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Abstract: We consider the problem of estimating the tail index α of a distribution satisfying a (α, β) second-order Pareto-

type condition, where β is the second-order coefficient. When β is available, it was previously proved that α can be estimated

with the optimal rate n
− β

2β+1 . On the contrary, when β is not available, estimating α with the optimal rate is challenging;

so additional assumptions that imply the estimability of β are usually made. In this paper, we propose an adaptive estimator

of α, and show that this estimator attains the rate
(
n/ log logn

)− β
2β+1 without a priori knowledge of β and any additional

assumptions. Moreover, we prove that this
(

log logn
) β

2β+1 factor is unavoidable by obtaining the companion lower bound.
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1. Introduction

We consider the problem of estimating the tail index α of an (α, β) second-order Pareto

distribution F , given n i.i.d. observations X1, . . . , Xn. More precisely, we assume that for some

α, β, C,C ′ > 0,
∣∣1− F (x)− Cx−α

∣∣ ≤ C ′x−α(1+β). (1.1)

We will write S(α, β) := S(α, β, C,C ′) for the set of distributions that satisfy this property (see

Definition (2)). Here the tail index α characterizes the heaviness of the tail, and β represents the

proximity between F and an α-Pareto distribution FPα : x ∈ [C1/α,∞)→ 1− Cx−α.

There is an abundant literature on the problem of estimating α. A very popular estimator is

Hill’s estimator (Hill, 1975) (see also Pickands’ estimator (Pickands, 1975)). Hill (1975) considered

α-Pareto distribution for the tail, and suggested an estimator α̂H(r) of the tail index α based on

the order statistics X(1) ≤ . . . ≤ X(n) where r is the fraction of order statistics from the tail,

α̂H(r) =


 1

brnc

brnc∑

i=1

log(X(n−i+1))

log(X(n−brnc+1))



−1

. (1.2)

For more details, see e.g. de Haan and Ferreira (2006).

Limiting distribution of Hill’s estimator was first proved by Hall (1982) when β is known. Under

a model that is quite similar to (1.1), he proved that if rn1/(2β+1) → 0 as n→∞,
√
nr(α̂H(r)−α)
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converges in distribution to N(0, α2). He also considered more restricted condition, say, the exact

Hall condition,
∣∣1− F (x)− Cx−α

∣∣ = C ′′x−α(1+β) + o(x−α(1+β)). (1.3)

Under the model (1.3) with the choice of the sample fraction r∗ = Cn
− 1

2β+1 with some constant C,

Theorem 2 of Hall (1982) states that nβ/(2β+1)(α̂H(r∗)− α) converges to a Gaussian distribution

with finite mean and variance, depending on the parameters of the true distribution.

The companion lower bound n−β/(2β+1) under the assumption (1.1) was proved by Hall and

Welsh (1984). Drees (2001) improved this result by obtaining sharp asymptotic minimax bounds

again when β is available. From these results, we know that the second-order parameter β is crucial

to understand the behaviour of the distribution. Indeed, it determines the rate of estimation of α

as well as the optimal sample fraction.

However, β is unknown in general. To cope with this problem, Hall and Welsh (1985) proved

that under condition (1.3), it is possible to estimate β in a consistent way, and thus also to estimate

the sample fraction r∗ consistently by r̂ (see Theorem 4.2 in their paper). Theorem 4.1 of Hall and

Welsh (1985) deduces from these results that the estimate α̂H(r̂) is asymptotically as efficient as

α̂H(r∗), that is, nβ/(2β+1)(α̂H(r̂) − α) converges to a Gaussian distribution with the same mean

and variance as the one resulting from the choice r∗. Their result is pointwise, but not uniform

under the model (1.3), as opposed to the uniform convergence when β is known.

This first result on adaptive estimation was extended in several ways. For instance, Gomes, et.

al. (2008) provided more precise ways to reduce the bias of the estimate of α using the estimate

of β by supposing the third order condition. The adaptive estimates of α under the third order

condition was considered in Gomes, et. al. (2012). In addition, several other methods for estimating

r∗ have been proposed, e.g. bootstrap (e.g. Danielsson, et. al. (2001)) or regression (e.g. Beirlant,

et. al. (1996)). In particular, Drees and Kaufmann (1998) considered a method that is related to

Lepski’s method (see Lepski (1992) for more details in a functional estimation setting) by choosing

the sample fraction that balances the squared bias and the variance of the resulting estimate.

They proved that Hill’s estimate computed with this sample fraction is asymptotically as efficient

as the oracle estimate if F satisfies a condition that is slightly more restrictive than the condition

(1.3). Finally, Grama and Spokoiny (2008) consider a more general setting than (1.1). However,

when they apply their results to the exact Hall model (without little o), their estimator obtains

the optimal rate up to a log(n) factor, which is clearly sub-optimal as proven in Hall and Welsh

(1985).

In this paper, we focus on deriving results for the setting (1.1). Indeed, many common dis-
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tributions (in particular some distributions with change points in the tail) belong to it, and the

construction of the lower bound in Hall and Welsh (1984) was proved in this model. However, to

the best of our knowledge, either the existing results that we mentioned previously hold in a more

restrictive setting than the model (1.1), typically in a model that is close to the model (1.3) (see

e.g. Hall and Welsh (1985); Beirlant, et. al. (1996); Drees and Kaufmann (1998); Danielsson, et. al.

(2001); Gomes, et. al. (2008, 2012)), or the convergence rates for the setting (1.1) in the previous

results are worse than one could expect (see e.g. Grama and Spokoiny (2008)). It is important to

note here that the set of distributions described in Equation (1.1) is significantly larger than the set

of distributions that satisfy the restricted condition (1.3). As will be explained later, the adaptive

estimation in our setting (i.e. condition (1.1)) is more involved since the second-order parameter

β is not always estimable (even a consistent estimator does not exist for all distributions in this

model), and the adaptive procedures based on estimating β or the oracle sample fraction r∗ as in

the papers (Hall and Welsh (1985); Gomes, et. al. (2008, 2012)) might not work on all the functions

satisfying (1.1).

The contributions of this paper are the following. We construct an adaptive estimator α̂ of α

in the setting (1.1) and prove that α̂ converges to α with the rate (n/ log log(n))−β/(2β+1). More

precisely, for an arbitrarily small ε > 0, and some arbitrarily large range I1 for α and [β1,∞) for

β, there exist large constants D,E > 0 such that for any n > D log(log(n)/ε)

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

(
|α̂− α| ≥ E

(
n

log(log(n)/ε)

)− β
2β+1

)
≤ ε. (1.4)

There is an additional
(

log log(n)
) β

2β+1 factor in the rate with respect to the oracle rate, which

comes from the fact that we adapt over β on a set of distributions where β is not estimable. Al-

though we obtain worse rates of convergence than the oracle rate, we actually prove the optimality

of our adaptive estimator by obtaining a matching lower bound. Indeed, there exists a small enough

constant E′ > 0 such that for any n large enough, and for any estimator α̃,

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

(
|α̃− α| ≥ E′

(
n

log(log(n))

)− β
2β+1

)
≥ 1

4
.

Both lower and upper bounds containing the (log log(n))β/(2β+1) factor are new to the best of our

knowledge (we do not provide a tight scaling factor as in the paper by Novak (2013), but the setting

in this paper is different and their rate does not involve this additional (log log(n))β/(2β+1) factor).

The presence of the log log n factor is not unusual in adaptive estimation (see Spokoiny (1996) in

a signal detection setting). This issue is also discussed in the paper (Drees and Kaufmann, 1998).
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The adaptive estimator α̂ we propose in this paper is based on a sequence of estimates α̂(k)

defined in (3.1), where the parameter k ∈ N plays a role similar to the sample fraction in Hill’s

estimator (see Subsection 3.1 for more details). These estimates α̂(k) are not based on order

statistics, but on probabilities of tail events. We first prove that for an appropriate choice of this

threshold k (independent of α or β), α̂(k) is consistent. We then prove that for an oracle choice

of k (as a function of β), this estimate is minimax-optimal for distributions satisfying (1.1) with

the rate n
− β

2β+1 . Finally an adaptive version of this estimate, where the parameter k is chosen in

a data-driven way without knowing β in advance, is proved to satisfy Equation (1.4).

2. Definitions of distribution classes

In this section, we introduce two sets of distributions of interest, namely the class of ap-

proximately α-Pareto distributions, and the class of approximately (α, β) second-order Pareto

distributions. We let D be the class of distribution functions on [0,∞).

Definition 1. Let α > 0, C > 0. We denote by A(α,C) the class of approximately α-Pareto

distributions:

A(α,C) =
{
F ∈ D : lim

x→∞
(1− F (x))xα = C

}
.

Distributions in A(α,C) converge to Pareto distributions for large x, and these distributions

have been used as a first attempt to understand heavy tail behavior (see Hill (1975); de Haan and

Ferreira (2006)). The first-order parameter α characterizes the tail behavior such that distributions

with smaller α correspond to heavier tails.

In order to provide rates of convergence (of an estimator of α), we define the set of second-order

Pareto distributions.

Definition 2. Let α > 0, C > 0, β > 0 and C ′ > 0. We denote by S(α, β, C,C ′) the class of

approximately (α, β) second-order Pareto distributions:

S(α, β, C,C ′) =
{
F ∈ D : ∀x s.t. F (x) ∈ (0, 1],

∣∣1− F (x)− Cx−α
∣∣ ≤ C ′x−α(1+β)

}
. (2.1)

From Definition 2, we know that not only are the distributions in S(α, β, C,C ′) approximately

α-Pareto, but we additionally have a bound on the rate at which they approximate Pareto distribu-

tions. This rate of approximation is linked to the second-order parameter β—a large β corresponds

to a distribution that is very close to a Pareto distribution (in particular, when β =∞, it becomes

exactly Pareto), and a small β corresponds to a distribution that is well approximated by a Pareto

distribution only for a very large x. From now, if there is no confusion, we call the distributions in
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S(α, β, C,C ′) second-order Pareto distributions, and we use the notation A and S without writing

parameters explicitly.

The condition in (2.1) is related to the condition (1.3), but is weaker. Indeed, the condition

(1.3) implies

lim
x→∞

1− F (x)− Cx−α
x−α(1+β)

= C ′,

whereas our condition imposes only an upper bound,

lim sup
x→∞

∣∣∣1− F (x)− Cx−α
x−α(1+β)

∣∣∣ ≤ C ′.

This difference is essential in the estimation problem. For instance, in the setting (1.3), it is possible

to estimate β consistently (see e.g. Hall and Welsh (1985)), whereas in our setting (2.1), it is not

possible to estimate β consistently over the set S of distributions for β ∈ [β1, β2] with 0 < β1 < β2.

Adaptive estimation of α is thus likely to be more involved in our setting than in the more restricted

model (1.3). For instance, many adaptive techniques rely on estimating β or the sample fraction

as a function of β, which is not directly applicable in our setting (see e.g. Hall and Welsh (1985);

Danielsson, et. al. (2001); Gomes, et. al. (2012)).

Remark 1. The difference between the functions satisfying the condition in Definition 2 and

the condition (1.3) is related to the difference between Hölder functions that actually attain their

Hölder exponent and Hölder functions that are in a given Hölder ball but do not attain their Hölder

exponent (see e.g. Giné and Nickl (2010) for a comparison of these two sets, and the problem for

estimation when the second set is considered).

3. Main results

Most estimates in the literature are based on order statistics (as Hill’s estimate or Pickands’

estimate), which causes a difficulty for one to analyse them in a non-asymptotic way. In contrast,

the estimate we will present in Section 3.1 verifies large deviation inequalities in a simple way. This

estimate is based on probabilities of well chosen tail events.

3.1. A new estimate

Let X1, . . . , Xn be an i.i.d. random sample from a distribution F ∈ A. We write, for any k ∈ N,

pk := P(X > ek) = 1− F (ek),

and its empirical estimate

p̂k :=
1

n

n∑

i=1

1{Xi > ek}.
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We define the following estimate of α for any k ∈ N

α̂(k) := log(p̂k)− log(p̂k+1). (3.1)

This estimate gives the following large deviation inequalities, which is crucial for proving consis-

tency and convergence rates of α̂(k).

Lemma 1 (Large deviation inequality). Let X1, . . . , Xn be an i.i.d. sample from F .

A. Suppose F ∈ A and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)
n , with probability larger

than 1− 2δ,

∣∣α̂(k)− (log(pk)− log(pk+1))
∣∣ ≤ 6

√
log(2/δ)

npk+1
. (3.2)

B. Assume now that F ∈ S and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)
n and e−kαβ ≤

C/(2C ′), with probability larger than 1− 2δ,

∣∣α̂(k)− α
∣∣ ≤ 6

√
log(2/δ)

npk+1
+

3C ′

C
e−kαβ (3.3)

≤ 6

√
e(k+1)α+1 log(2/δ)

Cn
+

3C ′

C
e−kαβ. (3.4)

For this new estimate α̂(k), k plays a similar role as the sample fraction in Hill’s estimate (1.2).

The bias-variance trade-off should be solved by choosing k in an appropriate way as a function

of β (we will explain this more in details later). Choosing a too large k leads to using a small

sample fraction, and the resulting estimate has a large variance and a small bias. On the other

hand, choosing a too small k yields a large bias and a small variance for the estimate. The optimal

k equalises the bias term and the standard deviation.

3.2. Rates of convergence

We first consider the set of approximately Pareto distributions, and prove that the estimate

α̂(kn) is consistent if we choose kn such that it diverges to ∞ but not too fast.

Theorem 1 (Consistency in A). Let F ∈ A. Let kn ∈ N be such that kn→∞ and (log(n)/n)eknα →
0 as n→∞. Then

α̂(kn)→ α a.s.

Choosing (for instance) kn = (log log(n)) ensures almost sure convergence.
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The estimate α̂(log log(n)) converges to α almost surely under the rather weak assumption

that F belongs to A. But on such sets, no uniform rate of convergence exists, and this is the reason

why the restricted set S is introduced.

Let α, β, C,C ′ > 0. Consider now the set S := S(α, β, C,C ′) of second-order Pareto distri-

butions. We assume in a first instance that, although we do not have access to α, we know the

parameter α(2β+1). It is not very realistic assumption, but we will explain soon how we can modify

the estimate so that it is minimax optimal on the class of second-order Pareto distributions.

Theorem 2 (Rate of convergence when α(2β+ 1) is known). Let n be such that (4.7) is satisfied.

Let k∗n = blog(n
1

α(2β+1) ) + 1c. Then for any δ > 0, we have

sup
F∈S

PF
(
|α̂(k∗n)− α| ≥

(
B1 +

3C ′

C

)
n
− β

2β+1

)
≤ 2δ,

where B1 = 6

√
e2α+1 log(2/δ)

C .

Theorem 2 states that, uniformly on the class of second-order Pareto distributions, the estimate

α̂(k∗n) converges to α with the minimax optimal rate n
− β

2β+1 (see Hall and Welsh (1984) for the

matching lower bound).

Remark 2. Theorem 2 can be used to prove the convergence rate of our estimator by modifying the

choice of k∗n, when α(2β + 1) is unknown but only β is known. For instance, we can plug a rough

estimate α̃ := α̂((log log(n))2) of α into k∗n. The idea behind this choice is that with sufficiently

large n, we have with high probability,

|α̂((log log(n))2)− α| = O

(
1

log n

)
.

Then k̂1
n is defined as blog(n

1
α̃(2β+1) ) + 1c. Finally, the rate of convergence of α̂(k̂1

n) can be shown

as n−β/(2β+1) by proving exp(k̂1
n) = O(n1/(α(2β+1))) with high probability.

However, the previous optimal choice of k (k∗n or k̂1
n) still depends on β, which is unavailable

in general. To deal with this problem, we construct an adaptive estimate of α that does not depend

on β but still attains a rate that is quite close to the minimax optimal rate n
− β

2β+1 on the class

of β second-order Pareto distributions.

The adaptive estimator is obtained by considering a kind of bias and variance trade-off based

on the large deviation inequality (3.2). Suppose we know the optimal choice of k∗. Then this k∗

will optimize the squared error by making bias and standard error (of the estimate with respect

to its expectation) equal. Since the bias is decreasing while the standard error is increasing as k
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increases, for all k′ larger than this optimal k∗, the bias will be smaller than the standard error.

Based on this heuristic (originally proposed by Lepski (1992)), we pick the smallest k which satisfies

for all k′ larger than k, the proxy for the bias is smaller than the proxy for the standard error

O(
√

1/(np̂k′+1)) as in (3.2). For the proxy for the bias, we use |α̂(k′)− α̂(k)| by treating α̂(k) as

the true α based on the idea that α̂(k) would be very close in terms of the rate to the true α (if k

is selected in an optimal way).

More precisely, we choose k as follows, for 1/4 > δ > 0

k̂n = inf
{
k ∈ N : p̂k+1 >

24 log(2/δ)

n
and

∀k′ > k s.t. p̂k′+1 >
24 log(2/δ)

n
, |α̂(k′)− α̂(k)| ≤ A(δ)

√
1

np̂k′+1

}
, (3.5)

where A(δ) satisfies the condition (3.6) in the following theorem.

Theorem 3 (Rates of convergence with unknown β). Let 1/4 > δ > 0 and let n be such that (4.9)

is satisfied. Consider the adaptive estimator α̂(kn) where kn is chosen as described in (3.5) where

A(δ) satisfies the following condition

A(δ) ≥ 6
√

2(C + C ′) log(2/δ)

(
2

√
e2α+1

C
+
C ′

C

)
. (3.6)

Then we have

sup
F∈S

PF

(
|α̂(k̂n)− α| ≥

(
B2 +

3C ′

C

)( n

log(2/δ)

)− β
2β+1

)
≤
(

1 +
1

α
log

(
(C + C ′)n

16

))
δ.

where B2 =
(
B1 + 2A(δ)

√
e2α

C

)
1√

log(2/δ)
and B1 is defined in Theorem 2.

Theorem 3 holds for any (α, β) provided that n and A(δ) are larger than some constants

depending on α, β, C,C ′, and on the probability δ. The advantage of our adaptive estimator is

that since the threshold k̂n is chosen adaptively to the samples, the second-order parameter β does

not need to be known in the procedure in order to obtain the convergence rate of α̂(k̂n). Theorem 3

gives immediately the following corollary.

Corollary 1. Let ε ∈ (0, 1) and C ′ > 0 and let 0 < α1 < α2 and 0 < C1 < C2. We use k̂n as in



Adaptive and minimax optimal estimation of the tail coefficient 9

(3.5) where A(δ) = A(δ(ε)) =: A(ε) is chosen as in Equation (4.19). If n satisfies (4.21), then

sup

α∈[α1,α2],β∈[β1,∞]

C∈[C1,C2]

sup
F∈S(α,β,C,C′)

PF


|α̂(k̂n)− α| ≥ B3


 n

log
(

2
ε

(
1 + log((C2+C′)n)

α1

))



− β

2β+1


 ≤ ε,

where B3 is a constant explicitly expressed in (4.20), which only depends on α2, C1, C2, and C ′.

In other words, if we fix the range of the α and C and a lower bound on β to which we wish to

adapt, we can tune the parameters of the adaptive choice of k̂n so that we adapt to the maximal

β such that F is β second-order Pareto. Moreover, this adaptive procedure works uniformly well

over the set of second-order Pareto distributions satisfying (1.1) (for α ∈ [α1, α2], β ∈ [β1,∞], C ∈
[C1, C2]), which is much larger than the class of distributions that verify the condition (1.3). Then

this gives non-asymptotic guarantees with explicit bounds.

Remark 3. The parameter C ′ plays a role in the definition of the second order Pareto class

that is slightly different than the one of C or α, β. Unlike α or C, C ′ is not uniquely defined: if

F ∈ S(α, β, C, C̃ ′), then F ∈ S(α, β, C,C ′) with C ′ ≥ C̃ ′. This implies in particular that the results

of Corollary 1 could have been rewritten, fixing a constant C ′ > 0 and writing C̃ ′ for a constant

that fits more closely F , by taking supremum over F ∈ S(α, β, C, C̃ ′) where C̃ ′ ≤ C ′. Being non-

adaptive over C̃ ′ and choosing a loose constant C ′ instead of C̃ ′ will only worsen the bound by a

constant factor, unlike making a mistake on β which will worsen the exponent of the bound.

It seems that we lose a (log log(n))
β

2β+1 factor with respect to the optimal rate, due to adaptivity

to β. However, the lower bound below implies that this (log log(n))
β

2β+1 loss is inevitable; hence

the rate provided in Theorem 3 is sharp.

Theorem 4 (Lower bound). Let α1, β1, C1, C2, C
′ > 0 be such that C1 ≤ exp(− 1

2α1(2β1+1)), C2 ≥ 1

and C ′ ≥ 1
2α1β1

. Let n be sufficiently large. Then for any estimate α̃ of α,

sup

α∈[α1,2α1],β∈[β1,∞)

C∈[C1,C2]

sup
F∈S(α,β,C,C′)

PF

(
|α̃− α| ≥ B4

( n

log
(

log(n)/2
)
)− β

2β+1

)
≥ 1

4
,

where B4 is a constant depending on α1 and β1, which is provided in (4.30).

The lower bound result is proved with specific ranges of the parameters (e.g. restrictions on

C1, C2, C
′ in the statement of Theorem 4), but it can be modified by considering different ranges
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(see Remark 4).

3.3. Additional remarks on our estimate

In the definition of our estimate, we use exponential spacings (i.e. we estimate the probability

that the random variable is larger than ek), but we can generalize our estimate by considering the

probability of other tail events. For some parameters u > v ≥ 1, define

q̂u =
1

n

n∑

i=1

1{Xi > u}, and q̂v =
1

n

n∑

i=1

1{Xi > v}.

We define the following estimate of α as

α̂(u, v) =
log(q̂v)− log(q̂u)

log(u)− log(v)
. (3.7)

If we fix v ∼ O(n1/(α(2β+1)) and u/v ∼ O(1), then we will also obtain the oracle rate for estimating

α with α̂(u, v). However, the choice of u/v will have an impact on the constants. In practice, these

parameters are important to tune well (in particular for the exact Pareto case, or for distributions

satisfying Equation (1.3)). However, a precise analysis of the best choices for u and v (in terms of

constants) is beyond the scope of this paper.

Another point we want to address is the relation between our estimate and usual estimates

based on order statistics. To estimate the tail index α, it is natural to consider the quantiles

associated with the tail probabilities. For the estimates based on order statistics, one fixes some

tail-probabilities and then observes the order statistics in order to estimate the quantiles. On the

other hand, we fix some values corresponding to the quantiles, and estimate the associated tail

probabilities. Based on such a link, one could relate any existing method based on order statistics

to the method based on tail probabilities.

In particular, the estimator based on order statistics corresponding to our estimator would be

of the form, for some parameters 1 ≥ qv > qu ≥ 0,

α̃(qu, qv) =
log(qv)− log(qu)

log(û)− log(v̂)
, (3.8)

where û = X(n−bqunc) and v̂ = X(n−bqvnc). This estimate can be interpreted as the inverse of some

generalized Pickands’ estimate (see Pickands (1975), it is however not Pickands’ estimate). There

is actually a duality between these two estimators: for any couple (qu, qv) in the definition (3.8),

it is possible to find (u, v) in the definition (3.7) such that these two estimates exactly match (see

Figure 3.1 for an illustration). However, there is no analytical transformation from one estimate

to the other since such a transformation will be data dependent.
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q̂v or qv

q̂u or qu

v̂ or v

û or u

1 − Fn(x) =
1

n

n∑

i=1

1{Xi > x} or 1 − F (x) = P(X > x)

4. Technical proofs

Lemma 4.11 contains a simple but important result for the paper, so we provide the statement

and the proof (although it is probably well known).
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also let n be large enough so that pk ≥ 4 log(2/δ)
n . Then with probability 1 − δ,

|p̂k − pk| ≤ 2

√
pk log(2/δ)

n
. (4.1) eq:berndev

Proof of Lemma 4.11. The proof is using Bernstein inequality (e.g. see Lemma 19.32 of Van der

Vaart (2000)) of the following form; for any bounded, measurable function g, we have for every

t > 0,
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= δ,

where the last equality is followed by the definition of t.
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Fig 3.1. Duality between the estimate (3.7) and the estimate (3.8).
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Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. The Annals of Statistics,

38, (2) 1122–1170.

Gomes, M. I. and F. Figueiredo, and Neves, M. (2012). Adaptive estimation of heavy right tails:

resampling-based methods in action. Extremes, 15. 463–489
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4. Technical proofs

Lemma 2 contains a classical and simple, yet important result for the paper.

Lemma 2 (Bernstein inequality for Bernoulli random variables). Let X1, . . . , Xn be i.i.d. obser-

vations from F , and we define pk = 1 − F (ek) and p̂k = 1
n

∑n
i=1 1{Xi > ek}. Let δ > 0 and also

let n be large enough so that pk ≥ 4 log(2/δ)
n . Then with probability 1− δ,

|p̂k − pk| ≤ 2

√
pk log(2/δ)

n
. (4.1)

Proof of Lemma 2. The proof is using Bernstein inequality (e.g. see Lemma 19.32 of Van der Vaart

(2000)) of the following form; for any bounded, measurable function g, we have for every t > 0,

P

(∣∣∣∣∣
√
n

(
1

n

n∑

i=1

g(Xi)− Eg(X)

)∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

4

t2

Eg2 + t||g||∞/
√
n

)
.

We use g(·) = 1{· > ek} and t = 2
√
pk log(2/δ) in the above inequality. Using the fact that

t = 2
√
pk log(2/δ) ≤ √npk by the assumption of pk ≥ (4 log(2/δ))/n, we have

P
(√
n|p̂k − pk| > t

)
≤ 2 exp

(
−1

4

t2

pk + t/
√
n

)

≤ 2 max

[
exp

(
−1

4

t2

pk

)
, exp

(
−1

4

√
nt

)]

≤ 2 exp

(
−1

4

t2

pk

)

= δ,

where the last equality follows by definition of t.

Proof of Lemma 1. A. Since pk ≥ 16 log(2/δ)/n, we can use Lemma 2. Rewriting the inequal-

ity (4.1), we have with probability larger than 1− δ

log

(
1− 2

√
log(2/δ)

npk

)
≤ log(p̂k)− log(pk) ≤ log

(
1 + 2

√
log(2/δ)

npk

)
.
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Then using the simple inequalities log(1 + u) ≤ u, and log(1− u) ≥ (−3u)/2 for u < 1/2,

log(pk)− 3

√
log(2/δ)

npk
≤ log(p̂k) ≤ log(pk) + 2

√
log(2/δ)

npk
.

By using a similar inequality for log(p̂k+1), with probability larger than 1− 2δ,

∣∣α̂(k)− (log(pk)− log(pk+1))
∣∣ ≤ 3

√
log(2/δ)

npk
+ 3

√
log(2/δ)

npk+1

≤ 6

√
log(2/δ)

npk+1
. (4.2)

B. By definition of second-order Pareto distributions, we have
∣∣pk−Ce−kα

∣∣ ≤ C ′e−kα(1+β), or

equivalently, ∣∣∣∣
ekαpk
C
− 1

∣∣∣∣ ≤
C ′

C
e−kαβ.

Since we assume C′

C e
−kαβ ≤ 1/2, we have

∣∣ log(pk)− log(C) + kα
∣∣ ≤ 3C ′

2C
e−kαβ.

A similar result also holds for pk+1, and thus

∣∣ log(pk)− log(pk+1)− α
∣∣ ≤ 3C ′

C
e−kαβ. (4.3)

Combining Equations (4.2) and (4.3), we obtain the large deviation inequality (3.3). Now,

using the property of the second-order Pareto distributions, we can bound pk+1 from below.

pk+1 ≥ Ce−(k+1)α

(
1− C ′

C
e−(k+1)αβ

)

≥ C

2
e−(k+1)α ≥ Ce−(k+1)α−1,

where the second inequality comes from the assumption that e−kαβ ≤ C/(2C ′). By substituting

this into the inequality (3.3), the final inequality (3.4) follows.

Proof of Theorem 1. The proof consists of the two steps—bounding the bias, and bounding the

deviations of the estimate—as in the proof of the Lemma 1.B.

First, we bound the bias (more precisely, a proxy for the bias) using the property of the

distribution class A. By definition, we know that for any ε such that C/2 > ε > 0, there exists a

constant B > 0 such that for x > B,

∣∣1− F (x)− Cx−α
∣∣ ≤ εx−α.
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Since kn → ∞ as n → ∞, for any n larger than some large enough N1 (i.e. such that ∀n ≥ N1,

ekn > B), we have ∣∣pkn − Ce−knα
∣∣ ≤ εe−knα, (4.4)

which yields since ε < C/2,
∣∣ log(pkn) − log(C) + knα

∣∣ ≤ 3ε
2C using the same technique as for the

proof of Lemma 1. This holds also for kn + 1 and thus

∣∣ log(pkn)− log(pkn+1)− α
∣∣ ≤ 3ε

C
. (4.5)

Note also that Equation (4.4) can be used to bound the pkn+1 below as follows.

pkn+1 ≥ (C − ε)e−(kn+1)α ≥ C

eα+1
e−knα. (4.6)

Since (log(n)eknα)/n→ 0 as n→∞, we know that there exists N2 large enough, such that for any

n ≥ N2, pkn+1 ≥ 32 log(n)/n.

Then we can bound the proxy for the standard deviation using the result (3.2) in Lemma 1.A.

For n ≥ max(N1, N2), combining Equation (4.5) and Equation (3.2) with δ = 2/n2, we have with

probability larger than 1− 4/n2,

∣∣α̂(kn)− α
∣∣ ≤ 6

√
log(n2)

npkn+1
+

3ε

C
.

Then we bound the first term in the right side of the above inequality using (4.6). That is,

6

√
log(n2)

npkn+1
≤ 6

√
eα+1

log(n2)

Cne−knα
≤ 6e(α/2)+1

√
C

√
log(n)eknα

n

By the assumption that (log(n)eknα)/n→ 0, and since the above inequality holds for any ε > 0,

we conclude that αn converges in probability to α. Moreover, since
∑

n(4/n2) <∞, Borel–Cantelli

Lemma says that α̂(kn) converges to α almost surely.

Proof of Theorem 2. Let n satisfy the following,

n > max
(

(
2C ′

C
)
2β+1
β , (

32 log(2/δ)e2α

C
)
2β+1
2β

)
. (4.7)

We let k∗ = k∗n such that k∗n :=
⌊
log(n

1
α(2β+1) ) + 1

⌋
. Note that for n larger than (2C ′/C)

2β+1
β , we

have e−k
∗αβ ≤ C/(2C ′). This implies, together with the second-order Pareto assumption,

pk∗+1 ≥
C

2
n
− 1

2β+1 e−2α ≥ 16 log(2/δ)

n
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where the last inequality follows by assuming n ≥ (32 log(2/δ)e2α

C )
2β+1
2β .

By (3.4) and by the choice of kn, we have with probability larger than 1− 2δ,

∣∣α̂(k∗)− α
∣∣ ≤

(
6

√
e2α+1

log(2/δ)

C
+

3C ′

C

)
n
− β

2β+1 .

The following lemma is going to be a useful tool for the proof of Theorem 3.

Lemma 3. We define K such that pK ≥ 16 log(2/δ)
n and also pK+1 < 16 log(2/δ)

n . Then for any

k ≥ K + 1, with probability larger than 1− δ,

p̂k ≤
24 log(2/δ)

n
. (4.8)

Proof of Lemma 3. We let q := 16 log(2/δ)/n and define a Bernoulli random variable Yi(q) (in-

dependent from X1, . . . , Xn) where P (Yi(q) = 1) = q for i = 1, . . . , n. Then we compare mq :=
1
n

∑n
i=1 Yi(q) and p̂K+1 = 1

n

∑n
i=1 1{Xi > eK+1}. Since q > pK+1, the distribution of p̂K+1 is

stochastically dominated by the distribution of mq (that is, P (p̂K+1 > t) ≤ P (mq > t)). By

Lemma 2, we have with probability larger than 1− δ,

|mq − q| ≤ 2

√
q log(2/δ)

n
=

8 log(2/δ)

n
.

Then by stochastic dominance, with probability 1− δ,

p̂K+1 ≤ q + 2

√
q log(2/δ)

n
=

24 log(2/δ)

n
.

Thus, for any k ≥ K + 1 using the monotonicity of p̂k (that is, p̂k ≥ p̂k+1), we obtain that (4.8)

holds with probability larger than 1− δ as required.

Proof of Theorem 3. The proof is based on 5 steps. We first define an event ξ in (4.11) of high

probability where the deviation of empirical probabilities p̂k from pk is well upper bounded (with

the same bound in the large deviation inequality in (4.1) but without a probability statement) for

a given subset of indices k ≤ K, where K is of order of log n. Then we define k̄ which is slightly

smaller than the oracle k∗ and also k̄ ≤ K so that on ξ the deviation of α̂(k̄) from α (i.e. |α̂(k̄)−α|)
is upper bounded as in (4.14). In the third step, we show that p̂k̄+1 > 24 log(2/δ)/n on ξ so that

k̄ is one possible index for k̂n. Also we prove that k̂n ≤ k̄ in Step 4 which leads us to bound

|α̂(k̄) − α̂(k̂n)| from above on ξ using the definition of k̂n. This combined with the second step
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finally gives an upper bound of |α̂(k̂n) − α| on ξ. More precisely, we prove that on the set ξ, we

have |α̂(k̂n)−α| ≤ (B2 + 3C′

C )( n
log(2/δ))−β/(2β+1) where B2 is a constant which will be defined in the

last stage of the proof. Then we can bound P(|α̂(k̂n)− α| ≥ (B2 + 3C′

C )( n
log(2/δ))−β/(2β+1)) ≤ P(ξc)

which has a small probability.

Let F ∈ S(α, β, C,C ′) and 1/4 > δ > 0. Also we let n satisfy the following,

n > log
(2

δ

)
max

[
32
( 2C ′

C1+β

)1/β
,
(32e2α

C

) 2β+1
2β

,
(2C ′

C

) 2β+1
β
,
(96e2α

C

) 2β+1
β

]
. (4.9)

Step 1: Definition of an event of high probability

First, we define K ∈ N such that pK ≥ 16 log(2/δ)
n > pK+1. By inverting the condition for the

second-order Pareto distributions, 16 log(2/δ)
n ≤ pK ≤ (C + C ′)e−Kα gives K ≤ 1

α log
(

(C+C′)n
16 log(2/δ)

)
.

Set u = 1
α log

(
Cn

32 log(2/δ)

)
− 1. Then since n > 32( 2C′

C1+β )1/β log(2/δ), we know by definition of S
that 1 − F (eu+1) > 16 log(2/δ)

n . Using the fact that 1 − F (ex) is a decreasing function of x and
16 log(2/δ)

n > pK+1, we have u < K. Thus we obtain the range of K by

1

α
log

(
Cn

32 log(2/δ)

)
− 1 < K ≤ 1

α
log

(
(C + C ′)n
16 log(2/δ)

)
. (4.10)

We define the following event

ξ =
{
ω : ∀k ≤ K,

∣∣p̂k(ω)− pk
∣∣ ≤ 2

√
pk log(2/δ)

n
, p̂K+1(ω) ≤ 24 log(2/δ)

n

}
. (4.11)

By definition, we have pK ≥ 16 log(2/δ)
n , which gives the Bernstein inequality (4.1) with probability

1 − δ for k ≤ K. In addition, Lemma 3 gives (4.8) with probabiltiy 1 − δ. Thus, an union bound

implies that P(ξ) ≥ 1−(K+1)δ. By monotonicity of p̂k, we have on the event ξ, for any k ≥ K+1,

p̂k ≤ 24 log(2/δ)
n . This implies that on the event ξ, the k, k′ considered in Equation (3.5) are smaller

than K and in particular, we have k̂n ≤ K.

Step 2: Bounding the deviation of α̂(k) from α on ξ (where k ≤ K)

We define k̄n = k̄ ∈ N such that

k̄ :=

⌊
log

(( n

log(2/δ)

) 1
α(2β+1)

)
+ 1

⌋
.

By definition of k̄, we know that k̄ < K. Indeed, by assuming n ≥ (32 e
2α

C )
2β+1
2β log(2/δ) and

by (4.10),

k̄ ≤ log

(( n

log(2/δ)

) 1
α(2β+1)

)
+ 1 ≤ 1

α
log

(
Cn

32 log(2/δ)

)
− 1 < K.
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Thus,

e−Kαβ ≤ e−k̄αβ ≤ C/(2C ′), (4.12)

where the second inequality follows since n > log(2/δ)(2C′

C )
2β+1
β .

Note also that k̄ ≤ k∗, where k∗ :=
⌊
log
(
n

1
α(2β+1)

)
+ 1
⌋

as before.

If k < K satisfies e−kαβ ≤ C/(2C ′), then since pk+1 ≥ pK ≥ (16 log(2/δ))/n, then using the

exactly same proof as for Lemma 1.B, we have on ξ that

|α̂(k)− α| ≤ 6

√
e(k+1)α+1 log(2/δ)

Cn
+

3C ′

C
e−kαβ. (4.13)

Since e−k̄αβ ≤ C/(2C ′) by (4.12) and k̄ < K, Equation (4.13) is verified for k̄ on ξ. Then by

definition of k̄ in Equation (4.13), we have on ξ that

|α̂(k̄)− α| ≤
(

6

√
e2α+1

C
+

3C ′

C

)(
n

log(2/δ)

)− β
2β+1

. (4.14)

Step 3: Proof that p̂k̄+1 >
24 log(2/δ)

n on ξ

By definition, we have on ξ, using k̄ ≤ K − 1 and pk̄+1 ≥ pK ≥ (16 log(2/δ))/n,

p̂k̄+1 ≥ pk̄+1

(
1− 2

√
log(2/δ)

npk̄+1

)
≥ pk̄+1

2
.

Then using the second order Pareto property with (C ′/C)e−k̄αβ ≤ 1/2, we have pk̄+1 ≥ (Ce−(k̄+1)α)/2,

which gives

p̂k̄+1 ≥
Ce−(k̄+1)α

4
≥ Ce−2α

4

(
log(2/δ)

n

)1/(2β+1)

, (4.15)

where the second inequality follows from n > log(2/δ)(2C′

C )
2β+1
β and from the definition of k̄. Since

n >
(

96e2α

C

) 2β+1
β

log(2/δ), we have shown that p̂k̄+1 is larger than 24 log(2/δ)
n on ξ.

Step 4: Proof that k̂n ≤ k̄ on ξ

Suppose that k̂n > k̄. Then by definition of k̂n in (3.5), on ξ, there exists k > k̄ such that

p̂k+1 >
24 log(2/δ)

n (this imposes k < K on ξ) and

|α̂(k)− α̂(k̄)| > A(δ)

√
1

np̂k+1
≥ A(δ)√

2(C + C ′)

√
ekα

n
, (4.16)

where the second inequality in the above follows by bounding p̂k+1 above by definition of ξ,

p̂k+1 ≤ pk+1

(
1 + 2

√
log(2/δ)

npk+1

)
≤ 3

2
pk+1 ≤ 2(C + C ′)e−kα,
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where the penultimate inequality is obtained by pk ≥ pK ≥ 16 log(2/δ)/n (since k ≤ K), and the

last inequality follows by definition of the second order Pareto condition.

Since k ≥ k̄+1, we bound e−kαβ ≤ e−k̄αβ ≤ C/(2C ′) by (4.12). Also we have pk+1 ≥ 16 log(2/δ)
n ,

since pk+1 ≥ pK . Equation (4.13) is thus verified on ξ for such k > k̄. Now using

√
ekα log(2/δ)

n >

e−kαβ (since k > k̄), we have

|α̂(k)− α| ≤
(

6

√
eα+1

C
+

3C ′

C

)√ekα log(2/δ)

n
. (4.17)

Equations (4.16) and (4.17) imply that on ξ,

|α̂(k̄)− α| >
( A(δ)√

2(C + C ′)
−
√

log(2/δ)
(
6

√
eα+1

C
+

3C ′

C

))
√
ekα

n

≥
(
6

√
e2α+1

C
+

3C ′

C

)( n

log(2/δ)

)− β
2β+1

,

since we assume that A(δ)√
2(C+C′)

≥ 2
√

log(2/δ)
(
6
√

e2α+1

C + 3C′

C

)
. This contradicts Equation (4.14),

and this means that on ξ, k̂n ≤ k̄.

Step 5: Large deviation inequality for an adaptive estimator

We have p̂k̄+1 ≥ 24 log(2/δ)
n from Step 3, and k̂n ≤ k̄ from Step 4 on ξ. Thus by definition of k̂n

in (3.5), we have on ξ that

|α̂(k̄)− α̂(k̂n)| ≤ A(δ)

√
1

np̂k̄+1

≤ 2A(δ)

√
e2α

C

(
log

(
2

δ

))− 1
2(2β+1)

n
− β

2β+1

= 2A(δ)

√
e2α

C log(2/δ)

(
n

log(2/δ)

)− β
2β+1

, (4.18)

where the second inequality follows on ξ by Equation (4.15).

Hence, Equations (4.18) and (4.14) imply that on ξ

|α̂(k̂n)− α| ≤
(
(
6

√
e2α+1

C
+

3C ′

C

)
+ 2A(δ)

√
e2α

C log(2/δ)

)(
n

log(2/δ)

)− β
2β+1

.

Denote B1 = 6
√

e2α+1

C log(2/δ) and B2 =
(
B1 + 2A(δ)

√
e2α

C

)
1√

log(2/δ)
. Then since P(ξ) ≥
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1− (K + 1)δ, we have shown that

sup
F∈S

PF

(
|α̂(k̂n)− α| ≥

(
B2 +

3C ′

C

)( n

log(2/δ)

)− β
2β+1

)

≤ (K + 1)δ ≤
(

1

α
log

(
(C + C ′)n

16

)
+ 1

)
δ

where the last inequality follows by (4.10). This concludes the proof.

Proof of Corollary 1. Set

ε =

(
1 +

1

α1
log
(
(C2 + C ′)n

))
δ,

A(ε) = 6
√

2(C2 + C ′)



√

log

(
2

ε

(
1 +

log((C2 + C ′)n)

α1

))(
2

√
e2α2+1

C1
+
C ′

C1

)

 , (4.19)

and plug δ = δ(ε) = ε/(1 + log((C2 + C ′)n))/α1) and A(ε) := A(δ(ε)) in the adaptive method

described in Theorem 3. Set

B3 := 6

√
e2α2+1

C1
+ 24

e2α2

C1

√
2e(C2 + C ′) + 12eα2

C ′

C1

√
2

(C2 + C ′)
C1

+
3C ′

C1
. (4.20)

It holds for any α ∈ [α1, α2], C ∈ [C1, C2] and β > β1 that the constant in Theorem 3 can be

bounded as

B2 +
3C ′

C
= 6

√
e2α+1

C
+ 12

√
2
e2α

C
(C2 + C ′)

(
2

√
e2α2+1

C1
+
C ′

C1

)
+

3C ′

C

≤ B3,

so B3 is a uniform bound on the constant in Theorem 3 for all considered values of α,C, β. Also,

the uniform condition for the sample size is derived from Equation (4.9) by

n > log

(
2

ε

(
1 +

log((C2 + C ′)n)

α1

))

×max

[
32
( 2C̄ ′

C̄1+β1
1

) 1
β1 ,
(2C̄ ′

C̄1

)2+ 1
β1 ,
(32e2α2

C̄1

)1+ 1
2β1 ,

(96e2α2

C̄1

)2+ 1
β1

]
, (4.21)

where C̄1 = min(1, C1) and C̄ ′ = max(1, C ′).
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Proof of Theorem 4. We prove the minimax lower bound by Fano’s method (see e.g. Section 2.7

in Tsybakov (2008)). We define a set of approximately log(n) functions Fi whose first and second

order parameters are respectively αi and βi. Until a point Ki, each distribution Fi matches a Pareto

distribution with the first order parameter α, which is the same for all of the Fi. After this point

Ki, Fi is Pareto with parameter αi. These functions satisfy several specific properties summarized

in Lemma 4. For instance, they are such that the for any i 6= j, the distance between αi and αj is

at least of order ( n
log log(n))

− βi
2βi+1 . Moreover, the Kullback Leibler (KL) divergence between Fi and

Fj is small enough so that Fi and Fj cannot be distinguishable as n increases. These two main

properties enable us to apply Fano’s lemma, which results in the lower bound of Theorem 4. For

the proof, we assume that n is sufficiently large.

Step 1: Construction of a finite set of distributions

Let α > 0 and β > 1. Let υ := min
(
1, α2

8 exp( 1
α(2β−1)

)

)
. Let M > 1 be an integer such that

blog(n/ log(M))c+ 1 = M,

which implies that log(n)/2 < M < 2 log(n) for large n. Set for any integer 1 ≤ i ≤M

βi = β − i

M

γi =
βi

2βi + 1

(
1 +

log(υ)

log logM

)

Ki = n
1

α(2βi+1)
(

logM
)− γi

αβi =
( n

υ log(M)

) 1
α(2βi+1)

(4.22)

ti = K−αβii = n
− βi

2βi+1
(

logM
)γi =

( n

υ log(M)

)− βi
2βi+1

αi = α− ti = α− n−βi/(2βi+1)(log(M))γi .

By definition, for i < j, we have βi > βj , γi > γj , Ki < Kj , ti < tj and αi > αj . By assuming n

large enough, we suppose that γi > 0 for all i = 1, . . . ,M , and min(α,1/α)
2 n

βi
2βi+1 > M

βi
2βi+1

+1
. Also

we have βi ≥ β − 1, Ki > 1, and α− ti ≥ α/2 =: α1 for large enough n.

Using these notation, we introduce the distribution

1− F0(x) = x−α, (4.23)

and for any integer 1 ≤ i ≤M , we introduce perturbed versions of the distribution F0

1− Fi(x) = x−α1{1 ≤ x ≤ Ki}+K−tii x−α+ti1{x > Ki}. (4.24)
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We write {f0, f1, . . . , fM} for the densities associated with distributions {F0, F1, . . . , FM} with

respect to Lebesgue measure.

Step 2: Properties of the constructed distributions

The following lemma highlights important characteristics of distributions {Fi, i = 1, . . . ,M}
and their parameters corresponding to the second order Pareto distributions.

Lemma 4. Let 1 ≤ i ≤ M and 1 ≤ j ≤ M . It holds that for Fi defined as (4.24) and using

notation in (4.22),

Fi ∈ S
(
α− ti, βi,K−tii ,

1

α(β − 1)

)
. (4.25)

Moreover

exp
(
− 1

α(2β − 1)

)
≤ K−tji ≤ 1, (4.26)

and if i 6= j,

|αi − αj | ≥ c(β) max(ti, tj), (4.27)

where c(β) := 1− exp
(
− 1

2(2β+1)2

)
.

Step 3: Computation of the Kullback-Leibler (KL) divergence

In this step, we first compute the KL divergence between F0 and Fi, which is defined as

KL(F0, Fi) =
∫
f0(x) log f0(x)

fi(x)dx. Then we prove that it has the same order of the KL divergence

between Fi and F0. Second, we prove that the KL divergence between Fi and Fj is at most of the

same order of max {KL(F0, Fi),KL(Fj , F0)}.
Lemma 5 provides the order of the KL divergence between Fi and F0.

Lemma 5. Let 1 ≤ i ≤ M . It holds that for F0 in (4.23), Fi in (4.24) and using notation in

(4.22),

max
(
KL(F0, Fi),KL(Fi, F0)

)
≤ 2t2iK

−α
i

α2
.

Using Lemma 5, we obtain bounds on the KL divergence between Fi and Fj in the following

lemma.

Lemma 6. Let (i, j) ∈ {1, . . . ,M}2. It holds that for Fi in (4.24) and using notation in (4.22),

KL(Fi, Fj) ≤
2 exp( 1

α(2β−1))

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (4.28)
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Step 4: Use of Fano’s method.

Here we follow ideas in the Fano’s method using the above results in Step 1-3. Let α̂ =

α̂(X1, . . . , Xn) =: α̂(X) be an estimator of α. Then we define the following discrete random variable

Z = Z(X) := arg min
j∈{1,...,M}

|α̂(X)− αj |,

which implies that |α̂ − αj | > c(β)tj/2 if Z 6= j by Equation (4.27). Also we consider another

random variable Y , uniformly distributed on {1, . . . ,M} where X|Y = j ∼ Fnj . By bounding the

maximum by the average,

max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥

c(β)tj
2

)
≥ 1

M

M∑

j=1

P (Z 6= j|Y = j)

= P(Z 6= Y )

≥ 1− 1

logM


 1

M2

∑

j,j′

KL(Fnj , F
n
j′) + log 2


 ,

where the last inequality is obtained by Fano’s inequality (see Section 2.1 in Cover and Thomas

(2012), or see Appendix for a proof of how this inequality is derived).

Using the fact that KL(Fn1 , F
n
2 ) = nKL(F1, F2), and by Equation (4.28),

1

M2

∑

j,j′

KL(Fnj , F
n
j′) ≤

n

M2

2 exp( 1
α(2β−1))

α2

∑

j,j′

(
t2jK

−α
j + t2j′K

−α
j′

)
=

n

M

4 exp( 1
α(2β−1))

α2

∑

j

t2jK
−α
j

=
n

M

4 exp( 1
α(2β−1))

α2

∑

j

υ log(M)

n

=
4 exp( 1

α(2β−1))

α2
(log(M))× υ ≤ 1

2
log(M).

where the second equality follows by t2jK
−α
j = K

−α(2βj+1)
j = υ log(M)

n and the last inequality is by

υ ≤ α2

8 exp( 1
α(2β−1)

)
. Hence, for a sufficiently large n, we have

max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥

c(β)tj
2

)
≥ 1

4
.

More specifically, using c(β) := 1 − exp(− 1
2(2β+1)2

) ≥ 1
2(2β+1)2

and since tj =
(υ log(M)

n

) βj
2βj+1 ≥
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υ
βj

2βj+1

(
log
(

(log(n))/2
)

n

) βj
2βj+1

, we have

max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥ B(α, β, βj)

( log
(
(log(n))/2

)

n

) βj
2βj+1

)
≥ 1

4
,

where

B(α, β, βj) :=
1

4(2β + 1)2
min

[
1,
( α2

8 exp( 1
α(2β−1))

) βj
2βj+1

]
. (4.29)

By definition of {F1, . . . , FM}, we have (by Lemma 4)

{F1, . . . , FM} ⊂
{
F ∈ S(α∗, β∗, C, C̃ ′) : α∗ ∈ [α/2, α], β∗ ∈ [β − 1, β], C ∈ [C̃1, C̃2]

}
,

where C̃1(α, β) := exp
(
− 1
α(2β−1)

)
, C̃2 := 1, and C̃ ′(α, β) = 1

α(β−1) .

Then by bounding the supremum by the maximum over the finite subset, we finally provide

the following lower bound result.

sup

α∗∈[α/2,α],β∗∈[β−1,β]

C∈[C̃1,C̃2]

sup
F∈S(α∗,β∗,C,C̃′)

PF

(
|α̂− α∗| ≥ B(α, β, β∗)

( log
(
(log(n))/2

)

n

) β∗
2β∗+1

)

≥ max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥ B(α, β, βj)

( log
(
(log(n))/2

)

n

) βj
2βj+1

)

≥ 1

4
.

By changing parametrization and setting α1 = α/2 and β1 = β − 1, we proved that

sup

α∗∈[α1,2α1],β∗∈[β1,∞)

C∈[C1,C2]

sup
F∈S(α∗,β∗,C,C′)

PF

(
|α̂− α∗| ≥ B4

( n

log
(

log(n)/2
)
)− β∗

2β∗+1

)
≥ 1/4,

where C ′ = C̃ ′(2α1, β1 + 1) and

C1 = C̃1(2α1, β1 + 1), C2 = 1, B4 = B(2α1, β1 + 1,∞). (4.30)

This concludes the proof.
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Proof of Lemma 4. (1) Proof of Equation (4.25): For 1 ≤ i ≤ M , Fi ∈ A(α − ti,K
−ti
i ) by

definition. For x > Ki, Fi satisfies the second-order Pareto condition. For any 1 ≤ x ≤ Ki,

∣∣∣1− Fi(x)−K−tii x−α+ti
∣∣∣ =

∣∣∣x−α −K−tii x−α+ti
∣∣∣ = x−α

∣∣∣1−K−tii xti
∣∣∣

≤ 2x−α
∣∣∣ti log(Ki/x)

∣∣∣.

The last inequality is obtained since ∀u ∈ [0, 1], |e−u − 1| ≤ 2u and

ti log(Ki) ≤ n−
βi

2βi+1
(

logM
)γi( 1

α(2βi + 1)

)
log(n) ≤ 1

α
n
− βi

2βi+1 log(n)γi+1 ≤ 1

by assuming large n. Then for any 1 ≤ x ≤ Ki

∣∣∣1− Fi(x)−K−tii x−α+ti
∣∣∣ ≤ 2x−αK−αβii log(Ki/x) = 2x−αx−αβi

(Ki

x

)−αβi
log(Ki/x)

≤ 2x−αx−αβi
(Ki

x

)−α(β−1)
log(Ki/x)

≤ 1

α(β − 1)
x−α(βi+1),

where the ultimate inequality follows from the fact that for any u ≥ 1, t > 0, we have u−t log(u) ≤
1/(et). Thus, we have shown the first result (4.25).

(2) Proof of Equation (4.26): Let 1 ≤ j ≤M . Since Ki > 1 and tj > 0 for all i = 1, . . . ,M

and all j = 1, . . . ,M , we have K
−tj
i ≤ 1. By definition (4.22) and bounding M ≤ n,

K
−tj
i ≥

(
n

1
α(2βi+1)

)−n−
βj

2βj+1
(

logM
)γj

= exp
(
− log(n)

α(2βi + 1)
n
− βj

2βj+1
(

logM
)γj)

≥ exp
(
− log(n)1+γj

α(2β − 1)
n
− βj

2βj+1

)

≥ exp
(
− 1

α(2β − 1)

)
,

where the final inequality follows for a sufficiently large n.

(3) Proof of Equation (4.27): Consider now i < j. From (4.25), each Fi corresponds to the

tail index αi = α− ti = α− (n/(υ log(M))−βi/(2βi+1). For i < j, we have αi > αj and ti < tj as we
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described in the Step 1. Also, using βj − βi = (i− j)/M ,

|αi − αj | =
∣∣∣tj(1−

ti
tj

)
∣∣∣ = tj

∣∣∣∣1−
( n

υ log(M)

)− βi
2βi+1

+
βj

2βj+1

∣∣∣∣

= tj

[
1−

( n

υ log(M)

) (i−j)/M
(2βi+1)(2βj+1)

]
= tj

[
1− exp

( (i− j)
M(2βi + 1)(2βj + 1)

log
( n

υ logM

))]

≥ tj
(

1− exp
( (i− j)

(2βi + 1)(2βj + 1)

(M − 1)

M

))

≥ tj
[
1− exp

(
(i− j)

2(2βi + 1)(2βj + 1)

)]
,

where the penultimate inequality is obtained since υ ≤ 1, and since log
(

n
log(M)

)
+1 ≥M ≥ 2. This

implies Equation (4.27).

Proof of Lemma 5. (1) KL divergence between F0 and Fi

Let 1 ≤ i ≤M . By definition of KL divergence,

KL(F0, Fi) =

∫ ∞

1
f0(x) log

(
f0(x)

fi(x)

)
dx

= −ti
∫ ∞

Ki

αx−α−1 log

((
α− ti
α

) 1
ti x

Ki

)
dx.

By the change of variable u =
(
α−ti
α

)1/tix/Ki, and letting ai =
(
α−ti
α

)1/ti ,

KL(F0, Fi) = −ti
∫ ∞

ai

α
(( α

α− ti
)1/tiKiu

)−α−1
log(u)du×

(( α

α− ti
)1/tiKi

)

= ti

(
a−1
i Ki

)−α ∫ ∞

ai

(−α)u−α−1 log(u)du.

Now by performing an integration by parts, we obtain

KL(F0, Fi) = ti

(
a−1
i Ki

)−α
(
u−α log(u)

∣∣∞
ai
−
∫ ∞

ai

u−α−1du

)

= tiK
−α
i

(
log(1/ai)−

1

α

)
= K−αi

(
log

(
α

α− ti

)
− ti
α

)
.

Using α− ti ≥ α/2, we further upper bound this divergence

KL(F0, Fi) = K−αi

(
log

(
1 +

ti
α− ti

)
− ti
α

)
≤ K−αi

(
ti

α− ti
− ti
α

)
= K−αi

t2i
α(α− ti)

=
2t2iK

−α
i

α2
.



Adaptive and minimax optimal estimation of the tail coefficient 27

(2) KL divergence between Fi and F0

Similar calculations as above give

KL(Fi, F0) =

∫ ∞

1
fi(x) log

fi(x)

f0(x)
dx

= tia
−α+ti
i K−αi

∫ ∞

ai

(α− ti)u−α+ti−1 log(u)du

= K−αi

(
log

(
α− ti
α

)
+

ti
α− ti

)
≤ 2t2iK

−α
i

α2
.

Proof of Lemma 6. (1) KL divergence between Fi and Fj with i < j

Consider the case i < j. First, note that

KL(Fi, Fj) :=

∫
fi(x) log

fi(x)

fj(x)
dx

= KL(Fi, F0) +

∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx. (4.31)

Thus it suffices to bound the second term
∫∞
Kj
fi log f0

fj
in (4.31).

We use the similar calculations used in the proof of Lemma 5. With the notation aj =

(
α−tj
α )1/tj ,

∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx = tjK

−ti
i K−α+ti

j a
α−tj
j

∫ ∞

aj

−(α− ti)u−α+ti−1 log(u)du

=
(Kj

Ki

)tiK−αj a
ti−tj
j

(
log

1

aj
− 1

α− ti

)

≤ 2 exp
( 1

α(2β − 1)

)
t2jK

−α
j ,

where the final inequality follows by bounding (Kj/Ki)
ti ≤ exp

(
1

α(2β−1)

)
using Lemma 4, and by

bounding a
ti−tj
j (log(1/aj)− 1/(α− ti)) ≤ t2j/α2 for a sufficiently large n.

Combining this upper bound with bounds on KL(F0, Fj) and KL(Fi, F0) in Lemma 5 and

also with Equation (4.31),

KL(Fi, Fj) ≤ KL(Fi, F0) + exp

(
1

α(2β − 1)

)
KL(F0, Fj)

≤
2 exp( 1

α(2β−1))

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (4.32)
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(2) KL between Fi and Fj with i > j

Now we turn to the case i > j. In the same way as for Equation (4.31), we have

KL(Fi, Fj) = KL(Fi, F0) +

∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx. (4.33)

For the second term, first note that log f0(x)
fj(x) is a decreasing function for any x ≥ Kj . Also since

∀x ≥ Kj , Fi(x) ≤ F0(x), and since Fi(Kj) = F0(Kj), the measure associated to Fi restricted to

[Kj ,∞) stochastically dominates F0. This implies that
∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx ≤

∫ ∞

Kj

f0(x) log
f0(x)

fj(x)
dx.

Combining this with (4.33) followed by Lemma 5, we have

KL(Fi, Fj) ≤ KL(Fi, F0) +KL(F0, Fj) ≤
2

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (4.34)

Finally, by Equations (4.32) and (4.34), we obtain the result (4.28).

Remark 4. We only proved the results for certain sets of C1, C2, β1, β2, α1, α2, C
′. In fact, it is

possible to modify this result to hold for different ranges of parameters (although, the ranges cannot

be taken too tight, and C ′ cannot be taken too small). Note that the narrower the intervals [C1, C2],

[α1, α2], the larger β1 and the smaller C ′, the better the result is. Here are possible modification:

1. Range of α: from the proof, one could take [α1, α1 +tM ] which is actually included in [α1, α1 +

n−ε] for some ε > 0. So without additional effort, the interval can be taken at any position

and the range of the interval can be made very small.

2. Range of β: for any β1 > 0, the result holds for [β1, β1 + 1] (although it is stated for [β1,∞)

to match the upper bound). The constants in the proof could be modified to consider a range

[β1, β1 + ε] for any arbitrary small ε > 0, by constructing M different βi’s uniformly spread

on this interval.

3. Range of C: from the proof of the second result in Lemma 4, the tightest range of C is

[K−tMM ,K−t11 ] which is actually included in [1 − n−ε, 1] for some ε > 0. The range could be

changed to any [a−n−ε, a] for a > 0 by modifying distributions Fi so that the new distrubutions

have a domain starting from a−1/α instead of 1 in (4.24). Then, the interval can be taken at

any position a and the range of the interval can be made very small.

However, C ′ is an upper bound which characterizes the amount of deviation with respect to the

Pareto assumption. It cannot be taken too small since if Fi’s are too close to Fj’s, they can not be

distinguished.
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5. Appendix

Lemma 7 (Fano’s inequality). Suppose Y is a uniform random variable on {1, . . . ,M}, and let

Z is a random variable of a function of X, where X|Y = j ∼ Pj with dPj/dν = pj where ν is the

dominating measure. Then

P (Z 6= Y ) ≥ 1− 1

logM


 1

M2

∑

j,j′

KL(Pj ,Pj′) + log 2


 .

Proof. Recall the definition of the entropy H(Y ) = −∑y p(y) log p(y) for a discrete random

variable Y with a probability mass function p(y). Also we denote H(Y |Z = z) by the condi-

tional entropy of Y given Z = z, and we define H(Y |Z) = −∑x

∑
y p(y, z) log p(y|z). Follow-

ing the terminology used in the information theory, we define information between Y and Z

as the KL divergence between joint distribution and product of the marginal distribution, i.e.

I(Y,Z) = KL(PY,Z , PY × PZ) where we can show that

I(Y, Z) = KL(PY,Z , PY × PZ) = H(Y )−H(Y |Z) (5.1)

by splitting the probability distribution. Finally recall that for Z = Z(X), I(Y, Z) ≤ I(Y,X).

Consider the event E = 1{Z 6= Y }. By splitting the probabilities with different order,

H(E, Y |Z) = H(Y |Z) +H(E|Y,Z) := (1)

= H(E|Z) +H(Y |E,Z) := (2),

where (1) = H(Y |Z) since E becomes a constant given Y and Z. Then we upper bound (2) as

follows,

(2) = H(E|Z) +H(Y |E,Z)

≤ H(E) +H(Y |E,Z)

= H(E) + P(E = 0)H(Y |E = 0, Y ) + P(E = 1)H(Y |E = 1, Z)

≤ log 2 + P(Z 6= Y ) logM.

Combining both (1) and (2), we have

H(Y |Z) ≤ log 2 + P(Z 6= Y ) logM,

in turn,

P(Z 6= Y ) ≥ 1

logM
(H(Y |Z)− log 2) . (5.2)
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Now, using the fact (5.1),

H(Y |Z) = logM − I(Y, Z)

≥ logM − I(Y,X)

= logM −
∫ ∑

y

p(y)p(x|y) log
p(y)p(x|y)

p(x)p(y)

= logM −
∫ ∑

j

1

M
1{y = j}p(x|y) log

p(x|y)

p(x)

= logM − 1

M

M∑

j=1

∫
pj(x) log

pj(x)
1
M

∑
j′ pj′(x)

dx

≥ logM − 1

M2

∑

j,j′

KL(Pj ,Pj′), (5.3)

where the penultimate equality is followed since p(x) =
∑

j P(Y = j)P(X = x|Y = j) =
1
M

∑
j pj(x), and the last inequality is obtained by the concavity of the logarithm function. Com-

bining (5.2) and (5.3), we obtain

P(Z 6= Y ) ≥ 1− 1

logM


 1

M2

∑

j,j′

KL(Pj ,Pj′) + log 2


 .


