz% Xﬁlﬁzﬁs)

(1)
=36(F ), s u u“zuﬁluﬁzﬂL F [ee ]ualuﬁl+ F e )

o @ . ®
=:36( F £+ F 21+ F (£, (35

(1)

(2)
F(XE. . X¥)=utuueufruleyer (x® )==24F (¢ 12F [e¢]

ajaag? /315 B3
e’ ay ap az Bi Bo B e (1)(ee’) (2)[ee’] (3)(ee’)
F(XS X)) =uu?u®Butu"2u3F (XS Lagay KBy B8y = 12F 6 —AF g —12F 0,

F(U!' ):01

wherev,v’ are vertical vector fields os,. The form of these components lead us to the
following definition.

Definition 14: A connection in a holomorphic vector bundle-V8, is zero-partially flat if
its curvature satisfies the equations

F(XS.. X3..)=0,
F(X+++1Xe) F(X+++!Xi):
F(XS ,XS)=—F(X% ,X%),

F(v,-)=0, VYveT’S,.

The restriction of a zero-partially flat connection to a leaf of the integrable distrib{fign ,dy)

is clearly flat. In this case, aanalytic frame in the holomorphic vector bundleg* v:C" X S

— Sy is a frame which is parallel along leaves of this integrable distribution. With respect to such
a frame, a connection in the vector bunet& v can be written as
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S _
VS =do,

S _ye
Vxe =XIi4,
+++

S
Vie =XS+AXD),

Vf :§i¢+A((9ii)-

++

Vie =X°__+AXC_).

Definition 15: A connectio’VS over S, is called almost zero-partially flat if its curvature
satisfies the following equations:

F(XS,, X%, )=F(X%,, v)=F(X%,0)=0, VveT'S,,

(36)
F(d4s,-)=F(d,-)=0.

Following the construction of almost half-flat connections, we may construct almost zero-
partially flat connections, which allow deformation to a zero-partially flat connection. As in the
case of a half-flat connectiofef. Proposition 7, an almost zero-partially flat connection is com-
pletely determined by the potentias. . =:A(J-.) with respect to an analytic frame.

Proposition 11: LetV be an almost zero-partially flat connection in the vector bundle
m* v ("X Sy— Sy with potentials A , , A__, A(X%) and AX® __) in an analytic frame. Then
we have the following

(i) The potential A , is analytic and has chargg, i.e.,

Xi++A++=0, oA+ +=2A4 . (37
(ii) The potential A _ satisfies
Ay Al _—0_ A, +[ALL A__]=0, JoA__=—-2A__. (39
(i) The potentials AXS) and A(X® __) are then recursively determined as follows:
A(xi): - %Xi++A—— ,
AXE)=3(d- AXD)—XEA__+[A__ AXD)D), (39
AXE__)=d__AX®)—XEA__+[A__ ,A(X%)],
and they have charges 1,—1, and — 3, respectively, i.e.
BAXS)==A(XS), doA(XE __)=—3A(X®__). (40)
Conversely, any set of matrix-valued potentials A A__, A(X$) and A(X® __) satisfying
(37)-(40) define an almost zero-partially flat connection
Proof: (i) The curvature constrain®&(X$ , d,,.)=0,F(dy, d,,)=0, in an analytic frame,
take the form(37).
(i) The further almost zero-partial-flatness conditioRéd, , , d__)=F(dy, d__)=0, give

Egs.(38) for the potentialA_ _ .
(iii) Having obtainedA__, we can findA(X%) and A(X® __) from the equations
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F(o-— X5,)=00 =X LA _=A([d-_ . XE,,])=3A(X2),
F(9-_ X$)=0&d__AXS)—XSA__+[A__ AXD]=A([d__ XS])=2A(X®),
F(o__ ,X®)=0ed_ _AX®)=X®A__+[A__AX®)]=A(d__ ,XED=A(X®__).

Equations(40) follow from (39). O

Now, using this proposition, a modification of Theorem 4 gives an algorithm for the construc-
tion of all almost zero-partially flat connections.

Theorem 7:Let A, . be an analytic prepotential, i.e., a matrix-valued function on a domain
U=="1(V)CSy, VCM a simply connected domain, satisfying (37), @ndn invertible matrix-
valued function on U which satisfies the equations

9, d=—A,,®, 9d=0. (41)

Such a functionb always exists. Then the pgiA . , ,®) determines an almost zero-partially flat
connectionVS=V®A++-®) |ts potentials with respect to an analytic frame are given hy,A
A__=—(d__d)d ! and (39). Conversely, any almost zero-partially flat connection is of this
form.

The proof follows that for Theorem 4 and uses Proposition 1.1.

To deform an almost zero-partially flat connection into a zero-partially flat connection, we
need to find a transformation from the above analytic frame to a central frame. Analogously to
Lemma 5 we may prove the following.

Lemma 7: LetV=V(++:®) pe the almost zero-partially flat connection associated to the
analytic prepotential A , with respect to the analytic frame and an invertible solutionb of
(41). Then the framé:=¢® is a central frame for the connectidh, i.e., the potentials (3. ..)
and C(d,) with respect to that frame vanish

With respect to the central framfk the above almost zero-partially flat connection then takes
the form

S
e
Xer+

v = X HCXE ) =XE D X, R

S
Vie =X +C(X),

Ve =XC__+C(X°_),

VS =dis, VS =0, V5=0d,
where in terms of the analytic frame potentialeX), the central frame potentia3(X) are given
by C(X)=® A(X)D+d 1(XD). Moreover, the equations(d, ., , XS . )=F(dy, X%, )
=0 imply that the potentiaC(X$ . ,) satisfies the equations

34+ C(X§,)=0, 9C(X%,,)=3C(X5 ). (42
The following proposition is analogous to Proposition 8 in the half-flat case.

Proposition 12: The potential (X% , ,) of an almost zero-partially flat connectidn with
respect to a central frame is cubic irfy

C(X§ 1) =ugufulC(X5s,)=utufulCs,,, (43
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where the coefficients Z;y aﬁy(x) symmetric ina,B,y, are matrix valued functions of co-
ordinates % on M and(x',u?) are the local coordinates associated with the trivialization S
=MXSp(1f).

With respect to a central frame, we can therefore wﬁ;@ =X, ,+u?ufu Vcaﬁy

Using C¢ ., we now define a new connection ¥ v over S, by

apBy?
Vee | =XS,tuiufulCy,,
Ve =X§ +ufufu?Cly,
c e Byurce
Vxe =XZ+uluZulCpp,,

Ve =XS__+utufu’cCsy,,

V() :(?++, Vlg__:(?,,, V30=(90.

++

The following theorem is the analog of Theorem 5 in the half-flat case.

Theorem 8: The constructed connection is a O-partially flat connection inm* v over §,
and it is the pull-back of the following O-partially flat connecti®#' in » over M:

M e e
inﬂy XaB7+ Caﬁy

Proof: As in Lemma 1 we may show that the connectiors the pull-back of the connection
VM. It then suffices to show that™ is zero-partially flat. The connectiofsandV coincide in the

i 1 € i e . a1,%2 %308
direction of X% | | . Hence, usindgC? , | :=u_'u *u;°C, Lapagr WE have

0= FV(X+++ !Xi++) FV(X+++ ,xi++)

=Xi++Ci++—Xi++Ci+++[Ci++ , Ci++] C([X+++ ,XS.++])

— 0 @1y,%2,,93, B1,,82,,83 e’ e
Su U U U U (Xalazascﬁlﬁzﬂs Xﬁlﬂzﬁscalazas

+[Cala2a3 ﬁlﬁzﬁs] C([Xa1a2a3 ﬁlﬁzﬁs]))

_1,,92,,23 B1, B2 Bz VM e
u u cu Cututcuy F (xa1a2a3 xﬁlﬂzﬁ3)’

sinceX® , . u® =0. This shows that the componeRt®=0 in the decompositiori32), i.e., the
connectionVM is zero-partially flat. O

2. Construction of one-partially flat connections

Let M be a one-admissible spin 3/2 Grassmann manifold with a one-partially flat connection
V [satisfying(34)] in a holomorphic vector bundi/— M. The pull-back of such a connection to
a connection in the bundle* W— S, , wherew:S;— M, has curvatur& with components given

by

F(X8..,X%..)=0,

F(X+++ 1Xi):01
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F(X$,X$)=0,

! (3) /
F(X% ., X% __)=36F (), (44)

F(X%.. ,X¥)=0,

! (3) U
F(X® ,X®)=—12F (¢¢),
F(Ul : ):01

wherev is any vertical vector field oS, . A connection in a holomorphic vector bund\g

— Sy is one-partially flat if its curvature satisfies the above equations. The restriction of a
one-partially flat connection to a leaf of the integrable distributibg, ,D, ,d,) is clearly flat. In

this case, amnalytic frame in the holomorphic vector bundle* v:C" X S;,— Sy, is a frame which

is parallel along leaves of this distribution. With respect to such a frame, a connection in the vector
bundle 7* v can be written as

S _
V&++—&+++A++,
VS =0 _+A__,

Vie =XC__+A(X_.),

S
V3e =X +AX),

with potentialsA(X¢ . ,)=A(X%)=A(dy)=0. We look for solutions of the systed4) in this
analytic gauge.

Definition 16: A connectioVS over S, is called aimost one-partially flat if its curvature
satisfies the equations

F(XS 4o XS ) =F(X3 1, XS)=F(X§ ,X5)=0,

(45
F(X$ 14 0)=F(X$,0)=F(d,1, - )=F(dp,-)=0, VveT’S,.

In virtue of these equations, the potentidls.. =:A(Jd.-) determine all other potentials:

Proposition 13: LetV be an almost one-partially flat connection in the vector bundle
m* v:C"X Sy— Sy with potentials A, , A__, A(X%) and AX® __) in an analytic frame. Then
we have the following

(i) The potential A . is analytic and has chargg, i.e.,

Xi++A++:O, XiA++:O, C70A++:2A++ . (46)

(ii) The potential A _ satisfies
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i A_—0_ A, +H[ALL A__]=0, JA__=-2A__. (47
(iii) The potentials AX®) and A(X® __) are then recursively determined as follows:

A(XS)=—IXSA__,

(48)
AXE_ )=a__AXS)=XEA__+[A__ ,AX%)],
and they have charges 1 and — 3, respectively; i.e.
AAXE)=EA(XE), JAXE__)=—3A(X®__). (49

Conversely, any set of matrix-valued potentials /A A__, A(X®) and A(X® __) satisfying
(46)—(49) define an almost one-patrtially flat connection

Proof: (i) Equations(46) are equivalent toF(d, , ,X5,.) = F(d; . ,X%) =F (90,94 +)
=0.

(i) The further almost one-partial-flatness conditiof§g, . , d_ _)=F(dy, d__)=0, give
Eqgs.(47).

(iii) Having obtainedA__, we can findA(X®) andA(X® __) from the equations

F(o__ ,X2)=0e—XSA__=A([d__,X2])=2A(X®),

F(d__ ,X8)=0d_ _AX)—X®A__+[A__ AX®)]=A([d__ ,XED=A(XE __).

The equationg49) follow from (48). O
Now, starting from a prepotentigh, , , which solves(46), we may construct an almost
one-partially flat connection. The potential _ = —(J__®)d 1 is determined, as before, from a

solution® of (41). Then, with the remaining potentials in an analytic frame being givet¥By
and satisfying49), all the other equations i#5) follow. This shows that an almost one-partially
flat connection is determined by an arbitrary analytic prepoteAtial and an invertible solution

® of (41). As before® is a transition function from an analytic frame to a central frame, in which
the above almost one-partially flat connection takes the form

S

\ =XE FC(XE ) =XS  + D X, oY

e
Xt

V§i=xi+c:(xi)=xi+<p Xe &1
S
Vie =X +C(X),

Vie =X°__+C(X°_),

S S S
VS =dis, V5 =0, V5=do.

++

Moreover, the equationg(d, , , X5, .)=F(dg, X5, ,)=0 imply that the potentiaC(X¢ . ,)
satisfies the equations

94+ C(X5,1)=0, 3oC(XT . )=3C(X%. ).

Proposition 14: The potentials (X§ . . ) and C(X¢$) of an almost one-partially flat connec-
tion V with respect to a central frame have the form

C(X§,)=ufufulCsl,,, C(X3)=ufufu?’Cly.,
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where C;By is a function on M symmetric ina,,7.

With respect to a central frame, we can therefore write
—ye e —vye e
VXi++_X++++U$U€U1Caﬂy1 in—X++uiu§uZCaﬁy.

We define a modified connection in the bunat&v over S, by

e

C —ye a By
VXi++_X++++u+u+u+Caﬁy'

Ve =X +ufufu” CS

aBy?
Vee =X +uufurce, (50)
Ve  =X°__+u*ufurcey,
Vo =0ier Vo =d__, Yy =d.

As in the zero-partially flat case, we have the following.

Theorem 9: The constructed connectidh is a one-partially flat connection im* v over S,
and it is the pull-back of the following one-partially flat connect®M in » over M:

M
Vie, =Xepyt Copy- (51)

Proof: As before one shows that the connectiris the pull-back of the connectiodM. It
remains to show that ™ is one-partially flat. Since any almost one-partially flat connection is
almost zero-partially flat, we havE®=0 by Theorem 8. Next we show th&®=0. The

connectionsy andV coincide in the direction oK% ., andX$ . Hence, using Eq(35), which
holds for zero-partially flat connections, we have

’ < ’ (1) ’
0= FV(Xi ++ ,Xi )= FV(Xi ++ ,Xi )=12F Eziiv;ﬁlﬁzuiluizuiluﬁz :

This shows that the componeRf) in the decompositiori32) vanishes. Similarly,

’ - ’ (2) ’
0=F"(X% ,X2)=F"(X% ,X%)=—8Feglyy’

a1By
implies F@©€1=0, and hence tha¥ is one-partially flat. O
By Theorem 6, the one-partially flat connecti&’}we in (51) is a Yang—Mills connection.
aBy
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