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A path integral representation of
the moment measures of the general ideal Bose
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Hans Zessin
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Postfach 10 01 31, D-33601 Bielefeld
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Abstract

We reconsider the fundamental work of Fichtner ([2]) and exhibit
the permanental structure of the ideal Bose gas again, using another
approach which combines a characterization of infinitely divisible ran-
dom measures (due to Kerstan,Kummer and Matthes [5, 6] and Mecke
[8, 9]) with a decomposition of the moment measures into its factorial
measures due to Krickeberg [4]. To be more precise, we exhibit the
moment measures of all orders of the general ideal Bose gas in terms
of certain path integrals. This representation can be considered as
a point process analogue of the old idea of Symanzik [11] that local
times and self-crossings of the Brownian motion can be used as a tool
in quantum field theory.

Behind the notion of a general ideal Bose gas there is a class of
infinitely divisible point processes of all orders with a Lévy−measure
belonging to some large class of measures containing the one of the
classical ideal Bose gas considered by Fichtner.
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It is well known that the calculation of moments of higher order of
point processes are notoriously complicated. See for instance Kricke-
berg’s calculations for the Poisson or the Cox process in [4].

1 An integration by parts formula for infinitely

divisible random measures

The aim here is to characterize infinitely divisible random measures on a
general state space from the point of view of its Campbell measure. It is
shown that such random measures are characterized by some integration by
parts formula. Our proof seems to be a more direct approach if compared to
the one of Kallenberg [3], Kerstan et al.[5, 6, 7] and Wegmann [12], where in
principle such results can be found already. The main ideas of the following
reasoning can already be found in the seminal work of Mecke [8, 9].

The integration by parts formula

In the sequel we use freely the notions of random measure theory and refer
for their definitions to the monographies of Kallenberg [3] and Matthes et al.
[7].

X denotes a Polish state space, B(X) resp. B0(X) its Borel resp. bounded
Borel sets. M(X) is the vaguely Polish space of locally finite measures on
X (i.e. of Radon measures on X).

We are given a measure α ∈M(X) and a measure L on Y =M(X)\{0}
of first order. This means that ν1

L, the first moment measure of L, is a Radon
measure, i.e.

(1.1) ν1
L ∈M(X).

We consider random measures P on X, i.e. laws P on M(X), for which
we write P ∈ PM(X). We are interested in such P which solve the following
integration by parts formula

(ΣL,α) CP = CL ? P + α⊗ P.

Here CP resp. CL denote the Campbell measure of P resp. L . ⊗ is the usual
product of measures, and the operation ? is a version of the convolution of
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CL and P , defined by

(1.2) CL ? P (h) =

∫
h(x, κ+ ν)CL(dx, dν)P (dκ), h ∈ F+(X ×M(X)).

(F+ denotes the collection of measurable, non-negative numerical functions.
We often do not write the underlying measurable space.)

Lemma 1.1 If P is a solution of (ΣL,α), then its Laplace transform is

(1.3) LP (f) = exp
(
−
[
α(f) + L(1− exp(−ζf ))

])
, f ∈ F+(X).

Proof. We establish a differential equation for the function t 7−→ L(t · f).
Let t > 0 and f ∈ F+(X). Since P is of first order, one can interchange
differentiation and integration to obtain by means of the partial integration
formula

(1.4)
d

dt
LP (tf) = −CP (f ⊗ exp(−tζf )).

Using the integration by parts formula this equals

=
[
−
(
α(f) +

∫
ν(f) exp(−tν(f))L(dν

)]
· LP (tf).

The initial condition is LP (0 · f) = 1. Thus

LP (tf) = exp(−[tα(f) + L(1− exp(−tζf )]), t ≤ 0, f ∈ F+(X). qed

As a consequence, if (ΣL,α) has a solution P at all, it must be unique.

Remark 1.2 It is well known (see [3], thm 6.1, or [12]) that under the
conditions above the relation

(1.5) LP (f) = exp
(
−
[
α(f) + L(1− exp(−ζf ))

])
, f ∈ F+(X)

defines a 1-1 correspondence between the distributions P of all infinitely di-
visible random measures ξ and the class of all pairs (α,L).
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Construction of a solution of (ΣL,α) and characteriza-
tions

Consider PL, the Poisson process with intensity L. Furthermore, let = :=
=L,α denote the image of PL under the measurable transformation

ξ :M··(Y ) −→M(X), µ 7−→ α +

∫
Y

ν µ(dν).

Set χ(µ) =
∫
Y
ν µ(dν) for short. Note that this is the intensity of µ, which,

by assumption on L, is PL− a.s. locally finite, so that ξ is a random element
inM(X) of first order. We call ξ resp. its distribution = the random KMM-
measure in X for (L, α). (These are the initials of J. Kerstan, K. Matthes
and J. Mecke. = is the initial of Jena.) It seems that the idea of the above
construction appeared for the first time in Jena in the works [5, 6] respectively
in [8, 9].

Given L of first order, it remains to show that ξ, the random measure
constructed above, solves the integration by parts formula. By definition one
has for any h ∈ F+

Cξ(h) = PL(

∫
h(x, ξ) ξ(dx)) =

∫
h(x, χ(µ) + α) (χ(µ) + α)(dx)PL(dµ)

This is the sum of two integrals I1 and I2. Using Mecke’s characterization of
the Poisson process in [9] yields

I1 =

∫
h(x, χ(µ) + α) ν(dx)µ(dν)PL(dµ)

=

∫
h(x, χ(µ+ δν) + α) ν(dx)L(dν)PL(dµ).

Observe then that χ(µ+ δν) + α = (χ(µ) + α) + ν, so that this is equal to∫
h(x, κ+ ν) ν(dx)L(dν)=(dκ) = CL ? =(h).

On the other hand

I2 =

∫
h(x, κ)α(dx)=(dκ).

This shows that = solves (ΣL,α):

To summarize, we have shown the following theorem.
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Theorem 1.3 Let α ∈ M(X) and L a measure on Y = M(X) \ {0} of
first order. Then the following conditions are equivalent for a given random
measure ξ̃ :

(1) ξ̃ is infinitely divisible for (α,L);

(2) the Laplace transform of ξ̃ is given by (1.3);

(3) ξ̃ is a solution of (Σα,L);

(4) ξ̃ is the random KMM-measure ξ in X for (α,L).

In particular (Σα,L) has = as a unique solution, which is of first order.

This basic result can be stated also in the following form: The transfor-
mation ξ gives a one-to-one correspondence between Poisson processes on Y
with an intensity measure L of first order and the set of infinitely divisible
random measures on X with so called Lévy measure L.

In the sequel we consider always the case α = 0.

2 The general ideal Bose gas

By specifying a class of Lévy measures L we now consider a large class of
infinitely divisible point processes which we call general ideal Bose gases.
Our aim is to analyse the structure of their moment measures. All this is
motivated by the work of Fichtner and Freudenberg, in particular by [2]. Some
of their results are reestablished in a generalized form in the present context.

As above X denotes a Polish space. Let % be a given Radon measure on
X. Furthermore, we are given a measurable family of finite measures

(2.1) Bxm(dx1 . . . dxm−1) on Xm−1,m ≥ 1.

Here X0 = {∅} and Bx1 is the Dirac measure on the empty tupel ∅. Measur-
ability means that x 7−→ Bxm(f) is measurable for any f ∈ F+(Xm−1).

We assume that
(2.2)
%(dx)Bxm(dx1 . . . dxm−1) is a cyclic invariant Radon measure on Xm for m ≥ 1.
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Example 2.1 In the simplest case Bxm is the 0−measure for any m ≥ 2.

Example 2.2 (Fichtner [2])
Now (X, %) is the Euclidean space Rd with the the Lebesgue measure λ.

The measure Bxm is defined by

Bxm(dx1 . . . dxm−1) = g(x− xm−1)g(x1 − x)
m−2∏
j=0

g(xj+1 − xj) dx1 . . . dxm−1.

Here g the centered Gaussian density with covariance matrix βI, I denoting
the identity and β > 0 is a given parameter:

g(x) =
1

(2πβ)d/2
exp(−‖x‖

2

2β
), x ∈ X.

Thus Bxm is a non-normalized random walk bridge of length m starting at x,
which has normally distributed increments.

Finally we consider the following cluster measure on the space M..
f of

finite configurations in X.

L(ϕ) =
∑
m≥1

zm

m

∫
ϕ(δx1 + ...+ δxm−1 + δx) Bxm(dx1...dxm−1) %(dx), ϕ ∈ F+.

Here 0 < z ≤ 1 is a given parameter.

In the first example above the measure L is given by z%; and in the second
one obtains a measure F which we call Fichtner’s measure.

We next compute the Campbell measure of L. To do this we introduce
the measure

(2.3) Bx =
∑
m≥1

zm Bxm

on the sum space X =
∑

n≥0X
n. Define also

M : X→M··
f , y = (x1, ..., xm) 7→ µy = δx1 + ...+ δxm

6



Lemma 2.1 The Campbell measure of L is given by

CL(h) =

∫
X

∫
X

h(x, µy + δx) Bx(dy) %(dx), h ∈ F+.

The proof uses only the cyclic invariance of Bx1
m (dx2...dxm) ρ(dx1). This

lemma represents the Campbell measure CL as the image of the measure
Bx(dy) %(dx) on X ×X under the mapping (y, x) 7−→ µy + δx.

Example 2.3 (Example 2.2 continued)
A more probabilistic formulation of Fichtner’s example is as follows: The

total measure of Bxm is (2πmβ)−d/2. The corresponding random walk bridge
law thus is given by

Bx
m = (2πmβ)d/2 · Bxm.

Consider now the mixture of these laws with respect to the law

pz(m) =
1

gd/2(z)
· z

m

md/2
,m ∈ N,

defined by

Bx =
∑
m≥1

pz(m) ·Bx
m.

gd/2(z) is the normalizing constant. Note that p1 is only well defined if d ≥ 3.
If we finally set

%z(dx) =
gd/2(z)

(2πβ)d/2
,

then the Campbell measure of Fichtner’s measure F is given by

CF (h) =

∫
X

∫
X

h(x, µy + δx)B
x(dy)%z(dx), h ∈ F+.

As an immediate consequence of the above lemma we obtain the first
moment measure of L as a multiple of %:

(2.4) ν1
L = B(.)(X) · %.

Recall that L should be of first order. Thus we assume from now on

(2.5) L is of first order .
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This assumption implies that Bx is a finite measure for %−almost all x.
Without restricting the generality we assume that all Bx are finite. (Thus
the assumption made above in (2.1) is a consequence of (2.5).)

Under the additional condition (2.5) we are in the situation of theorem
1.1 above. Thus ξ is infinitely divisible with Lévy measure L and thereby
characterized by an integration by parts formula. Note that ξ, the random
KMM-measure, is now a point process, which we call general ideal Bose gas
for L.

We remark as an aside: If % is diffuse then ν1
L has this property too, which

then implies that the point process ξ is simple, i.e. realizes only simple point
measures. In this case the clusters, which are generated by L, do not meet
one another. (For a proof see [10].)

To summarize we have the

Theorem 2.2 Let % be a Radon measure on X and Bxm, x ∈ X,m ≥ 1,
a family of kernels satisfying the assumptions (2.2) and (2.5). Then the
distribution =L of the general ideal Bose gas ξ is the unique solution of the
following integration by parts formula:

(2.6) C=L(h) =

∫
h(x, κ+ µy + δx)Bx(dy)%(dx)=L(dκ), h ∈ F+.

This is our main result concerning the general ideal Bose gas =L = ξPL.
Equation (2.6) should be seen as follows: Given the measure %(dx)Bx(dy)
on X ×X , the ideal Bose gas is characterized as the unique solution of the
integration by parts formula (2.6).

This theorem is a far reaching generalization of Mecke’s characterization
of the Poisson process ([9]): Mecke’s equation appears if Bx is the empty ran-
dom walk bridge, i.e. if MBx = ∆0. And this is the case in our first example
above. We illustrate its power in deducing some of Fichtner’s fundamental
results in [2].

We start to demonstrate the power of the theorem by stating first some
general observations: An immediate consequence of (2.6) is that the intensity
of the general ideal Bose gas ξ is given by

(2.7) ν1
=L = ν1

L = B(.)(X) · %.
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Furthermore, the Palm law of the general ideal Bose gas =L can be read off
directly as the convolution

(2.8) =Lx = Bx(X)−1 · (MBxβ) ∗ =L ∗∆x.

Here MBxβ denotes the image of Bxβ under M . Thus the Palm law =Lx realizes

configurations of particles in Rd consisting of x, augmented by independent
realizations of the process =L and the cluster measure MBxβ.

3 A loop expansion

We now use the last theorem in connection with the general decomposition
of the moment measures of a point process into its factorial measures to
represent the k−th moment measure of the general ideal Bose gas = = =L,
L given as above, in terms of certain loop measures. Such a representation
has its origin in the work of Symanzik [11]. (We refer also to Dynkin [1].)

Until now we assumed that L is of first order. In the sequel we even
assume that

(3.1) L is of any order.

Thus all νkL, k ≥ 1, are Radon measures. This is the case in the above
examples.

Let f1, . . . , fk be elements of K(Rd), the space of all continuous functions
with compact support. Theorem 2.2 immediately implies

νk=(f1 ⊗ · · · ⊗ fk) := C=(f1 ⊗ (ζf2 · · · ζfk))
(R) =

∑
B⊂{2,...,k}

ν
|Bc|
= (⊗j∈Bcfj) · ν |B|+1

L (⊗j∈B∪{1}fj)

This shows that the moment measures of = are recursively determined by the
moment measures of L. The next lemma shows that the factorial measures
ν̌k= of = (defined and investigated in the scholion at the end) satisfy the same
kind of recursion.
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Lemma 3.1

ν̌k=(⊗kj=1fj) =
∑

B∈P{2,...,k}

ν̌
|Bc|
= (⊗j∈Bcfj) · ν̌ |B|+1

L (⊗j∈B∪{1}fj).

Here P(.) denotes power set building.

Proof. Equation (R) combined with theorem 4.1, the decomposition of
the moment measures into its factorial measures, yields with fJ =

∏
j∈J fj

νk=(f1 ⊗ · · · ⊗ fk) =
∑

B∈P{2,...,k}

∑
J∈π(Bc)

∑
K∈π(B∪{1})

ν̌
|J |
= (⊗J fJ) · ν̌ |K|L (⊗KfK).

Here the inner sums are taken over all partitions π of Bc respectively B∪{1}.
Now reorder the sum on the right hand side to obtain

=
∑
N∈π[k]

∑
Q∈P{2,...,|N |}

ν̌
|Qc|
= (⊗j∈QcfNj) · ν̌

|Q|+1
L (⊗j∈Q∪{1}fNj).

Here [k] = {1, . . . , k}, and the partition N = {N1, . . . , N|N |} is always chosen
in such a way that 1 ∈ N1.

The uniqueness of the decomposition of moment measures into its facto-
rial measures then shows the result. qed

The next lemma gives an explicit representation of the measures satis-
fying the recursion of the last lemma. An induction with respect to k ≥ 1
immediately gives a proof.

Lemma 3.2 Let (ηk)k≥1 and (λk)k≥1 be two families of symmetric Radon
measures on Xk which are related to one another by the following recursion:

η0 ≡ 1; and if k ≥ 1

ηk(dx1 . . . dxk) =
∑

B∈P({2,...,k})

η|Bc|((dxj)j∈Bc)λ|B|+1((dxj)j∈B∪{1}).

Then

(3.2) ηk(dx1 . . . dxk) =
∑
J∈π([k])

λ|J1|((dxj)j∈J1) . . . λ|J|J ||((dxj)j∈J|J |)

where each J ∈ π([k]) is numbered here in an arbitrary way, say J =
{J1, . . . , J|J |}.
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In order to determine the factorial measures of =L we have to compute
now the factorial measures of L. This has been done by Fichtner [2] in the
special case of Gaussian bridges.

Lemma 3.3 The factorial moment measures of L, as defined above, are
given by

(3.3) ν̌kL(dx1 . . . dxk) = B̃x1
k−1(dx2 . . . dxk)%(dx1),

where
B̃xk =

∑
σ∈Sk

σ(
∑
n≥1

zn · Bxk,n),

with
Bxk,n =

∑
R∈Pk([n−1])

BxR,n,

BxR,n being the image of Bxn under the projection (x1, . . . , xn−1) 7→ (xj)j∈R.
Furthermore, Pk means building subsets of cardinality k.

Proof. By lemma 2.1 one has

νkL(f1 ⊗ · · · ⊗ fk) =
∑

C∈P{2,...,k}

∫
X

fC∪{1}(x)

∫
X

µ|C
c|

y (⊗j∈Ccfj)Bx(dy)%(dx).

We now apply the main lemma (see lemma 4.2 from the scholion at the end)
which in the present context implies∫

X

µky(⊗kj=1fj)Bx(dy) =
∑
J∈π([k])

B̃x|J |(⊗J fJ)

Thus

νkL(f1 ⊗ · · · ⊗ fk) =
∑

C∈P{2,...,k}

∑
J∈π(Cc)

∫
X

fC∪{1}(x)B̃x|J |(⊗J fJ)%(dx)

=
∑
J∈π([k])

∫ ∫ |J |∏
j=1

fJj(xj) B̃
x1

|J |−1(dx2 . . . dx|J |)%(dx1).

(Here as above 1 ∈ J1.) Now use the uniqueness of the decomposition to
obtain the result. qed
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Remark 3.4 Since L is assumed to be of any order, lemma 3.3 implies that
all measures B̃xk and thereby all measures BxR,n can be assumed to be Radon
measures.

Now that we know the factorial measures of L we obtain from lemma 3.2
the

Corollary 3.5

ν̌k=(dx1 . . . dxk) =
∑
J∈π([k])

B̃xi1|J1|−1((dxj)j∈J1\{i1})%(dxi1) . . . B̃
xi|J |
|J|J ||−1((dxj)j∈J|J |\{i|J |})%(dxi|J |).

Here J = {J1, . . . , J|J |} is any numbering of the partition J and ij ∈ Jj are
arbitrarily chosen elements.

As in [2] we now use that Scyk , the set of all cyclic permutations of the set
[k], is isomorphic to Sk−1, and obtain

B̃xk−1(dx1 . . . dxk−1) =
∑
ω∈Scyk

Bxk−1(dxω(k) . . . dxωk−1(k)).

To summarize, we have

Theorem 3.6 Under the assumptions (2.2) and (3.1) made above on %, (Bxm)m
and L, the factorial moment measures of the associated general ideal Bose
gas =L can be represented as

ν̌k=L(dx1 . . . dxk) =
∑
σ∈Sk

Bxi1|ω1|−1(dxω1(i1) . . . dxω|ω1|−1
1 (i1)

)%(dxi1) . . .

Bxin|ωn|−1(dxωn(in) . . . dxω|ωn|−1
n (in)

)%(dxin)

Here the permutation σ has been decomposed uniquely into its cycles: σ =
ω1 · · ·ωn; ij ∈ ωj, and |ωj| denotes the cycle length.

Combined with theorem 4.1, the general decomposition of moment mea-
sures into its factorial measures, we thereby obtain finally a representation
of all moment measurres of the general ideal Bose gas =L.

Remark 3.7 Theorem 3.6 is the announced loop expansion in the spirit of
Symanzik [11]: Note that the measures Bxk−1(dxω(k) . . . dxωk−1(k)) are sup-
ported by loops. Thus the right hand side of the representation of the factorial
moment of =L is a symmetric measure on a ’gas of such loops’.
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4 Scholion: A decomposition of moment mea-

sures into its factorial measures

Following a device of Krickeberg in [4], we present here for the convenience
of the reader a decomposition of the moment measures of point processes into
its factorial measures as well as the main lemma.

4.1 The general decomposition into factorial measures

Let P be a point process in X. In a first step we represent P by means of a
simple point processes Q in the product space X×N. The idea is to dissolve
the particles of a realization µ seperately as elements of this product space.
This is done by transforming P by means of

χ :M..(X) −→M.(X × N), µ 7−→ κ =
∑

x∈supp µ

µ(x)∑
i=1

δ(x,i).

It is obvious that χ is measurable. Denote by Q the image of P under χ. By
construction, χ resp. Q is a simple point process in X × N.

Assume in addition that P is of k−th order. Observe that for f1, . . . , fk ∈
K(X)

νkP (f1 ⊗ · · · ⊗ fk) = νkQ(f1 ◦ pr1 ⊗ · · · ⊗ fk ◦ prk).

This equation combined with Krickeberg’s decomposition for simple point
processes will enable us to derive its generalization for non-simple processes.
Let gj = fj ◦ prj. Now theorem 4 and theorem 3, corollary 2 of [4], which we
call Krickeberg’s decomposition here, implies that

νkQ(g1 ⊗ · · · ⊗ gk) =
∑
J

ν̀
|J |
Q (⊗J gJ).

Here the sum is taken over all partitions of [k] = {1, . . . , k} and gJ =
∏

J gj.
Moreover this decomposition is unique in the sense that the measures ν̀mQ , 1 ≤
m ≤ k, are uniquely determined by νkQ and thereby by νkP . The measures

ν̀mQ are the restrictions of νmQ to the space X̀m of all m−tupel with distinct
components.
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On the other hand we observe that

ν̀
|J |
Q (⊗J gJ) = ν̌

|J |
P (⊗J fJ),

where the right hand side is defined for a partition J = {J1, . . . , Jm} by∫
P (dµ)µ(dx1)(µ−δx1)(dx2) . . . (µ−δx1−· · ·−δxm−1)(dxm)fJ1(x1) · · · fJm(xm).

ν̀
|J |
Q resp. ν̌

|J |
P are called factorial measures of P of order |J |.

To summarize we have the following generalization of Krickeberg’s de-
composition:

Theorem 4.1 If P is a point process in X of order k, then all factorial
measures of νkP are Radon measures, and νkP can be uniquely decomposed into
its factorial measures in the following way:

(4.1) νkP (f1 ⊗ · · · ⊗ fk) =
∑
J

ν̌
|J |
P (⊗J fJ), f1, . . . , fk ∈ K.

We remark that this reduces to Krickeberg’s decomposition if P is simple.

4.2 The main lemma

Let K be a law on Xn, n ≥ 1. Consider the associated point process P =
MK, the image of K under M , defined by

P (ϕ) =

∫
ϕ(δx1 + · · ·+ δxn)K(dx1, . . . , dxn), ϕ ∈ F+.

P realizes configurations of n points in X. P is simple iff K(X̀n) = 1. Finally
it is also obvious that P is of any order k, i.e. for any k ≥ 1

νkP (f1 ⊗ · · · ⊗ fk) =

∫
µ(f1) . . . µ(fk)P (dµ), f1, . . . , fk ∈ K,

defines a Radon measure on Xk, called the k−th moment measure of P .
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We now derive a useful decomposition of νkP into its factorial measures:
Denoting f̃j = fJj one has

νkP (f1 ⊗ · · · ⊗ fk) =

∫ n∑
j1,...,jk=1

f1(xj1) . . . fk(xjk)K(dx1 . . . dxn)

=
k∑

m=1

∑
J∈πm([k])

∫
Xn

n∑
i1 6=···6=im

f̃1(xi1) . . . f̃m(xim)K(dx1 . . . dxn).

This is already a decomposition of νkP into its factorial measures.
We continue the analysis of these measures: Let σ ∈ Sm be a permutation

which orders a given tupel (i1, . . . , im) in such a way that iσ(1) < · · · < iσ(m).
Then general term of the last double sum equals∫

Xn

n∑
i1 6=···6=im

f̃σ(1)(xiσ(1)
) . . . f̃σ(m)(xiσ(m)

)K(dx1 . . . dxn).

The right hand side can be written as∑
σ∈Lm

∫
Xm

f̃1(y1) . . . f̃m(ym)σ
( ∑
R∈Pm([n])

KR(dy1 . . . dym)
)
.

Here KR denotes the image of K under the projection prR : (x1, . . . , xn) 7→
(xj)j∈R, and σKR(⊗mj=1f̃j) = KR(f̃σ(1) ⊗ · · · ⊗ f̃σ(m)).

To summarize we proved the main lemma used above in the proof of
lemma 3.3 .

Lemma 4.2 If K is a probability on Xn and k ≥ 1, then the point process
P = MK is of k−th order, and its k−th moment measure can be represented
as

(4.2) νkP =
k∑

m=1

∑
J∈πm([k])

(
∑
σ∈Sm

σK(m)) ◦ χ−1
J ,

where K(m) =
∑

R∈Pm([n])KR. Here
∑

σ∈Sm σK(m) is a representation of the

m−th factorial measure of P . And, if J = {J1, . . . , Jm}, the mapping χJ is
given by (z1, . . . , zm) 7−→ ((z1

j )j∈J1 , . . . , (z
m
j )j∈Jm) with z1

j = z1 for all j ∈ J1

etc..
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Historical note

The present work has its origins in the fundamental work of the Jena-school
of probability in the sixties. Its spiritus rector was Johannes Kerstan who
stimulated Klaus Matthes, Joseph Mecke and Karl-Heinz Fichtner. The great
impact of their ideas in stochastic geometry and quantum statistical mechan-
ics has now become manifest.
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