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CHARACTERIZATION OF LÉVY PROCESSES BY A DUALITY FORMULA
AND RELATED RESULTS

RÜDIGER MURR

Abstract. Processes with independent increments are characterized via a duality
formula, including Malliavin derivative and difference operators. This result is
based on a characterization of infinitely divisible random vectors by a functional
equation. A construction of the difference operator by a variational method is
introduced and compared to approaches used by other authors for Lévy processes
involving the chaos decomposition. Finally we extend our method to characterize
infinitely divisible random measures.

Introduction

The term duality formula mentioned in the title refers to the duality relation
between annihilation and creation operator on the Fock space. If X is a process
with independent increments and HX the space of square integrable functionals
that are σ(X)-measurable, thenHX has a chaos decomposition that is isomorphic
to the Fock space, see Itô [11]. Thus the abstract duality relation on the Fock
space has a probabilistic interpretation. For smooth, cylindrical test functionals
F(X) = f (Xt1 , . . . ,Xtn ) and step functions βt =

∑k
j=1 β j1(s j,s j+1](t) this means that the

operators of

annihilation F(X) 7→ DtF(X) + Ψt,qF(X)

:=
n∑

j=1

∂ j f (Xt1 , . . . ,Xtn )1[0,t j](t) + F(X + q1[t,∞)) − F(X),

and creation β 7→

∫
R+

βtdXt =

k−1∑
j=1

β j

(
Xs j+1 − Xs j

)
,

are in duality. The main result of this article is Theorem 2.4: We prove that an
integrable process X is a process with independent increments if and only if our
duality formula holds for a small class of test functionals and step functions.

This result is based on a characterization of infinitely divisible random vectors
presented in Section 1. A random vector Z is infinitely divisible if and only if for
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2 RÜDIGER MURR

every f ∈ C∞b (Rd) the functional equation

E
(

f (Z)(Z − b)
)

= E
(
A∇ f (Z)

)
+ E

(∫
Rd
∗

( f (Z + q) − f (Z))qL(dq)
)

holds for some b ∈ Rd, A ∈ Rd×d a non-negative definite matrix and L a Lévy
measure, where ∇ f is the gradient of f . This is an extension of Stein’s lemma for
standard Gaussian random variables as well as Chen’s result for Poisson random
variables, see [28] and [5].

In Section 2 we apply the techniques used for random vectors to processes with
independent increments. This allows us to prove the aforementioned duality
relation as well as the related characterization. The approach of proving the
duality formula for Lévy processes seems to be new for the jump case. Rœlly and
Zessin proved a characterization result for Brownian diffusions, Hsu extended this
to Wiener processes on manifolds, see [25] and [10]. A related characterization of
Poisson point processes was given by Mecke [19], see Corollary 4.3.

Section 3 introduces a variational definition of the annihilation operator for
Lévy processes, which splits into a derivative and a difference operator. Our
perturbation is the addition of a few independent jumps in the direction of the
jumps of the reference process. We provide another proof of the duality formula
for Lévy processes using our variational definition, then compare our definition
of the operators to the annihilation operator from the chaos decomposition. We
can show that the definitions coincide by using related works of Solé, Utzet, Vives
and Geiss, Laukkarinen on the interpretation of the annihilation operator onHX.
see [27] and [9]. First results in this direction for Lévy processes with jumps where
given by Løkka [18]. The case of Poisson processes was treated earlier by Y. Ito
and Nualart, Vives, see [12] and [22].

There are mainly two other variational approaches on processes with jumps
in the literature. Bichteler and Jacod introduced a perturbation of the jump-size,
Carlen and Pardoux respectively Elliott and Tsoi perturbated the jump-times of a
Poisson process, see [1], [4] and [7]. These approaches lead to different derivative
operators, and restrict the jump-types of the processes, see also Privault [24] for
a generalization of the jump-time perturbation and the connection to a chaos
decomposition.

In the last Section we extend the results of Section 1 to infinitely divisible ran-
dom measures. Our method indicates a direct correspondence between infinitely
divisible random objects and duality formulae. A characterization of infinitely
divisible random measures was first presented by Kummer and Matthes, see [15]
and [16].

1. A characterization of infinitely divisible random vectors

Let (Ω,F ,P) be some probability space. A measurable application Z : Ω→ Rd

is called a random vector. With 〈q1, q2〉 we denote the Euclidean scalar-product
for q1, q2 ∈ Rd. For q ∈ Rd let ||q|| :=

√
〈q, q〉 be the Euclidean norm and |q| the sum

of the absolute values of the components of q. All vectors are column vectors,
with q′ we mean the transposed row vector.
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We call χ : Rd
→ Rd a cutoff function if

χ(q) = q + o(||q||2) in a neighbourhood of zero and χ is bounded. (1.1)

Let Rd
∗ := Rd

\{0}, later we will also need R+ := [0,∞). A Lévy measure L on
(Rd
∗ ,B(Rd

∗ )) is a σ-finite measure such that∫
Rd
∗

(||q||2 ∧ 1)L(dq) < ∞.

By definition every cutoff function χ is in L2(L).
We are interested in the class of infinitely divisible random vectors. A random

vector Z is called infinitely divisible if for every k ∈ N there exist independent
and identically distributed random vectors Z(1), . . . ,Z(k) such that

Z L
= Z(1) + · · · + Z(k),

where L stands for equality in law. The classical Lévy-Khintchine formula gives
a representation for the characteristic function of Z. For γ ∈ Rd we have

logE
(
ei〈γ,Z〉

)
= i〈γ, b〉 −

1
2
〈γ,Aγ〉 +

∫
Rd
∗

(
ei〈γ,q〉

− 1 − i〈γ, χ(q)〉
)

L(dq), (1.2)

where b ∈ Rd, A ∈ Rd×d is a symmetric non-negative definite matrix and L a
Lévy measure (see e.g. [26] Theorem 8.1). The triple (b,A,L)χ is called Fourier
characteristics of Z with respect to the cutoff function χ. It is well known that only
b depends on the choice of χ.

Example 1.1. A Gaussian random vector with mean b and covariance matrix A is
infinitely divisible with characteristics (b,A, 0)χ for any cutoff function χ.

A Poisson random variable with mean λ ≥ 0 corresponds to an infinitely
divisible random variable with characteristics (λχ(1), 0, λδ{1})χ.

Remark 1.2. Note that for an infinitely divisible random vector Z we have equiv-
alence of

Z is integrable ⇔
∫
Rd
∗

(
||q||2 ∧ |q|

)
L(dq) < ∞.

In this case we don’t need a cutoff function in (1.2) and take χ = Id. The associated
characteristics will be denoted simply by (b,A,L).

The following Theorem presents an equation that characterizes the law of an
integrable infinitely divisible random vector. Denote by C∞b (Rd) the space of
smooth and bounded functions from Rd into R with all derivatives bounded.

Theorem 1.3. Let Z be an integrable random vector. Then Z is infinitely divisible with
characteristics (b,A,L) if and only if for every f ∈ C∞b (Rd) we have

E
(

f (Z) (Z − b)
)

= E
(
A∇ f (Z)

)
+ E

(∫
Rd
∗

(
f (Z + q) − f (Z)

)
qL(dq)

)
. (1.3)
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Proof. Assume that Z is an integrable infinitely divisible random vector with
characteristics (b,A,L). We are going to prove the equality (1.3) separately for
each component. Fix any 1 ≤ j ≤ d. Define

fγ(q) := ei〈γ,q〉, for γ, q ∈ Rd.

We can permute differentiation and integration to obtain

∂γ jE
(

fγ(Z)
)

= i E
(

fγ(Z)Z j

)
. (1.4)

On the other hand the Lévy-Khintchine formula (1.2) gives

∂γ jE
(

fγ(Z)
)

=

(
i b j − (Aγ) j + i

∫
Rd
∗

q j

(
ei〈γ,q〉

− 1
)

L(dq)
)
E

(
fγ(Z)

)
. (1.5)

The second term on the right reduces to

−(Aγ) jE
(

fγ(Z)
)

= i E
(
(A∇ fγ(Z)) j

)
.

The last term on the right hand side can be reformulated as

i
∫
Rd
∗

q j

(
ei〈γ,q〉

− 1
)

L(dq)E
(

fγ(Z)
)

= i E
(∫
Rd
∗

(
fγ(Z + q) − fγ(Z)

)
q jL(dq)

)
.

Comparing (1.4) and (1.5) and using the above reformulations we get (1.3) for
fγ. By linearity the equation holds for all real valued trigonometric functions. A
Fourier approximation on compact sets and tightness of measure argument then
shows that (1.3) holds for all f ∈ C∞b (Rd).

To prove sufficiency we only need that (1.3) holds for trigonometric functions.
The proof we give is suggested by Mecke ([19] Satz 3.1) and Rœlly, Zessin ([25]
Théorème 2). For λ ∈ R define

Φ(λ) = E
(
eiλ〈γ,Z〉

)
.

Then
d

dλ
Φ(λ) = i E

(
eiλ〈γ,Z〉

〈γ,Z〉
)
,

and since the real and complex component of eiλ〈γ,.〉 are in C∞b (Rd) we can use
equation (1.3) to get

d
dλ

Φ(λ) = i
(
〈γ, b〉 + iλ〈γ,Aγ〉 +

∫
Rd
∗

(
eiλ〈γ,q〉

− 1
)
〈γ, q〉L(dq)

)
Φ(λ).

This is an ordinary differential equation in λ with boundary condition Φ(0) = 1
which admits the unique solution

Φ(λ) = exp
(
iλ〈γ, b〉 − λ2 1

2
〈γ,Aγ〉 +

∫
Rd
∗

(
eiλ〈γ,q〉

− 1 − iλ〈γ, q〉
)

L(dq)
)
.

For λ = 1 we recognize the characteristic function of an integrable infinitely
divisible random vector with characteristics (b,A,L). �
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Special cases of this characterization are known and used in Stein’s calculus,
see Examples 1.5, 1.6 and 1.7 below. In [29] Steutel gave a similar characteriza-
tion theorem for infinitely divisible distributions on R+, see also [26] Section 51.
Steutels result suggests, that we can avoid the integrability condition for random
vectors which are a.s. positive.

Let Z be an infinitely divisible random vector that is non-negative,P(Z ∈ Rd
+) =

1. It is known that the Laplace transform of Z is such that for all γ ∈ Rd
+ we have

− logE
(
e−〈γ,Z〉

)
= 〈α, γ〉 +

∫
Rd

+\{0}

(
1 − e−〈γ,q〉

)
L+(dq), (1.6)

where α ∈ Rd
+ and L+ is a Lévy measure on Rd

∗ with∫
Rd
∗

(|q| ∧ 1)L+(dq) < ∞, L+(Rd
∗\R

d
+) = 0.

The relation between the Laplace characteristics (α,L+) and the Fourier character-
istics (b,A,L)χ of Z is given by

b = α +

∫
Rd
∗

χ(q)L+(dq), A = 0, L = L+. (1.7)

Denote by C∞c (Rd
+) the space of functions from Rd

+ into R+ that are smooth and
have compact support.

Corollary 1.4. Let Z be a non-negative random vector. Then Z is infinitely divisible with
Laplace characteristics (α,L+) if and only if for every f ∈ C∞c (Rd

+) we have

E
(

f (Z)Z
)

= E
(

f (Z)α
)

+ E

(∫
Rd
∗

f (Z + q)qL+(dq)
)
. (1.8)

Proof. Suppose first that Z is infinitely divisible. We repeat the proof of identity
(1.3), but replace the function fγ by q 7→ e−〈γ,q〉 and use the Laplace transform
instead of the Fourier transform.

For the converse we extend equation (1.8) to functions of the type q 7→ e−〈γ,q〉

by monotone convergence and then work in the same lines as in Theorem 1.3. �

Example 1.5. If Z is a standard Gaussian random variable equation (1.3) reduces
to

E
(

f (Z)Z
)

= E
(

f ′(Z)
)
.

This characterization result is also known as Stein’s lemma, see [28].

Example 1.6. For a Poisson random variable Z with mean λ ∈ R+ identities (1.3)
respectively (1.8) are

E
(

f (Z) (Z − λ)
)

= E
((

f (Z + 1) − f (Z)
)
λ
)

and E
(

f (Z)Z
)

= E
(

f (Z + 1)λ
)
.

Chen introduced the corresponding characterization result in [5] as an analogue
to Stein’s lemma for the Poisson distribution.
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Example 1.7. Let Z have a Gamma distribution with density 1(0,∞)(q)e−qqα−1/Γ(α)
for some α > 0. Then Z is infinitely divisible with Fourier characteristics given by
(α, 0, α1(0,∞)(q)q−1e−qdq). Theorem 1.3 leads to the following formula:

E
(

f (Z)(Z − α)
)

= E

(∫
R∗

(
f (Z + q) − f (Z)

)
αe−qdq

)
.

Diaconis and Zabell proposed a different characterizing formula based on an
integration by parts on the density function. According to [6] the random variable
Z has a Gamma distribution with parameter α if and only if

E
(

f (Z) (Z − α)
)

= E
(

f ′(Z)Z
)

for every smooth function f with compact support.

2. A characterization of processes with independent increments

Whenever R+ is used as a time index of processes we use the notation I = R+.
Define

∆I := {τn = {t1, . . . , tn} : 0 ≤ t1 ≤ · · · ≤ tn < ∞, n ∈N} .
On the space D of càdlàg (right continuous with left limits) functions on I with
values in Rd we define the usual σ-field D := σ (πτ, τ ∈ ∆I), where πτn is the
finite dimensional projection defined by x 7→ (xt1 , . . . , xtn ) =: xτn ∈ R

nd for x ∈ D,
n ∈N. We will work with the canonical setup: Our probability space is (D,D,P)
and X is the canonical process (the identity). The natural filtration is denoted
by Ft := σ(Xs, s ≤ t). To avoid problems with the initial value X0 we assume
throughout the following condition which is standard.

The processes we consider are starting from zero a.s. : P(X0 = 0) = 1. (2.1)

The vector space of elementary functions over I is

E :=

β : I → Rd, β =

n−1∑
i=1

βi1(ti,ti+1] for some βi ∈ R
d, τn ∈ ∆I, n ∈N

 .
We define a real-valued integral of functions β in E by∫

I

βsdxs :=
n−1∑
i=1

〈βi, xti+1 − xti〉 = −

n∑
i=1

〈βi − βi−1, xti〉, x ∈ D, (2.2)

with β0 = βn = 0.

2.1. PII - Processes with independent increments. We want to characterize the
following class of processes.

Definition 2.1. We say that X is a PII if it has independent increments, is starting
from zero and is stochastically continuous.

If X is a PII then Xt is an infinitely divisible random vector for each t ∈ I (see
e.g. [26] Theorem 9.1).

Remark 2.2. Fix some cutoff function χ, denote by (bt,At,Lt)χ the Fourier char-
acteristics of Xt. Take some t ∈ I, any s ≤ t. Theorem 9.8 in [26] states that as
functions on I
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(1) bt ∈ Rd with b0 = 0 and t 7→ bt is continuous;
(2) At ∈ Rd×d is a non-negative definite matrix with A0 = 0, 〈q,Asq〉 ≤ 〈q,Atq〉 and

t 7→ 〈q,Atq〉 is continuous for any q ∈ Rd ;
(3) Lt is a Lévy measure on Rd

∗ with L0(Rd
∗ ) = 0, Ls(Q) ≤ Lt(Q) and t 7→ Lt(Q) is

continuous for any compact Q ⊂ Rd
∗ .

If X is integrable we can add the property

(4)
∫
Rd
∗

(||q||2 ∧ |q|)Lt(dq) < ∞.

If conversely there are (bt)t∈I, (At)t∈I and (Lt)t∈I such that such that conditions
(1)-(3) hold, then there exists a unique law P such that X is a PII and (bt,At,Lt)χ
are the Fourier characteristics of Xt. Adding condition (4) we get the existence of
a unique integrable PII.

Example 2.3. Assume d = 1. If X is a PII such that Xt has characteristics (bt,At, 0)χ,
then it is equal in law to b +

√
AW, where W is a real-valued Wiener process.

Take a finite Lévy measure L and let X be a PII such that Xt has characteristics
(t

∫
R∗
χ(q)L(dq), 0, tL(dq))χ. Then X is a compound Poisson process: if N is a Poisson

process with intensity L(R∗) and (Y j) j≥1 a sequence of iid random variables with
distribution L(R∗)−1L(dq) then

∑N.

j=1 Y j has the same law as X.

Using (2.2) we can give a convenient form to the characteristic function of
the increments of a PII. Define a measure on I × Rd

∗ by L̄([0, t] × Q) := Lt(Q) for
t ∈ I, Q ∈ B(Rd

∗ ). Using independence of increments we see that the Fourier
characteristics of Xt − Xs for any s ≤ t are (bt − bs,At − As, L̄((s, t] × dq))χ. Thus for
any β ∈ E

E
(
exp

(
i
∫
I
βsdXs

))
=

n−1∏
k=1

exp
(
i〈βk, btk+1 − btk〉 −

1
2
〈βk, (Atk+1 − Atk )βk〉

+

∫
Rd
∗

(
ei〈βk ,q〉 − 1 − i〈βk, χ(q)〉

)
L̄((tk, tk+1] × dq)

)
.

Define the integral ∫
I

βs · dAsβs :=
n−1∑
k=1

〈βk, (Atk+1 − Atk )βk〉.

We deduce the identity

E
(
exp

(
i
∫
I
βsdXs

))
= exp

(
i
∫
I

βsdbs −
1
2

∫
I

βs · dAsβs

+

∫
I×Rd

∗

(
ei〈βs,q〉 − 1 − i〈βs, χ(q)〉

)
L̄(dsdq)

)
. (2.3)

This equation characterizes the increments of X and therefore, by assumption
(2.1), the law of X.
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2.2. Characterization of PII by a duality formula. In this Section we extend
Theorem 1.3 to PII. Instead of test functions f ∈ C∞b (Rd) we need smooth, bounded
and cylindrical functionals

S := {F : D→ R : F(x) = f (xt1 , . . . , xtn ), f ∈ C∞b (Rnd), τn ∈ ∆I, n ∈N}.

Accordingly we need to define an extension of the gradient and difference operator
appearing in equation (1.3). For F ∈ Swe define the

derivative operator Ds, jF(x) :=
n−1∑
k=0

∂kd+ j f (xt1 , . . . , xtn )1(0,tk](s), j ∈ {1, . . . , d},

and DsF(x) := (. . . ,Ds, jF(x), . . . )′ for s ∈ I
difference operator Ψs,qF(x) := f (xt1 + q1[0,t1](s), . . . , xtn + q1[0,tn](s)) − f (xτn )

= F(x + q1[s,∞)) − F(x), for s ∈ I, q ∈ Rd
∗ . (2.4)

Theorem 2.4. Let X be an integrable process and (bt)t∈I, (At)t∈I and (Lt)t∈I be such that
(1)-(4) of remark 2.2 hold. Then X is a PII and Xt has characteristics (bt,At,Lt) if and
only if for each β ∈ E, F ∈ S the duality formula

E

(
F(X)

(∫
I

βsd(X − b)s

))
= E

(∫
I

DsF(X) · dAsβs

)
+E

(∫
I×Rd

∗

Ψs,qF(X)〈βs, q〉L̄(dsdq)
)

(2.5)

holds.

Proof. The proof is an application of Theorem 1.3 to the random vector (Xt2 −

Xt1 , . . . ,Xtn − Xtn−1 ) for any τn ∈ ∆I, n ∈ N. It will be more convenient to use the
form of the characteristic function given in (2.3).

Assume that X is an integrable PII such that Xt has characteristics (bt,At,Lt).
Take any β, β̃ ∈ E and let F(X) = exp

(
i
∫
I
β̃sdXs

)
be a trigonometric path functional.

Without loss of generality we assume that

β =

n−1∑
j=1

β j1(t j,t j+1], and β̃ =

n−1∑
j=1

β̃ j1(t j,t j+1].

Differentiating E
(
exp

(
i
∫
I
β̃sdXs

))
in each of the d components of β̃k and using

(2.3),

i E
(
ei

∫
I
β̃sdXs (Xtk+1 − Xtk )

)
= E

(
i(btk+1 − btk ) − (Atk+1 − Atk )β̃k

+i
∫
Rd
∗

(
ei〈β̃k ,q〉 − 1

)
qL̄((tk, tk+1] × dq)

)
E

(
ei

∫
I
β̃sdXs

)
.

Next we take the scalar product with βk, sum over 1 ≤ k ≤ n − 1 and use the
definition of the derivative and difference operator (2.4) to get identity (2.5) for
F(X) = exp

(
i
∫
I
β̃sdXs

)
and β ∈ E. The extension to F ∈ S works in the same lines

as in the proof of Theorem 1.3.
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Now assume that X is an integrable process that satisfies (2.5). Fix any β ∈ E
and define

Φ(λ) := E
(
exp

(
iλ

∫
I

βsdXs

))
for λ ∈ R.

We see that
d

dλ
Φ(λ) = i E

(
eiλ

∫
I
βsdXs

∫
I

βsdXs

)
= i

[∫
I

βsdbs + iλ
∫
I

βs · dAsβs +

∫
I×Rd

∗

(eiλ〈βs,q〉 − 1)〈βs, q〉L̄(dsdq)
]
Φ(λ),

where we used the duality formula (2.5) to get the second line. This is an ordinary
differential equation with initial condition Φ(0) = 1. It admits the unique solution

Φ(λ) = exp
(
iλ

∫
I

βsdbs −
λ2

2

∫
I

βs · dAsβs +

∫
I×Rd

∗

(
eiλ〈βs,q〉 − 1 − iλ〈βs, q〉

)
L̄(dsdq)

)
.

For λ = 1 we recognize (2.3) and thus identify the law of X. �

For Lévy processes without Gaussian part the duality formula (2.5) was first
mentioned by Picard, see [23]. For Wiener processes it is a standard result. The
duality formula is due to Cameron, and later to Bismut in the realm of Malliavin’s
calculus, see [3] and [2]. Gaveau and Trauber furnished in [8] the interpretation as
duality of operators on the isomorphic Fock space. The characterizing property
is known for Wiener processes:

Example 2.5. Take a one-dimensional integrable process X. By Theorem 2.4 X is
a Wiener process if and only if

E

(
F(X)

∫
I

βsdXs

)
= E

(∫
I

DsF(X)βsds
)

holds for all F ∈ S and β ∈ E. This result, using slightly larger classes of test
functions, was first obtained by Rœlly and Zessin in [25]. Hsu generalized it to
Wiener processes on manifolds in [10].

Example 2.6. Let λ : I → R+ be integrable with respect to Lebesgue measure.
Then X is a Poisson process with time dependent intensity λt if and only if

E

(
F(X)

∫
I

βsdXs

)
= E

(∫
I

F(X + 1[t,∞))βtλtdt
)

holds for all F ∈ S and β ∈ E. A related characterization of Poisson point processes
was proved by Mecke in [19].

Example 2.7. A PII is called isotropic α-stable if its characteristics for a given t ∈ I
are (0, 0, (tC/|q|1+α)dq) for some α ∈ (0, 2) and any C ∈ R. It is well known that an
α-stable process is integrable only if α ∈ (1, 2). By Theorem 2.4 X is α-stable for
α ∈ (1, 2) if and only if

E

(
F(X)

∫
I

βsd(X − b)s

)
= E

(∫
I×Rd

∗

(
F(X + q1[t,∞)) − F(X)

)
〈βt, q〉

C
|q|1+α

dtdq
)

holds for all F ∈ S and β ∈ E.
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One method to extend Theorem 2.4 to non-integrable PII is to cut off the large
jumps of the process. For any càdlàg trajectory x ∈ D the jump at time t ∈ I, ∆xt :=
xt − xt−, is well defined. Moreover for any K > 0, t ∈ I the sum

∑
s≤t ∆xs1|∆xs |>K is

finite. This allows us to define the measurable application

x 7→ xK := x −
∑
s≤.

∆xs1|∆xs |>K .

If X is a PII the process XK is an integrable PII.

Corollary 2.8. Let X be a process such that XK is integrable for all K ∈ (K0,∞), where
K0 > 0. Let (bt)t∈I, (At)t∈I and (Lt)t∈I satisfy conditions (1)-(3) of remark 2.2. If for
every β ∈ E, F ∈ S and K ∈ (K0,∞)

E

(
F(XK)

(∫
I

βsd(XK
− bK)s

))
= E

(∫
I

DsF(XK) · dAsβs

)
(2.6)

+E

(∫
I×Rd

∗

Ψs,qF(XK)〈βs, q〉1|q|≤KL̄(dsdq)
)
,

where bK
t := bt−

∫
Rd
∗

(
χ(q) − q1|q|≤K

)
Lt(dq) ∈ Rd, then X is a PII and Xt has characteristics

(bt,At,Lt)χ.

Proof. By Theorem 2.4 we see that XK is an integrable PII and XK
t has Fourier

characteristics (bK
t ,At, 1|q|≤KLt). The result follows by letting K tend to infinity. �

Example 2.9. Take some α ∈ (0, 2). By Theorem 2.4 X is isotropic α-stable if and
only if

E

(
F(X)

∫
I

βsd(XK
− bK)s

)
= E

(∫
I×Rd

∗

(
F(XK + q1[t,∞)) − F(XK)

)
〈βt, q〉1|q|≤K

C
|q|1+α

dtdq
)

holds for all F ∈ S, β ∈ E, K > K0 and some C ∈ R, where

bK
t = t

∫
Rd
∗

(
q1|q|≤K − χ(q)

) C
|q|1+α

dq.

3. Variational approach to Malliavin calculus for Lévy processes

The reader familiar to Malliavin calculus for Lévy processes already recognized
that equation (2.5) seems to be a special case of the duality formula on the chaos
decomposition of Lévy processes. We make this statement rigorous by introduc-
ing a variational way to define the derivative and difference operators appearing
in the duality formula, and comparing this approach to results obtained through
the chaos decomposition.

Our variational definition of derivative and difference operators is given in
Section 3.1. We use this definition in Section 3.2 to prove an extension of the
duality formula (2.5) in terms of the classes of test functions. This is inspired by
the method used by Bismut to prove a duality formula for the Wiener process in
[2].
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Recall that a Lévy process is a stationary PII, in particular Xt has characteristics

bt = tb, At = tA, Lt(dq) = tL(dq)

for some b ∈ Rd, A ∈ Rd×d symmetric non-negative definite and L a Lévy measure
on Rd

∗ . This implies L̄(dsdq) = dsL(dq).
Since the law of a Lévy process is determined by the Fourier characteristics of

X1, we just say from now on that X has characteristics (b,A,L)χ.

3.1. Variational definition of derivative and difference operator. In this Section
we give variational definitions of the derivative and difference operator on S
defined in (2.4). This variational approach extends to larger classes of functionals.

Let P be any measure on D. The following interpretation of the derivative
operator on S as Gâteaux-derivative is well known. Take some β ∈ E, F ∈ S, then
for any symmetric non-negative definite matrix A

lim
ε→0

1
ε

(
F(X + ε

∫
[0,.]

Aβsds) − F(X)
)

=

∫
I

〈DsF(X),Aβs〉ds, P-a.s.. (3.1)

Using the Lipschitz regularity of F ∈ S and the dominated convergence theorem
we can show that this convergence also holds in L2(P). Denote by L2(Adt) the
space of functions β : I → Rd with

∫
I
〈βs,Aβs〉ds < ∞.

Definition 3.1. For F ∈ L2(P) we say that F is EA-differentiable if there exists a
process DsF(X) ∈ L2(Adt ⊗ P) such that for every β ∈ E the equality (3.1) holds in
L2(P).

Remark 3.2. The definition of EA-differentiability depends on the matrix A and on
P. Take for example d = 2 and P such that for X = (X1,X2) the first component X1

is a real-valued Wiener process and X2 ≡ 0. Then X is a Lévy process in R2 with
characteristics

b = 0, L = 0 and A =

(
1 0
0 0

)
.

Let us consider the simple functional F(X) = f1(X1,t) f2(X2,t) for some t ∈ I. Then
the fact that F is EA-differentiable is independent of f2, but F is EId-differentiable
only if f2 is differentiable in zero. In both cases f1 has to be differentiable in a
weak sense such that its weak derivative is square integrable with respect to the
Gaussian distribution with mean 0 and variance t.

To introduce the variational definition of the difference operator we need the
following space of elementary test functions:

Ē :=

ξ : I ×Rd
∗ → R+, ξ =

n−1∑
j=1

ξ j1(t j,t j+1]×Q j

for ξ j ∈ R+,Q j ⊂ R
d
∗ compact, τn ∈ ∆I,n ∈N

}
.

The analogous to the deterministic perturbation process
(
ε
∫

[0,t] Aβsds
)

t∈I
will be

a sequence of random processes (Yεξ)ε∈[0,1] defined on some probability space
(Ω,F ,P) as follows.
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Let ξ = ξ01(u,v]×Q ∈ Ē and L any Lévy measure be fixed. We consider a family
(Nεξ)ε∈[0,1] of Poisson point processes on I × Rd

∗ with intensity εξ(s, q)dsL(dq).
Define the Rd-valued process Yεξ

t =
∫

[0,t]×Rd
∗

qNεξ(dsdq). Then the marginals of Yεξ

satisfy

P(Yεξ
t ∈ dq) = e−ε((t∨u)∧v)ξ0L(Q)

[
δ{0}(dq) + ε((t ∨ u) ∧ v)ξ01Q(q)L(dq) + O(ε2)

]
. (3.2)

For F ∈ S this implies

lim
ε→0

1
ε

E
(
F(X + Yεξ) − F(X)

)
=

n∑
j=1

∫
Rd
∗

(
f (Xt1 + q j, . . . ,Xt j + q j,Xt j+1 , . . .Xtn ) − f (Xτn )

)
·

·((t j ∨ u) ∧ v − (t j−1 ∨ u) ∧ v)1Q(q j)ξ0L(dq j)

=

∫
I×Rd

∗

(
F(X + q1[s,∞)) − F(X)

)
ξ(s, q)dsL(dq) =

∫
I×Rd

∗

Ψs,qF(X)ξ(s, q)dsL(dq)

holds P-a.s., where E (.) denotes the integral with respect to P. By linearity the
same limit exists for all ξ ∈ Ē, and the convergence holds in L2(P) too.

Definition 3.3. For F ∈ L2(P) we say that F is ĒL-differentiable if there exists
Ψs,qF(X) ∈ L2(dt ⊗ L ⊗ P) such that for every ξ ∈ Ē the equality

lim
ε→0

1
ε

E
(
F(X + Yεξ) − F(X)

)
=

∫
I×Rd

∗

Ψt,qF(X)ξ(s, q)dsL(dq)

holds in L2(P).

The notion of ĒL-differentiability depends on P and on the Lévy measure L in
the same way as EA-differentiability is dependent on A and P. Note that D can
be interpreted as operator from L2(P) into L2(Adt ⊗ P) and Ψ as operator from
L2(P) into L2(dt ⊗ L ⊗ P)

Other variational definitions of derivative operators for jumping processes
exist. In [1] Bichteler and Jacod perturbed the jumps heights of the reference
process. The drawback is that the Lévy measure has to be absolutely continuous
L(dq) � dq. Carlen and Pardoux as well as Elliott and Tsoi perturbed the jump-
times of a Poisson process, i.e. they restricted their approach to L = λδ{1} for
some λ > 0, see [4] and [7]. Privault extended this approach in [24] to Lévy
processes with Lévy measure L =

∑k
j=1 λ jδ{q j} with λ j > 0, q j ∈ Rd

∗ and k ∈N. Both
approaches lead to a derivative instead of a difference operator.

3.2. Application: An alternative proof of the duality formula. Let X be a Lévy
process with characteristics (b,A,L)χ. As an application of the variational defini-
tion of derivative and difference operators we give another proof of the duality
formula (2.5).

It is well known (see e.g. Sato [26] Paragraph 19) that X P-a.s. admits the
Lévy-Itô decomposition

Xt = tb + MX
t +

∫
[0,t]×Rd

∗

χ(q)ÑX(dsdq) +

∫
[0,t]×Rd

∗

(q − χ(q))NX(dsdq), (3.3)
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where MX is a continuous martingale with quadratic variation process (tA)t∈R+
, NX

is a Poisson measure with intensity dsL(dq) on I×Rd
∗ and ÑX is the compensated

Poisson measure.

Proposition 3.4. Let X be a Lévy process with characteristics (b,A,L)χ. For every
functional F that is EA- and ĒL-differentiable and every β ∈ L2(Adt), ξ ∈ L2(dt ⊗ L) the
following duality formula holds

E

(
F(X)

(∫
I

βsdMX
s +

∫
I×Rd

∗

ξ(s, q)ÑX(dsdq)
))

= E

(∫
I

〈DsF(X),Aβs〉ds
)

+ E

(∫
I×Rd

∗

Ψs,qF(X)ξ(s, q)dsL(dq)
)
. (3.4)

Proof. First we explain how we use the Girsanov theorem in our proof. Take any
β ∈ E, ξ ∈ Ē, then there exists some T ∈ I such that β and ξ have their supports in
[0,T] and [0,T] ×Rd

∗ respectively. The process defined by

Gt =

∫
[0,t]

βsdMX
s +

∫
[0,t]×Rd

∗

ξ(s, q)ÑX(dsdq), t ∈ I, (3.5)

is a martingale and Gt = GT, ∀t ≥ T. Therefore we can define its Doléans-Dade
exponential as the solution of the stochastic integral equation

E(G) = 1 +

∫
[0,.]
E(G)s−dGs. (3.6)

A solution to this equation exists in a pathwise sense and is a uniformly integrable
martingale (see Theorem IV.3 of Lepingle, Mémin [17]). Therefore we can define a
new measure on (D,D) by P̃ := E(G)TP. An application of the Girsanov theorem
for semimartingales (see e.g. [13] Theorem III.3.24) shows that X is a PII under P̃
and Xt has characteristics

tb +

∫
[0,t]

Aβsds +

∫
[0,t]×Rd

∗

χ(q)ξ(s, q)dsL(dq), tA,
(∫

[0,t]
(1 + ξ(s, q))ds

)
L(dq)

with respect to χ. Note that using Burkhölder-Davis-Gundy inequalities and
Gronwall’s lemma we can show that

lim
ε→0

1
ε

(E(εG)T − 1) = GT in L2(P).

We first prove (3.4) for ξ ≡ 0, which is the first half of that identity. Given ε > 0
define the perturbed process

Xεβ := X + ε

∫
[0,.]

Aβsds.

Then Xεβ clearly is a PII and Xεβ
t has characteristics

tb + ε

∫
[0,t]

Aβsds, tA, tL(dq).
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Now we observe by the Girsanov theorem recalled above that Xεβ under P has
the same characteristics as X under Pεβ := E(ε

∫
[0,.] βsdMX

s )TP. By equality of the
characteristic functions we get that Pεβ ◦ X−1 = P ◦ (Xεβ)−1 and therefore

E

(
F(X)

1
ε

(
E(ε

∫
[0,.]
βsdMX

s )T − 1
))

=
1
ε
E

(
F(Xεβ) − F(X)

)
for arbitrary EA-differentiable F. We use the definition of the derivative operator
to take limits, thus

E

(
F(X)

∫
I

βtdMX
t

)
= E

(∫
I

〈DtF(X),Aβt〉dt
)
. (3.7)

We now prove (3.4) for β ≡ 0. Define Yεξ as in Section 3.1, then the perturbed
process Xεξ := X + Yεξ is a PII under P ⊗ P and Xεξ

t has characteristics

tb +

∫
[0,t]×Rd

∗

χ(q)ξ(s, q)dsL(dq), tA,
(∫

[0,t]
(1 + εξ(s, q))ds

)
L(dq).

This is an easy consequence of the fact that the sum of two independent Poisson
measures is still a Poisson random measure whose intensity is the sum of the
intensities. By Girsanov theory X has the same characteristics under the measure
Pεξ := E

(
ε
∫

[0,.]×Rd
∗

ξ(s, q)ÑX(dsdq)
)

T
P, which implies Pεξ ◦X−1 = (P⊗ P) ◦ (Xεξ)−1.

For an arbitrary ĒL-differentiable F this means

E

(
F(X)

1
ε

(
E

(
ε

∫
[0,.]×Rd

∗

ξ(s, q)ÑX(dsdq)
)

T

− 1
))

=
1
ε
E

(
E
(
F(Xεξ) − F(X)

))
.

We can apply the definition of the difference operator to get

E

(
F(X)

∫
I×Rd

∗

ξ(s, q)ÑX(dsdq)
)

= E

(∫
I×Rd

∗

Ψs,qF(X)ξ(s, q)dsL(dq)
)
. (3.8)

Adding (3.7) and (3.8) we get (3.4) for β ∈ E and all ξ = ξ1 − ξ2 with ξ1, ξ2 ∈ Ē. By
density of step functions in L2(Adt) and L2(dt ⊗ L) we get the result. �

Note that (2.5) is a special case of (3.4). The result is easily extended to pre-
dictable β ∈ L2(Adt ⊗ P) and ξ ∈ L2(dt ⊗ L ⊗ P).

3.3. L2-extension of derivative and difference operator. In this Section we in-
vestigate the connection between the variational definition of the derivative and
difference operators and the annihilation operator defined via the chaos decom-
position of Lévy processes.

Proposition 3.5. Let X be a Lévy process with characteristics (b,A,L)χ. Define the
derivative operator and the difference operator as in Definitions 3.1 and 3.3. Then

• the derivative operator D is closable as operator from L2(P) into L2(Adt ⊗ P);
• the difference operator Ψ is closable as operator from L2(P) into L2(dt ⊗ L ⊗P).

Moreover for each F in the closure of the domain of Ψ the difference representation

Ψt,qF(X) = F(X + q1[t,∞)) − F(X), dt ⊗ L ⊗ P-a.e. (3.9)

holds.
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Proof. There is a standard proof for the closability of the derivative operator D
using the duality formula (3.4) for ξ ≡ 0 (see e.g. [21] Section 1.2).

To show that Ψ is closable, we first prove the representation (3.9) for every ĒL-
differentiable functional F. We have already seen that this representation holds
for F ∈ S. Take ξ = ξ01(u,v]×Q ∈ Ē and let Yεξ be defined as in Section 3.1. Instead
of (3.2) we use the density expansion

E
(
F(X + Yεξ)

)
=

∞∑
j=0

∫
(I×Rd

∗ ) j
F(X + q11[t1,∞) + · · · + q j1[t j,∞))e−εξ0(u−v)L(Q)

(εξ0) j1Q(q1)L(dq1) · · · 1Q(q j)L(dq j)1{u<t1≤t j≤v}dt1 · · · dt j.

The fact that E
(F(X + Yξ) + F(X)

) < ∞ allows us to use the dominated conver-
gence theorem to show that

lim
ε→0

1
ε

E
(
F(X + Yεξ) − F(X)

)
=

∫
I×Rd

∗

(
F(X + q1[t,∞)) − F(X)

)
ξ(t, q)dtL(dq), P-a.s..

By the variational definition of the difference operator there exist subsequences
(ε j) j≥1, ε j → 0 such that

lim
j→∞

1
ε j

E
(
F(X + Yε jξ) − F(X)

)
=

∫
I×Rd

∗

Ψt,qF(X)ξ(t, q)dtL(dq), P-a.s.,

which implies Ψt,qF(X) = F(X + q1[t,∞)) − F(X) holds dt ⊗ L ⊗ P-a.e..
The proof of closability of Ψ is suggested by Nualart, Vives ([22] Theorem 6.2).

Let (F j) j≥1 be a sequence of ĒL-differentiable functionals such that F j → 0 in L2(P)
and ΨF(X)→ η in L2(dt ⊗ L ⊗ P). Ψ is closable if η = 0.

We can find a subsequence ( jk)k≥1 such that F jk → 0 P-a.s. and ΨF(X) jk → η
holds dt ⊗ L ⊗ P-a.e. By the above representation of ΨF j we also get

lim
k→∞

ΨF jk = lim
k→∞

(
F jk (X + q1[t,∞)) − F jk (X)

)
= 0, dt ⊗ L ⊗ P-a.e.,

which implies η = 0. In the same way we can prove the difference representation
on the closed domain of Ψ. �

Define DomD and DomΨ to be the domains of the closed operators. We
observe from the representation (3.9) that our definition of DomΨ is equivalent
to the following one:

DomΨ :=
{
F ∈ L2(P) : (t, q, x) 7→ F(x + q1[t,∞)) − F(x) ∈ L2(dt ⊗ L ⊗ P)

}
. (3.10)

In the literature there are two other approaches to define similar derivative and
difference operators.

(1) Starting from definition (2.4) on S extend these as operators from L2(P) into
L2(Adt⊗P) respectivelyL2(dt⊗L⊗P), see recent work by Geiss and Laukkari-
nen [9].

(2) Introducing a chaos decomposition of L2(P) (see Itô [11]) and defining the
operators as annihilation operators on the chaos, see [18], [27] and [9].
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Geiss and Laukkarinen prove that these two approaches coincide. Solé, Utzet and
Vives show that (3.10) and the definition of the difference operator on the chaos
are equivalent for Lévy processes without Gaussian part. Using Proposition 5.5 of
[27] and the closability of Ψ proved in Proposition 3.5 we see that the variational
definition we give is equivalent to the other approaches.

All three ways of defining the derivative and difference operator provide for
a proof of the duality formula. We presented two proofs in Theorem 2.4 and
Proposition 3.4. An abstract proof of the duality formula on the isomorphic Fock
space can be found in Proposition 4.2 of [22].

4. A characterization of infinitely divisible random measures

In this last Section we show an extension of the characterization of infinitely
divisible random vectors given in Section 1 to infinitely divisible random mea-
sures.

Let A be a polish space, A0 the ring of bounded Borel sets and A the σ-field
generated byA0. Define the space of all σ-finite measures on (A,A) by

M := {µ σ-finite measure on (A,A)}. (4.1)

Define the finite dimensional projections π(A1,...,An) : M → Rn
+ by π(A1,...,An)(µ) =

(µ(A1), . . . , µ(An))′, Ai ∈ A0. We equip the spaceM with the σ-field generated by
the finite dimensional projections: M := σ(πA, A ∈ A0). Let (Ω,F ,P) be some
probability space. A random measure N on (A,A) is a measurable mapping from
Ω intoM.

The notion of infinite divisibility is similar to the one for random vectors. A
random measure N on (A,A) will be called infinitely divisible if for every k ∈ N
there exist independent and identically distributed random measures N(1), . . . ,N(k)

on (A,A) such that
N L

= N(1) + · · · + N(k). (4.2)
Define M∗ := M\{0} and M∗ = M ∩M∗ (here 0 means the measure that has
µ(A) = 0). Remark that {0} ∈ M. The Laplace transform of an infinitely divisible
random measure is of the following form.

Proposition 4.1. If N is infinitely divisible, there exist α ∈ M and a σ-finite measure
Γ over (M∗,M∗) with

∫
M∗

(µ(A) ∧ 1)Γ(dµ) < ∞ for every A ∈ A such that for all
ξ : A→ R+ we have

− logE (e−
∫
A
ξ(a)N(da)) =

∫
A

ξ(a)α(da) +

∫
M∗

(1 − e−
∫
A
ξ(a)µ(da))Γ(dµ), (4.3)

where log(0) := −∞.

Proof. See e.g. Theorem 6.1 in Kallenberg [14]. The integrability condition on Γ

given there is actually
∫
M∗

(1−e−µ(A))Γ(dµ) < ∞. This is equivalent to our condition
because

1
2

q ≤ (1 − e−q) ≤ q, q ∈ [0, 1] and
1
2
≤ (1 − e−q) ≤ 1, q ∈ (1,∞).

The existence of α and Γ can be proven by projection of the Laplace characteristics
of the infinitely divisible random vectors π(A1,...,An)(N). �
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(α,Γ) are called characteristics of the infinitely divisible random measure N. To
state the characterization theorem we are going to use the following sets of test
functions. The set of elementary functions is defined by

EA :=

ξ : A→ R+, ξ =

n∑
i=1

ξi1Ai , ξi ∈ R+,Ai ∈ A0,n ∈N

 .
And the set of smooth and cylindrical functionals with compact support is

SM :=
{
F :M→ R+, F(µ) = f (µ(A1), . . . , µ(An)), f ∈ C∞c (Rn

+),Ai ∈ A0,n ∈N
}
.

Theorem 4.2. A random measure N is infinitely divisible with characteristics (α,Γ) if
and only if for all F ∈ SM, ξ ∈ EA the duality formula

E

(
F(N)

∫
A

ξ(a)N(da)
)

= E

(
F(N)

∫
A

ξ(a)α(da)
)

+E

(∫
M∗

F(N + µ)
(∫
A

ξ(a)µ(da)
)
Γ(dµ)

)
. (4.4)

holds.

Proof. By Lemma 6.3 in Kallenberg [14], N is infinitely divisible if and only
if (N(A1), . . . ,N(An))′ is infinitely divisible as a random vector in Rn

+ for any
A1, . . . ,An ∈ A0. Remark that for γ ∈ Rn

+ we have 〈γ, (N(A1), . . . ,N(An))′〉 =∫
A
ξ(a)N(da) if ξ =

∑n
i=1 γi1Ai ∈ EA. By (4.3) the Lévy measure corresponding to

(N(A1), . . . ,N(An))′ is given by Γ◦π−1
(A1,...,An). Then we conclude using Corollary 1.4

and the linearity of (4.4) with respect to ξ. �

This result underlines once more a direct correspondence between infinitely
divisible random objects and duality formulae of the type (1.3) or (2.5).

The above theorem was first proven by Kummer and Matthes [16], applying
a characterization of infinitely divisible point processes proved in [15]. Nehring
and Zessin [20] simplified the proof using a Poissonian representation of infinitely
divisible random measures.

We now show that Theorem 4.2 implies the corresponding characterization of
Poisson point processes originally given by Mecke [19] in Satz 3.1.

Corollary 4.3. Let Λ be some σ-finite measure on (A,A) with no atoms. The random
measure N is a Poisson measure with intensity Λ if and only if for all F ∈ SM, ξ ∈ EA

E

(
F(N)

∫
A

ξ(a)N(da)
)

= E

(∫
A

F(N + δ{a})ξ(a)Λ(da)
)
. (4.5)

Proof. Suppose N is a Poisson measure with intensity Λ. Then N is infinitely
divisible with independent increments. Denote by (α,Γ) its characteristics. Since
N is a point process we have α ≡ 0. By independence of increments the support
of Γ is included in the set of degenerate integer-valued measures{

µ = nδ{a}, a ∈ A, n ∈N
}

=
⋃
n≥1

Mn where Mn :=
{
µ = nδ{a}, a ∈ A

}
, n ∈N
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(see [14], Theorem 7.2 and Lemma 7.3). Thus Γ can be projected onto some
measure Λ̄ onN ×A in the sense that for every g :M ×A→ R+ we have∫

M∗×A

g(µ, a)µ(da)Γ(dµ) =

∫
N×A

g(nδ{a}, a)Λ̄(dnda). (4.6)

Putting F ≡ 1 in (4.4) we obtain

Λ(A) = E (N(A)) =

∫
M∗

µ(A)Γ(dµ) = Λ̄(N × A), ∀A ∈ A0.

Extending (4.4) to F = 1Mn and ξ = 1A for A ∈ A0 and applying (4.6) to g = 1Mn 1A
we see that Λ̄(N × A) = Λ̄({1} × A). Therefore∫

M∗×A

g(µ, a)µ(da)Γ(dµ) =

∫
A

g(δ{a}, a)Λ(da), g :M ×A→ R+ ,

which implies (4.5).
The sufficiency of the duality is due to the identification of the Laplace trans-

form of a Poisson random measure, similar to the proof of Theorem 4.2. �
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19. Joseph Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen, Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete 9 (1967), 36–58.
20. Benjamin Nehring and Hans Zessin, A path integral representation of the moment measure of the general

ideal bose gas, (2010), Universität Potsdam - Preprint July 2010.
21. David Nualart, The Malliavin calculus and related topics, Probability and its Applications (New

York), Springer-Verlag, New York, 1995.
22. David Nualart and Josep Vives, Anticipative calculus for the Poisson process based on the Fock space,
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