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Abstract

The aim of these lectures is a reformulation and generalization of the funda-
mental investigations of Alexander Bach [2, 3] on the concept of probability
in the work of Boltzmann [6] in the language of modern point process theory.
The dominating point of view here is its subordination under the disintegra-
tion theory of Krickeberg [14]. This enables us to make Bach’s consideration
much more transparent. Moreover the point process formulation turns out
to be the natural framework for the applications to quantum mechanical
models.



Chapter 1

Disintegration of invariant
probabilities

We introduce here in a discrete form Krickeberg’s theory of disintegration of
probability measures which are invariant under the action of a group. Thus
the point of view of Felix Klein is adopted, which starts with a group acting
on some given space and then asks for the collection of probabilities, which
remain invariant under this action.

The character of this chapter is theoretical. It will serve as the base for
all later applications.

1.1 Disintegration of probabilities

Here we start with the disintegration of probabilities with respect to a given
equivalence relation given on the underlying space.

Let (Y, ν) be a discrete probability space, i.e. Y is a non-empty countable
set and ν : Y → [0, 1] a function summing up to 1.

Now consider an equivalence relation ∼ in Y . Then there exists a count-
able set Γ and a mapping r from Y onto Γ, having the following properties:

(1.1) (x ∼ y ⇐⇒ r(x) = r(y)).

Exercise 1 Show the existence of such a pair (Γ, r).
[Hint: One can choose Γ as the set of all equivalence classes and r as

the mapping that associates to an element y the equivalence class to which it
belongs.]

For a given γ ∈ Γ let Yγ = {r = γ}. And by κ we denote the distribution
of r, thus κ = rν.
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In this situation one can decompose the probability ν with respect to r
as follows:

Lemma 1 There exists a family of probabilities νγ, γ ∈ Γ, on Yγ satisfying

(1.2) ν =
∑
γ∈Γ

νγ · κ(γ).

This decomposition is unique in the sense that the family (νγ)γ is κ−almost
surely uniquely determined.

[In the sequel an exercise with a star ∗ is essential for the understandig
of the main ideas.]

Exercise 2 ∗ Give a proof of this lemma.
[Hint: For κ−almost all γ, i.e. for all γ with κ(γ) > 0, the probabilities

νγ are the conditional probabilities ν(.|r = γ).]

Consider a function ϕ : Y −→ Y . We say that ν is invariant under ϕ if
ϕν = ν. Thus the image of ν under ϕ is the same as ν itself. We now ask
what does it mean for the νγ that ν is invariant under ϕ?

Lemma 2 Let ϕ : Y −→ Y be a function which preserves Yγ for κ−almost
all γ. Then ν is invariant under ϕ iff νγ is ϕ−invariant for κ−almost all γ.

Proof. By (1.2) the ϕ−invariance of ν is equivalent to

(1.3)
∑
γ∈Γ

ϕνγ(x) · κ(γ) =
∑
γ∈Γ

νγ(x) · κ(γ) for all x ∈ X.

It is obvious from (1.3) that the invariance of νγ implies for all γ with κ(γ) > 0
the invariance of ν.

It remains to prove the converse. Let γ ∈ Γ with κ(γ) > 0. Both, νγ as
well as ϕνγ, are probabilities on Yγ; and they conincide there because of the
uniqueness of the representation (1.2). qed

1.2 Invariance under a group

We now consider the special situation when the equivalence relation is induced
by some group acting or operating in the underlying probability space.
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1.2.1 Some facts about groups

We now consider a finite group G which operates or acts on Y . By this
important notion we mean the following:

Definition 1 An action of G on Y is an application

(1.4) φ : G × Y −→ Y, (g, x) 7−→ g.x,

satisfying the following conditions:

(1) ∀g, g′ ∈ G,∀x ∈ Y, g.(g′.x) = (gg′).x;

(2) ∀x ∈ Y, 1.x = x. (1 denotes the identy of G.)

We say that G operates or acts on Y if there exists such an action.

Exercise 3 ∗ Show that G operates on Y iff

(1.5) χ : G −→ S(Y ), g 7−→ g := (x 7→ g.x),

defines a homomorphism between G and the group S(Y ) of all bijections of
Y .

[Note that we use the same symbol g for an element of the group G and the
mapping g : x 7→ g.x.]

Exercise 4 ∗ Assume that φ is an action of G on Y . Show that then the
mapping

φ̃ : (g, x) 7−→ φ(g−1, x) = g−1.x

does not define an action of G on Y , unless the group G is abelian.

Comment 1 The notion of an action is of fundamental importance. It de-
scribes situations which one meets typically in geometry (Euclidean with the
group of isometries, hyperbolic with the Lorentz group etc.), but also, as we’ll
see in the sequel, in classical and quantum statistical mechanics.

We are now interested in situations, where G operates in a special way.

Definition 2 G operates transitively on Y if

(1.6) ∀x ∈ Y, ∀y ∈ Y, ∃g ∈ G, g.x = y.
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If G does not operate in a transitive way on Y , and in such situations we
shall be interested in, we introduce the following equivalence relation:

(1.7) x ∼ y ⇐⇒ ∃g ∈ G, y = g.x.

This relation describes the deviation from transitivity. The equivalence
classes are called orbits of Y under G.

Exercise 5 Show that G operates transitively on each equivalence class.

Exercise 6 (Decomposition of a permutation into a product of cycles) Let
Y = {1, . . . , n} and Sn = S(Y ). Sn operates on Y in a natural way. If σ
is an element of Sn denote by < σ > the cyclic group generated by σ in the
following sense: < σ > is the smallest subgroup of Sn containing σ.

(1) Show that

(1.8) < σ >= {id, σ, σ2, . . . , σk}.

Here k is the order of k, i.e. the smallest integer satisfying σk = 1.
The cyclic group < σ > operates also on Y . Denote by F1, . . . , Fr the
orbits of Y under < σ >.

(2) Show that the permutations σi, defined by

σi(x) =

{
σ(x), if x ∈ Fi
= id, else ,

are cycles of cardinality |Fi|, which commute and satisfy σ = σ1 . . . σr.

(3) Consider for Y={1,. . . ,8} the permutation

σ =

(
12345678
36451872

)
Show that σ has the following cycle decomposition: σ = (1345)(268)(7).

1.2.2 Krickeberg’s disintegration [14]

Here we present Krickeberg’s disintegration of probabilities which are invari-
ant under certain groups. It is a special version of a much more general
theorem.
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Consider now the set P0Y of all probabilities ν on Y which are invariant
under a given finite group G. Thus ν ∈ P0Y iff gν = ν for any g ∈ G. (Recall
that gν denotes the image of ν under g : x 7→ g.x.) As explained above
G induced an equivalence ∼ relation in Y , to which belongs a set Γ and a
surjective mapping r : Y −→ Γ such that (x ∼ y ⇐⇒ r(x) = r(y)). Its
equivalence classes are the orbits of Y under G.

Applying lemma 1 and lemma 2 we obtain that any ν ∈ P0Y , i.e. any
G−invariant probability ν, can be decomposed with respect to r in such
a way that (1.2) holds true, where κ−almost all probabilities νγ are also
G−invariant.

But the converse is also true: If κ is a probability on Γ and (νγ)γ∈Γ a
family of probabilities on Yγ which are G−invariant for κ−almost all γ, then
the probability ν, defined on Y by (1.2), is G−invariant.

In this way we obtained a survey over all G−invarant probabilties on Y .
This result, if considered in the special case that all Yγ are non-empty and
finite, will be our main tool in the sequel.

Theorem 1 (Krickeberg’s disintegration) Consider the above situation where
we assume in addition that

(1.9) ∀γ ∈ Γ, 0 < |Yγ| < +∞,

and denote by λγ the uniform distribution on Yγ, then the equation

(1.10) ν =
∑
γ∈Γ

λγ · κ(γ)

induces a one-to-one correspondence between G−invariant probabilities ν on
Y and probabilities κ on Γ. In this case one has

(1.11) ν(y) =
1

|Yr(y)|
· κ(r(y)), y ∈ Y.

For a proof note that G operates transitively on each orbit and that by
assumption (1.9) the only G−invariant laws on the orbits Yγ are the uniform
laws.

Comment 2 In passing we remark that the importance of this theorem for
statistics is connected with the following interpretation: The transformation
r is a so called sufficient statistic (basic notion in statistics) for the collection
of all G−invariant probabilities ν on Y .
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Chapter 2

Distributions of
indistinguishable classical
particles

Following the ideas of Bach [2, 3] we deduce by means of the above theorem
the statistics of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac. (This
terminology is used in statistical mechanics.)

We here consider the following situation, which can be considered as the
microscopic level: Let X be a finite set, having d ≥ 1 elements, and Y the
cartesian product Xn for some given n. Let G be the symmetric group Sn of
all permutations σ of the set [n] = {1, . . . , n}. This group operates on Y by
means of the action

(2.1) φ : (σ, (x1, . . . , xn)) 7−→ (xσ−1(1), . . . , xσ−1(n)); or equivalently

(2.2) χ : σ 7−→ ((x1, . . . , xn) 7→ (xσ−1(1), . . . , xσ−1(n))).

This can be interpreted as follows: Given (σ, (x1, . . . , xn)), by means of the
action φ particle i is replaced by particle σ(i) in the sense that if particle i is in
state xi before the transformation, then after the transformation particle σ(i)
is in state xi and particle i in state xσ−1(i). (For a more careful interpretation
we refer to Hermann Weyl [23], p.119.)

Exercise 7 (1∗) Show that the mapping defined in (2.1) is an action.

(2) Deduce that this is not the case for the mapping

(2.3) φ̃ : (σ, (x1, . . . , xn)) 7−→ (xσ(1), . . . , xσ(n)).
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As we saw above the group G induces in Xn the following equivalence
relation: x ∼ y iff σx = y for some σ ∈ Sn.

Exercise 8 ∗ Show that this equivalence relation can be represented by the
following pair (Γ, r):

Γ =M..
n(X) = the collection of all point measures γ of total mass n;(2.4)

r : y = (x1, . . . , xn) 7−→ γ = δx1 + · · ·+ δxn .(2.5)

Note that both, Γ and all Yγ, are finite sets. More precisely one has:

Exercise 9 ∗ Show that

(1) |Γ| =
(
d+ n− 1

n

)
; (recall that d = |X|.)

[Indication (cf. Feller I [12]): Place n numbered particles into d cells.
The particles are considered to be indistinguishable. We focus our at-
tention on events that are independent of numbering. Such events de-
pend only on configurations γ = r(y) = δx1 + · · · + δxn and not on
y = (x1, . . . , xn). To understand formula (1) represent particles by
stars and indicate the d cells by the d spaces between d+ 1 bars. Thus

| ∗ ∗ ∗ | ∗ |||| ∗ ∗ ∗ ∗|

illustrates a configuration µ of n = 8 balls in d = 6 cells {1, . . . , 6},
where γ = 3δ1 + δ2 + 4δ6 and the cells are numbered from left to right.
The question now is how many subsets of cardinality n = 8 exist in a
set of cardinality n+ d− 1 = 13? ]

(2) |Yγ| =
(
n
γ

)
.

Here the right hand side of (2) is defined by(
n∏

a∈X γ(a)!

)
.

[Indication: An element y = (x1, . . . , xn) ∈ Yγ can be identified with a parti-
tion of [n] into the sets {j|xj = a}, a ∈ X, of cardinality γ(a).]

To summarize: We are in the above setting of Krickeberg’s disintegration
theorem. Denoting by Λγ the uniform distribution on Yγ we have the
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Theorem 2 The equation

(2.6) P =
∑
γ∈M..

n

Λγ ·R(γ)

induces a one-to-one correspondence between G−invariant probabilities P on
Y and probabilities R on M..

n. In this case one has

(2.7) P (y) =
1

|Yr(y)|
·R(r(y)), y ∈ Y.

(From now on we often write M..
n if the underlying space is obvious.) This

result allows to describe in principle all G−invariant probabilities P on Y .

Comment 3 In the sequel we call such G−invariant probabilities P on Y
symmetric; and elementary events x = (x1, . . . , xn) of such a probability
space describe indistinguishable particles in the sense of Weyl’s interpreta-
tion. Thus symmetry or indistinguishablity means that the law or state of
the particle system is invariant under the action of the group G. Probabilities
R on M..

n(X) are called point processes in X realizing n particles. We then
write R ∈ PM..

n(X). Such processes describe laws which realize n points
or particles resp. data in the state space X. These processes are of funda-
mental importance for describing the chance mechanisms behind the data in
numerous real situations, in particular in quantum mechanical models.

Example 1 ∗ (The Maxwell-Boltzmann process and Maxwell-Boltzmann
statistics) Let n ∈ N and % denote a probability on X; thus % ∈ P(X). The
n−times product %n of % is a probability on Y = Xn and obviously symmet-
ric. Using (2.7) the corresponding point process is given by the Maxwell-
Boltzmann process for (n, %):

(2.8) Bn% (γ) =

(
n
γ

)
·
∏
a∈X

%(a)γ(a), γ ∈M..
n.

In case of % = λ, the uniform law on X, one obtains the Boltzmann process
for (n, d), denoted also by Bnd .
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Example 2 ∗ (The Bose-Einstein statistics) Consider now the following
point process in X

(2.9) End (γ) =
1(

d+ n− 1
n

) , γ ∈M..
n.

[Convince yourself that this defines a probability on M..
n.]

This is the uniform distribution on M..
n and is called in quantum sta-

tistical mechanics the Bose-Einstein process for the parameters (n, d). The
corresponding symmetric distribution on Xn, called Bose-Einstein statistics,
is given by

(2.10) En
d (y) =

1(
n
r(y)

) · 1(
d+ n− 1

n

) , y ∈ Xn.

Example 3 ∗ (The Fermi-Dirac statistics) Finally we consider the point
process in X defined by

(2.11) Dnd (γ) =
1(
d
n

) , γ ∈M.
n(X), 0 ≤ n ≤ d.

We set Dnd ≡ 0 otherwise. Thus Dnd is the uniform distribution on the space

(2.12) M.
n(X) = {γ ∈M..

n(X)|γ(a) ≤ 1 for any a ∈ X}

of all subsets of X of cardinality n. In classical statistical mechanics its name
is Fermi-Dirac process for the parameters (n, d).

The corresponding symmetric distribution on Xn, called the Fermi-Dirac
statistics is

(2.13) Dn
d (y) =

1

n!
· 1(

d
n

) , y ∈ X̀n = {r ∈M.
n(X)}, n ≤ n.

Dn
d (y) = 0 else. X̀n is the space of n−tupel with pairwise distinct components.

Comment 4 Dnd is our first example of a simple point process in X realizing
n particles, i.e. a law which is concentrated onM.

n(X). Physically simplicity
is a formalization of Pauli’s exclusion principle: It is not allowed that more
than one particle occupies the same state.
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Chapter 3

Symmetric point processes

On the next higher level we now consider the action of the symmetric group
on M..(X).

We now replace the space Xn by the spaces of configurations M..
n(X)

resp.

(3.1) M..(X) = collection of all mappings µ : X −→ N0.

We proceed exactly as we did before.
As before, X is a finite set of cardinality d. And Y now denotes the col-

lectionM..(X) of all point measures on X, whereas G is the finite symmetric
group S(X) of all permutations of X.

Exercise 10 ∗ Show that M..(X) is a countably infinite set.

Thus all integrals taken over M..(X) are series!

The action of S(X) on M..(X) is given by

(3.2) χ : σ 7−→ σ := (µ 7→
∑
a∈X

µ(a) · δσ(a)).

[Verify that this is an action. Note also that σµ is the image of the point
measure µ under the transformation σ.]

10



This action can also be considered as a time evolution of particle config-
urations µ.

The following exercise shows that also now we are in the setting of Kricke-
berg’s theorem. (Recall that d = |X|.)

Exercise 11 ∗ Show that the equivalence relation induced by S(X) inM..(X)
can be represented by the following pair (Γ, r):

(1) Γ =M..
d(N0); Γ is countably infinite;

(2) r : µ 7−→ γ, where γ(j) = cd{µ = j}, j ≥ 0;

(3) |Yγ| =
(
d
γ

)
.

[Hint: One can identify a point configuration µ ∈ Yγ with a partition of the
set X whose elements Mj = {µ = j} have the cardinality γ(j). Furthermore
we use that a permutation preserves the particle numbers.]

Denoting again by Λγ the uniform distribution on Yγ we therefore obtain

11



Theorem 3 The equation

(3.3) P =
∑

γ∈M..
d (N0)

Λγ ·R(γ)

induces a one-to-one correspondence between point processes R ∈ PM..
d(N0)

and G−invariant point processes P in X. In this case one has

(3.4) P (µ) =
1

|Yr(µ)|
·R(r(µ)), µ ∈M..(X).

Again such G−invariant point processes will be called symmetric. If the
action is interpreted as a time evolution then G−invariant point processes
are also called equilibrium states.

We now give some applications of this result, which go back to Ludwig
Boltzmann [6] and which have been reconstructed by Alexander Bach [2, 3].
The mapping r acts as intermediary between the levelsM..(X) andM..

d(N0).

Exercise 12 ∗ Show that the Maxwell-Boltzmann, Bose-Einstein and Fermi-
Dirac processes (Bnd )n≥0, (End )n≥0 as well as (Dnd )n≥0 are symmetric with re-
spect to the action (3.1).

[Hint: Under a permutation σ of X the particle number and the simplicity
of a configuration is a constant of the motion; and thus M..

n as well as M..
n

and M. remain unchanged under σ.]

We’ll now discover by means of equation (3.3) the point processes R which
correspond to these classical processes.

Example 4 (Fermi-Dirac) The image of Dnd under the transformation r
obviously is the following point process in N0:

(3.5) Dn
d = ∆γ0 ,

where γ0 ∈M..
d(N0) is the following point measure: γ0(0) = d−n, γ0(1) = n,

and γ0(j) = 0 for j ≥ 2.

Example 5 (Bose-Einstein) The image of End under r is the point process
in {0, . . . , n}, defined by

(3.6) En
d(γ) =

(
d
γ

)
· 1(

d+ n− 1
n

) , γ ∈M..
d({0, . . . , n}).

12



As an aside we obtain from this result the following combinatorial identity:

(3.7)
∑

γ∈M..
d ({0,...,n})

(
d
γ

)
=

(
d+ n− 1

n

)
.

Example 6 (Maxwell-Boltzmann) Finally it is easy to see that the image
of Bn% under r is given by

(3.8) Bn
%(γ) =

(
d
γ

)
· n! ·

∏
j≥0

1

(j!)γ(j)
·
∏
j

∏
a:µ(γ)(a)=j

%(a)j.

Here µ(γ) denotes an arbitrary element from Yγ = {r = γ}. If % is the
uniform distribution on X one obtains

(3.9) Bn
d(γ) =

(
d
γ

)
· n! ·

∏
j≥0

1

(j!)γ(j)
· 1

dn
.

As Bach [2, 3] observed the formulas (3.7) and (3.8) are due to Boltzmann
[6].

Recall that any point process R ∈ PM..
d(N0) defines via (3.2) resp. (3.3)

a symmetric process in X. To stress this we give a non-classical example.

Example 7 Consider the following law on N: Given 0 < z < 1, let

τ(j) =
1

κ(z)
· z

j

j
, j ∈ N.

Then consider the finite point process Bdτ in N. It is easily shown that the
corresponding symmetric process is given by

(3.10) P (n)
τ (µ) =

1

κ(z)d
· zN(r(µ)) · 1∏

j≥1

jr(µ)(j), µ ∈M..(X).

We finally consider a mixing of the families (Bnd )n≥0, (End )n≥0 resp. (Dnd )n
with respect to n. We saw in exercise 13 that they define symmetric point
processes in X. To be more precise, we consider two examples.

Example 8 (Mixing of Fermi-Dirac processes) We here consider the
mixture of the family (Dnd )n≥0 with respect to the Binomial distribution for
the parameters (d, p), 0 < p < 1. This is the point process

(3.11) Fdp =
d∑

n=0

(
d
n

)
· pn(1− p)d−n · Dnd .

13



Thus in a first step the number n is realized according to the Binomial dis-
tribution for (d, p), and the in a second step a configuration consisting of n
particles is realized in X according to the process Dn

d . We call Fdp a mixed
Fermi-Dirac process for the parameters (d, p).

It is obvious that

(3.12) Fdp (µ) = p|µ| · (1− p)d−|µ|, µ ∈M.(X).

Here M.(X) is the union of all M.
n(X), n ≥ 0. Thus this point process in

X describes nothing else than coin tossing in X.

Exercise 13 Show that in the last example the image under r is the Binomial
distribution for (d, p).

An important step for the developement in the sequel is the

Example 9 (Mixing of Maxwell-Boltzmann processes yields the Pois-
son process) We consider an arbitrary non-trivial finite measure % on X
together with its normalization %̂ to a probability law. We then mix the fam-
ily Bn%̂ , n ≥ 0, by means of the Poisson distribution on N0 for the parameter
%(X). Thus we obtain the point process P% defined by

(3.13) P% = e−%(X)
∑
n≥0

%(X)n

n!
Bn%̂ .

This is another famous process called the Poisson point process in X with the
intensity measure %. (The following scholion will justify this terminology.)
If we now choose % = z · λ, z > 0, where λ denotes the uniform distribution
on X, we obtain the Poisson processes Pzλ, z > 0. Its symmetry is a famous
result of Doob [8]. It says that the laws Pzλ, z > 0, are equilibrium states for
the time evolutions G. (This shows in particular that a time evolution can
have a continuity of equilibrium states.)

Scholion: The Poisson process. The method

of the Campbell measure

The aim here is to study in detail the Poisson processes constructed above.
This is done by means of the socalled Campbell measure.

14



The method of the Campbell measure

Let X be finite and non-empty and P a point process in X. The Campbell
measure of P , denoted by CP , is a measure on the product space X×M..

f (X)
defined by

(3.14) CP (h) =
∑

µ∈M..
f (X)

∑
a∈X

h(a, µ)µ(a)P (µ), h ∈ F+.

This measure contains all informations about the process P and plays a
similar role as the Fourier or the Laplace transform of P . It determines
completely P by the following argument: By definition

(3.15) CP ((a, µ)) = µ(a)P (µ), (a, µ) ∈ X ×M..
f (X).

Thus P is determined by CP on M..
f (X) \ {0}, and thereby on the whole

space because it is a probability.
Furthermore, if the Campbell measure is explicitly known, one often can

calculate the moment measures of P . The first moment measure, called
intencity of P , is given by

(3.16) ν1
P (B) = CP (B ×M..

f (X)), B ⊂ X.

The second moment measure of P is

(3.17) ν2
P (B × C) = CP (1B · ζC), B, C ⊂ X.

Here ζC is defined by

(3.18) ζC :M..
n(X) −→ N0, µ 7−→ µ(C).

Exercise 14 ∗ Show that

ν1
P (B) = P (ζB);(3.19)

ν2
P (B × C) = P (ζB · ζC).(3.20)

The Poisson process

Let X be finite, non-empty and % a finite measure on X. The associated
Poissonprocess P% has been constructed above.
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Exercise 15 ∗∗ (The Poisson process) Let % ∈M(X) \ {0}. Show that

(1)

P%(µ) = e−%(X) 1∏
a∈X µ(a)!

∏
a∈X

%(a)µ(a), µ ∈M..
n(X).

Consider now on the discrete probability space (M..
n(X), P%) the random

variables ζx, x ∈ X. We call the tripel

(3.21) P% = (M..
n(X), P%, (ζx)x∈X)

the Poisson random point field in X with intensity measure %. This is
justified as follows:

(2) Deduce from (1) that P% is independent, i.e. the field variables ζx, x ∈
X, are independent.

(3) Deduce that if B,C are non-empty disjoint subsets of X then ζB and
ζC are independent random variables.

(4) Deduce from (1) that ζx has a Poisson distribution with parameter %(x).
This implies that ζB, B ⊂ X, has a Poisson distribution with parameter
%(B). (Why?)

Part (1) of the last exercise immediately implies the fundamental

Theorem 4 (Mecke’s formula) The Campbell measure of the Poisson pro-
cess is given by

(3.22) CP%(h) =
∑
µ

∑
a

h(a, µ+ δa)%(a)P%(µ), h ∈ F+.

Thus the Campbell measure is given by

(3.23) CP%((a, µ)) = %(a) · P%(µ− δa), (a, µ) ∈ X ×M..
f (X).

(Here the right hand side is understood to be zero in the case that µ(a) = 0.)

Exercise 16 ∗ Deduce from Mecke’s equation the first and second moment
measure of the Poisson process. To be more precise show that

(1) ν1
P = %. This means that the measure % is the socalled intensity measure
ν1
P%

of P%, which measures the mean number of particles in B.
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(2) For any subsets B,C ⊂ X

(3.24) ν2
P%(B × C) = P%(ζB · ζC) = %(B) · %(C) + %(B ∩ C).

Example 10 (Einstein’s fluctuation formula, as derived 1927 by W.
Bothe [7]) Consider the family (Pzλ)z>0 of symmetric Poisson processes in
X. We can mix this process with respect to the exponential law for a given
parameter r > 0 to obtain another symmetric point process in X:

(3.25) Q
(r)
λ =

∫ ∞
0

Pzλ
1

r
· exp(−z

r
)dz.

Such a process is called a mixed Poisson process for the parameters (r, λ).

(1) Show that the intensity measure of Q
(r)
λ is given by r · λ.

(2) Show that the covariance measure of Q
(r)
λ , defined by γ

Q
(r)
λ

(B × C) =

cov
Q

(r)
λ

(ζB, ζC), B, C ⊂ X, is given by the signed measure

(3.26) γ
Q

(r)
λ

= ν2

Q
(r)
λ

− (ν1

Q
(r)
λ

)2.

(3) Show that

ν2

Q
(r)
λ

(B × C) = 2 · r2 · λ2(B × C) + rλ(B ∩ C).

Deduce that

(3.27) γ
Q

(r)
λ

(B × C) = r2 · λ2(B × C) + rλ(B ∩ C).

In particular one obtains from this formula the variance of the counting
variable ζB:

(3.28) V
Q

(r)
λ

(ζB) = (r · λ(B))2 + r · λ(B) = Q
(r)
λ (ζB)2 +Q

(r)
λ (ζB).

Formula (3.27) is called Einstein’s fluctuation formula. ([10])

Exercise 17 (Einstein’s fluctuation formula as derived 1915 by Max
von Laue [16]) Show in the situation of the last exercise that the counting
variables ζx, x ∈ X, are identically distributed according to the geometric
distribution for the parameter 1

1+r
, i.e.

Q
(r)
λ {ζx = k} =

1

1 + r
· ( r

1 + r
)k, k ≥ 0, x ∈ X.

Deduce from this fact again that
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(3.29) ν1

Q
(r)
λ

(B) = Q
(r)
λ (ζB) = r · λ(B), B ⊂ X,

and the fluctuation formula

(3.30) V
Q

(r)
λ

(ζx) = Q
(r)
λ (ζx)

2 +Q
(r)
λ (ζx), x ∈ X.

Comment 5 We indicate shortly a physical interpretation of the point pro-
cess Q

(r)
λ . Recall that this process is a mixture of the Poisson processes PZλ,

where Z is a random variable with values in ]0,+∞[, distributed according to
an exponential distribution with a given parameter r > 0. Consider the ran-
dom variable ζB. It counts the number of ’quanta’ in the region B. The mean
number of quanta in B thus is given by the random variable Z ·λ(B). In this
model ζx, the number of quanta in the ’cell’ x, is geometrically distributed
for the parameter 1

1+r
. Thus its mean number there is r and its variance

r2 + r = r(1− r).

Comment 6 In example 9 we mixed the Poisson family Pzλ, z > 0, with
respect to an exponential distribution. More generally one can mix with re-
spect to other laws on the positive half axis. An important example is, if we
mix with respect to a Γ−distribution Γ(κ, ν), κ, ν > 0. The counting variable
in question then has a negative binomial distribution. We’ll come to this
shortly. Even more generally one could consider the whole intensity measure
of the Poisson process as random. (This is the concept of a socalled Cox
process.) The question is what kind of random intensity measures appear in
nature (i.e. in quantum mechanical, ecological, epidemiological etc. models)?
We can only pose this fundamental question here. (See [1] for more details.)
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Chapter 4

The finite Papangelou process

We now generalize the class of finite point processes and present a general
construction of socalled Papangelou processes. The Poisson process is one
example but another fundamental one is the Polya sum process.

Again X is non-empty and finite. We now consider kernels of the form

(4.1) π :M..(X)×X −→ [0,+∞[, (η, a) 7−→ π(η, a).

Thus π(η, .) is a measure on X. Such a kernel is the point of departure for
the construction.

Example 11 Let % be some finite measure on X and 0 < z < 1.

(1) π(η, .) ≡ % ;

(2) π(η, .) = z · (%+ η).

(3) π(η, .) = V (., η)·%. Here V is a function with values in ]0,+∞[. In clas-
sical statistical mechanics V has the form exp(−E(a, η)) where E(a, η)
is the energy of particle a in the environment η.

π defines a sequence of kernels on the cartesian products of X: Given
η,m ≥ 1 and a1, . . . , am ∈ X let

π(m)(η, (a1, . . . , am)) = π(η, a1) · π(η+ δa1 , a2) · · · π(η+ δa1 + · · ·+ δam−1 , am).

The π(m)(η, .) are finite measures on Xm. Let

Z(m)(η) = π(m)(η,Xm), Z(0)(η) = 1,
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be the corresponding total measures. We assume now that π is integrable in
the sense that

(4.2) 0 < Ξ(η) =
∑
m≥0

Z(m)(η)

m!
< +∞.

In this situation we can construct a finite point process Pηπ in X by means
of a given kernel π and a given environment η in two steps:

(1) Realize a natural number m ∈ N0 according to the law

1

Ξ(η)
· Z

(m)(η)

m!
;

(2) realize then a configuration δa1 + · · · + δam of m particles or quanta
according to the image of the law

1

Z(m)(η)
· π(m)(η, .)

under the transformation Mm : (a1, . . . , am) −→ δa1 + · · ·+ δam .

Formally this finite point process is given by
(4.3)

Pηπ(ϕ) =
1

Ξ(η)
·

+∞∑
m=0

1

m!

∑
(a1,...,am)

ϕ(δa1 + · · ·+ δam)π(m)(η; a1, . . . , am), ϕ ∈ F+.

(Here we write π(m)(η; a1, . . . , am) instead π(m)(η, (a1, . . . , am)) for simplic-
ity.)

We call this process Pηπ the (finite) Papangelou process with environment
η and kernel π.

We then make another assumption which will be of fundamental impor-
tance in the sequel. We assume that π satisfies the socalled cocycle condition,
i.e.:

(cc) the kernel π is symmetric in the sense that

(a, b) 7−→ π(η, a)π(η + δa, b), η ∈M..(X),

define symmetric measures on X2.

Under these conditions we call the point process Pηπ the finite Papangelou
process with environment η and kernel π.

Exercise 18 ∗ Consider the above examples (1) and (2) for a given %.
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\ Show first that for both examples the above two conditions are fullfilled.

ad (1) Show that in the first example one obtains the Poisson process with
intensity measure %. Moreover, ζX has a Poisson distribution for the
parameter %(X).

ad (2) Show that in the second case

(a) Z(m)(η) = zm · |%+ η|[m]. Here a[m] = a(a+ 1) . . . (a+m− 1) and
|%| = %(X).

(b) Ξ(η) = exp(|%+ η|κ(z)), where κ(z) =
∑

j≥1
zj

j
= − ln(1− z).

Thus the total particle number ζX is distributed according to

Pηπ{ζX = m} = (1− z)|%+η| · z
m · |%+ η|[m]

m!
,m ≥ 0.

In case that the environment is void, i.e. η = 0, we call P0
π the Polya sum

process for the parameters (z, %) and write Pz,%. Note, if for this process % is
a probability, then

P0
π{ζX = m} = (1− z) · zm,m ≥ 0.

Thus the counting variable ζX has a geometric distribution with parameter
1− z.

We now show that the Campbell measure of the Papangelou process for
the parameters (η, π) solves an integration by parts formula.

Theorem 5 Under the conditions (4.2) and (cc) Pηπ , η ∈M..
f (X) is a solu-

tion P η ∈ PM..(X) of the equation

(4.4) CP η(h) =
∑
µ

∑
a

h(a, µ+ δa)π(µ+ η, a)P η(µ), h ∈ F+.

Proof. Given h ∈ F+ the symmetrie of π

CP ηπ (h) =
1

Ξ(η)
·
∑
m≥0

1

m!

m∑
j=1

∑
(a1,...,am)

h(aj, δa1 + · · ·+ δam)π(m)(η; a1, . . . , am)

=
1

Ξ(η)
·
∑
m≥1

1

(m− 1)!

∑
(a1,...,am−1)

∑
a

h(a, δa1 + · · ·+ δam−1 + δa) ·

·π(η + δa1 + · · ·+ δam−1 , a)π(m−1)(η; a1, . . . , am−1)

=
∑
µ

∑
a

h(a, µ+ δa)π(η + µ, a)P η
π (µ).
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qed
Equation (4.4) can equivalently stated as

CP ηπ ((a, µ)) = π(µ+ η − δa, a) · P η
π (µ− δa), µ(a) ≥ 1.

Example 12 In case of example (1) we obtain here Mecke’s equation. In
case of example (2) the equation is given by

(4.5) CPz,%(h) =
∑
µ

∑
a

h(a, µ+ δa)z(%+ µ)(a)Pz,%(µ), h ∈ F+.

We now deduce by means of this integration by parts formula the main
properties of the Polya sum process.

Lemma 3 For any B ⊂ X and any event N which happens outside B, i.e.
N depends only on ζBc,

(4.6) Pz,%({ζB = k} ∩ N ) =
zk

k!
· %(B)[k] · Pz,λ({ζB = 0} ∩ N ).

Proof. Let k ≥ 1. Given B and N we obtain by means of (3.31)

Pz,%({ζB = k} ∩ N ) =
1

k
·
∑
µ

∑
a∈B

1{ζB=k}(µ)1N (µ)µ(a)Pz,%(µ)

=
1

k
·
∑
µ

∑
a∈B

1{ζB=k−1}(µ)1N (µ)z(%+ µ)(a)Pz,%(µ)

=
z

k
· [%(B) + (k − 1)]Pz,%({ζB = k − 1} ∩ N ).

Iterating this step shows the lemma. qed

Exercise 19 ∗

(1) Consider k1, . . . , kn ≥ 1 and pairwise disjoint subsets B1, . . . , Bn of X.
Show by means of the lemma that

Pz,%{ζB1 = k1, . . . , ζBn = kn} = Pz,%{ζB1 = 0, . . . , ζBn = 0}·
n∏
j=1

zkj

kj!
·%(Bj)

[kj ].

(2) Calculate then Pz,%{ζB1 = 0, . . . , ζBn = 0}. (This is given by exp(−%(B1∪
. . . Bn) · κ(z)).)
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(3) Deduce that the distribution of the counting variables ζB, B ⊂ X, is
negative binomial:

(4.7) Pz,%{ζB = k} = exp(−%(B)κ(z))zk
%(B)[k]

k!
, k ≥ 0.

In particular, if % is the counting measure λ then any ζx has a geometric
distribution with parameter 1− z.

(4) Deduce that the field variables ζx, x ∈ X, of the Polya sum process are
independent.

(5) Show that the intensity measure of the Polya sum process is given by

(4.8) ν1
Pz,% =

z

1− z
%.

Remark 1 The above considerations used only that Pz,% is a solution of
the integration by parts formula. And we saw that this equation determines
completely the distribition of the whole process. Thus, looking at the equation,
we see that the Polya sum process is completely determined by the socalled
Papangelou kernel π(µ, ·) = z · (%+ µ)(·).

We next show that the Polya sum process for the parameters (z, cd) is
symmetric in the sense of the last chapter. Here cd denotes the counting
measure on X. (Recall that d = cd(X) = |X|.)

Theorem 6 P = Pz,cd is invariant under the action of any permutation
σ ∈ S(X).

Proof. We use the method of the Campbell measure. By means of
equation (3.32) we have

CσP(h) =
∑
µ

∑
a

h(σa, σµ)µ(a)P(µ)

=
∑
µ

∑
a

h(σa, σµ+ δσa)z(cd+ µ)(a)P(µ)

=
∑
µ

∑
a

h(a, µ+ δa)z(cd+ µ)(a)σP(µ).

Thus we see that σP solves the equation (3.32). Since P is the unique
solution we obtain the result. qed

Combining this theorem with Krickeberg’s disintegration we obtain the
corresponding point process in N0 of d particles.
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Theorem 7

(4.9) Rz,cd(γ) = (1− z)d ·
(
d
γ

)
· zN(γ), γ ∈M..

d(N0).

Here N(γ) =
∑

j≥1 j · γ(j).

Proof. By formula (3.4) one has

(4.10) Rz,cd(γ) =

(
d
γ

)
· Pz,cd(µ(γ)),

where µ(γ) is any element chosen in Yγ. To calculate Pz,cd(µ(γ)), recall that
µ = µ(γ) is an element of Yγ iff cd{µ(.) = j} = γ(j), j ≥ 0. By construction
one has

Pz,cd(µ) = exp(−d · κ(z)) ·
∏
a∈X

zµ(a)

µ(a)!
· 1[µ(a)].

But 1[µ(a)] = µ(a)! by definition and
∏

a∈X z
µ(a) = zN(γ). qed

Exercise 20 The aim is to calculate the distribution of the counting variable
N .

(1) Show that

(4.11) Rz,cd(N = n) = (1− z)d · zn · Q̃n(d), n ≥ 0,

where Q̃n(d) =
∑

γ:N(γ)=n

(
d
γ

)
.

(2) Calculate the terms Q̃n(d). Show that Q̃0(d) = 1

(4.12) Q̃n(d) =
1

n!
· (d+ n− 1), n ≥ 1,

Exercise 21 Denoting by M the identity, deduce that Rz,cd{M = (.)|N =
0} = ∆γ0 with γ0 = d · δ0; and if n ≥ 1
(4.13)

Rz,cd{M = γ|N = n} =
n!

d+ n− 1
·
(
d
γ

)
· 1{N=n}(γ), γ ∈M..

d(N0) \ {γ0}.
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Comment 7 The Polya sum process for the parameters (z, cd) is also a
model for the light emission as it has been discussed in the early days of quan-
tum mechanics.(See [4]) ζx counts the quanta in cell x. This random variable
has a geometric distribution for the parameter 1 − z. As a consequence, its
expectation is z

1−z and its variance is given by Einstein’s fluctuation formula
in exercise 17 as

(4.14) VPz,cd(ζx) = (
z

1− z
)2 +

z

1− z
= EPz,cd(ζx)

2 + EPz,cd(ζx).

This does not depend on x. Thus for any B ⊂ X we obtain more generally
by using Bienayme’s formula the fluctuation formula

(4.15) VPz,cd(ζB) = [EPz,cd(ζa0)
2 + EPz,cd(ζa0)] · |B|.

Here a0 is any chosen element of X.

Comment 8 We remain in the context of the last comment and consider the
statistical aspects. Assume that z is an unknown parameter. Equation (4.8)
shows that each r̂ = ζB

|B| , B ⊂ X, is an unbiased estimator for the parameter

r = z
1−z . We thus consider for the statistical scheme (Pz,cd)z∈]0,1[ the problem

of estimating the unknown parameter r. Equation (4.10) then shows that this
estimator r̂ is consistent in the sense that its variance

(4.16) VPz,cd(
ζB
|B|

) =
r2 + r

|B|

is small if |B| is large, in particular if X is large. This then implies that the
following weak law of large numbers holds true: For any z and ε > 0

(4.17) lim
d→+∞

Pz,cd{|
ζX
d
− z

1− z
| > ε} = 0.

To summarize, we see that in the symmetric Polya sum process one can
estimate the unknown parameter r and thereby z in a reasonable way if the
random field is large enough.

Scholion: Two representations of the Poya sum

process

We first identify the Polya sum process as a discrete Poisson-Gamma pro-
cess and then as a Cox process with directing measure given by a continuous
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Poisson-Gamma process. Both representations are due to Mathias Rafler
[20, 21].

Let X be finite, non-empty and % a non-trivial, finite measure on it.
Consider also a locally finite measure τ on ]0,+∞[. Call L the image of the
product measure γ = %⊗ τ under the transformation

(4.18) χ : X×]0,+∞[−→M1(X), (x, t) 7−→ t · δx.

Here M1(X) is the range of χ.
We assume that L is a locally finite measure.

Example 13 (1) Here τ is given on N by τ(j) = zj

j
, 0 < z < 1. Note that

in this case L is finite: |L| = |%| · κ(z).

(2) Now τ is given on ]0,+∞[ by τ(dt) = 1
t

exp(−α · t)dt. This measure is
locally finite in the following sense: It is finite on all intervals [a, b[, 0 <
a < b ≤ +∞, but infinite on their complements. The corresponding
measure L is called Kingman’s measure here. ([13])

Thus we can consider in both cases the Poisson process PL. (We remark
that PL is a point process in a space which is not finite as above but a
continuum. Thus we need the general theory of Poisson processes in this
scholion.) It realizes in the first case configurations of finitely many Dirac
measures of the form tδx, whereas in the second case countably infinitely
many of them.

In a next step we transform PL by means of the transformation

(4.19) ψ : µ 7−→ νµ =
∑

y∈supp µ

µ(y) · y.

Here supp µ denotes the support of the measure µ. In the first case this
image process QL = ψPL is called here the discrete Poisson-Gamma process
for the parameters (z, %) whereas in the second we speak of the continuous
Poisson-Gamma process for (z, %). (The terminology differs in the literature.
In [1] the continuous Poisson-Gamma process is called a negative binomial
process whereas its directing measure is called a Gamma process.) The latter
process had been constructed by Kingman [13]. He can show that QL realizes
locally finite measures µ for which ζB(µ) has a Γ−distribution.

Exercise 22 Give an interpretation of νµ(B) resp. νµ(f).
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Theorem 8 (Rafler [20]) Let L be the discrete measure of the first example.
Then the discrete Poisson-Gamma process for (z, %) is the Polya sum process
Pz,%.

Proof. We use the method of the Campbell measure. On one hand one
has

CQL(h) =
∑
µ

∑
(x,j)

j · h(x, νµ)µ(jδx)PL(µ)

=
∑
µ

∑
(x,j)

j · h(x, νµ + jδx)
zj

j
%(x)PL(µ)

=
∑
j

zj
∑
µ

∑
x

h(x, µ+ jδx)%(x)QL(µ).

On the other hand the Campbell measure of the Polya process coincides
with this expression which follows from iteration of (3.32): For any N ∈ N
we get

CPz,% =
N∑
j=1

zj
∑
µ

∑
x

h(x, µ+ jδx)%(x)Pz,cd(µ) +

+zN
∑
µ

∑
x

h(x, µ+Nδx)µ(x)Pz,cd(µ)

−→N→+∞

∞∑
j=1

zj
∑
µ

∑
x

h(x, µ+ jδx)%(x)Pz,cd(µ).

qed

The following result is very surprising in the context above. We do not
give a proof here because it is beyond the elementary framework of this
lecture.

Theorem 9 (Rafler [21]) Let L′ denote Kingman’s measure for the fol-
lowing choice of the parameter α: α = 1−z

z
. Then the socalled Cox process

directed by the continuous Poisson-Gamma process QL′, defined by

(4.20) PQL′ =

∫
PκQL′(dκ),

coincides with the Poya sum process Pz,%.
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Comment 9 The Cox process PQL′ represents the following law: First an in-
tensity measure κ is realized according to the law QL′ of a continuous Poisson-
Gamma process. This random measure fluctuates locally according to some
Γ−distribution. And then, in a second step, a configuration of quanta or
particles is realized in the phase space X according to the Poisson process
Pκ with the random intensity measure κ. (For an interpretation in quan-
tum optics and other fields of application of Cox processes see the following
scholion.)

Scholion: Quantum Optics and other fields of

application

Here we collect some quotations from seminal papers of Odile Macchi [17]
and of Klaus Krickeberg [15] to document the importance of the model of a
Cox process for quantum optics or other fields of application as well as the
statistical problems involved. They are marked by means of the sign ð. We
mention in passing that a third important field where Cox processes are used
is the theory of statistical communication. (See Middleton [18].)

We begin to quote from [17].

ð This paper is concerned with problems from the statistical theory of
estimation occurring in the optical communication field (. . . ). The
objective is to measure the light intensity of a weak flux, detected by
a photomultiplier. The characteristic context is as follows: necessarily
the information used for estimation is enclosed in a point process, that
of the instants when the detector delivers a photoelectron.

ð Dans tous les cas que nous envisageons, il s’agit d’extraire l’information
contenue dans ce flux lumineux, en mesurant son intensite I(t).

Dans cette etude nous n’avons considere que le cas des flux faibles, ou
la nature corpusculaire du rayonnement electromagnetique (. . . ) joue
un role determinant. [Un flux lumineux faible] est constitue par une
suite d’impulsions tres breves, de formes pratiquement identique corre-
spondant a l’absorption d’un photon et a l’emission d’un photoelectron
par le detecteur. Les epoches ti de ces impulsions sont aleatoires. La
seule information accessible sur le flux lumineux est donc constituee
par le processus ponctuel P forme par les ti.
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ð La nature du processus ponctuel P est maintenant bien connue (. . . ):
il s’agit d’un processus de Poisson compose, c’est a dire d’un proces-
sus pontuelle qui, conditionellement a une realisation d’une fonction
aleatoire positive λ(t) , appelee densite, est poissonnien de densite λ(t).
Avec cette definition, l’etude des grandeurs statistiques du processus de
Poisson compose se fait tres simplement a partir de l’etude similaire du
processus de Poisson pur. Cependant, la grande difficulte de la theorie
des lois de probabilite conditionelles nous conduit a donner une autre
definition du processus de Poisson compose par sa loi temporelle.

ð Le caractere aleatoire de la densite λ(t) du processus ponctuel P est
du au caractere aleatoire de la densite ρ(t) des photoelectrons. En effet
ρ(t) est donnee par la relation

(4.21) ρ(t) = s · I(t),

en fonction de l’intensite lumineuse I(t), qui est une fonction aleatoire
de par nature meme du champ electromagnetique.

Le coefficient s est une constante positive, caracteristique de l’efficacite
du detecteur. En plus des photoelectrons, le detecteur delivre des ther-
moelectrons, correspondant a son bruit interne, et indiscernables des
premier electrons. On peut admettre que ceux-ci forment un processus
de Poisson pur stationaire de densite b (certaine), et independent du
processus des photoelectrons. On voit alors aisement que le proces-
sus ponctuel P resultant de la superposition des deux, est encore un
processus de Poisson compose de densite

(4.22) λ(t) = ρ(t) + b = s · I(t) + b.

(. . . ) nous traitons d’une impulsion lumineuse de forme connue I0(t).
On a alors

(4.23) I(T ) = a · I0(t),

ou a est un parametre inconnu qui traduit l’energie du champ lumineux
et qu’il s’agit d’estimer a partir de l’observation {tn}. (. . . ) dans l’etude
des radars optiques, se pose ce genre de probleme.

Tenant compte de (3.43), (3.44) devient alors

(4.24) λ(t) = a · ρ0(t) + b.

La fonction ρ0(t) est connue, et nous supposons que a est une variable
aleatoire , possedant une densite de probabilite q(a), continument deriv-
able. Dans le cas ou a n’est pas une variable aleatoire, mais une valeur
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certaine inconnue, le processus ponctuel de detection est une processus
de Poisson pur (. . . ). Nous adoptons successivement les critere (Q) de
l’erreur quadratique moyenne et (V ) du maximum de vraisemblance a
posteriori, qui sont les deux critere statistiques les plus employes.

We terminate with quotations from [15].

ð Apart from the [problem] that gave rise to the concept of a Cox pro-
cess PW (dµ) =

∫
P%(dµ)W (d%), where % represents the strength of a thread

running through a loom and µ the sequence of instances where this thread
breaks, let us only mention the following one. A substance is injected into
the veins of a guinea-pig. Its concentration in the animal’s blood and in the
course of time is subject to chance, hence it may be regarded as a realiza-
tion % of a random measure W . Thus % is the object of our interest but it
cannot be observed. We can, however, ”mark” the original substance with a
radioactive substance, and the coordinates in space and time of the emission
represent the points of the corresponding realization µ of the Cox process
PW . Quite often µ is observable, hence we have the problem of finding %
from µ.
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Chapter 5

Symmetric random
permutations

In this final more abstract lecture we present a famous symmetric point pro-
cess which has been found independently in theoretical biology by Warren
Ewens [11] and in quantum statistical mechanics by Andras Sütö [22]. It is
a random permutation which is invariant under socalled conjugation.

We consider the group G all permutations of a finite set E. Thus G =
S(E). Set n = |E|. (Take for example E = [n]. Don’t mix E with a state
space.)

The group G operates on itself by conjugation, i.e. by means of the action

(5.1) φ : G × G −→ G, (g, σ) 7−→ gσg−1.

The corresponding equivalence classes are the conjugacy classes.

Exercise 23 ∗ One can show that the associated equivalence relation can be
represented by the following pair (Γ, r):

Γ =M..
(n)(N) = {γ ∈M..

f (N)|N(γ) = n};
r : G −→ Γ, σ 7−→ γ.

Here γ(j) = r(σ)(j) is the number of cycles of length j in the cycle decom-
position of σ.

We give some indications of a proof. For the details we refer to [5]. Every
permutation σ is a product of cycles. (Recall exercise 6.) Let γ(j) be the num-
ber of cycles in σ with length j. Then

∑
j j · γ(j) = n. Now a conjugate class

consists of those permutations having the same cycle numbers γ(j), j ∈ N.
There is therefore a one-to-one correspondence between the conjugacy classes
and the counting measures γ having the property

∑
j j · γ(j) = n.
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Exercise 24 ∗ Show that

(5.2) |Yγ| = n! ·
∏
j≥1

1

γ(j)! · jγ(j)
.

[Hint: The proof is difficult. Consult the books on group theory, for instance
[5].]

Thus again the cardinality of the equivalence classes Yγ is finite, and we
have as a unique symmetric law on them the uniform distribution. (Symme-
try now means invariance under the inner automorphisms χg : σ 7−→ g.σ =
gσg−1, g ∈ G.) Denoting

(5.3) q(γ) =
∏
j≥1

1

γ(j)! · jγ(j)
,

we see that the uniform distribution on Yγ is defined by

(5.4) Λγ(σ) =
1

n! · q(r(σ))
, σ ∈ Yγ.

To summarize, by Krickeberg’s theorem the formula

(5.5) P (σ) = Λr(σ) ·R(r(σ)), σ ∈ S(X).

yields a one to one correspondence between symmetric random permutations
P ∈ P(G) and point processes R ∈ PM..

(n)(N).

We obtain a simple first example, if we choose for R the Dirac measure
∆γ for some γ ∈ Γ. The corresponding symmetric random permutation is
Λγ. The first main example is

5.1 The Ewens-Sütö process

Here we construct a point process R which in connection with formula (5.5)
yields the Ewens-Sütö process. We consider the following finite Poisson pro-
cess Pρ on the set of natural numbers N. Its intensity measure ρ is defined
by

ρ(j) = d(j) · z
j

j
, jεN,(5.6)

where 0 < z < 1 and d(.) > 0. We assume that ρ is a finite measure on N,
i.e. ρ(N) =

∑∞
j=1 ρ(j) < ∞. This is a condition on the function d. Pρ is a

law on the collection M..
f (N) of all finite point measures µ on N.
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Example 14 Examples for ρ are:

(1) d is a constant d given by some natural number. In this case ρ(N) =
−d · ln(1− z).

(2) d(j) = C · j− ν2 where ν ∈ N and C is a positive constant.

We denote as above by (ζj)jεN the field variables ζj(µ) = µ(j). We know
from exercise 14 that these variables are independent if Pρ is the underlying
law; moreover ζj has a Poisson distribution with parameter ρ(j). This implies
immediately that

Pρ(µ) = exp(−ρ(N)) · zN(µ) · d(µ) · q(µ),

where

q(µ) =
∏
j≥1

1

µ(j)! · jµ(j)
,

d(µ) =
∏
j≥1

d(j)µ(j) and

N(µ) =
∑
j≥1

j · µ(j).

We remark that here the products resp. the sum terminate after finitely
many steps because µ is finite. The range of N therefore is N0, the collection
of natural numbers augmented by 0. Denoting by M the identity onM..

f (N),
we have for any µ ∈M..

f (N), n ≥ 0

Pρ{M = µ,N = n} = exp(−ρ(N)) · zn · d(µ) · q(µ) · 1{N=n}(µ).(5.7)

Summing over all µ and n we obtain

exp(ρ(N)) =
∑
n≥0

Qn(d) · zn,(5.8)

where

Qn(d) =
∑

µ:N(µ)=n

d(µ) · q(µ)(5.9)

denotes the socalled canonical partition function of the ideal Bose gas in
quantum statistical mechanics, where it is the starting point of all investiga-
tions.
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Example 15 Show in case d is a constant natural number that Qn(d) =(
d+n−1
n

)
which contains Cauchy’s formula for d = 1:

(5.10)
∑

µ:N(µ)=n

q(µ) = 1.

Exercise 25 ∗ Show that formula (5.7) implies that the random variable
N is distributed according to the following form of the negative binomial
distribution:

(5.11) Pρ{N = n} = exp(−ρ(N)) · zn ·Qn(d), n ≥ 0.

Exercise 26 ∗ Deduce from the above considerations that

Pρ{M = µ|N = n} =
1

Qn(d)
· d(µ) · q(µ) · 1{N=n}(µ), n ≥ 0, µ ∈M..

f (N)

We are now in the position to choose a point process R in N which in
connection with formula (5.5) will give us the random permutation we are
looking for. Let

S(n)
d = Pρ(.|N = n), n ≥ 1; S(0)

ρ = δ0;

M..
(n)(N) = {N = n}.

Observe that S(n)
ρ no longer depends on z.

Consider now the point process S(n)
d in N. The associated symmetric

random permutation is given by

(5.12) S(n)
d (σ) =

1

n!Qn(d)
· d(r(σ)) · 1M..

(n)
(r(σ)), σ ∈ G.

If we now mix the family (S(n)
d )n≥0 with respect to the law determined

by equation (5.12) we obtain as another symmetric process the celebrated
Ewens-Sütö process for the parameters (d, z):

(5.13) Sd,z = exp(−
∑
j

d(j) · z
j

j
) ·
∑
n≥0

zn ·Qn(d) · S(n)
d .

Thus

Sd,z(σ) = exp(−
∑
j

d(j) · z
j

j
) · z

N(r(σ))

N(r(σ))!
, σ ∈ G.
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Exercise 27 Show that

(1) the image of Sd,z under r is the Poisson process Pρ.

(2) Using the notation N(σ) = N(r(σ)), one has

(5.14) Sd,z{N = n} = exp(−ρ(N)) · zn ·Qn(d), n ≥ 0.

This means that N , the length of a random permutation, is distributed
according to the negative binomial distribution for the Ewens-Sütö cycle
process Sd,z.

5.2 Symmetric random Polya permutations

We here present another symmetric random permutation which is induced
via Krickeberg’s theorem by the Polya sum process and which we call the
symmetric Polya random permutation.

We use for its construction the process R
(n)
d = Rz,λ{.|N = n}. This is a

point process in N0. To be more precise, R
(n)
d is a probability on the following

configuration space:

M..
(n,d)(N0) = {N = n} ∪M..

d(N0).

So it cannot be used directly because we have to start with a process in N.
But it is evident that there is a 1-1-correspondence between this space and
the configuration space

M..
(n,d)(N) = {γ ∈M..

(n)(N) : |γ| ≤ d}.

Therefore R
(n)
d can be represented as follows as a point process in N:

S
(n)
d (γ) =

n!

d+ n− 1
·
(

d
d− |γ|, γ

)
· 1M ..

(n,d)
(N)(γ), γ ∈M..

f (N).

By means of (5.5) we then obtain the following symmetric random permu-
tation which we call symmetric random Polya permutation for the parameters
(n, d).

π
(n)
d (σ) =

1

q(r(σ))
· 1

d+ n− 1
·
(

d
d− |r(σ)|, r(σ)

)
·1M ..

(n,d)
(N)(r(σ)), σ ∈ S(E).
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A simple computation then shows that this random permutation is given
by
(5.15)

π
(n)
d (σ) =

∏
j≥1

jr(σ)(j) · 1

d+ n− 1
· d!

(d− |r(σ)|)!
1M..

(n,d)
(N)(r(σ)), σ ∈ S(X).

Exercise 28 Deduce the following combinatorial identity:

(5.16)
d∑

k=1

∑
σ:N(r(σ))=n,|r(σ)|=k

(d− k + 1) · · · d ·
∏
j≥1

jr(σ)(j)· = d+ n− 1.

We finally mix the family (π
(n)
d )n≥0 with respect to the distribution (4.11)

of N and obtain the following symmetric random permutation, which we call
also symmetric random Polya permutation for (d, z):

(5.17) πd,z = (1− z)d ·
∑
n≥0

zn · Q̃n(d) · π(n)
d .

Final comments

We finish with some remarks. We used above the following properties of
G = Sn: Every permutation σ ∈ G can be decomposed in a unique way into
disjoint cycles. Denoting by rj(σ) the number of cycles of length j one has∑

j j · rj(σ) = n, a conjugacy class consists of those permutations σ having
the same numbers (rj(σ))j. For this reason the elements of M..

(n)(N) can be
considered as these classes.

Furthermore, it is very useful to consider σ as a simple point measure of
disjoint cycles, including the trivial ones. Symbolically one could write

(5.18) σ =
∑
x∈σ

δx,

where the sum is taken over all cycles x of the cycle decomposition of σ. This
suggests to consider a random permutation as a point process of disjoint
cycles. The Ewens-Sütö process is an example. It can be interpreted as
follows: First realize a natural number n according to the negative binomial
distribution (4.10); then realize according to the law S(n)

d a permutation σ
decomposed into its cycles x. A detailed analysis of Sd,z can be found in [19].
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