
Monte-Carlo inference

Alexandra Carpentier a.carpentier@statslab.cam.ac.uk

Editor:

1. Random number generation

A first challenge is to be able to generate random numbers. Indeed, computers cannot at
this stage generate truly random numbers.

The sequences computer generate are called pseudo-random numbers. They are not
random, but they have the same kind of properties as truly random numbers.

1.1 Generation of uniform random numbers

We are going to consider more in details the generation of uniform random variables on
[0, 1] (U[0,1]). Indeed, as we will see later, we can somehow use the randomness in uniform
random variables to simulate any other real valued random variables.

1.1.1 Uniform random number generators

A pseudo-random number generator for uniform random variables on [0, 1] is aimed at
generating random variables u0, u1, u2 . . . that seem uniform.

Congruential generator. A congruential generator with module M ∈ N, multiplier a,
shift c and seed x0 ∈ {0, 1, . . . ,M − 1} is defined setting

xi ≡ (axi−1 + c)modM, i ∈≤M − 1,

and then considering ui = xi/M .

Note that this sequence has period at most M . M should then be choosen very large.
Note that a should also be chosen quite large, and such that the sequence has maximal
period.

For instance the NAG Fortran generator G05CAF uses M = 259 and a = 1310 (and
c = 0).

Note on other generators. There are other generators as e.g. the feedback shift gener-
ator. Most of them are of the form

xn = fn(xn−1, . . . , x0),

and geometric-like sequenecs such as for the congruential generator provide quite good
results.

1

1.1.2 Considerations on such generators

Representation issues.

• The real numbers are not all represented by a computer (each floating number is
encoded on a given number of bits).

• The density of floating numbers represented on a computer is not uniform.

Goodness of fit. It is possible to test the quality of a uniform random number generator
by performing a goodness of fit test (with respect to U[0,1]) on the generated data. We recall
a well known goodness of fit statistics, the chi-squared goodness of fit test (although
many other exist).

Consider a set of pseudo-random numbers of size n. We start by dividing the interval
[0, 1] in k bins of equal size, and set

χ̂2
c =

k∑
i=1

(oi − ei)2

ei
,

where oi is the number of pseudo-random numbers in bin i and ei = n/k. The critical
values for this statistic correspond to the quantiles of a χ2 distribution with k − 1 degrees
of freedom.

1.2 Random variable generation

In the last subsection, we discussed the simulation of uniform random variables. However,
most of the time, one is interested by generating random variables according to other
distributions. We are now going to discuss some methods for simulating such random
variables.

We assume now that we are able to simulate uniform random variables on [0, 1].

1.2.1 Method of inversion

We first present the method in the discrete case since it is very intiutive in this case. We
then present more formally the method for any real valued random variable.

Intuition in the discrete case Simulation of a Bernouilli random variable. A
very simple random variable is a Bernouilli random variable of parameter 1− p.

• Simulate U ∼ U[0,1].

• Set X = 1 if U ≥ p, and X = 0 otherwise.

Then as wished, we have P(X = 1) = 1 − p and P(X = 0) = p, and X is indeed a
Bernouilli random variable.

2

Figure 1: Illustration of the inversion method for Bernouilli random variables.

General discrete case. We consider now a discrete random variable X with M mass
points {m1, . . . mM} with probability {p1, . . . , pM} (such that

∑M
i=1 pi = 1 and pi ≥ 0 for

any i ∈ {1, . . . ,M}), i.e. a random variable such that for any i ∈ {1, . . . ,M}

P(X = mi) = pi.

We assume without loss of generality that m1 < m2 < . . . < mM .
The CDF of such a random variable is

F (x) = P(X ≤ x) =

bxc∑
i=1

pi.

Let us write F (mi) = Fi since these are the points of interest. Note that pi = Fi − Fi−1.
An intuitive way of simulating according to F is as follows:

• Simulate U ∼ U[0,1].

• Set X = mi if Fi−1 ≤ U ≤ Fi.

Similarly as what happens in the Bernouilli case, we have for any i ∈ {1, . . . ,M} that

P(X = mi) = P(U ∈ [Fi−1, Fi]) = Fi − Fi−1 = pi.

3

Figure 2: Method of inversion.

General method We want to simulate a scalar random variable with CDF F that is
continuous (no point mass) and strictly increasing.

An important classic lemma is as follows.

Lemma 1 Let X ∼ F be a scalar random variable defined on X ⊂ R. Assume that F is
strictly increasing and continuous. Then

U = F (X) ∼ U[0,1].

Proof Let U = F (X). Since F : X → [0, 1], we know that U takes values in [0, 1]. We
have for any u ∈ [0, 1] that

P(U ≤ u) = P(F (X) ≤ u)

= P(X ≤ F−1(u))

= F (F−1(u))) = u.

where F−1 is the inverse of F (which exists since F is strictly increasing), and that is such
that F (F−1(u))) = u for any u (F is continous).

Since P(U ≤ u) = u, then U is an uniform random variable.

This simple lemma contains actually the central idea of the so-called inversion method
for generating random variables. Indeed, Lemma 1 implies that if U is an uniform ramdom

4

variable, then

X = F−1(U) ∼ F.

Indeed, in the same way, for any x ∈ X , we have

P(X ≤ x) = P(F−1(U) ≤ x)

= P(U ≤ F (x)) = F (x). (1)

Exercise 1: Explain how to implement a generator for Exp(λ) random variables.
Exercise 2: Explain how to implement a generator from a mixture density

∑k
i=1wifi

where the wi are positive weights of sum 1, and fi are densities.
Remark 1: We made for simplicity the assumption that F is strictly increasing, but this

method can be extended to any distributions F that have support in R by just considering
a pseudo-inverse of F instead of the inverse.

Remark 2: We however need that F is continuous so that Lemma 1 is verified. However,
even when Lemma 1 is not verified, the argument in Equation (1) still holds (verify this).

Remark 3: If you can generate random variables according to F and want to generate
random variables according to G, then for reasons similar as above

G−1(F (X))

will be distributed according to G.
Remark 4: Even if no close form exists for the inverse of the CDF of the distribution you

want to simulate, you can approximate it by finding the function x(u) such that F (x(u)) = u
for any u.

1.2.2 Rejection sampling

We present now another method for generating according to a density f if we can compute
f at any point but if simulating according to it is somehow complicated.

First intuition Assume that we can generate an uniform1 random variable U on some
domain U . We write µ the probability associated to this uniform random variable. Assume
that now we wish to simulate a random variable X uniformly on some domain X ⊂ U
(i.e. according to µ(.|X)).

A very natural way to proceed is as follows.

1. Simulate U uniformly on U .

2. If U ∈ X , set X = U , otherwise reject U and go to step 1.

Lemma 2 Assume that µ(X) = p > 0. Then X is distributed uniformly on X .

1. Uniform is really not important here, we just write it this way to make the concept simpler. Actually,
this assumption is not going to appear in the proof.

5

Figure 3: First intuition of rejection sampling.

Proof Let U1, . . . , Un, . . . be i.i.d. U . Let N be the first index i such that Ui ∈ X (set
N =∞ if no such index exists).

By definition, X = UN .
Let us first study the distribution of the Ui|Ui ∈ X . By definition, it is distributed

according to µ(.|X).
Now let k > 0. The random variable X|N = k is actually egal to Uk|U1 6∈ X , U2 6∈

X , . . . , Uk−1 6∈ X , Uk ∈ X . Since the Ui are independent, it actually has the same distribu-
tion as Uk|Uk ∈ X , i.e. µ(.|X). This holds for any k, therefore X|N < ∞ is distributed
according to µ(.|X).

Now, we have

P(N =∞) = P(U1 6∈ X , U2 6∈ X , . . . , Un 6∈ X , . . .)
= lim

n→∞
P(U1 6∈ X , U2 6∈ X , . . . , Un 6∈ X)

= lim
n→∞

(1− p)n = 0.

This implies that the distribution of X|N <∞ is equal to the distribution of X (since
{N =∞} is negligible), and this concludes the proof.

Remark: The condition µ(X) = p > 0 is actually very important, since if it is not
verified, then no samples U will be sampled in X . It is actually important that p is not too
small, so that the even {U ∈ X} has not a too small probability and so that some samples

6

are actually generated. As a matter of fact, it is possible to prove that if n samples are
generated uniformly on U , then asymptotically we have pn samples generated uniformly on
X .

This idea can actually be generalized to arbitrary densities, if one thinks about weighting
the reject.

Generalisation to arbitrary densities Suppose that we have two densities f and g
defined on the same domain X ⊂ R.

Suppose that sampling according to f is difficult, but that it is easy to sample according
to some other density g such that there exists a constant M ∈ [1,∞[such that

f(x) ≤Mg(x), ∀x ∈ X . (2)

g is called a majorising or envelope density, and it dominates f .
Similarly to what we described above, we propose the following procedure

1. Simulate Y according to g, and some independent U ∼ U[0,1].

2. If U ≤ f(Y)
Mg(Y) , set X = Y , otherwise go to step 1.

Figure 4: Rejection sampling.

Theorem 3 If the condition in Equation (2) is verified, then the output X from the rejec-
tion algorithm has density f .

7

Proof We have for any x ∈ X

P(X ≤ x) = P(Y ≤ x|U ≤ f(Y)

Mg(Y)
)

=
P(Y ≤ x, U ≤ f(Y)

Mg(Y))

P(U ≤ f(Y)
Mg(Y))

. (3)

Now since Y and U are independent

P(U ≤ f(Y)

Mg(Y)
) =

∫ +∞

−∞
P(U ≤ f(y)

Mg(y)
, Y = y)dy

=

∫ +∞

−∞
P(U ≤ f(y)

Mg(y)
)P(Y = y)dy

=

∫ +∞

−∞

∫ f(y)
Mg(y)

0
dug(y)dy =

∫ +∞

−∞

f(y)

Mg(y)
g(y)dy

=
1

M

∫ +∞

−∞
f(y)dy =

1

M
, (4)

since
∫ +∞
−∞ f(y)dy = 1 (f is a density). In a similar way, since Y and U are independent

P(Y ≤ x, U ≤ f(Y)

Mg(Y)
) =

∫ x

−∞
P(U ≤ f(y)

Mg(y)
)g(y)dy

=
1

M

∫ x

−∞
f(y)dy. (5)

By bringing together Equations (3), (4), (5), we have

P(X ≤ x) =

∫ x

−∞
f(y)dy,

which concludes the proof.

Remark: Similarly to what we discussed about the condition µ(X) = p > 0, it is
important to choose a density g such that there exists a constant M has small as possible
such that Equation (2) is verified.

1.2.3 The method of composition (optional, see exemple sheet)

The objective is to generate

f(x) =

∫
Θ
f(x, θ)p(θ)dθ,

where x ∈ X ⊂ R → f(x, θ) and θ ∈ Θ → p(θ) are densities. We assume that we can
sample according to these densities.

We already saw a sub-case of this problem in the discrete case, as an exercise in Sub-
subsection 1.2.1. The idea is the following:

8

1. Sample T ∼ p.

2. Sample X ∼ f(., T).

Theorem 4 The output X from the composition algorithm has density f .

Proof For any x ∈ R, we have

P(X ≤ x) =

∫
Θ
P(X ≤ x, T = θ)dθ

=

∫
Θ
P(X ≤ x|T = θ)P(T = θ)dθ

=

∫
Θ

∫ x

−∞
f(x, θ)p(θ)dxdθ.

This concludes the proof.

1.3 Generation of a Gaussian random variable

The simplest way for generating a Gaussian random variable of mean 0 and variance 1
(N (0, 1) is called the Box-Muller method. It is based on a polar transformation in dimension
2, i.e. from the following observation.

If one generates two independent random variables (X1, X2) that are each distributed
according to N (0, 1), one can rewrite them in the polar system as (θ,R) where

1. θ is the angle between the vectors (X1, 0) and (X1, X2).

2. R2 = ‖(X1, 0) + (0, X2)‖22 = X2
1 +X2

2 .

Then we have by definition

X1 = R cos(θ) and X2 = R sin(θ).

A property of the N
(
(0, 0), I2

)
distribution is that θ and R2 are independent (isotropic

distribution). We can thus generate them separately.

Generation of θ By definition of the normal distribution, θ is uniform between 0 and
2π. We can then

1. Generate U ∼ U([0, 1]).

2. Set Θ = 2πU .

Generation of R2 By definition, R2 ∼ χ2
2. By definition of the χ2

2 distribution, we can
generate it as

1. Generate V ∼ U([0, 1]).

2. Set R2 = −2 log(V).

Exercise: Prove this assertion (see Subsection 1.2.1).

9

Figure 5: Re parametrization for simulation of a Gaussian random variable.

Conclusion We saw how to generate (θ,R2). We can thus generate (X1, X2) ∼ N
(
(0, 0), I2

)
(one should draw U, V independent of each other).

Remark 1/Exercise 1: Another way of generating a normal random variable relies
on the ratio of uniforms method. You can check it online.

Remark 2: This method is not very fast since it requires the computation of a square
root and two trigonometric functions. In general, the method used is a combination of a
Box Muller scheme, and a rejection algorithm, as

1. Generate (U, V) i.i.d. according to U([−1, 1]) and set W = U2 + V 2.

2. If W ≥ 1, go to step 1 (reject).

3. Otherwise, set

X1 = U

√
−2

log(W)

W
and X2 = V

√
−2

log(W)

W
.

Exercise 2: Prove this variant of the Box Muller method.

2. Monte-Carlo method and non-parametric inference

Monte-Carlo methods are mostly used to evaluate quantities of the form:

θ(F) = EFφ(X) =

∫
X
φ(x)f(x)dx,

10

where X is a random variable of distribution F and density f .
It is mostly useful for integrating functions whose integral does not have an analytic

form. Another application is Monte-Carlo tests, that we will see later.
Examples:

• The mean θ(F) = EFX of a random variable.

• The probability θ(F) = EF1{X ∈ A} that X belongs to A.

• The median θ(F) = F−1(1/2).

2.1 The plug-in principle

Consider some unknown distribution F , and some functional θ(F). Consider X1, . . . , Xn n
i.i.d. data generated at random with distribution F .

A common estimator F̂n of F , called the empirical distribution function, is defined by

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x}.

F̂n is called a non-parametric estimator because the number of degrees of freedom grows
with n (it can be equal to n).

Figure 6: Empirical distribution.

11

The plug-in principle recommends to consider, instead of θ(F), the plug-in functional
θ(F̂n). This functional is often easier to compute than θ(F).

Examples:

• Integral: If

θ(F) = EFφ(X),

then

θ(F̂n) = EF̂nφ(X) =
1

n

n∑
i=1

φ(Xi).

This estimate is the estimator of the integral of F by simulation, i.e. the Monte-Carlo
integral estimator.

• Quantile: If

θ(F) = F−1(α),

then

θ(F̂n) = F̂−1
n (α) = X(bnαc),

where X(1) ≤ X(2) ≤ . . . ≤ X(n) is the ordered dataset.

We are now going to see several popular variants of the plug-in principle: Monte-Carlo
integration, quantile approximation by Monte-Carlo methods and its application to Monte-
Carlo tests, and finally the Bootstrap.

2.2 Monte-Carlo integration

We consider the setting of Monte-Carlo integration, i.e.

θ(F) = EFφ(X) =

∫
X
φ(x)f(x)dx,

and the plug-in estimator,

θ(F̂n) = EF̂nφ(X) =
1

n

n∑
i=1

φ(Xi).

Lemma 5 Assume that
∫
X φ(x)2f(x)dx <∞. Then θ(F̂n) is such that

EFn [θ(F̂n)] = θ(F), and VFn [θ(F̂n)] =
1

n

(∫
X

(
φ(x)− θ(F)

)2
f(x)dx

)
.

12

Proof We have for any i ≤ n

EFφ(Xi) =

∫
X
φ(x)f(x)dx = θ(F).

This implies unbiasedness. Also

VFφ(Xi) = EF
(
φ(Xi)− EFφ(Xi)

)2
=

∫
X

(
φ(x)− EFφ(Xi)

)2
f(x)dx

=

∫
X
φ(x)2f(x)dx− θ(F)2,

since f is a density and thus its integral equals 1. This concludes the proof for the variance
since the samples are i.i.d..

Remark: In order for this estimate to have finite variance, it is necessary and sufficient
ti impose that φ is of integrable square according to g.

Lemma 6 Assume that
∫
X φ(x)2f(x)dx <∞. Then the two following statements hold.

1. θ(F̂n) converges almost surely to θ(F).

2.
√
n(θ(F̂n)− θ(F)) converges in distribution to a N

(
0,
∫
X
(
φ(x)− θ(F)

)2
f(x)dx

)
.

Proof The first part of the lemma is a direct application of the strong law of large numbers
(since EF |φ(X)| ≤

√
EFφ(X)2).

The second part is a direct application of the central limit theorem to

θ(F̂n) = EF̂nφ(X) =
1

n

n∑
i=1

φ(Xi),

which is a sum of the i.i.d. random variables φ(Xi) of finite mean θ(F) and variance∫
X
(
φ(x)− θ(F)

)2
f(x)dx =

∫
X φ(x)2f(x)dx− θ(F)2.

The deviations of this estimate can be large, in particular if the function φ is highly
variable. We are now going to discuss how to modify this plug-in estimate in order to make
its variance smaller, by using side information that we have at our disposal. In the rest
of this Subsection, we discuss variants of the Monte-Carlo integration method that have
smaller variance.

2.2.1 Importance sampling

Let g be a density (and G the associated distribution) that is strictly positive whenever fφ
is non zero (this condition is actually equivalent to φ dominating f1{φ 6= 0}).

13

Let X1, . . . , Xn, be i.i.d. samples sampled according to g. We define the following
estimate of θ(F) as

θ̂g =
1

n

n∑
i=1

wiφ(Xi), where wi =
f(Xi)

g(Xi)
.

The (wi)i are called importance weights.

Lemma 7 θ̂g is such that

EGn [θ̂g] = θ(F), and VGn [θ̂g] =
1

n

(∫
X

φ(x)2f(x)2

g(x)
dx− θ(F)2

)
.

Proof We have for any i ≤ n

EG[φ(Xi)
f(Xi)

g(Xi)
] =

∫
X
φ(x)

f(x)

g(x)
g(x)dx = θ(F).

This implies unbiasedness. Also

VG[φ(Xi)
f(Xi)

g(Xi)
] = EG

(
φ(Xi)

f(Xi)

g(Xi)
− EG[φ(Xi)

f(Xi)

g(Xi)
]
)2

=

∫
X

(
φ(x)

f(x)

g(x)
− θ(F)

)2
g(x)dx

=

∫
X
φ(x)2 f(x)2

g(x)
dx− 2

∫
X
φ(x)f(x)dxθ(F) + θ(F)2

=

∫
X

φ(x)2f(x)2

g(x)
dx− θ(F)2.

This concludes the proof for the variance since the samples are i.i.d..

As seen in Lemma 7, the variance depends crucially on the function ψ(x) = φ2(x)f2(x)
g(x) ,

and more specifically, on its integral: the smaller this integral, the smaller the variance.
Intuition of importance sampling: The objective of importance sampling is to

sample more where the integral is higher, i.e. where |φ|f is large. Indeed, it is in those
points that the largest contribution to the integral is. It is formally proved in next theorem
that it is a such density that is optimal.

Theorem 8 The density g∗ that minimises the variance of θ̂g is

g∗ =
f |φ|∫
X f |φ|

Proof By Lemma 7 (and by just developing the square in the variance), we know that
VGn is minimised according to g if and only if∫

X

φ(x)2f(x)2

g(x)
dx,

14

is minimised. We have for any density g∫
X

φ(x)2f(x)2

g(x)
dx =

∫
X

φ(x)2f(x)2

g(x)2
g(x)dx

= EG
[(φ(X)f(X)

g(X)

)2]
≥
(
EG
[|φ(X)|f(X)

g(X)

])2
,

by Jensen inequality. This implies∫
X

φ(x)2f(x)2

g(x)
dx =

∫
X

φ(x)2f(x)2

g(x)2
g(x)dx

≥
(
EG
[|φ(X)|f(X)

g(X)

])2

=
(∫
X
|φ(x)|f(x)dx

)2
,

which implies that for any density g

VGn [θ̂g] ≥
1

n

((∫
X
|φ(x)|f(x)dx

)2
− θ(F)2

)
,

Also, by plugging g∗ in the variance in Lemma 7, we get

V(G∗)n θ̂g∗ =
1

n

((∫
X
|φ(x)|f(x)dx

)2
− θ(F)2

)
.

This implies that g∗ minimises the variance, and this concludes the proof.

Remark 1: In theory, it is clear - we should sample from g∗. But in practice, we are
probably not able to sample from g∗: indeed the problem of sampling directly from g∗ seems
harder than the problem of integrating φ.

Exercise: To insists on this point, apply the importance sampling technique to

f = 1{[0, 1]}, and φ = 1{[0, u]},

where 0 ≤ u ≤ 1.
Remark 2: Serious difficulties arise in importance sampling if the proposal distribution

g gets small much faster than f out in the tails of the distribution.

2.2.2 Control variates (optional)

Let θ̂ be an unbiased estimate of θ.
Idea: Use random variables that are correlated to θ̂ but better “known” than θ.
A random variable C is called control variate if it is correlated with θ̂, and its mean µC

is known. We the define the following modified estimate

θ̂β = θ̂ − β(C − µC),

which depends of the real parameter β.

15

Lemma 9 We have

Eθ̂β = θ, and Vθ̂β = Vθ̂ − 2βCov(C, θ̂) + β2VC.

This is minimised when β is equal to the correlation coefficient between Y and C, i.e.

ρ =
Cov(C, θ̂)

VC
,

and

Vθ̂ρ = (1− ρ2)Vθ̂.

Remark: With this choice of β = ρ, we will have that Vθ̂ρ < Vθ̂ as long as Cov(θ̂, C) 6=
0.

Remark 2: These ideas can obviously be extended to more than one control variate.

Figure 7: Control variates.

2.2.3 Stratified sampling

Consider the general integration problem where one wants to compute

µ =

∫
X
φ(x)f(x)dx.

16

Problem of random sampling: The points are chosen at random according to f -
this creates a source of randomness and thus of error. The objective of stratified sampling
is to reduce the error but reducing the amount of randomness in the picking of the points.

Stratified sampling:

• Divide the domain in K strata Ωi that are measurable according to f , that form a
partition of the domain, and that are such that we know exactly wi = Pf (Ωi).

• Sample exactly Ti points in each stratum Ωi, according to f restricted to Ωi. The
numbers Ti are deterministic and such that

∑
i Ti = n. Write the conditional empirical

mean in stratum Ωi as

µ̂i =
1

Ti

n∑
j=1

Xj1{Xj ∈ Ωi}.

• Return the weighted estimate of the integral

µ̂ =

K∑
i=1

wiµ̂i.

Figure 8: Stratified sampling.

17

Theorem 10 We have

Eµ̂ = µ, and Vµ̂ =
K∑
i=1

w2
i σ

2
i

Ti
,

where µi = 1
wi

∫
Ωi
φ(x)f(x)dx is the conditional mean, and σ2

i = 1
wi

∫
Ωi

(φ(x) − µi)2f(x)dx
is the conditional variance in stratum Ωi.

Proof The proof employs similar tools and ideas as in Lemma 5 - we will detail this in
class.

The entire problems consists now in the choice of the Ti.

Uniform stratified sampling A first, intuitive idea, consists in choosing

T ui = win,

where wi = Pf (Ωi). Doing this “consolidates” the random sampling while preserving the
shape of the density f .

Figure 9: Stratified sampling proportional to the measures of the strata.

18

Corollary 11 With this choice of Ti, we have

Eµ̂u = µ, and Vµ̂u =
K∑
i=1

wiσ
2
i

n
.

Remark: By Lemma 5, we can rewrite the variance of the “classic” Monte-Carlo esti-
mate of the integral as

Vµ̂MC =
1

n

K∑
i=1

wiσ
2
i +

1

n

K∑
i=1

wi(µi − µ)2,

by a simple conditional variance decomposition. This implies that whenever the function is
not constant over the strata,

Vµ̂u < Vµ̂MC .

Remark: There are no restriction whatsoever for applying this procedure on any do-
main X and with any density f - provided that one is able to compute analytically the wi
in an exact (or very, very precise) way.

Example of stratification: Assume f = 1{[0, 1]}. For instance, one can stratify as
Ωi = [iK ,

i+1
K]. Then wi = 1

K .

Oracle stratified sampling A natural question is to find the allocation Ti that minimise
the variance given a stratification. Solving the minimisation program

min
(Ti)i

Vµ̂ =

K∑
i=1

w2
i σ

2
i

Ti
s.t. Ti ≥ 0,

∑
i

Ti = n, (6)

implies the following corollary.

Corollary 12 Choosing

T ∗i =
wiσi∑
j wjσj

n

is the unique solution of the minimisation problem (6), and implies that for the resulting
estimate µ̂∗

Eµ̂∗ = µ, and Vµ̂∗u =
1

n

(K∑
i=1

wiσi

)2
.

Proof This is obtained by solving the Lagrangian associated to the minimisation prob-
lem (6), or by Jensen’s inequality.

The idea of such an allocation is to allocate more points where φ varies more, and thus
where there is more incertitude.

Remark: Note however that σi are in general not available. For this reason, the oracle
allocation is not feasible. However, one could imagine spending nε of the budget in an
uniform stratified sampling way (with ε < 1) on estimating the σi, and then the rest of the
samples according to these empirical estimate of the oracle proportions.

19

Figure 10: Oracle allocation.

Stratified sampling on smooth functions Consider an integration problem on [0, 1],
where one wants to integrate a function φ over [0, 1]. In this case, we have

f(x) = 1{[0, 1]},

and f is the uniform measure on [0, 1], and we want to compute∫
[0,1]

φ(x)dx =

∫
R
φ(x)f(x)dx.

Assume that φ is Lipschitz, i.e. there exists C < 0 such that for any u, v, |φ(u) − φ(v)| ≤
C|u− v|.

Consider the stratification in n strata as Ωi = [in ,
i+1
K]. Then wi = 1

K .

Consider uniform stratified sampling on this stratification. Then we know by Corol-
lary 11 that

V µ̂u =

n∑
i=1

wiσ
2
i

n

=

n∑
i=1

1

n

∫ (i+1)/n

i/n
(φ(x)− µi)2dx,

20

and by the Lipschitz assumption, and since µi is the empirical mean restricted to stratum
Ωi, for any x ∈ Ωi, |φ(x)− µi| ≤ C/n, and thus

V µ̂u ≤
n∑
i=1

1

n

∫ (i+1)/n

i/n

C2

n2
dx

=

n∑
i=1

C2

n4
dx

≤ C2

n3
.

Remark 1: The variance of Monte-Carlo estimate is of order 1/n. Here the variance
is much smaller, i.e. 1/n3! This comes from the fact that, on very small strata, Lipschitz
functions are almost constant.

Figure 11: Stratification on Lipschitz functions.

Remark 2: This kind of ideas is linked to quasi Monte-Carlo methods - i.e.instead of
sampling at random, create grids that are “more uniform” than uniform samples.

Remark 3: This can be generalized to other kind of smoothness classes - such as Hölder
- and to higher dimension. But in high dimension, curse of dimensionality for such methods
that rely on coverage.

21

2.3 Quantile approximation by Monte-Carlo methods and application to
Monte-Carlo tests

We will first see how to approximate a quantile by Monte-Carlo approximation, and then
how this can be applies to testing.

2.3.1 Quantile approximation.

Suppose that we want to approximate the cα quantile associated to the tail probability α,
of a distribution F .

A Monte Carlo approximate of this quantile is:

1. Choose B ∈ N, as large as possible (as computational constraints allow)

2. Restrict the choice of α to that of k ∈ {1, ..., B}, implicitly defining α = k
B+1 .

3. Simulate random samples T1, . . . , TB according to F .

4. Let ĉα = T(k) , where T(k) is the k−th order statistic of T1, . . . , TB.

Theorem 13 Assume that F corresponds to a density f , then

E(F (ĉα)) = α.

Proof We have (here PF×FB denotes the probability on the bootstrap samples, and also
on the data samples, under F)

E(F (ĉα)) = PY,T1...TB∼F×FB
(
Y ≤ T(k)

)
=

∫ ∞
−∞

PFn
(
t ≤ T(k)|Y = t

)
f(t)dt

=

∫ ∞
−∞

k−1∑
r=0

Cr
BF (t)r(1− F (t))B−rf(t)dt

=

∫ 1

0

k−1∑
r=0

Cr
Bu

r(1− u)B−rdu,

by a change of variable u = F (t). Since rCr
Bu

r−1(1− u)B−r is actually a Beta(r,B− r+ 1)
distribution with mean r

B+1 , we have

PF×FB
(
Y ≤ T(k)

)
=

k−1∑
r=0

1

r

r

B + 1
=

k

B + 1
= α,

and this concludes the proof.

22

2.3.2 Monte-Carlo test.

Let X1, ..., Xn be independent with distribution function F , and suppose we want to test

H0 : F = F0, against H1 : F 6= F0.

using a statistic T = T (X1, ..., Xn). If small values of T indicate departure from H0 , we
would like, for a test of size α ∈ [0, 1], to reject H0 if T < cα , where cα is the α−th quantile
of T .

However, if the null distribution of T is unknown, we might not be able to compute this
quantile. The idea of a Monte-Carlo test is to approximate the quantile cα by Monte-Carlo.
It can be done in a similar way as in the previous part, i.e.

1. Choose B ∈ N, as large as possible (as computational constraints allow)

2. Restrict the choice of α to that of k ∈ {1, ..., B}, implicitly defining α = k
B+1 .

3. Simulate random samples Xb,1, . . . , Xb,n for any b ∈ {1, . . . , B} according to F0.

4. Let ĉα = T(k) , where T(k) is the k−th order statistic of T1, . . . , TB.

5. Reject H0 if T < cα.

Remark: As proved in last Theorem, such a Monte-Carlo test has indeed size exactly
α. However, since the quantile cα is an estimate of the true quantile, and not the true
quantile itself, one will have a loss of power with respect to what would happen if one really
considered the true quantile.

2.4 The Bootstrap

Let X1, . . . , Xn be independent random variables with distribution F . It can happen that
we are interested in the properties of a function of all the samples (as in the case of Monte-
Carlo tests). In this case, since we only have n samples and can thus in theory compute an
estimate of the samples only once, there is not much we can do.

To answer this problem, re-sampling methods were introduced. They consist in resam-
pling from the sample in order to obtain many samples. The most popular of these methods
is the Bootstrap.

The Bootstrap estimator. Suppose we are interested in the distribution Kn(F) of a
root or pivot Rn(X,F) where X = (X1, . . . , Xn) (think for example of the distribution of
the statistic T (X1, . . . , Xn) in Monte-Carlo tests).

The bootstrap estimator of Kn(F) is Kn(F̂) (still by the plug-in principle). In other
words, we estimate the distribution of Rn(X,F) by the distribution of Rn(X∗, F̂) where
X∗ = (X∗1 , . . . , X

∗
n) are sampled in a i.i.d. way from F̂ .

The approximation of the Bootstrap estimator by Monte-Carlo. It is possible to
compute this bootstrap estimate of Kn(F) given a sample X - but it can be computationally
challenging. In order to cope with that, it is common to approximate this estimator by
Monte-Carlo, as follows.

23

1. Draw B independent bootstrap samples X∗b = (X∗b,1, . . . , X
∗
b,n) from F̂n.

2. Approximate Kn(F̂) by the empirical distribution function of
(
Rn(X∗b , F̂)

)
b
.

Example: Bootstrap for confidence intervals.

Figure 12: Bootstrap confidence interval.

Remark: A popular specific modification of the Bootstrap is the Jacknife. It consists
in considering specific data-sets, so called leave one out datasets (which consist in the whole
dataset minus one point). See exemple sheet for more informations on the Jacknife.

Very important remark: It is very important in all the Monte-Carlo methods to
choose the number of Monte-Carlo samples wisely. A large number of Monte-Carlo samples
is better approximation-wise, but is more costly in terms of computational time. In practice,
one should adapt the number of samples to the number of parameters in the object one
wants to measure - maybe around some hundreds for e.g. mean, variance, quantiles, and
rather some thousands for the entire distribution.

3. Bayesian inference and associated methods

3.1 The concept of Bayesian inference

Let X̄ = X1, . . . , Xn be n i.i.d. samples generated by a likelihood model L(X̄, θ). In
classical inference, a common technique is to maximize the likelihood. Bayesians have a

24

different perspective about it, i.e. they put a prior p(θ) on θ which summarizes their a
priori knowledge about θ. They then compute the a posteriori distribution of θ, i.e.

π(θ|X̄) = L(X, θ)p(θ).

The maximization of this posterior is an alternative to the maximization of the likelihood,
and the resulting estimator is called the maximum a posteriori (MAP). Moreover, from a
Bayesian perspective, this distribution π is of interest in itself, and Bayesians might want to
estimate some characteristics of it such as expectation, variance, etc. An important remark
about the expectation of the posterior is that, when n converges to infinity, it converges to
θ. This quantity is often simpler to compute than the MAP.

For complicated likelihood, there might however be no closed forms for these quantities.
By the plug-in principle, if we could generate samples of θ according to π, we could have
good (e.g. Monte-Carlo) estimates of the quantities that interest us.

Objective: Generate samples according to π.
Problem: π can be horrible, in particular it can be multi-dimensional, and it is not

always easy to use standard techniques to generate according to π.
Solution: Generate a Markov chain (θ(1), θ(2), . . . , θ(t), . . .) that is such that π is it’s

stationary distribution.
We saw many methods to simulate one dimensional random variables. There are however

many problems where one wishes to simulate a multi-dimensional complex distribution. The
topic of this chapter is to provide solutions for doing this.

3.2 Gibbs sampler

Simple Example Let X̄ = X1, . . . , Xn be n data generated by the likelihood model
L(X̄, θ), where θ = (µ, σ2) is the parameter and L is the Gaussian density of parameter θ.

Let us put the following priors on θ:

p(µ) =
1√
2π

exp(−µ2/2),

p(σ2) = exp(−1/σ2).

The posterior π(θ|X̄) is proportional to

π(θ|X̄) = π(µ, σ2) ' 1√
2π

exp(−µ2/2) exp(−1/σ2)
n∏
i=1

1

σ
√

2π
exp(−(Xi − µ)2/(2σ2)).

The conditional posterior of µ is

π(µ|σ2, X̄) =

1√
2π

exp(−µ2/2) exp(−1/σ2)
∏n
i=1 exp(−(Xi − µ)2/(2σ2))∫

m
1√
2π

exp(−m2/2) exp(−1/σ2)
∏n
i=1 exp(−(Xi −m)2/(2σ2))dm

,

i.e. the conditional posterior of µ is distributed according to a

µ|X̄, σ2 ∼ N (
∑
i

Xi/(1 + σ2),
σ2

1 + σ2
).

25

The conditional posterior of σ2 is

π(σ2|X̄, µ) =

1√
2π

exp(−µ2/2) exp(−1/σ2)
∏n
i=1

1
σ
√

2π
exp(−(Xi − µ)2/(2σ2))∫

s2
1√
2π

exp(−µ2/2) exp(−1/s2)
∏n
i=1

1
s
√

2π
exp(−(Xi − µ)2/(2s2))ds2

,

i.e. the conditional posterior of σ2 is distributed according to a

σ2|X̄, µ ∼ IG(n/2 + 1, 1 +
∑
i

(Xi − µ)2/2),

where IG(α, β) has density f(y) = βα

Γ(α)y
−α+1 exp(−β/y).

Gibbs sampler works as follows.

1. Set initial values µ0 and σ2
0.

2. Given σ2
0, simulate µ1 according to π(.|σ2

0, X̄).

3. Given µ1, simulate σ2
1 according to π(.|µ2

1, X̄).

4. Iterate and at time t+ 1...

5. Given σ2
t , simulate µt+1 according to π(.|σ2

t , X̄).

6. Given µt+1, simulate σ2
t+1 according to π(.|µ2

t+1, X̄).

7. At the end of the process...

8. Throw away all the beginning of the chain and consider only the last samples.

Since this algorithm produces a chain whose stationary distribution equals the posterior
distribution, the samples will, on the long run, have the right property...

General method Let θ̄ = (θ1, . . . , θp) be the parameter of interest and π(θi|θ̄(−i)) =
πi(θ̄(−i)) be the conditional posterior distributions. The Gibbs sampler works as follows

1. Set initial vector θ(0).

2. Then at time t+ 1...

3. Set θ
(t+1)
1 ∼ π1(θ

(t)
2 , θ

(t)
3 , . . . , θ

(t)
p) = π1(θ̄

(t)
(−1)).

4. Set θ
(t+1)
2 ∼ π2(θ

(t+1)
1 , θ

(t)
3 , . . . , θ

(t)
p).

5. ...

6. Set θ
(t+1)
p ∼ πp(θ̄(t+1)

(−p)).

7. Collect T samples like that.

8. At the end of the process...

26

Figure 13: Gibbs sampler.

9. Throw away all the b first samples and consider only the last samples (and also, in
general, do some sub-sampling to diminish the coreelations)..

This method generates a Markov chain whose stationary distribution is actually the
posterior under not too strong assumptions... The proof of this fact is beyond the scope of
this course

Remark: The samples θ̄(t) are not independent.

3.3 Metropolis Hastings algorithm

The Metropolis Hastings algorithm is a sequential form of rejection sampling. It is useful
with respect to rejection sampling if you do not have a good upper enveloppe g for π (see
Subsubsection 1.2.2). This is an MCMC method so you construct a Markov chain whose
stationnary distribution is π.

The idea is the following. Assume that you already generated a chain (θ(1), . . . , θ(t)).
When you are in a state θ(t) of the Markov chain, the algorithm proposes you a new value
X for your chain. You compare the probability of this value (according to π) with the
probability of θ(t), as in rejection sampling, and you randomly decide if you want θ(t+1) to
be x or not. And you iterate.

27

First intuition In order to understand this more clearly, we are going to consider a very
simple mechanism for generating the proposition X.

Consider a distribution π defined on the set of integers {1, . . . ,M} and the uniform
measure µ on {1, . . . ,M}. Consider the following procedure.

1. Set initial vector θ(0).

2. Then at time t+ 1...

3. Simulate X ∼ µ and U ∼ U[0,1].

4. If U ≤ π(X)

π(θ(t))
, then θ(t+1) = X, otherwise θ(t+1) = θ(t) item Collect T samples like

that.

5. At the end of the process...

6. Throw away all the b first samples and consider only the last samples (and also, in
general, do some sub-sampling to diminish the correlations).

Figure 14: Simplified version of Metropolis Hastings algorithm in a simple case.

Theorem 14 Assume that for all i ∈ {1, . . . ,M}, we have π(i) > 0. Then the unique
stationnary distribution of the markov chain θ(1), . . . , θ(t), . . ., is π.

28

Proof First, let us write the transition Kernel K of this Markov Chain. I remind you that
the transition kernel of a Markov Chain is simply the probability, given that you are in a
state a, to go in a state b.

For our Markov Chain, we have for any (a, b) ∈ {1, . . . ,M}2

K(b, a) = min(
π(b)

π(a)
, 1) +

(
1−

M∑
b′=1

min(
π(b′)

π(a)
, 1)
)
1{a = b}.

Since for all i ∈ {1, . . . ,M}, we have π(i) > 0, it means that K is well defined, and that for
any a, b, we have K(a, b) > 0. This implies in particular (since the number of state M is
finite) that K admits one and only one stationnary measure, which is the single invariant
point of K. Since for any b ∈ {1, . . . ,M}

(Kπ)(b) =

M∑
a=1

K(b, a)π(a)

=
M∑
a=1

(
min(

π(b)

π(a)
, 1) +

(
1−

M∑
b′=1

min(
π(b′)

π(a)
, 1)
)
1{a = b}

)
π(a)

= π(b),

we know that Kπ = π, so π is the invariant point of K, and thus the stationnary measure.

Remark 1: This theorem is equivalent to the fact that for any measure ν on {1, . . . ,M}

lim
n→∞

sup
b
|(Knν)(b)− π(b)| = 0.

An interesting question as a practitionner is on the speed of convergence of this expression
to 0. It is important both for the initialization, and also for choosing how many samples to
discard.

Remark 2: Instead of the uniform measure µ, you could consider an arbitrary measure.
What would then happen?

Extension in the continuous Consider now a distribution π on [0, 1] that admits a
density according to the uniform measure µ on [0, 1]. Consider the same procedure as
above.

Remark 1: You should prefer this method over rejection sampling only if you do not
have a good enveloppe for π.

Remark 2: This method produces, again, correlated samples. This is particularly
important to remember this for continuous distributions...

29

Figure 15: Continuous case.

General method In the general case, the mechanism to choose the proposition X can
depend on the current state θ(t) of the chian.

Consider a distribution π defined on a domain X . Assume that π is such taht for any
atom x ∈ X , {x} is measurable according to π. For any x ∈ X , define a transition measure
µ(.|x) on X .

Consider the following procedure.

1. Set initial vector θ(0).

2. Then at time t+ 1...

3. Simulate X ∼ µ(.|θ(t)) and U ∼ U[0,1].

4. If U ≤ π(X)µ(θ(t)|X)

π(θ(t))µ(X|θ(t)) , then θ(t+1) = X, otherwise θ(t+1) = θ(t) item Collect T samples

like that.

5. At the end of the process...

6. Throw away all the b first samples and consider only the last samples (and also, in
general, do some sub-sampling to diminish the correlations).

30

Figure 16: The Metropolis Hastings algorithm.

Remark 1: It is crucial to choose well the initial state of the chain θ(0) in this case, in
particular for unbounded distributions.

Remark 2: The transition probability µ should also be well chosen, in particular if one
wants to have fast convergence of the chain to the stationnary measure.

Remark 2: The number of samples one wants to discard at the beginning depends very
much on the problem. The same goes for the amount of correlation in the chain.

Remark 4: In many cases, it is an open research problem to solve these questions.

3.4 Effective sample size

As mentioned in this section, MCMC method produces a correlated chain. For this reason,
t samples do not really provide the same information as t i.i.d. variables produced by π,
but less. A crucial and very interesting question is on how much information is contained
in a chain of length t, i.e. to what length T of i.i.d. samples distributed according to π is
equivalent a MCMC chain of stationnary distribution π and length t (clearly, T ≤ t).

A common notion for measuring this is effective sample size. Let, for any integer l ≥ 0,
us define γ(l) as the correlation between two samples of lag l. Define ρ(l) = γ(l)/γ(1).
Then the effective sample size T̃ of a chain of length t is

T̃ =
t

1 + 2
∑T−1

l=1 ρ(l)
.

This criter is often computed, using the empirical estimates of the autocorellations.

31

