
Mathematical machine learning part IV : active

and online learning

Prof. Dr. Gilles Blanchard, Dr. Alexandra Carpentier∗, Dr. Jana de Wiljes,
Dr. Martin Wahl

In most classical problems, one considers settings where all data are available before hand. But
this is not always the case and in many applications, the data become available gradually - this is
the online learning setting. Sometimes, the learner does even have an impact on how the data is
collected - this is a specific case of the online learning setting, which is called active learning. We
are going to investigate a specific and relatively simple (yet mathematically challenging) example of
active learning, which is called the bandit problem.

1. The stochastic bandit problem

Useful material : See Bubeck et.al (2012), and also Cesa-Bianchi et.al (2006) for a

broader perspective - see also

https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/ (and part ii)

for a helpful blog post.

1.1. The problem

The bandit setting is an online learning setting, where the learner gets to choose which source of
data it wants to observe among many. In the stochastic bandit setting, we assume that the sources
output data randomly in a i.i.d. fashion.

Now let us say this in a more specific way. The learner can sample K data sources which are often
referred to as “arms”. At each time t, the learner chooses one of the systems kt ∈ {1, . . . ,K} it wants
to observe. This decision is not based on the data observed in the past (Xu)u<t. After choosing kt,
it receives Xt ∼ νkt

. At the end of the game at time n (the game is said to be of horizon n), the
performance of the learner is measured by

Ln =
∑
t

Xt.

Let us assume in the sequel that the distributions (νk)k have support in [0, 1], and let us write µk

for their means, µ∗ = maxk µk, ∆k = µ∗ = µk and Tk,n for the number of times arm k was chosen.
A related objective is to make the expected regret with respect to the best arm

R̄n = nµ∗ − E
∑
t

Xt =
∑
k

∆kETk,n,

as small as possible, with respect to the arm selection (kt)t of the learner.

∗Contact : carpentier@math.uni-potsdam.de. Webpage with course material TBA : http://www.math.

uni-potsdam.de/~carpentier/page3.html
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In order to simplify the analysis of this game, we write Xk,u for the uth data observed from
system k if system k is sampled at least u times.

Game 1: The stochastic bandit game.

Unknown infos: (νk)k
Known parameters: K and n
for t = 1, . . . , n do

The player chooses kt ∈ {1, . . .K}
The system kt reveals the reward Xt ∼ νkt

end for
Goal : Maximize over (kt)t the sum Ln =

∑
t≤nXt.

Global objective : Propose good strategies for solving Game 1 and minimizing R̄n :

• Propose strategies : upper bounds.
• Prove optimality of these strategies : lower bounds.

1.2. The stochastic bandit problem - upper bounds

A popular simple strategy for this problem is the UCB-strategy .
Write Tk,t for the number of times arm k has been pulled at time t and µ̂k,t for the empirical

mean of arm k at time t.

Algorithm 1: The UCB strategy.

Initialisation: Pull a sample from each distribution
for t = K + 1, . . . , n do

Set UCBk,t = µ̂k,t + 4
√

log(n)
Tk,t

.

Set kt = arg maxk UCBk,t and collect Xt ∼ νkt
.

end for

The following theorem holds for bounding the pseudo-regret.

Theorem 1. Assume that n ≥ 4K. It holds that

R̄n ≤ 10
(

1 +
∑

k:∆k>
√

K log(n)/n

log(n)

∆k
+ 1{∃k : 0 < ∆k <

√
K log(n)/n}

√
nK log(n)

)
.

This implies in particular the so-called problem-dependent bound

R̄n ≤ 20
(

1 +
∑

k:∆k>0

log(n)

∆k

)
,

and the problem-independent bound

R̄n ≤ 30
√
nK log(n).
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1.3. Exercises : part 1

Bandit problem with a different objective. Consider the stochastic bandit setting where now
the objective is not to maximise the sum of collected samples, but to find with probability as high
as possible the arm with highest mean k∗ = arg maxk µk. If at the end of the budget the learner
guesses k̂n, the objective is to minimise

E∆k̂n
or also P(k̂n 6= k∗).

We assume that there is just one optimal arm, i.e. that ∀k 6= k∗, then µk < µk∗ . Toward this end,
we consider the strategy

Algorithm 2: UCB-A strategy (UCB-A).

Parameter: a > 0
Initialisation: Pull a sample from each distribution
for t = K + 1, . . . , n do

Set UCBAk,t = µ̂k,t + 2
√

na
Tk,t

.

Set kt = arg maxk UCBAk,t and collect Xt ∼ νkt
.

end for
Output : k̂n = arg maxk Tk,n.

1. Here the log(n) from UCB is replaced by na, which is much larger if a > 0 is a fixed constant.
Do you think it is a good idea and why?

2. Prove that

ξ = {∀k, ∀t, |µ̂k,t − µk| ≤ 2

√
na

Tk,t
}

is such that P(ξ) ≥ 1− nK exp(−na).
3. Let us now pose for the parameter

a−1 =
∑
k 6=k∗

1

20∆2
k

.

Prove that for some n ≥ CH where C > 0 is an universal constant, for any sub-optimal arm
(i.e. that is not k∗), it holds on ξ that

Tk,t < 40
n

∆2
k

∑
i 6=k∗ ∆−2

i

.

4. Deduce from this a useful problem-dependent bound on E∆k̂n
or also P(k̂n = k∗).

5. From the bounds on Tk,t on ξ, deduce a problem independent bound on E∆k̂n
.

6. What happens if a−1 is taken smaller than
∑

k 6=k∗
1

20∆2
k

? And if it is taken larger?
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