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Abstract: We consider the problem of estimating the tail index « of a distribution satisfying a («, 3) second-order Pareto-

type condition, where 3 is the second-order coefficient. When g is available, it was previously proved that a can be estimated

__B
with the optimal rate n 28+1. On the contrary, when [ is not available, estimating « with the optimal rate is challenging;

so additional assumptions that imply the estimability of 5 are usually made. In this paper, we propose an adaptive estimator
__B
of a, and show that this estimator attains the rate (n/ log log n) 2B+1 without a priori knowledge of 8 and any additional

B
assumptions. Moreover, we prove that this (log log n) 28+1 factor is unavoidable by obtaining the companion lower bound.
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1. Introduction
We consider the problem of estimating the tail index « of an (a, ) second-order Pareto
distribution F, given n i.i.d. observations Xi,..., X,,. More precisely, we assume that for some
a,3,C,C" >0,
1 - F(z) — Ca™®] < C'a= 0P, (1.1)

We will write S(a, 8) := S(a, 8,C,C") for the set of distributions that satisfy this property (see
Definition (2)). Here the tail index « characterizes the heaviness of the tail, and 3 represents the
proximity between F and an a-Pareto distribution F : z € [CV/® 00) = 1 — Ca™

There is an abundant literature on the problem of estimating «. A very popular estimator is
Hill’s estimator (Hill, 1975) (see also Pickands’ estimator (Pickands, 1975)). Hill (1975) considered
a-Pareto distribution for the tail, and suggested an estimator a(r) of the tail index « based on

the order statistics X(1) <... < X(,) where r is the fraction of order statistics from the tail,

-1
[rn]

N log (n— H—l))
ag(r) = . 1.2
H( ) Tn ZZ log X(n T'7LJ+1)) ( )

For more details, see e.g. de Haan and Ferreira (2006).
Limiting distribution of Hill’s estimator was first proved by Hall (1982) when 3 is known. Under
a model that is quite similar to (1.1), he proved that if 7n'/(25+1) — 0 as n — oo, \/nr(ay(r) — «)
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converges in distribution to N (0, a?). He also considered more restricted condition, say, the exact

Hall condition,

[1-F(z) - Caz™| = C"z=UHB) 4 o(z—(48), (1.3)

Under the model (1.3) with the choice of the sample fraction r* = On~ 771 with some constant C ,
Theorem 2 of Hall (1982) states that n®/(28+1) (a5 (r*) — a) converges to a Gaussian distribution
with finite mean and variance, depending on the parameters of the true distribution.

The companion lower bound n~#/(28+1) under the assumption (1.1) was proved by Hall and
Welsh (1984). Drees (2001) improved this result by obtaining sharp asymptotic minimax bounds
again when [ is available. From these results, we know that the second-order parameter 3 is crucial
to understand the behaviour of the distribution. Indeed, it determines the rate of estimation of «
as well as the optimal sample fraction.

However, (8 is unknown in general. To cope with this problem, Hall and Welsh (1985) proved
that under condition (1.3), it is possible to estimate (3 in a consistent way, and thus also to estimate
the sample fraction r* consistently by 7 (see Theorem 4.2 in their paper). Theorem 4.1 of Hall and
Welsh (1985) deduces from these results that the estimate &y (7) is asymptotically as efficient as
G (r*), that is, n®/ P+ (45 (#) — a) converges to a Gaussian distribution with the same mean
and variance as the one resulting from the choice r*. Their result is pointwise, but not uniform
under the model (1.3), as opposed to the uniform convergence when 3 is known.

This first result on adaptive estimation was extended in several ways. For instance, Gomes, et.
al. (2008) provided more precise ways to reduce the bias of the estimate of a using the estimate
of 8 by supposing the third order condition. The adaptive estimates of o under the third order
condition was considered in Gomes, et. al. (2012). In addition, several other methods for estimating
r* have been proposed, e.g. bootstrap (e.g. Danielsson, et. al. (2001)) or regression (e.g. Beirlant,
et. al. (1996)). In particular, Drees and Kaufmann (1998) considered a method that is related to
Lepski’s method (see Lepski (1992) for more details in a functional estimation setting) by choosing
the sample fraction that balances the squared bias and the variance of the resulting estimate.
They proved that Hill’s estimate computed with this sample fraction is asymptotically as efficient
as the oracle estimate if I’ satisfies a condition that is slightly more restrictive than the condition
(1.3). Finally, Grama and Spokoiny (2008) consider a more general setting than (1.1). However,
when they apply their results to the exact Hall model (without little o), their estimator obtains
the optimal rate up to a log(n) factor, which is clearly sub-optimal as proven in Hall and Welsh
(1985).

In this paper, we focus on deriving results for the setting (1.1). Indeed, many common dis-
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tributions (in particular some distributions with change points in the tail) belong to it, and the
construction of the lower bound in Hall and Welsh (1984) was proved in this model. However, to
the best of our knowledge, either the existing results that we mentioned previously hold in a more
restrictive setting than the model (1.1), typically in a model that is close to the model (1.3) (see
e.g. Hall and Welsh (1985); Beirlant, et. al. (1996); Drees and Kaufmann (1998); Danielsson, et. al.
(2001); Gomes, et. al. (2008, 2012)), or the convergence rates for the setting (1.1) in the previous
results are worse than one could expect (see e.g. Grama and Spokoiny (2008)). It is important to
note here that the set of distributions described in Equation (1.1) is significantly larger than the set
of distributions that satisfy the restricted condition (1.3). As will be explained later, the adaptive
estimation in our setting (i.e. condition (1.1)) is more involved since the second-order parameter
B is not always estimable (even a consistent estimator does not exist for all distributions in this
model), and the adaptive procedures based on estimating  or the oracle sample fraction r* as in
the papers (Hall and Welsh (1985); Gomes, et. al. (2008, 2012)) might not work on all the functions
satisfying (1.1).

The contributions of this paper are the following. We construct an adaptive estimator & of «
in the setting (1.1) and prove that & converges to a with the rate (n/loglog(n))~?/(#+1_ More
precisely, for an arbitrarily small e > 0, and some arbitrarily large range I; for « and [, c0) for

B, there exist large constants D, E > 0 such that for any n > D log(log(n)/¢)

n T 2B+1
sup sup Ppllé—a|>FE <> <e. (1.4)
ach B>B1 FES(a,f) ( log(log(n)/€)

There is an additional (log log(n))%ﬁﬁ factor in the rate with respect to the oracle rate, which
comes from the fact that we adapt over 8 on a set of distributions where S is not estimable. Al-
though we obtain worse rates of convergence than the oracle rate, we actually prove the optimality
of our adaptive estimator by obtaining a matching lower bound. Indeed, there exists a small enough

constant E’ > 0 such that for any n large enough, and for any estimator &,

~ / n 2841 1
sup sup Pplla—a|>F | ———— > .
acl,B>pB1 FeES(a,B) log(log(n)) 4

Both lower and upper bounds containing the (log log(n))ﬁ/(zﬁﬂ) factor are new to the best of our
knowledge (we do not provide a tight scaling factor as in the paper by Novak (2013), but the setting
in this paper is different and their rate does not involve this additional (loglog(n))?/(2#+1) factor).
The presence of the loglogn factor is not unusual in adaptive estimation (see Spokoiny (1996) in

a signal detection setting). This issue is also discussed in the paper (Drees and Kaufmann, 1998).
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The adaptive estimator & we propose in this paper is based on a sequence of estimates &(k)
defined in (3.1), where the parameter k£ € N plays a role similar to the sample fraction in Hill’s
estimator (see Subsection 3.1 for more details). These estimates &(k) are not based on order
statistics, but on probabilities of tail events. We first prove that for an appropriate choice of this
threshold k& (independent of a or ), &(k) is consistent. We then prove that for an oracle choice
of k (as a function of (3), this estimate is minimax-optimal for distributions satisfying (1.1) with
the rate n= 26+1. Finally an adaptive version of this estimate, where the parameter & is chosen in

a data-driven way without knowing § in advance, is proved to satisfy Equation (1.4).

2. Definitions of distribution classes
In this section, we introduce two sets of distributions of interest, namely the class of ap-
proximately a-Pareto distributions, and the class of approximately (a,f) second-order Pareto

distributions. We let D be the class of distribution functions on [0, c0).

Definition 1. Let o > 0, C' > 0. We denote by A(«,C) the class of approximately a-Pareto

distributions:

Ae,C)={F eD: lim (1- F(2))a” = C}.

T—r00

Distributions in A(«, C) converge to Pareto distributions for large x, and these distributions
have been used as a first attempt to understand heavy tail behavior (see Hill (1975); de Haan and
Ferreira (2006)). The first-order parameter « characterizes the tail behavior such that distributions
with smaller o correspond to heavier tails.

In order to provide rates of convergence (of an estimator of «), we define the set of second-order

Pareto distributions.

Definition 2. Let a > 0, C > 0, 8 > 0 and C’ > 0. We denote by S(«, 3,C,C") the class of

approximately («, ) second-order Pareto distributions:
S(a, 8,C,C") = {F €D:Vrst. F(z) € (0,1],]1 - F(z) - Ca™| < C’x*a<1+ﬁ>}. (2.1)

From Definition 2, we know that not only are the distributions in S(«, 8, C, C") approximately
a-Pareto, but we additionally have a bound on the rate at which they approximate Pareto distribu-
tions. This rate of approximation is linked to the second-order parameter f—a large 3 corresponds
to a distribution that is very close to a Pareto distribution (in particular, when 8 = oo, it becomes
exactly Pareto), and a small 8 corresponds to a distribution that is well approximated by a Pareto

distribution only for a very large z. From now, if there is no confusion, we call the distributions in
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S(a, B,C, C") second-order Pareto distributions, and we use the notation A and S without writing
parameters explicitly.
The condition in (2.1) is related to the condition (1.3), but is weaker. Indeed, the condition

(1.3) implies
1—-F(z)—Ca™@

. v
zhﬁnc}o x_a(1+ﬁ) =C ’
whereas our condition imposes only an upper bound,
_ 1—F(x)—Czx™® ,
hm;ﬂ}o)o (1) < (.

This difference is essential in the estimation problem. For instance, in the setting (1.3), it is possible
to estimate [ consistently (see e.g. Hall and Welsh (1985)), whereas in our setting (2.1), it is not
possible to estimate [ consistently over the set S of distributions for g € [51, 82] with 0 < 51 < [3.
Adaptive estimation of « is thus likely to be more involved in our setting than in the more restricted
model (1.3). For instance, many adaptive techniques rely on estimating J or the sample fraction
as a function of 3, which is not directly applicable in our setting (see e.g. Hall and Welsh (1985);
Danielsson, et. al. (2001); Gomes, et. al. (2012)).

Remark 1. The difference between the functions satisfying the condition in Definition 2 and
the condition (1.3) is related to the difference between Hélder functions that actually attain their
Holder exponent and Hélder functions that are in a given Holder ball but do not attain their Holder
exponent (see e.g. Giné and Nickl (2010) for a comparison of these two sets, and the problem for

estimation when the second set is considered).

3. Main results

Most estimates in the literature are based on order statistics (as Hill’s estimate or Pickands’
estimate), which causes a difficulty for one to analyse them in a non-asymptotic way. In contrast,
the estimate we will present in Section 3.1 verifies large deviation inequalities in a simple way. This

estimate is based on probabilities of well chosen tail events.

3.1. A new estimate

Let X4,..., X, be ani.i.d. random sample from a distribution F' € A. We write, for any k£ € N,
pr=P(X > ) =1 F(e),

and its empirical estimate
n

A 1
D = ﬁzl{Xi > eF.

i=1
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We define the following estimate of « for any k € N

a(k) :=log(px) — log(Pr+t1)- (3.1)

This estimate gives the following large deviation inequalities, which is crucial for proving consis-

tency and convergence rates of &(k).

Lemma 1 (Large deviation inequality). Let Xi,...,X,, be an i.i.d. sample from F.

A. Suppose F' € A and let § > 0. For any k such that pyg+1 > 7161‘)%1(2/5), with probability larger
than 1 — 24,
. log(2/d
|a(k) — (log(pk) — log(pr+1)) | < 6 log(2/0) (3.2)
NPE+1

B. Assume now that F € S and let § > 0. For any k such that pgi1 > %@/5) and e kB <
C/(2C"), with probability larger than 1 — 26,

log(2/6 3¢’
la(k) —a| <6 (m + e he? (3.3)
elkthatl]og(2/5)  3C"
< T emhaB, .
< 6\/ o + e (3.4)

For this new estimate &(k), k plays a similar role as the sample fraction in Hill’s estimate (1.2).
The bias-variance trade-off should be solved by choosing k in an appropriate way as a function
of # (we will explain this more in details later). Choosing a too large k leads to using a small
sample fraction, and the resulting estimate has a large variance and a small bias. On the other
hand, choosing a too small k yields a large bias and a small variance for the estimate. The optimal

k equalises the bias term and the standard deviation.

3.2. Rates of convergence
We first consider the set of approximately Pareto distributions, and prove that the estimate

&(ky,) is consistent if we choose k;, such that it diverges to oo but not too fast.

Theorem 1 (Consistency in A). Let F' € A. Let k, € N be such that k,—o0 and (log(n)/n)ekr® —
0 asm — co. Then

a(kn) — a a.s.

Choosing (for instance) k, = (loglog(n)) ensures almost sure convergence.
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The estimate &(loglog(n)) converges to o almost surely under the rather weak assumption
that F belongs to A. But on such sets, no uniform rate of convergence exists, and this is the reason
why the restricted set S is introduced.

Let a, 8,C,C" > 0. Consider now the set S := S(«, 3,C,C") of second-order Pareto distri-
butions. We assume in a first instance that, although we do not have access to a, we know the
parameter a(23+1). It is not very realistic assumption, but we will explain soon how we can modify

the estimate so that it is minimax optimal on the class of second-order Pareto distributions.

Theorem 2 (Rate of convergence when a(25 + 1) is known). Let n be such that (4.7) is satisfied.
1

Let k) = |log(ne®@f+D) 4+ 1]|. Then for any § > 0, we have

3C"\ __s
sup Pp <|d(k:,*l) —al > <31 + > n 2ﬁ+1> < 20,
FeS C

where By = 6\/@_

Theorem 2 states that, uniformly on the class of second-order Pareto distributions, the estimate
_ B
&(k}) converges to o with the minimax optimal rate n~ 26+1 (see Hall and Welsh (1984) for the

matching lower bound).

Remark 2. Theorem 2 can be used to prove the convergence rate of our estimator by modifying the
choice of k', when a(28 + 1) is unknown but only [ is known. For instance, we can plug a rough
estimate & = &((loglog(n))?) of a into kY. The idea behind this choice is that with sufficiently
large n, we have with high probability,

a(ogtog(n)?) ~ ] =0 ().

logn

Then kL is defined as Llog(n&@éH)) +1]. Finally, the rate of convergence of a(k) can be shown
as n~P/@B+D) by proving exp(l%,ll) = O(n'/(@@B+1)Y with high probability.

However, the previous optimal choice of k (k) or l;‘,ll) still depends on 3, which is unavailable
in general. To deal with this problem, we construct an adaptive estimate of a that does not depend
on [ but still attains a rate that is quite close to the minimax optimal rate niﬁ on the class
of B second-order Pareto distributions.

The adaptive estimator is obtained by considering a kind of bias and variance trade-off based
on the large deviation inequality (3.2). Suppose we know the optimal choice of k*. Then this k*
will optimize the squared error by making bias and standard error (of the estimate with respect

to its expectation) equal. Since the bias is decreasing while the standard error is increasing as k
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increases, for all k' larger than this optimal k*, the bias will be smaller than the standard error.
Based on this heuristic (originally proposed by Lepski (1992)), we pick the smallest k& which satisfies
for all k' larger than k, the proxy for the bias is smaller than the proxy for the standard error
O(\/1/(npgr41)) as in (3.2). For the proxy for the bias, we use |&(k") — &(k)| by treating & (k) as
the true a based on the idea that &(k) would be very close in terms of the rate to the true a (if &
is selected in an optimal way).

More precisely, we choose k as follows, for 1/4 > § > 0

o :inf{k EN: proy > 21820 g
n
241og(2/0 1
W > kst e > BB a) — atk) < A0) [ —— . (3.5)
n NPE'+1

where A(J) satisfies the condition (3.6) in the following theorem.

Theorem 3 (Rates of convergence with unknown ). Let 1/4 > 6 > 0 and let n be such that (4.9)
is satisfied. Consider the adaptive estimator &(ky) where k,, is chosen as described in (3.5) where
A(9) satisfies the following condition

62a+1 C/
A(8) > 64/2(C + C") log(2/6) (2 5t c) : (3.6)

Then we have

s (1o (54 5) () ™) < (1 B (52

where By = (Bl +2A(0)4/ %) m and By is defined in Theorem 2.

Theorem 3 holds for any («, ) provided that n and A(§) are larger than some constants
depending on «, 3,C,C’, and on the probability §. The advantage of our adaptive estimator is
that since the threshold k, is chosen adaptively to the samples, the second-order parameter 5 does

not need to be known in the procedure in order to obtain the convergence rate of &(ky,). Theorem 3

gives immediately the following corollary.

Corollary 1. Let € € (0,1) and C' > 0 and let 0 < a3 < ag and 0 < Cy < Cy. We use k., as in
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(3.5) where A(0) = A(d(e)) =: A(e) is chosen as in Equation (4.19). If n satisfies (4.21), then

_ s
2B+1
sup sup  Pp | |a(k,) —al > By " <k,

[ log (z (1 4 M)) <

«aq

a€lon,aa],8€(81,00]

Ce[C1,C]
where Bs is a constant explicitly expressed in (4.20), which only depends on as,C,Cs, and C".

In other words, if we fix the range of the o and C' and a lower bound on /3 to which we wish to
adapt, we can tune the parameters of the adaptive choice of k, so that we adapt to the maximal
B such that F' is 8 second-order Pareto. Moreover, this adaptive procedure works uniformly well
over the set of second-order Pareto distributions satisfying (1.1) (for « € a1, asl, 8 € [B1,0],C €
[C1, Cs]), which is much larger than the class of distributions that verify the condition (1.3). Then

this gives non-asymptotic guarantees with explicit bounds.

Remark 3. The parameter C' plays a role in the definition of the second order Pareto class
that is slightly different than the one of C or «, 3. Unlike o or C, C' is not uniquely defined: if
F e S(a,pB,C,C"), then F € S(a, 8,C,C") with C' > C". This implies in particular that the results
of Corollary 1 could have been rewritten, firing a constant C' > 0 and writing C' for a constant
that fits more closely F, by taking supremum over F € S(a, 3,C,C") where C' < C'. Being non-
adaptive over C' and choosing a loose constant C' instead of C" will only worsen the bound by a

constant factor, unlike making a mistake on B which will worsen the exponent of the bound.

s
It seems that we lose a (loglog(n))28+T factor with respect to the optimal rate, due to adaptivity
B
to 8. However, the lower bound below implies that this (loglog(n))25+t loss is inevitable; hence

the rate provided in Theorem 3 is sharp.

Theorem 4 (Lower bound). Let ay, 31,C1,C2,C" > 0 be such that Cy < exp(—m), Cy>1
and C' > 2a1ﬁ1. Let n be sufficiently large. Then for any estimate & of «,
sup sup Prpl|la—al>B ( n )7W > !
F —of 2 Dy oy Z =,
FeS(a,8,C,C") log (log(n)/2) 4

a€lar,2a1],8€[81,00)

06[01,02}
where By is a constant depending on oy and 1, which is provided in (4.30).

The lower bound result is proved with specific ranges of the parameters (e.g. restrictions on

C4,Cy, C’" in the statement of Theorem 4), but it can be modified by considering different ranges
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(see Remark 4).

3.3. Additional remarks on our estimate
In the definition of our estimate, we use exponential spacings (i.e. we estimate the probability
that the random variable is larger than e*), but we can generalize our estimate by considering the

probability of other tail events. For some parameters u© > v > 1, define

n n

. 1 .1
Gu = ﬁzl{Xi >u}, and ¢, = Ezl{Xi > v},

i=1 =1

We define the following estimate of « as

) = T = OB, (3.7
If we fix v ~ O(n!/ (@841} and u/v ~ O(1), then we will also obtain the oracle rate for estimating
a with &(u,v). However, the choice of u/v will have an impact on the constants. In practice, these
parameters are important to tune well (in particular for the exact Pareto case, or for distributions
satisfying Equation (1.3)). However, a precise analysis of the best choices for  and v (in terms of
constants) is beyond the scope of this paper.

Another point we want to address is the relation between our estimate and usual estimates
based on order statistics. To estimate the tail index «, it is natural to consider the quantiles
associated with the tail probabilities. For the estimates based on order statistics, one fixes some
tail-probabilities and then observes the order statistics in order to estimate the quantiles. On the
other hand, we fix some values corresponding to the quantiles, and estimate the associated tail
probabilities. Based on such a link, one could relate any existing method based on order statistics
to the method based on tail probabilities.

In particular, the estimator based on order statistics corresponding to our estimator would be
of the form, for some parameters 1 > ¢, > ¢, > 0,

(g, o) = 2B —0B),
og (@) — log(0)

. This estimate can be interpreted as the inverse of some

(3.8)

where 4 = X, |g,n]) a0d 0 = X(;,_|g,n))
generalized Pickands’ estimate (see Pickands (1975), it is however not Pickands’ estimate). There
is actually a duality between these two estimators: for any couple (g, q,) in the definition (3.8),
it is possible to find (u, v) in the definition (3.7) such that these two estimates exactly match (see
Figure 3.1 for an illustration). However, there is no analytical transformation from one estimate

to the other since such a transformation will be data dependent.
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Qv O @y 1"

1— Fy(x) = EZl{Xi >z}

i=1

Gu O qu

v oor v uw or u

Fi1G 3.1. Duality between the estimate (3.7) and the estimate (3.8).
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Supplementary Material for the paper “Adaptive and
minimax optimal estimation of the tail coeflicient”

Alexandra Carpentier and Arlene K.H. Kim

4. Technical proofs

Lemma 2 contains a classical and simple, yet important result for the paper.

Lemma 2 (Bernstein inequality for Bernoulli random variables). Let Xi,...,X,, be i.i.d. obser-
vations from F, and we define pp = 1 — F(e¥) and pp = L 30 1{X; > €*}. Let 6 > 0 and also

let n be large enough so that py > MLT(L%;). Then with probability 1 — 4,
R log(2/6
e — pi| < 2 pki(/) (4.1)

Proof of Lemma 2. The proof is using Bernstein inequality (e.g. see Lemma 19.32 of Van der Vaart

(2000)) of the following form; for any bounded, measurable function g, we have for every ¢ > 0,

1 & 1 12
v (‘ﬁ (n 29X _E9<X)> > t) <209 (~fga o)

We use g(-) = 1{- > €} and t = 2./pilog(2/6) in the above inequality. Using the fact that
t = 2¢/prlog(2/9) < \/npy by the assumption of py > (4log(2/6))/n, we have

2
(\ﬂpk—pk\>t)<2e><p( ipkft/f)

1¢2 1
< 2max [exp (—4) , exp <—4\/fzt)]
Pk

12
§2exp _Z;
k

=9,

where the last equality follows by definition of ¢. O

Proof of Lemma 1. A. Since p;, > 16log(2/6)/n, we can use Lemma 2. Rewriting the inequal-
ity (4.1), we have with probability larger than 1 —

log (1—2 1Og@/‘”)<1og<zak>—log<pk><1og <1+2 1g<2/5))

npg npg
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Then using the simple inequalities log(1 4+ u) < u, and log(1 — u) > (—3u)/2 for u < 1/2,

B0) < tog(y) < o(py) + 2 EL.

log(pr) — 3
npg npg

By using a similar inequality for log(py+1), with probability larger than 1 — 24,

R log(2/6) log(2/4
a(k) — os(e) — log(pis)) | < 3L / og(2/0)
npk+1
<6 [log 2/5 (4.2)
Npg+1

B. By definition of second-order Pareto distributions, we have ! Dk — Ce*kﬂ < Oleka(148)  or

equivalently,

ka !

€ Pk C —kaf

—1| < —e .
C ’

- C
Since we assume C e kB < 1/2, we have

3¢’ —kap
| log(pr) — log(C) + ka| < 20 ¢ .

A similar result also holds for pgy1, and thus

3¢’ ko
| log(px) — log(pr1) — af < ~F-e™™. (4.3)

Combining Equations (4.2) and (4.3), we obtain the large deviation inequality (3.3). Now,

using the property of the second-order Pareto distributions, we can bound pgy1 from below.
k ¢
Pyt > Ce~ (e <1 — 66_( +1)a5>

> O —htD)a 5 pp-(k+Da-1

— - )

where the second inequality comes from the assumption that e **8 < C'/(2C"). By substituting
this into the inequality (3.3), the final inequality (3.4) follows. O

Proof of Theorem 1. The proof consists of the two steps—bounding the bias, and bounding the
deviations of the estimate—as in the proof of the Lemma 1.B.

First, we bound the bias (more precisely, a proxy for the bias) using the property of the
distribution class A. By definition, we know that for any e such that C/2 > e > 0, there exists a
constant B > 0 such that for x > B,

|1 - F(z) - Ca™*| < ex™™.
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Since k, — oo as n — oo, for any n larger than some large enough N; (i.e. such that Vn > Ny,
efn > B), we have
}pkn - C’e_k”a‘ < ee Fne (4.4)

which yields since € < C'/2, ‘ log(pg, ) — log(C) + k:noz‘ < 23—5 using the same technique as for the
proof of Lemma 1. This holds also for k, + 1 and thus

3€
| log(pr,,) — log(pk, +1) — a| < ok (4.5)

Note also that Equation (4.4) can be used to bound the py, +1 below as follows.

D41 > (C — e)e”knta > e kne, (4.6)

Since (log(n)ef»®)/n — 0 as n — oo, we know that there exists Ny large enough, such that for any
n > Na, pk,+1 > 32log(n)/n.

Then we can bound the proxy for the standard deviation using the result (3.2) in Lemma 1.A.
For n > max(Ny, N2), combining Equation (4.5) and Equation (3.2) with § = 2/n?, we have with
probability larger than 1 — 4/n?,

. log(n?)  3e
alky) —a| <6 + —.
‘ ( ) ‘ nNpk,+1 C

Then we bound the first term in the right side of the above inequality using (4.6). That is,

log(n?) N log(n2) _ 6el®/2+1 [log(n)ekna

6
NPk, +1 Cne~kne = /O n

By the assumption that (log(n)e®"®)/n — 0, and since the above inequality holds for any € > 0,
we conclude that «,, converges in probability to a.. Moreover, since > (4/n?) < co, Borel-Cantelli

Lemma says that &(k,) converges to o almost surely. O

Proof of Theorem 2. Let n satisfy the following,

2C" 2811 32log(2/8)e?™ 2641
n > max ((7) 5 ,(Og(c/)e) ez ) (4.7)
1 2841
We let k* =k such that &} := [log(na@ﬂ“)) + IJ. Note that for n larger than (2C'/C)" 7, we

have e~¥"@% < C'/(2C"). This implies, together with the second-order Pareto assumption,

2o, 16105(2/9)

__1
*y1 Z —n 2B+le
Pk*+ 9 n
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a 26+1
where the last inequality follows by assuming n > (w) 28,

By (3.4) and by the choice of k,,, we have with probability larger than 1 — 24,

!
|a(k") — o < (6 e2a+1k’g(c%/5) N 3g> -

The following lemma is going to be a useful tool for the proof of Theorem 3.

16 log(2/6) 16 log(2/6)

Lemma 3. We define K such that pg >
k> K 4+ 1, with probability larger than 1 — 6,

R 241og(2/0

o 2log(2/0)

n

Proof of Lemma 3. We let q := 16log(2/5)/n and define a Bernoulli random variable Y;(q) (in-
dependent from Xi,...,X,) where P(Y;(q) = 1) = g for ¢ = 1,...,n. Then we compare m, :=
%Z?:lYi(q) and P = %E?:l 1{X; > ef*+1}. Since ¢ > px1, the distribution of pyq is
stochastically dominated by the distribution of m, (that is, P(pry1 > t) < P(mg > t)). By

and also pr+1 < . Then for any

(4.8)

Lemma 2, we have with probability larger than 1 — §,

imy — q| < 2/ 1108(2/0) _ 8108(2/9)
1 - n n ’

Then by stochastic dominance, with probability 1 — &,

. qlog(2/6) _ 24log(2/9)
<q+2 = .
PK+1 =g+ n

n
Thus, for any £k > K + 1 using the monotonicity of py (that is, px > pr+1), we obtain that (4.8)
holds with probability larger than 1 — § as required. O

Proof of Theorem 3. The proof is based on 5 steps. We first define an event £ in (4.11) of high
probability where the deviation of empirical probabilities py from py is well upper bounded (with
the same bound in the large deviation inequality in (4.1) but without a probability statement) for
a given subset of indices k < K, where K is of order of logn. Then we define k which is slightly
smaller than the oracle k* and also k < K so that on ¢ the deviation of &(k) from a (i.e. |&(k) —al)
is upper bounded as in (4.14). In the third step, we show that p;; > 24log(2/d)/n on ¢ so that
k is one possible index for ky. Also we prove that k, < k in Step 4 which leads us to bound

la(k) — @(ky)| from above on ¢ using the definition of k,. This combined with the second step
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finally gives an upper bound of ]d(l;:n) — af on &. More precisely, we prove that on the set &, we

have |é(kn) —a| < (Bz+ 3%’w,)(m)*ﬁ/@@“l) where Bj is a constant which will be defined in the

last stage of the proof. Then we can bound P(|a(k,) — a| > (B + %C/)(m)_ﬂ/(wﬂ)) < P(¢9)

which has a small probability.
Let F € S(a, 8,C,C") and 1/4 > § > 0. Also we let n satisfy the following,

28+1

> g (G mas 2 205) L (2L L)L )

Step 1: Definition of an event of high probability
First, we define K € N such that px > %@/5)
second-order Pareto distributions, %@/5) < pr < (C+ Ce K gives K < élog (M) )

> pr+1. By inverting the condition for the
16 log(2/6)
ﬁ&/é)) — 1. Then since n > 32(023/ﬂ)1/5 log(2/0), we know by definition of S

that 1 — F(e*t1) > %W' Using the fact that 1 — F'(e”) is a decreasing function of z and

161og(2/4)

Set u = élog(

> pr+1, we have u < K. Thus we obtain the range of K by
1 Cn 1 (C+C"n
—1 — | -1 <K< -1 — . 4.10
it <3210g(2/6)> SREGE <1610g(2/5) (4.10)

We define the following event

pu(w) — pi| < 2y BB ) < ZHOBRIOY gy

§:{wﬁk§K, > >

%@/5), which gives the Bernstein inequality (4.1) with probability

By definition, we have px >
1—¢ for k < K. In addition, Lemma 3 gives (4.8) with probabiltiy 1 — §. Thus, an union bound
implies that P(§) > 1— (K +1)d. By monotonicity of py, we have on the event &, for any k > K +1,
Pr < %@/5). This implies that on the event &, the k, k&’ considered in Equation (3.5) are smaller

than K and in particular, we have kn, < K.

Step 2: Bounding the deviation of &(k) from « on £ (where k < K)
We define k,, = k € N such that

_ — o, 28+1
By definition of k, we know that £ < K. Indeed, by assuming n > (32%)2221 log(2/0) and

by (4.10),
- k<lo (71>W@” 1<t (9" Y 1ok
=198 \ \log(2/9) = o 8\ 3210g(2/9) '
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Thus,
e Kab < ekl < ¢/ (20", (4.12)

28+1

where the second inequality follows since n > log(2/ 5)(%) B,
Note also that k < k*, where k* := Llog <nm> + 1J as before.
If k < K satisfies e %% < C/(2C"), then since pp11 > pr > (161og(2/6))/n, then using the
exactly same proof as for Lemma 1.B, we have on £ that
lG(k) — al < 6\/ e(kﬂ)azéog(z/ Jn ?’g/e—’mﬁ. (4.13)
Since e~F% < C/(2C") by (4.12) and k < K, Equation (4.13) is verified for k on &. Then by
definition of k£ in Equation (4.13), we have on ¢ that

~ p2at1 ' n — s
a(k) - af < (6\/J+3g> <1og(2/5)> o (4.14)

Step 3: Proof that p;, , > %@/5) on ¢
By definition, we have on &, using k < K — 1 and pry, > pi > (1610g(2/))/n,

log<2/6>> J Pie1

DPrtr1 = D 1-2
k+1 k+1 ( np]_gJﬂ 2

Then using the second order Pareto property with (C'/C)e **f < 1/2, we have Pyl = (Ce~ (D) /o,

which gives

Ce—(k+1)a - Ce™ 2 <log(2/5)>1/(2ﬁ+1)

DT g > 4.15

n

r 26+1 _
where the second inequality follows from n > log(2/ 5)(%) “5" and from the definition of k. Since

2841
n > (%) ? log(2/6), we have shown that Pg1 is larger than %@/5) on &.

Step 4: Proof that k, < k on ¢
Suppose that k, > k. Then by definition of ky in (3.5), on &, there exists k > k such that
Dk+1 > %@/5) (this imposes k < K on ) and

_ eka
(k) = 6(F)| > A= > %\/n’ (4.16)

where the second inequality in the above follows by bounding py41 above by definition of &,

. log(2/6 3 —ka
Dk+1 = Pl (1 +2 g(/)) < Sppg1 < 2(C 4+ CHeke,
NPk+1 2
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where the penultimate inequality is obtained by px > px > 161og(2/0)/n (since k < K), and the
last inequality follows by definition of the second order Pareto condition.
Since k > k+1, we bound e % < e=Fe8 < C'/(2C") by (4.12). Also we have pyq > %(2/6),

since pp11 > px. Equation (4.13) is thus verified on ¢ for such k > k. Now using w >
e kB (since k > k), we have
el 30"\ [eklog(2/6)
SRS P Gl < W =100} .
ak) — o < (6 S + 2 . (4.17)

Equations (4.16) and (4.17) imply that on &,

(C+ 07

ol 3¢ no O\
> R W N (R
= By c)(log@/a)) ’

. A(§) 2a+1 3C" . . .
since we assume that WoeTa) > 2,/log(2/9) (6 e+ T) This contradicts Equation (4.14),

and this means that on &, ky < k.

Step 5: Large deviation inequality for an adaptive estimator

We have pg,; > %@/6) from Step 3, and kn < k from Step 4 on £. Thus by definition of ke
in (3.5), we have on ¢ that

_ - 1
alk) — a(ky)| < A(S —
aF) - ) o
1
2 T 3(238+1)
< 24(0) % <log (?)) Y
e n T 2B+1
= 2401 gtz (o) (4.18)

where the second inequality follows on & by Equation (4.15).
Hence, Equations (4.18) and (4.14) imply that on

~ih e2etl 3¢ e*® " o
(k) — 0] < ((6 g+ o) T240) Clog(2/5)> <1og<2/5)> '

e2a

Denote By = 6 62?;1 log(2/0) and By = (31 + 2A(0) 7)@. Then since P(§) >
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1 — (K + 1), we have shown that

B
3C' n T 2B+1

Pr —a|> B+ — )| ———=
A ( o2 (B4 C) (i) )

< K+1)5<<1 g<(c—§60/)n>+1>5

(07

where the last inequality follows by (4.10). This concludes the proof. ]

Proof of Corollary 1. Set

_ <1 + Liog (0t C”)n)> 5

_ 6/2C T T \/log <2( . Log((Ca + C’)n))) (2\/6222:1 N g;> 7 (4.19)

a1

and plug § = d(e) = ¢/(1 + log((Ca + C")n))/a1) and A(e) := A(d(¢)) in the adaptive method
described in Theorem 3. Set

62a2+1

L(C2+C1)3C
= \/ ! 12 a2 - 4.2
B3 6 ol 02 + C + e c + — oy ( 0)

It holds for any o € [a1,a2], C € [C1,Cs] and S > (; that the constant in Theorem 3 can be

bounded as
3C” /620‘+1 / 620‘2+1 C’ 3¢’
B — 12 2— C’ C’ —
2 + + 2 + C1> + c

< B3a

so Bs is a uniform bound on the constant in Theorem 3 for all considered values of «, C, 3. Also,

the uniform condition for the sample size is derived from Equation (4.9) by

n > log <i (1 | log((Ca + C/)n))>

aq

1

26«/ 1 2C_¢/ 24+ L 32 2002 \ 14 L 96 2a2 | 24 L
o [32<61+51 ) " <f> " ( : ) o ( : ) N (4.21)
1

C 1 Cl Cl

where C7 = min(1,C}) and ¢’ = max(1,C"). O
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Proof of Theorem 4. We prove the minimax lower bound by Fano’s method (see e.g. Section 2.7
in Tsybakov (2008)). We define a set of approximately log(n) functions F; whose first and second
order parameters are respectively «; and ;. Until a point K;, each distribution F; matches a Pareto
distribution with the first order parameter «, which is the same for all of the F;. After this point
K;, F; is Pareto with parameter «;. These functions satisfy several specific properties summarized

in Lemma 4. For instance, they are such that the for any i # j, the distance between «; and «; is

__Bi
at least of order (jjo-—) 2#+1. Moreover, the Kullback Leibler (KL) divergence between F; and
g log(n)
F; is small enough so that F; and F} cannot be distinguishable as n increases. These two main
properties enable us to apply Fano’s lemma, which results in the lower bound of Theorem 4. For
the proof, we assume that n is sufficiently large.
Step 1: Construction of a finite set of distributions

Let « > 0 and 8 > 1. Let v := min o’ . Let M > 1 be an integer such that

(]-a W)

a(28-1)

[log(n/ log(M))] +1 = M,

which implies that log(n)/2 < M < 2log(n) for large n. Set for any integer 1 <i < M

)
Bi=pB— i

; 1
V. (1 L _log(v) )

26; + 1 loglog M

1 T n a(2ﬁl-+1)

K; = na@i0 (log M) ok — <7> i 4.22
p=n ( 8 ) vlog(M) ( )

Bi ) _L
o= K% = (log M) = (— ”(M)) oo
vlog

o =a—t; =a—n /A (1og(M))
By definition, for ¢ < j, we have §; > B;, vi > v, K; < Kj, t; <t; and o /3> aj. By 2ssuming n
large enough, we suppose that v; > 0 for all ¢ =1,..., M, and %nwiz‘“ > MZA T Also

we have 8; > —1, K; > 1, and o — t; > /2 =: o1 for large enough n.

Using these notation, we introduce the distribution
1— Fy(z) =x¢, (4.23)
and for any integer 1 < i < M, we introduce perturbed versions of the distribution Fy

1 - Fy(z) =27°1{1 <z < K;} + K; “27*"1{zx > K;}. (4.24)
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We write {fo, f1,..., fa} for the densities associated with distributions {Fy, Fi,..., Fas} with
respect to Lebesgue measure.

Step 2: Properties of the constructed distributions

The following lemma highlights important characteristics of distributions {F;,i = 1,..., M}

and their parameters corresponding to the second order Pareto distributions.

Lemma 4. Let 1 < i < M and 1 < j < M. It holds that for F; defined as (4.24) and using
notation in (4.22),

. 1
FeS|a—t,p, K ", ) . 4.25
(2ot o (4:29)
Moreover
1 .
_ V< K. Y < :
exp ( a(2ﬂ—1))_Kl <1, (4.26)
and if i # j,
|y — aj| > ¢(B) max(t;, t5), (4.27)

where ¢(fB) := 1 — exp (—W)

Step 3: Computation of the Kullback-Leibler (KL) divergence

In this step, we first compute the KL divergence between Fy and F;, which is defined as
KL(Fy, F;) = [ fo(z)log (x)) dx. Then we prove that it has the same order of the KL divergence
between F and Fp. Second, we prove that the KL divergence between F; and Fj is at most of the
same order of max { K L(Fy, F;), KL(F;, Fp)}.

Lemma 5 provides the order of the KL divergence between F; and Fjp.

Lemma 5. Let 1 < i < M. It holds that for Fy in (4.23), F; in (4.24) and using notation in
(4.22),

22K,

max (KL(Fy, Fy), KL(F;, Fy)) < ~—

(0}

Using Lemma 5, we obtain bounds on the KL divergence between F; and F} in the following

lemma.

Lemma 6. Let (i,5) € {1,..., M}2. It holds that for F; in (4.24) and using notation in (4.22),

QGXP(ﬁ) B B
20T (1o o). a2

KL(FivFj) < a2
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Step 4: Use of Fano’s method.
Here we follow ideas in the Fano’s method using the above results in Step 1-3. Let & =

&(Xq,...,X,) = &(X) be an estimator of . Then we define the following discrete random variable

Z =7(X):=ar min |&(X) — oy,
() i=arg_min_[a(X) - ]
which implies that |& — «;| > ¢(B8)t;/2 if Z # j by Equation (4.27). Also we consider another
random variable Y, uniformly distributed on {1,..., M} where X[Y" = j ~ F'. By bounding the

maximum by the average,

M
(é)t ) >iZIF’ (Z #JlY =)

max Pp, (\a —aj| > i

je{1,....,M}
= IP(Z £Y)

1

~ ogdl M2 ZKL (F7', FJ) +1og2 |

73’

where the last inequality is obtained by Fano’s inequality (see Section 2.1 in Cover and Thomas
(2012), or see Appendix for a proof of how this inequality is derived).
Using the fact that KL(F*, Fy') = nK L(F1, F»), and by Equation (4.28),

2 exp(=rmi—v ) n 4exp(
n a(28-1) 27— 2 p—a) _

E KL(F}, F}) < 715 . ) (thj“Hj/Kj/“) =

Js3’ Js3’

a(2,3 1) ZtQK_

£4exp(m) Z vlog(M)

M o? - n
dexp(smp—7) 1

- %(log(M)) xv < 5 log(M).

K (28 +1) _ “%(M) and the last inequality is by

. Hence, for a sufficiently large n, we have

where the second equality follows by tjz-K i ¢ =

2
v < o
- Sexp(m)

_ (Ulog(M))% >

n

More specifically, using ¢(83) 1= 1 — eXp(fQ(zﬁlJrl)z) > 2(251“)2 and since t;
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s € ((og(m))/2)

Bj
28:+1
- ) 777 we have

: log ((log(n))/2) 7 | _ 1
s P (1=t 2 o (20 ) 4
where ,
L 1 . a2 WJ-H
B(Ou@ﬁj) = mmm [1, <8€Xp(a(2511))> ] (4.29)

By definition of {F},..., Fa}, we have (by Lemma 4)
{F1,...,Fu} C {F € S(a*,8,C,C") : a* € [a/2,0],5* € [8-1,5],C € [CH,C‘Q]},
where C1 (o, 8) := exp (—m), Cy =1, and C'(a, B) = m

Then by bounding the supremum by the maximum over the finite subset, we finally provide
the following lower bound result.

sup sup Pr <]d —af| > B(a,ﬁ,ﬁ*)<bg ((log(n ))/2)>2[3*+1>

* Q% = n
*ela/2,a],8*€[f—1,8 FES(@"AC.LT)

C’E[C’l,é’z]

je{1,...,.M} n

> max Pr <\é«—aj\ > Bla, 5, (LB >>/2))m]+1>

>

»lk\w

By changing parametrization and setting ov; = /2 and 1 = 8 — 1, we proved that

__Br
sup sup Pr (d —af| > B4<1(1n()/2)) 28 +1) > 1/4,
* * ’ o 5 -
a*€lar,2a1],68*€[B1,00) FeS(a*,5*,C,C") o o

CE[Cl,CQ]

where €' = C'(2a1, 81 + 1) and

C1=C1(2a1,51+1), Cy =1, By = B2, 81 + 1,0). (4.30)

This concludes the proof.
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Proof of Lemma 4. (1) Proof of Equation (4.25): For 1 < i < M, F; € A(a — t;, K; ") by
definition. For x > K, F; satisfies the second-order Pareto condition. For any 1 < z < Kj,

1 — Fi(z) — K tig—otti

A i X

— ‘z—a _ K—ti —a+t;

=271 - Kt

< 2x™¢

tilog(K;/x) ‘

The last inequality is obtained since Vu € [0,1], [e™ — 1| < 2u and

By

tilog(K;) <n” 2%+ (log M)™ ( )log(n) < —n” ¥ log(n) ! < 1
o

a(26;+1)

by assuming large n. Then for any 1 < z < Kj;

. B K\ —abs
1 — Fy(z) — K; "ot < 207K Pilog(K;/x) = 2~ 2P (i) log(K;/x)

K\ —oB-1)

< Qg bi (—z> : log(K;/x)
x

1
< m*a(ﬁﬂrl)’
a(f—1)
where the ultimate inequality follows from the fact that for any v > 1,¢ > 0, we have u~*log(u) <
1/(et). Thus, we have shown the first result (4.25).
(2) Proof of Equation (4.26): Let 1 < j < M. Since K; >l and t; >0foralli=1,..., M
and all j =1,..., M, we have Ki_tj < 1. By definition (4.22) and bounding M < n,

_ B .
)

—t; 1
K, J>( B T) —e (_7
io=\" AT A28+ 1)

1+v; B
> exp ( _ log(n)" "7 n 2Bj+1>

a2 —1)
1
> - -
= P ( a(28 — 1))’
where the final inequality follows for a sufficiently large n.

(3) Proof of Equation (4.27): Consider now ¢ < j. From (4.25), each F; corresponds to the
tail index o; = v — t; = a — (n/(vlog(M))~Pi/2Bi+1) For i < j, we have oy > o and t; < t; as we
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described in the Step 1. Also, using 3; — f; = (i — j)/M,

Bi By
) " Tt

(U log(M))

o — | = ‘tj

(1-
— 1= CRADEEFD | _ o g _ (i —J) 1 n
J [ Ulog ) A (M(Qﬂ,- T8 +1) 8 (UlogM)>

(i —J) (M —1)
>t <1exp 2Bz+1)(;ﬁj+1) MM ! ))

> 1 [1 —exp (2(2@- izlg(;)ﬁj + 1)” ’

where the penultimate inequality is obtained since v < 1, and since log (log( M)) +1> M > 2. This

implies Equation (4.27).
O

Proof of Lemma 5. (1) KL divergence between Fj and F;
Let 1 < < M. By definition of KL divergence,

w1 = [ oot (7)o
:_tZ/Ki ar 1log<<a;ti>é;;> dz.

By the change of variable u = (O‘%ti)l/tix/Ki, and letting a; = (a;ti)l/ti,

[0}

KL(Fy, F;) = _ti/ a((%)l/tilﬁu)_a_llog(u)du X <(L)1/tZKZ>

o —1;
= ti(a'K) T cayue
=tila; K; (—a)u og(u)du.

Now by performing an integration by parts, we obtain

— 1567 (10g(1fa) — + ) = K7 (1og (%) - &
745 i o i po— ~

Using o — t; > a/2, we further upper bound this divergence

t; t; t; t; t2
KL(Fy,F))= K “(1 1 ! X)) < K@ LA @i i A
o 1) ' (og< +O‘_ti> a>_ ' <Oé—tz' o boaa—t)

_ 2K
=2

(07
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(2) KL divergence between F; and Fj

Similar calculations as above give

F17F0 / fz fl 33)) €T

= tia; a+t1Kia/ (o — t3)u= i~ og(u)du
a;

—t t; UZK
=K (log(aa Z>+a—zt~) = loﬂl ’
(A

O
Proof of Lemma 6. (1) KL divergence between F; and F; with i < j
Consider the case i < j. First, note that
LEF) = [ f(@) ) o
K f](x)

Thus it suffices to bound the second term [;> f;log % in (4.31).
J J

We use the similar calculations used in the proof of Lemma 5. With the notation a; =
—tiN1/t;
(5,

/ fi(z)log fo() de =t ~K-_t"K-_O‘+t"a?_tj / —(a — t)u" T og (u)du
K; j a

fJ(‘T) I J j
K; - 1 1
:(Kz) K <IOga]~_a—ti>
1 2 Oc
< QGXP(i(Qﬂ_ 1))t K

where the final inequality follows by bounding (K,/K;)" < exp (m) using Lemma 4, and by
bounding at-i_tj (log(1/aj) —1/(a — t;)) < tQ-/oz2 for a sufficiently large n.

Combmmg this upper bound with bounds on KL(Fy, F;) and KL(F;, Fy) in Lemma 5 and
also with Equation (4.31),

1
26Xp(a(2é—1)) 27— 27—
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(2) KL between F; and F; with i > j

Now we turn to the case i > j. In the same way as for Equation (4.31), we have

Jo(z)
fi(x)

For the second term, first note that log U Ogg is a decreasing function for any x > K. Also since

J
Vo > Kj, Fi(x) < Fy(z), and since F;(K;) = Fy(Kj;), the measure associated to F; restricted to
[K,00) stochastically dominates Fy. This implies that

KL(F,, F;) = KL(F;, Fy) + / h fi(x)log da. (4.33)
K;

> fo(z) = fo(z)
fi(x)log dx < fo(z)log dz.
/Kj fi(@) K; fi(@)
Combining this with (4.33) followed by Lemma 5, we have
2
KL(F;, Fj) < KL(F,, o) + KL(Fo, Fj) < — (t?K{O‘ + t?Kj—a) . (4.34)
o'
Finally, by Equations (4.32) and (4.34), we obtain the result (4.28). O

Remark 4. We only proved the results for certain sets of Cy,Cs, B, B2, a1, an,C’. In fact, it is
possible to modify this result to hold for different ranges of parameters (although, the ranges cannot
be taken too tight, and C' cannot be taken too small). Note that the narrower the intervals [Cy, Ca),

[a1, aa], the larger B1 and the smaller C', the better the result is. Here are possible modification:

1. Range of a: from the proof, one could take a1, ap +tpr] which is actually included in [o, aq +
n=¢ for some ¢ > 0. So without additional effort, the interval can be taken at any position
and the range of the interval can be made very small.

2. Range of B: for any 1 > 0, the result holds for [B1, 51 + 1] (although it is stated for [B1,00)
to match the upper bound). The constants in the proof could be modified to consider a range
(81,1 + €| for any arbitrary small € > 0, by constructing M different ;’s uniformly spread
on this interval.

3. Range of C: from the proof of the second result in Lemma 4, the tightest range of C is
(K3, K™ which is actually included in [1 — n=¢ 1] for some ¢ > 0. The range could be

changed to any [a—n—¢

,al] for a > 0 by modifying distributions F; so that the new distrubutions
have a domain starting from a= Y% instead of 1 in (4.24). Then, the interval can be taken at

any position a and the range of the interval can be made very small.

However, C'" is an upper bound which characterizes the amount of deviation with respect to the
Pareto assumption. It cannot be taken too small since if F;’s are too close to F;’s, they can not be

distinguished.
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5. Appendix

Lemma 7 (Fano’s inequality). Suppose Y is a uniform random variable on {1,..., M}, and let
Z is a random variable of a function of X, where X|Y = j ~ P; with dP;/dv = p; where v is the

dominating measure. Then

1
P(Z#Y)>1 KL(P;, Py log 2
( # )— IOgM MQZ J)+Og

3.3’

Proof. Recall the definition of the entropy H(Y) = —3>_ p(y)logp(y) for a discrete random
variable Y with a probability mass function p(y). Also we denote H(Y|Z = z) by the condi-
tional entropy of Y given Z = z, and we define H(Y|Z) = —>_ > p(y, 2)logp(y|z). Follow-
ing the terminology used in the information theory, we define information between Y and Z

as the KL divergence between joint distribution and product of the marginal distribution, i.e.
I(Y,Z) = KL(Py,z, Py x Pz) where we can show that

I(Y,Z) = KL(Py,7, Py x Py) = H(Y) - H(Y|Z) (5.1)

by splitting the probability distribution. Finally recall that for Z = Z(X), I(Y, Z) < I(Y, X).
Consider the event E = 1{Z # Y'}. By splitting the probabilities with different order,

H(E,Y|Z)=H(Y|Z)+ H(E|Y, Z) := (1)
— H(E|Z)+ H(Y|E, Z) := (2),

where (1) = H(Y|Z) since E becomes a constant given Y and Z. Then we upper bound (2) as

follows,

(2)

H(E|\Z)+ H(Y|E,Z)

H(E)+ H(Y|E, Z)
HE)+P(E=0HY|E=0,Y)+P(E=1)H(Y|E=1,2)
24+P(Z#Y)log M.

| /\

IN

Combining both (1) and (2), we have
H(Y|Z) <log2+P(Z #Y)logM,

in turn,
1

BZAY) 2

— (H(Y|2) ~log2). (5.2)
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Now, using the fact (5.1),

H(Y|Z)=logM — I(Y, Z)
>log M — I(Y, X)

p(y)p(xly)
~ o1 — [ 2. pplal) o8 )

= log M — /Z 1{y = j}p(xy) log ((g)

216
=log M — Z/p] ) log T}%()dw

> log M — WZKL(]P’] P

where the penultimate equality is followed since p(z) = >, P(Y = j)P(X

(5.3)

j) =

ﬁ > P (), and the last inequality is obtained by the concavity of the logarithm function. Com-

bining (5.2) and (5.3), we obtain

1
P(Z#Y)>1- KL(P;,P; log 2
( 7& )— ].OgM MQZ 7 )+Og

7’




