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Estimation of the infection parameter in the different phases

of an epidemic modeled by a branching process∗

Sophie Pénisson†

March 2010

Abstract

The aim of this paper is to build and compare estimators of the infection parameter in the
different phases of an epidemic (growth and extinction phases). The epidemic is modeled by
a Markovian process of order d > 1 (allowing non-Markovian life spans), and can be written
as a multitype branching process. We propose three estimators suitable for the different
classes of criticality of the process, in particular for the subcritical case corresponding to the
extinction phase. We prove their consistency and asymptotic normality for two asymptotics,
when the number of ancestors (resp. number of generations) tends to infinity. We illustrate
the asymptotic properties with simulated examples, and finally use our estimators to study
the infection intensity in the extinction phase of the BSE epidemic in Great-Britain.

Keywords: multitype branching process; conditioned branching process; estimator; CLSE;
consistency and asymptotic normality; epidemiology; SEI.

Mathematics Subject Classification. 60J80; 60J85; 62P10; 62M05; 62F12; 62J02.

1 Introduction

The purpose of this paper is to quantify the infection of an epidemic in its different phases (growth
and extinction) by providing appropriate estimators of the infection parameter for each of these
phases. The epidemic is modeled by a Markovian process of order d > 1 with Poissonian tran-
sitions, which can be seen as a multitype Bienaymé-Galton-Watson (BGW) branching process
with d types corresponding to the memory of the process. The method proposed in this paper
can thus apply to any multitype branching process of the same form, for which one wishes to
estimate a parameter acting affinely on the mean matrix. The epidemic model which is used here
has been elaborated in [12], and is suitable for any rare transmissible SEIR disease in a large
branching population following a Reed-Frost model for the infection. The process corresponds to
the incidence of the clinical cases, which are assumed to be the only available observations.

Branching processes are useful models to describe the extinction and growth of populations,
and as such have been applied to many biological problems (see e.g. [8]). The estimation of a
key parameter such as the mean number of offsprings or of the Perron’s root (largest eigenvalue
of the mean matrix), which determines whether or not extinction is certain, is consequently of
a very large interest. Since the parameter quantifying the infection of the epidemic is, in our
model, an explicit function of the Perron’s root, it is very natural either to build a new estimator
specifically designed for the model, or to investigate the existing results in the estimation theory
of the Perron’s root. As detailed in Section 3, estimators of the Perron’s root for general multitype
branching processes usually require the knowledge of the whole or partial genealogy of the process
(for example individual offspring sizes, or parent-offspring type combination counts), which are
data that are mostly non available in the epidemiological context. S. Asmussen and N. Keiding,
however, introduced in [1] an explicit estimator based only on the total generation sizes, which is
thus of direct practical applicability for our model. We deduce from this estimator a first estimator
of the infection parameter. Despite the potentially large order of the Markovian process that we

∗Research supported by the Université franco-allemande and the IRTG Stochastic Models of Complex Processes.
The author especially wishes to thank her PhD thesis supervisor, C. Jacob (INRA, France).

†Institut für Mathematik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany; email:
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consider, its Poissonian character ensures many properties which make it easy to derive estimators
with interesting characteristics. We thus build two conditional least squares estimators (CLSE)
with different asymptotic properties.

After presenting the epidemic model as well as the underlying general mathematical process
in Section 2, we provide in Section 3 the three estimators of the infection parameter, which
are all only based on the available observations. We aim at asymptotic results, either as the
size of the initial population tends to infinity, or as time tends to infinity. It could be of a great
mathematical interest to study the asymptotic when both the number of ancestors and the number
of generations of the branching process simultaneously tend to infinity, as it is done in [7] for the
single-type case, but we choose to focus on asymptotics of an immediate practical interest. We
first present in Section 3.1 a CLSE which is consistent and asymptotically normal, as the initial
population size grows to infinity. This estimator is thus appropriate either in the growth phase of
the epidemic or in its decay phase, provided that the initial time of the model corresponds to a
large number of clinical cases. In Section 3.2 we focus on the subcritical case that is particularly
designed for the extinction phase, and provide a CLSE based on the process conditioned on its
non-extinction at the current time. This estimator is consistent and asymptotically normal, as
time tends to infinity. This last result is based on the knowledge of the asymptotic distribution
of the conditioned branching process, the so-called Yaglom limit. We finally provide in Section
3.3 an explicit estimator derived from the estimator of the Perron’s root introduced in [1], and
we deduce the consistency and asymptotic normality of our estimator in the supercritical case,
on the set of non-extinction, as time tends to infinity. This last estimator is especially suitable
in the growth phase of the epidemic. In Section 4 we compare these three estimators for several
values of initial population size and time, and illustrate by means of simulations their asymptotic
distributions. We next provide in Section 5 an other illustration, this time on a concrete biological
problem, the Bovine Spongiform Encephalopathy (BSE) epidemic in Great-Britain. We finally
conclude in Section 6 on the relevance of the estimators presented in this paper.

Whenever it is possible, we point out potential generalizations to wider contexts than SEIR
diseases, in particular to non-epidemiological problems.

2 The model

In order to allow the reader to apply this method to other problems than the estimation of the
infection parameter in SEIR diseases, we first describe in Section 2.1 the underlying mathematical
process, before detailing in Section 2.2 this process in our specific epidemiological context.

2.1 The general mathematical model

Throughout this paper we consider the following Markovian process of order d > 1,

Xn =

d∑

k=1

Xn−k∑

i=1

ζn−k,n,i, (2.1)

where the {ζn−k,n,i}i are i.i.d. given Fn−1 := σ
(
{Xn−k}k>1

)
, and follow a Poisson distribution

with some parameter Ψk independent of n (time-homogeneous setting). Moreover, the {ζn−k,n,i}i,k
are assumed to be independent given Fn−1. The quantity k represents the maturation period
needed to produce the offsprings ζn−k,n,i. The particles thus have a non-Markovian random life
span. We point out that in the simple case d = 1, the process is a single-type BGW branching
process with a Poisson offspring distribution. For any information on branching processes, we
refer to [2]. We easily derive the conditional law of Xn,

Xn|(Xn−1, . . . , Xn−d) ∼ Poisson

(
d∑

k=1

Xn−kΨk

)
. (2.2)

Moreover, as shown in [12], Proposition 3.1, Xn may be written as a multitype BGW process.
We define the d-dimensional process Xn := (Xn,1, . . . , Xn,d) such that, for all i = 1 . . . d, Xn,i :=
Xn−i+1 (hence the first coordinate Xn,1 corresponds to the value of the single-type process at time
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n). Then (Xn)n>0 is a BGW process with offspring generating function





fi(r) :=
∞∑

k=0

(Ψi)
k

k!
e−Ψirk

1ri+1 = e−Ψi(1−r1)ri+1, i = 1 . . . d − 1,

fd(r) :=

∞∑

k=0

(Ψd)
k

k!
e−Ψdrk

1 = e−Ψd(1−r1),

(2.3)

and mean matrix

M :=




Ψ1 1 0 . . . 0
Ψ2 0 1 . . . 0
...

...
. . .

...
Ψd−1 0 . . . . . . 1
Ψd 0 . . . . . . 0




. (2.4)

The process (Xn)n>0 is obviously nonsingular. We assume throughout this paper that Ψd > 0,
and that there exists some i = 1 . . . d − 1 with Ψi > 0, such that the process is positive regular.
Moreover, as shown in [12], the process satisfies the X log X assumption: for all i, j = 1 . . . d,
denoting ei := (0, . . . , 1, . . . , 0) the basis vector of N

d,

E [X1,j lnX1,j |X0 = ei] < ∞. (2.5)

The theory of multitype positive regular and nonsingular BGW processes implies that the
extinction of the process (Xn)n>0 occurs almost surely if and only if the Perron’s root ρ of the
mean matrix M is smaller than or equal to 1. A computation of det (M − ρI) shows that ρ is
solution of the equation

d∑

k=1

Ψkρ−k = 1. (2.6)

As mentioned in [12] (Proposition 3.1), this implies that

ρ 6 1 ⇐⇒ R :=
d∑

k=1

Ψk 6 1. (2.7)

In addition, the distributions of quantities such as the extinction probability, the extinction time,
and the tree size until extinction can be easily derived from the model (see [12]).

2.2 The epidemic model

It is shown in [12] that the previous age-dependent process (2.1) can be obtained as the limit of a
more complex age and population-dependent process Nn :=

(
Nk

n

)
k∈T , describing the population-

size at time n for each type k ∈ T (corresponding e.g. to health stages, locations, ages etc.). We
first very briefly recall this result, and then describe in which way this can be applied in order to
obtain our epidemic model. The number of k individuals at time n is given by

Nk
n =

aM∑

l=1

∑

h∈T

Nh
n−l∑

i=1

Y
(h),k
n−l,n,i, (2.8)

where aM is the largest survival age, and Y
(h),k
n−l,n,i is the number of k individuals generated at time

n by individual i belonging to the type h at time n − l. This number Y
(h),k
n−l,n,i of “mathematical”

offsprings depends on the individual transition of i from h to k, as well as on the number of its
“true” offsprings and their respective transition from their initial type to k.

Assuming the existence of a subset K ⊂ T of rare types, and eventually of a subset K′ ⊂ K
corresponding to rare types “of interest”, the authors of [12] prove in Proposition 5.1 that, under
technical assumptions (which are rather weak in the epidemiological context), the process Nk

n

converges in distribution, for all k ∈ K, as the initial population size N0 :=
∑

k∈T Nk
0 tends to

infinity. Moreover, the process summed on the rare types of interest, Xn :=
∑

k∈K′ Xk
n, where

Xk
n

D
:= limN0

Nk
n , is a process of the form (2.1).

3
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Figure 1: Evolution of the health status of an individual in a SEIR disease.

In the epidemiological context of a SEIR disease (see Figure 1) with horizontal and vertical
infection routes, where the types are the health states, if K concerns all the infected states and
K′ ⊂ K, the clinical state, then we obtain that the process Xn := limN0

∑
k∈K′ Nk

n , corresponding
to the incidence of the clinical cases at time n, assuming that the initial population size N0 is very
large, is of the form (2.1) ([10], [12]):

Xn =

d∑

k=1

Xn−k∑

i=1

ζn−k,n,i, (2.9)

where d := aM − 1, and ζn−k,n,i|Fn−1 ∼ Poisson (Ψk), with, for all k = 1 . . . d, assuming that the
infection parameters and the incubation time distribution do not depend on the age at infection,

Ψk :=

aM∑

i=k+1

(
θhor. + 1{i=k+1}θvert.

) Si∑aM

j=1 Sj
Pinc.(k). (2.10)

Sk is the probability that the age of death of S and E individuals is larger than k, Pinc.(k) denotes
the probability that the intrinsic incubation period equals k, θhor. is the horizontal infection pa-
rameter (mean number per infective and per time-unit of newly infected individuals via horizontal
transmission), and θvert. is the vertical infection parameter (probability for a newborn with an
infectious mother to be infected at birth).

3 Estimation of the infection parameter

Throughout this section we consider the BGW branching process (Xn)n>0 introduced in Section
2.1, with generating function (2.3) and mean matrix (2.4). We assume that the Ψk’s affinely
depend on some unknown parameter θ0: for all k = 1 . . . d,

Ψk(θ0) = akθ0 + bk, (3.1)

where ak and bk are known. In the epidemiological context of rare SEIR diseases in large popu-
lations, θ0 would correspond either to the horizontal or vertical infection parameter (see (2.10)).
In the following, we denote by a, b and Ψ(θ0) the d-dimensional vectors with coordinates ak, bk

and Ψk(θ0) respectively.
Our aim is to provide estimators of θ0 based on the observations (X0, . . . ,Xn), with asymptotic

properties corresponding to interesting characteristics in the epidemiological context. We are
thus looking for estimators suitable in the subcritical and/or supercritical cases, with asymptotic
properties, as the initial population size grows to infinity, or as the number of observations n tends
to infinity. We would thus entirely cover the problem of estimating the infection parameter in the
growth and extinction phases of the epidemic, offering moreover several alternatives depending
on which asymptotic is suitable regarding the available data. As mentioned in the introduction,
we first investigate the numerous results in the literature dedicated to the estimation theory for
general branching processes, in order to find an appropriate estimator for our model. In its early
paper [9] in 1948, T. E. Harris provided an estimator for the mean value m0 of a single-type BGW
process X0, . . . , Xn. It is a maximum likelihood estimator, now referred to as the Harris estimator,
based on observed values of the individual offspring size for each individual in each generation.
The estimator is

m̂MLE
n :=

X1 + . . . + Xn

X0 + . . . + Xn−1
, (3.2)

4



and Harris proved the consistency of m̂MLE
n as n → ∞ in the supercritical case, on the set of

non-extinction. Note that the estimator m̂MLE
n only involves X0, . . . , Xn. It is actually proved in

[5] that m̂MLE
n is also the maximum likelihood estimator of m0 based on the observed values of

X0, . . . , Xn only. It is straightforward to show that m̂MLE
n is also the weighted conditional least

squares estimator (CLSE) based on the process Xk/
√

Xk−1, defined as follows

m̂CLSE
n := arg min

m>0

n∑

k=1

(Xk − mXk−1)
2

Xk−1
. (3.3)

Similar estimation problems are considered in the multitype case. In [1], S. Asmussen and N.
Keiding proposed a maximum likelihood estimator of the Perron’s root ρ0 based on the observations
of the whole genealogy of the population (i.e. each offspring vector produced by every individual).
It is proved in [13] that this estimator is also the maximum likelihood estimator solely based on
the observations at each generation of the total number of individuals of type j whose parents
were of type i, for every i, j = 1 . . . d. However in epidemiology this kind of variables are generally
not observable. For our model this would imply indeed that, considering the number of clinical
cases at a given time, we could say how many of them were infected exactly k time-units earlier.
We are thus more interested in estimations based on the generations, or on the total size of the
generations, such as the other estimator presented in [1],

ρ̃n =
|X1| + . . . + |Xn|

|X0| + . . . + |Xn−1|
, (3.4)

where |.| denotes the L1-norm |Xk| := Xk,1 + . . . + Xk,d. For d = 1, ρ̃n clearly reduces to the
Harris estimator defined in (3.2). Note that the relation (2.6) implies that

θ0 =
1 − ∑d

k=1 bkρ−k
0∑d

k=1 akρ−k
0

. (3.5)

Hence an estimation of ρ0 would provide an estimation of θ0 (the opposite is not true since ρ0

cannot in general be expressed as an explicit function of θ0). In the supercritical case, the estimator
ρ̃n was shown to be consistent, as n → ∞, on the set of non-extinction, with an explicit asymptotic
distribution ([1]).

Due to the Poissonian character of the transitions of the process (Xn)n>0, it is possible, in
our setting, to express the joint probability function of the observations X0, . . . , Xn, without
involving the whole or partial genealogy of the process. The likelihood function is indeed given
by two factors, one of which is independent of θ0, the logarithm of the other being L (θ0) :=

−θ0

∑n
k=1 a·Xk−1+

∑n
k=1 Xk ln (Ψ(θ0) · Xk−1), where u·v denotes the scalar product

∑d
k=1 ukvk.

The MLE of θ0 based on the observations X0, . . . , Xn is thus a solution of L′ (θ) = 0, where

L′ (θ) = −∑n
k=1 a ·Xk−1 +

∑n
k=1 Xk (a · Xk−1) (Ψ(θ) · Xk−1)

−1
. This equation has in general no

explicit solution, except for simple cases such as the one-dimensional case d = 1, or the linear case
b = 0. The MLE is then, respectively,

θ̂MLE
n

d=1
=

∑n
k=1 (Xk − bXk−1)∑n

k=1 aXk−1
, θ̂MLE

n
b=0
=

∑n
k=1 Xk∑n

k=1 a · Xk−1
. (3.6)

As shown later (see (3.10)), it corresponds in these cases to the CLSE of θ0. It is however in
general not the case, and we choose to focus on the CLSE.

In Section 3.1 we first study the weighted CLSE

θ̂X
|X0| := arg min

θ∈Θ

n∑

k=1

[Xk − Eθ (Xk|Xk−1)]
2

a · Xk−1
, (3.7)

and its asymptotic properties, as |X0| → ∞, for any class of criticality. Since we are only interested
in the asymptotic in |X0|, we omit for the sake of clarity the subscript n in the estimator. In
a second instance, since we aim at finding an estimator with asymptotic properties, as n → ∞,
holding in the subcritical case, we consider in Section 3.2 the CLSE associated with the conditioned
process Zk := (Xk|Xk 6= 0),

θ̂Z
n := arg min

θ∈Θ

n∑

k=1

[Zk − Eθ (Zk|Zk−1)]
2

a · Zk−1
, (3.8)
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where Zk := Zk,1. Finally, thanks to relation (3.5), we derive from the estimator (3.4) a third
estimator of θ0,

θ̃X
n :=

1 − ∑d
k=1 bkρ̃−k

n∑d
k=1 akρ̃−k

n

, (3.9)

and deduce in Section 3.3 from [1] asymptotic properties of θ̃X
n , as n → ∞, in the supercritical

case, on the set of non-extinction.
In the following, we denote Θ := ]θmin, θmax[ with θmax > θmin > 0.

3.1 A CLSE with asymptotic properties, as |X0| → ∞
In this section, we provide an estimator with asymptotic properties, as the initial population size
|X0| tends to infinity, holding for any class of criticality. We consider the weighted CLSE based
on the process Yk := Xk/

√
a · Xk−1,

θ̂X
|X0| := arg min

θ∈Θ

n∑

k=1

(Yk − Eθ (Yk|Xk−1))
2

= arg min
θ∈Θ

n∑

k=1

(Xk − Ψ(θ) · Xk−1)
2

a · Xk−1
.

We easily derive the following explicit form

θ̂X
|X0| =

∑n
k=1 (Xk − b · Xk−1)∑n

k=1 a · Xk−1
. (3.10)

The normalization of the process Xk by
√

a · Xk−1 appears to be the most natural and suitable

for the following reasons. First, this normalization generalizes the normalization Xk/
√

aXk−1 in
the monotype case, which is the one leading to the Harris estimator of m0 = aθ0 + b. We have
indeed, for d = 1, aθ̂X

X0
+ b = m̂MLE

n . As mentioned in (3.6), it also corresponds, in the linear
case, to the MLE of θ0. In addition, defining for any vector u, u := mini ui and u := maxi ui, we
have

θ0 +
b

a
6 Eθ0

(
(Yk − Eθ0 (Yk|Xk−1))

2 |Xk−1

)
= θ0 +

b · Xk−1

a · Xk−1
6 θ0 +

b

a
, (3.11)

hence the conditional variance of the error term Yk − Eθ0
(Yk|Xk−1) in the stochastic regression

equation Yk = Eθ0
(Yk|Xk−1) + Yk − Eθ0

(Yk|Xk−1) is invariant under multiplication of the whole
process, and bounded respectively to (Xk)k>0.

We provide asymptotical results for the estimator θ̂X
|X0| defined by (3.10), as the initial popula-

tion size tends to infinity. We introduce the following notation. For every i, j = 1 . . . d and k > 1,

m
(k)
ij (θ) denotes the (i, j)-th entry in the k-th power of the matrix M(θ) given by (2.4). We define

σ2 (θ) := θ +

∑n
k=1

∑d
j=1

∑d
i=1 αjbim

(k−1)
ji (θ)

∑n
k=1

∑d
j=1

∑d
i=1 αjaim

(k−1)
ji (θ)

. (3.12)

We can now express the main result of this section.

Theorem 3.1. Let us assume that there exist some αi ∈ [0, 1], i = 1 . . . d, such that, for all

i = 1 . . . d,

lim
|X0|→∞

X0,i

|X0|
a.s.
= αi. (3.13)

Then θ̂X
|X0| is strongly consistent:

lim
|X0|→∞

θ̂X
|X0|

a.s.
= θ0, (3.14)

and is asymptotically normally distributed:

lim
|X0|→∞

√√√√
∑n

k=1 a ·Xk−1

σ2(θ̂X
|X0|)

(
θ̂X
|X0| − θ0

)
D
= N (0, 1) . (3.15)

In order to prove Theorem 3.1, we first show the following lemma, which takes advantage of
the branching property of the process (Xk)k>0, and use the strong law of large numbers.
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Lemma 3.2. Assuming (3.13), the following holds for all k = 1 . . . n and all i = 1 . . . d,

lim
|X0|→∞

Xk,i

|X0|
a.s.
=

d∑

j=1

αjm
(k)
ji (θ0). (3.16)

Proof of Lemma 3.2. Using the branching property of the process (Xk)k>0, we write

Xk,i =

X0,1∑

j=1

X
(1)
k,i,j + . . . +

X0,d∑

j=1

X
(d)
k,i,j ,

where for all l = 1 . . . d and j = 1 . . . X0,l, X
(l)
k,i,j is the i-th coordinate of a d-type branching

process at time k initiated by a single particle of type l. For k, i and l fixed the random variables{
X

(l)
k,i,j

}

j
are i.i.d. with mean value m

(k)
li (θ0). According to the strong law of large numbers and

under (3.13), we have, for every l = 1 . . . d such that X0,l 6= 0,

lim
|X0|→∞

∑X0,l

j=1 X
(l)
k,i,j

X0,l

a.s.
= m

(k)
li (θ0),

which together with (3.13) leads to (3.16).

Proof of Theorem 3.1. To prove the consistency of θ̂X
|X0| we apply Lemma 3.2 to (3.10), using the

fact that Xk = Xk,1 and Xk−i = Xk−1,i, and obtain

lim
|X0|→∞

θ̂X
|X0|

a.s.
=

∑n
k=1

∑d
j=1 αj

(
m

(k)
j1 (θ0) −

∑d
i=1 bim

(k−1)
ji (θ0)

)

∑n
k=1

∑d
i=1

∑d
j=1 aiαjm

(k−1)
ji (θ0)

. (3.17)

By definition,

m
(k)
j1 (θ0) =

d∑

i=1

m
(k−1)
ji (θ0)mi1(θ0) =

d∑

i=1

m
(k−1)
ji (θ0) (aiθ0 + bi) ,

hence (3.17) immediately leads to (3.14).

We are now interested in the asymptotic distribution of θ̂X
|X0| − θ0. We derive from (3.10) that

√√√√
n∑

k=1

a · Xk−1

(
θ̂X
|X0| − θ0

)
=

∑n
k=1 (Xk − Ψ(θ0) · Xk−1)√∑n

k=1 a · Xk−1

. (3.18)

By (2.1),

Xk − Ψ(θ0) · Xk−1 =

d∑

i=1

Xk−i∑

j=1

(ζk−i,k,j − Ψi (θ0)) =:

d∑

i=1

Xk−i∑

j=1

ζ̊k−i,k,j , (3.19)

where the {ζk−i,k,j}j are i.i.d.given Fk−1, following a Poisson distribution with parameter Ψi(θ0),

and the {ζk−i,k,j}i,j are independent given Fk−1. Renumbering the ζ̊k−i,k,j we then obtain

n∑

k=1

(Xk − Ψ(θ0) · Xk−1) =

d∑

i=1

Pn
k=1 Xk−i∑

j=1

ζ̊k−i,k,j . (3.20)

Applying a central limit theorem for the sum of a random number of independent random variables
(see e.g. [4]), we obtain that for all i = 1 . . . d,

lim
|X0|→∞

∑Pn
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1 Xk−i

D
= N (0, aiθ0 + bi) . (3.21)

We have used the fact that |X0| is a real positive sequence growing to infinity, and
∑n

k=1 Xk−i a
sequence of integered-valued random variables such that

∑n
k=1 Xk−i/ |X0| converges in probability
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to a finite random variable. In our case the limit is actually deterministic, since we have shown in
Lemma 3.2 that

lim
|X0|→∞

∑n
k=1 Xk−i

|X0|
a.s.
=

n∑

k=1

d∑

j=1

αjm
(k−1)
ji (θ0).

Using (3.20) in (3.18), we write

√√√√
n∑

k=1

a · Xk−1

(
θ̂X
|X0| − θ0

)
=

d∑

i=1

∑Pn
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1 Xk−i

√∑n
k=1 Xk−i√∑n

k=1 a · Xk−1

. (3.22)

Using again Lemma 3.2,

lim
|X0|→∞

√∑n
k=1 Xk−i√∑n

k=1 a · Xk−1

a.s.
=

√√√√
∑n

k=1

∑d
j=1 αjm

(k−1)
ji (θ0)

∑n
k=1

∑d
j=1

∑d
l=1 αjalm

(k−1)
jl (θ0)

,

which, combined to (3.21) and (3.22), implies by Slutsky’s theorem that

lim
|X0|→∞

√√√√
n∑

k=1

a · Xk−1

(
θ̂X
|X0| − θ0

)
D
= N

(
0, σ2 (θ0)

)
. (3.23)

By (3.12) and (3.14), lim|X0|
√

σ2(θ0)/
√

σ2(θ̂X
|X0|)

a.s.
= 1, from which we deduce (3.15).

Remark 3.3. We point out that we do not use the Poissonian character of the transitions of
the process (2.1) to derive the properties of θ̂X

|X0|, but we simply need its first and second order

moments. This estimator can thus be applied to any process of the form (2.1), where the {ζn−k,n,i}i
do not necessarily follow a Poisson distribution, but satisfy Eθ0

(ζn−k,n,i|Fn−1) = Ψk(θ0). The
variance should be either known, or previously estimated, and the process should be normalized
accordingly such that the error term in the stochastic regression equation remains bounded.

3.2 A CLSE with asymptotic properties, as n → ∞
In this section we consider, instead of (Xk)k>0, the process conditioned on non-extinction Zk :=
(Xk|Xk 6= 0), and define for all k > 0 the one-dimensional process corresponding to the first
coordinate Zk := Zk,1. We obtain asymptotic properties for the corresponding CLSE, as the
number of observations n tends to infinity, even in the subcritical case, despite the almost sure
extinction of the process. It is indeed known (see e.g. Theorem 5.4.2 in [2]) that in the subcritical
case the conditioned process (Zk)k>0 admits a stationary measure νθ0

, referred to as the Yaglom
distribution. We point out that this estimator is particularly adapted for the study of the extinction
phase of an epidemic, even if the number of cases at the beginning of the extinction is not very
large.

For all d-dimensional vector u, we define the truncated sum ⌈u⌉ := u1 + . . . + ud−1. By
definition,

Pθ0 (Zk = j|Zk−1) =
(Ψ(θ0) · Zk−1)

j
e−Ψ(θ0)·Zk−1

j!
(
1 − 1{⌈Zk−1⌉=0}e−Ψd(θ0)Zk−d

) . (3.24)

We consider the CLSE corresponding to the normalized process Zk/
√

a · Zk−1,

θ̂Z
n := arg min

θ∈Θ
Sn(θ), Sn(θ) :=

n∑

k=1

(
Zk√

a · Zk−1

− f(θ,Zk−1)

)2

, (3.25)

where

f(θ0,Zk−1) := Eθ0

(
Zk√

a · Zk−1

∣∣∣Zk−1

)
=

Ψ(θ0) · Zk−1√
a · Zk−1

(
1 − 1{⌈Zk−1⌉=0}e−Ψd(θ0)Zk−d

) . (3.26)

8



Denoting by f ′ the derivative of f with respect to θ, we thus have, for all θ ∈ Θ and all j ∈ N
d,

j 6= 0,

f ′(θ, j) =





√
adjd

1−(1+Ψd(θ)jd)e−Ψd(θ)jd

(1−e−Ψd(θ)jd)
2 if ⌈j⌉ = 0,

√
a · j otherwise.

(3.27)

We finally define

εk :=
Zk√

a · Zk−1

− f(θ0,Zk−1), (3.28)

which implies that

Eθ0

(
ε2

k|Zk−1

)
=

Ψ(θ0) · Zk−1

a · Zk−1

(
1 − 1{⌈Zk−1⌉=0}e−Ψd(θ0)Zk−d

) , (3.29)

and the conditional variance of the error term εk in the stochastic regression equation is conse-
quently bounded:

θ0 +
b

a
6 Eθ0

(
ε2

k|Zk−1

)
6

(
1 − e−Ψd(θ0)

)−1
(

θ0 +
b

a

)
. (3.30)

Theorem 3.4. The estimator θ̂Z
n is strongly consistent:

lim
n→∞

θ̂Z
n

a.s.
= θ0. (3.31)

Proof. According to Proposition 3.1 in [11], sufficient conditions for the strong consistency of θ̂Z
n

are that f(.,Zk−1) is Lipschitz, in the sense that there exists a nonnegative σ(Z0, . . . ,Zk−1)-

measurable function Ck satisfying for all θ1, θ2 ∈ Θ, |f(θ1,Zk−1) − f(θ2,Zk−1)|
a.s.
6 Ck |θ1 − θ2|,

that limk→∞Eθ0

(
ε2

k|Zk−1

) a.s.
< ∞, and that

lim
n→∞

inf
|θ−θ0|>δ

n∑

k=1

(f(θ0,Zk−1) − f(θ,Zk−1))
2 a.s.

= ∞. (3.32)

The Lipschitz condition is satisfied thanks to (3.27), which shows that f ′(.,Zk−1) is bounded on
Θ. The second condition follows from (3.30). Let δ > 0 and θ ∈ Θ such that |θ − θ0| > δ. We
assume for convenience that θ0 > θ. In order to prove (3.32), we apply the mean value theorem
to the function f(.,Zk−1), and obtain that there exists some θ̃k ∈]θ, θ0[ such that f ′(θ̃k,Zk−1) =

(f(θ0,Zk−1) − f(θ,Zk−1)) (θ0 − θ)
−1

. Consequently,

n∑

k=1

(f(θ0,Zk−1) − f(θ,Zk−1))
2

= (θ0 − θ)
2

n∑

k=1

(
f ′(θ̃k,Zk−1)

)2

= (θ0 − θ)
2

n∑

k=1

a · Zk−1

(
1 − 1{⌈Zk−1⌉=0}

(
1 + Ψd(θ̃k)Zk−d

)
e−Ψd(θ̃k)Zk−d

)2

(
1 − 1{⌈Zk−1⌉=0}e−Ψd(θ̃k)Zk−d

)4

> (θ0 − θ)
2
(
1 − (1 + Ψd (θ1)) e−Ψd(θ1)

)2 n∑

k=1

a · Zk−1

> δ2
(
1 − (1 + Ψd (θ1)) e−Ψd(θ1)

)2

an,

which implies (3.32).

To prove the asymptotic distribution of θ̂Z
n , we make several times use of the following strong

law of large numbers for homogeneous positive recurrent Markov chains: for every νθ0-integrable
function g : N

d \ {0} → R,

lim
n→∞

1

n

n−1∑

k=0

g(Zk)
a.s.
=

∑

j∈Nd

g(j)νθ0(j). (3.33)
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By (2.5) it is ensured (see e.g. [2]) that the Yaglom measure νθ0 satisfies, for all i = 1 . . . d,

∑

k∈Nd

kiνθ0
(k) < ∞. (3.34)

For the following we need to show that νθ0 admits finite second-order moments as well.

Proposition 3.5. For all i, j = 1 . . . d,

∑

k∈Nd

kikjνθ0
(k) < ∞. (3.35)

Proof. First, let us note that by definition of Zn, we have for all i = 1 . . . d,

∑

k∈Nd

kiνθ0
(k) = Eθ0

(
lim

n→∞
Zn,i

)
= Eθ0

(
lim

n→∞
Zn−i+1,1

)
=

∑

k∈Nd

k1νθ0
(k) =: mνθ0 . (3.36)

For all i = 1 . . . d − 1, using the inequality x (1 − e−x)
−1

6 1 + x, x > 0,

Eθ0 (ZnZn−i) = Eθ0

[
Zn−i

Ψ(θ0) · Zn−1

1 − 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

]
6 Eθ0

[
Zn−i

(
1 + Ψ(θ0) · Zn−1

)]
,

hence

lim Eθ0
(ZnZn−i) 6 mνθ0 + max

k=0...d−1
lim Eθ0

(ZnZn−k)

d∑

j=1

Ψj(θ0). (3.37)

Similarly,

Eθ0

(
Z2

n

)
= Eθ0

[
Ψ(θ0) · Zn−1

1 − 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

(
1 +

Ψ(θ0) · Zn−1

1 − 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

)]

6 Eθ0

[(
2 + Ψ(θ0) · Zn−1

)2
]

= 4 + 4
d∑

j=1

Ψj(θ0)Eθ0
(Zn−j) +

d∑

j=1

d∑

l=1

Ψj(θ0)Ψl(θ0)Eθ0
(Zn−jZn−l) ,

which by Fatou’s lemma and (3.36) leads to (using the fact that
∑d

j=1 Ψj(θ0) < 1)

lim Eθ0

(
Z2

n

)
6 4 + 4mνθ0 + max

k=0...d−1
lim Eθ0 (ZnZn−k)

d∑

j=1

Ψj(θ0).

Together with (3.37) this implies that

max
k=0...d−1

lim Eθ0
(ZnZn−k) 6 4 + 4mνθ0 + max

k=0...d−1
lim Eθ0

(ZnZn−k)
d∑

j=1

Ψj(θ0),

and thus

max
k=0...d−1

lim Eθ0
(ZnZn−k) 6

4 + 4mνθ0

1 − ∑d
j=1 Ψj(θ0)

< ∞.

We then obtain by means of Fatou’s lemma that for every i, j = 1 . . . d,

∑

k∈Nd

kikjνθ0(k) = Eθ0

(
lim

n→∞
Zn,iZn,j

)
= Eθ0

(
lim

n→∞
ZnZn−|i−j|

)

6 lim Eθ0

(
ZnZn−|i−j|

)
6 max

k=0...d−1
lim Eθ0 (ZnZn−k) < ∞.

We can now prove the following theorem.
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Theorem 3.6. Let us assume that the process (Xk)k>0 is subcritical. Then the estimator θ̂Z
n is

asymptotically normally distributed:

lim
n→∞

√√√√√n

(∑
j∈Nd (f ′(θ0, j))

2
νθ0(j)

)2

∑
j∈Nd (f ′(θ0, j))

2
f(θ0, j) (a · j)−1/2

νθ0
(j)

(
θ̂Z

n − θ0

)
D
= N (0, 1) , (3.38)

where f is given by (3.26).

Proof. We follow the steps of the proof of Proposition 6.1 in [11]. Writing the Taylor expansion
of S′

n(θ) in the neighborhood of θ0, we obtain that

θ̂Z
n − θ0 = −S′

n(θ0)

S′′
n(θ̃n)

, (3.39)

for some θ̃n = θ0 + tn

(
θ̂Z

n − θ0

)
, with tn ∈ ]0, 1[. Since S′

n(θ0) = −2
∑n

k=1 εkf ′(θ0,Zk−1), we can

write

√
n

(
θ̂Z

n − θ0

)
=

∑n
k=1 εkf ′(θ0,Zk−1)√

n

(
Fn

n

)−1
(

1

2

S′′
n(θ̃n)

Fn

)−1

, (3.40)

where Fn :=
∑n

k=1 (f ′(θ0,Zk−1))
2
. By (3.27), for all j ∈ N

d, j 6= 0, 0 6 f ′(θ0, j) 6
√

a · j(1 −
e−Ψd(θ0))−2, hence we deduce by means of (3.33) and (3.34) that

lim
n→∞

Fn

n

a.s.
=

∑

j∈Nd

(f ′(θ0, j))
2
νθ0

(j). (3.41)

In view of (3.40), we now prove that

lim
n→∞

S′′
n(θ̃n)

Fn

a.s.
= 2. (3.42)

Computing S′′
n thanks to the formula Sn(θ) =

∑n
k=1 (εk + f(θ0,Zk−1) − f(θ,Zk−1))

2
, it appears

that (3.42) is true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∣
∑n

k=1 εk f ′′(θ,Zk−1)
∣∣∣

Fn

a.s.
= 0, (3.43)

lim
n→∞

∑n
k=1

(
f ′(θ̃n,Zk−1)

)2

Fn

a.s.
= 1, (3.44)

and

lim
n→∞

∑n
k=1

(
f(θ0,Zk−1) − f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

Fn

a.s.
= 0. (3.45)

Let us prove (3.43)-(3.45). Note that, for every j 6= 0, f ′′(θ, j) = 0 if ⌈j⌉ 6= 0, and

f ′′(θ, j) =
(adjd)

3/2
e−Ψd(θ)jd

[
e−Ψd(θ)jd (Ψd (θ) jd + 2) + Ψd (θ) jd − 2

]
(
1 − e−Ψd(θ)jd

)3

otherwise. First, (3.43) is given by a strong law of large numbers proved in [11], Proposition 5.1.
The latter can be indeed applied since f ′′(.,Zk−1) fulfills the required Lipschitz condition, and

limn Fn
a.s.
= ∞ (as an immediate consequence of the stronger result (3.41)). In view of (3.44) we

consider the function (f ′(θ, j))2 and its derivative 2f ′(θ, j)f ′′(θ, j). For all θ ∈ Θ and all j 6= 0

with ⌈j⌉ = 0,

|2f ′(θ, j)f ′′(θ, j)| 6 4
(adjd)

2
e−Ψd(θ)jd (Ψd (θ) jd + 2)
(
1 − e−Ψd(θ)jd

)5

6
4 maxx>0 (x + 2)

3
e−x

(
1 − e−Ψd(θmin)

)5 =: c1. (3.46)
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Consequently,
∣∣∣
∑n

k=1 f ′(θ̃n,Zk−1)
2 − f ′(θ0,Zk−1)

2
∣∣∣

Fn
6 c1

∣∣∣θ̂Z
n − θ0

∣∣∣
(

Fn

n

)−1

, (3.47)

which by (3.41) and the strong consistency of θ̂Z
n almost surely tends to 0. Writing

∑n
k=1 f ′(θ̃n,Zk−1)

2

Fn
= 1 +

∑n
k=1

(
f ′(θ̃n,Zk−1)

2 − f ′(θ0,Zk−1)
2
)

Fn
,

this implies (3.44). It now remains to prove (3.45). With similar computations as above, one
shows that there exists a deterministic constant c2 > 0 such that

∣∣∣
∑n

k=1

(
f(θ0,Zk−1) − f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

∣∣∣
Fn

6 c2|θ̂Z
n − θ0|

(
Fn

n

)−1

,

which thanks to (3.41) and the strong consistency of θ̂Z
n implies (3.45).

In view of (3.40), we finally want to prove that
∑n

k=1 εkf ′(θ0,Zk−1)/
√

n converges in distri-
bution, and for this purpose we make use of the following central limit theorem for sequences of
martingales (see e.g. [15] or [14]).

Proposition 3.7. Let {M (n)
k , F (n)

k , 1 6 k 6 n}, n > 1 be a sequence of square integrable martin-

gales. For each n > 1, we denote by 〈M〉(n)
= (〈M〉(n)

k )16k6n the associated Meyer process. We

assume that there exists a constant c such that limn→∞ 〈Mn〉(n) P
= c2, and assume moreover that

for all ε > 0,

lim
n→∞

n∑

k=1

E

[∣∣∣M (n)
k − M

(n)
k−1

∣∣∣
2

1n˛

˛

˛M
(n)
k

−M
(n)
k−1

˛

˛

˛>ε
o

∣∣∣∣F
(n)
k−1

]
P
= 0.

Then limn→∞ M
(n)
n

D
= N (0, c2).

Let us define, for every k 6 n, M
(n)
k :=

∑k
l=1 εlf

′(θ0,Zl−1)/
√

n. First, for every k 6 n,
Eθ0

(εkf ′(θ0,Zk−1)/
√

n|Zk−1) = 0. Second,

Eθ0

((
εkf ′(θ0,Zk−1)√

n

)2 ∣∣∣Zk−1

)
=

(f ′(θ0,Zk−1))
2
f (θ0,Zk−1)

n
√

a · Zk−1

,

and M
(n)
k is a sequence of square integrable martingales. Moreover, by (3.34),

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0(j) 6
1

(
1 − e−Ψd(θ0)

)5

∑

j∈Nd

Ψ(θ0) · jνθ0(j) < ∞, (3.48)

so by means of (3.33),

lim
n→∞

〈Mn〉(n)
= lim

n→∞

n∑

k=1

Eθ0

((
εkf ′(θ0,Zk−1)√

n

)2 ∣∣∣Zk−1

)

a.s.
=

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0(j).

Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,

n∑

k=1

Eθ0

[∣∣∣∣
εkf ′(θ0,Zk−1)√

n

∣∣∣∣
2

1˛

˛

˛

˛

εkf′(θ0,Zk−1)
√

n

˛

˛

˛

˛

>ε

ff

∣∣∣Zk−1

]

6

n∑

k=1

(
Eθ0

[∣∣∣∣
εkf ′(θ0,Zk−1)√

n

∣∣∣∣
4 ∣∣∣Zk−1

]) 1
2 (

Pθ0

[∣∣∣∣
εkf ′(θ0,Zk−1)√

n

∣∣∣∣ > ε
∣∣∣Zk−1

]) 1
2

6
1

n
3
2 ε

n∑

k=1

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4

k|Zk−1

]) 1
2

(
Eθ0

[
ε2

k|Zk−1

]) 1
2 . (3.49)
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We have

|f ′(θ0,Zk−1)| 6

√
a · Zk−1(

1 − e−Ψd(θ0)
)2 , Eθ0

(
ε2

k|Zk−1

)
6

Ψ(θ0) · Zk−1

a · Zk−1

(
1 − e−Ψd(θ0)

) ,

and

Eθ0

(
ε4

k|Zk−1

)
=

Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)

(a · Zk−1)
2 (

1 − e−Ψd(θ0)
) ,

hence

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4

k|Zk−1

]) 1
2

(
Eθ0

[
ε2

k|Zk−1

]) 1
2

6
Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)

1
2

(
1 − e−Ψd(θ0)

)7

6
Ψ(θ0) · Zk−1 +

√
3 (Ψ(θ0) · Zk−1)

3
2

(
1 − e−Ψd(θ0)

)7 . (3.50)

Since the Yaglom distribution νθ0
has finite second-order moments (see Proposition 3.5), we deduce

from (3.49) and (3.50) by virtue of (3.33) that

lim
n→∞

n∑

k=1

Eθ0

[∣∣∣∣
εkf ′(θ0,Zk−1)√

n

∣∣∣∣
2

1˛

˛

˛

˛

εkf′(θ0,Zk−1)
√

n

˛

˛

˛

˛

>ε

ff

∣∣∣∣Zk−1

]
a.s.
= 0.

It then ensues from Proposition 3.7 that

lim
n→∞

∑n
k=1 εkf ′(θ0,Zk−1)√

n

D
= N


0,

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0
(j)


 . (3.51)

Finally, (3.40) together with (3.41), (3.42), (3.51) and Slutsky’s theorem imply that

lim
n→∞

√
n

(
θ̂Z

n − θ0

)
D
= N


0,

∑
j∈Nd (f ′ (θ0, j))

2
f (θ0, j) (a · j)−1/2

νθ0(j)(∑
j∈Nd (f ′ (θ0, j))

2
νθ0(j)

)2


 . (3.52)

Since the Yaglom distribution is in general not explicitly known, Theorem 3.6 is not directly
applicable. We can however deduce the following more practical result:

Corollary 3.8. Let us assume that the process (Xk)k>0 is subcritical. Then the estimator θ̂Z
n has

the following asymptotic distribution

lim
n→∞

∑n
k=0

(
f ′

(
θ̂Z

n ,Zk

))2

√
∑n

k=0

(
f ′

(
θ̂Z

n ,Zk

))2

f
(
θ̂Z

n ,Zk

)
(a · Zk)

−1/2

(
θ̂Z

n − θ0

)
D
= N (0, 1) . (3.53)

Proof. The result is immediate as soon as we prove that

lim
n→∞

1

n + 1

n∑

k=0

(
f ′

(
θ̂Z

n ,Zk

))2

f
(
θ̂Z

n ,Zk

)

√
a · Zk

a.s.
=

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0
(j) , (3.54)

as well as the equivalent result for the numerator. For this purpose, we write

n∑

k=0

(
f ′

(
θ̂Z

n ,Zk

))2

f
(
θ̂Z

n ,Zk

)

√
a · Zk

=
n∑

k=0

(f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk

+
n∑

k=0




(
f ′

(
θ̂Z

n ,Zk

))2

f
(
θ̂Z

n ,Zk

)

√
a · Zk

− (f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk


 , (3.55)
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and show that (f ′ (., j))2 f (., j) (a · j)−1/2
has a bounded derivative and is thus Lipschitz:

∣∣∣∣
2f ′′(θ, j)f ′(θ, j)f(θ, j) + (f ′(θ, j))3√

a · j

∣∣∣∣ 6 2c1
Ψ(θmax) · j

(
1 − e−Ψd(θmin)

)3 ,

which enables to write

1

n + 1

n∑

k=0

∣∣∣∣∣∣∣

(
f ′

(
θ̂Z

n ,Zk

))2

f
(
θ̂Z

n ,Zk

)

√
a · Zk

− (f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk

∣∣∣∣∣∣∣

6

∣∣∣θ̂Z
n − θ0

∣∣∣
2c1(

1 − e−Ψd(θmin)
)3

1

n + 1

n∑

k=0

Ψ(θmax) · Zk. (3.56)

By the strong consistency of θ̂Z
n together with (3.33) and (3.34), (3.56) almost surely tends to

zero. Combined with (3.33) and (3.48) in (3.55), this implies (3.54).

Remark 3.9. One can show that, for a given n, the estimator θ̂Z
n has the same asymptotic distribu-

tion, when |X0| grows to infinity, as the estimator θ̂X
|X0|. Indeed, if the two estimators differ, this

implies that (Xk)k6n 6= (Zk)k6n. For notational convenience will simply denote this last event
by {X 6= Z}. The probability that the estimators are not equal thus satisfies (we omit here the
subscript θ0)

P

(
θ̂X
|X0| 6= θ̂Z

n |X0

)
6 P (X 6= Z |X0) = P

(
∃k 6 n : Xk = 0, . . . , Xk−(d−2) = 0 |X0

)

6 P (∃k 6 n : Xk = 0 |X0) 6

n∑

k=1

P (Xk = 0 |X0) .

By the branching property of the process (Xk)k>0, for all k ∈ N,

P (Xk = 0|X0) =

d∏

i=1

P (Xk = 0|X0 = ei)
X0,i .

Consequently,

lim
|X0|→∞

P

(
θ̂X
|X0| 6= θ̂Z

n |X0

)
= lim

|X0|→∞
P (X 6= Z) = 0.

This implies on the one hand the strong consistency of θ̂Z
n as |X0| → ∞. On the other hand, for

all u ∈ R,

P

(√∑n
k=1 a · Zk−1

σ2(θ̂Z
n )

(
θ̂Z

n − θ0

)
6 u |X0

)

= P




√√√√
∑n

k=1 a · Xk−1

σ2(θ̂X
|X0|)

(
θ̂X
|X0| − θ0

)
6 u |X = Z, X0


 P (X = Z |X0)

+ P

(√∑n
k=1 a · Zk−1

σ2(θ̂Z
n )

(
θ̂Z

n − θ0

)
6 u |X 6= Z, X0

)
P (X 6= Z|X0) ,

hence, denoting by Φ the cumulative distribution function of the Gaussian distribution, we deduce
from Theorem 3.1 that

lim
|X0|→∞

P

(√∑n
k=1 a · Zk−1

σ2(θ̂Z
n )

(
θ̂Z

n − θ0

)
6 u |X0

)
= Φ(u).
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3.3 An explicit estimator with asymptotic properties, as n → ∞
The aim of this section is to provide an estimator with asymptotic properties, as time tends to
infinity, in the supercritical case, which in the epidemiological context would correspond to the
growth phase of the epidemic. For this purpose, we deduce from the estimator introduced in [1],

ρ̃n :=
|X1| + . . . + |Xn|

|X0| + . . . + |Xn−1|
, (3.57)

using relation (3.5), the following explicit estimator of θ0,

θ̃X
n :=

1 − ∑d
k=1 bkρ̃−k

n∑d
k=1 akρ̃−k

n

. (3.58)

All what follows can be applied to any process of the form (2.1), where the {ζn−k,n,i}i do not
necessarily follow a Poisson distribution, but satisfy Eθ0 (ζn−k,n,i|Fn−1) = Ψk(θ0).

For each i = 1 . . . d and n ∈ N, we define the covariance matrix Vi
n with entries

[
Vi

n

]
jk

:= Eθ0 (Xn,jXn,k|X0 = ei) − Eθ0 (Xn,j |X0 = ei) Eθ0 (Xn,k|X0 = ei) .

In particular,
[
Vi

1

]
jk

= Ψi if j = k = i, and is null otherwise. Let η be the left eigenvector of M

for its Perron’s root ρ0, with normalization ξ · η = 1. Then, for all i = 1 . . . d,

ξi =
ρi−1
0

∑d
j=i Ψjρ

−j
0∑d

k=1 ρk−1
0

∑d
j=k Ψjρ

−j
0

, ηi = ρ
−(i−1)
0

∑d
k=1 ρk−1

0

∑d
j=k Ψjρ

−j
0∑d

k=1

∑d
j=k Ψjρ

−j
0

. (3.59)

The basic limit theorem in the supercritical case states that there exists a random variable W
such that (see e.g. Theorem 5.6.1 in [2])

lim
n→∞

ρ−n
0 Xn

a.s.
= ηW. (3.60)

Let us recall the results obtained by S. Asmussen and N. Keiding in [1], Theorem 6.1. First,
as pointed out by N. Becker in [3], the estimator ρ̃n is strongly consistent on the set of non-
extinction {W > 0}. Second, once adequately normalized, ρ̃n − ρ0 is asymptotically normal.
However, the asymptotic behavior of ρ̃n − ρ0 depends qualitatively on the relative sizes of ρ and
λ2, where λ is the absolute value of a certain eigenvalue of M. More precisely, let {λi}i=1...s be
the spectrum of M, and for each i = 1 . . . s, let ri be the algebraic multiplicity of λi. We denote
by B = {ui,j , i = 1 . . . s, j = 1 . . . ri} the base of the Jordan canonical decomposition of M, i.e.

such that for all i = 1 . . . s,

Mui,1 = λiui,1, Mui,j = ui,j−1 + λiui,j , j = 2 . . . ri.

Let us define the vector ζ := 1−ξ and denote (ζi,j) i=1...s,

j=1...ri

its coordinates in B: ζ =
∑s

i=1

∑ri

j=1 ζi,jui,j .

Then λ is defined as follows,

λ = λ(ζ) := max
i=1...s

{|λi| : ∃j = 1 . . . ri such that ζi,j 6= 0} , (3.61)

and
γ = γ(ζ) := max

i=1...s:
|λi|=λ

{j = 1 . . . ri : ζi,j 6= 0} . (3.62)

We similarly define λ(x) and γ(x) for any complex vector x ∈ C
d. As detailed in [1], ρ̃n − ρ0 =

(Sn + Tn) (|X0| + . . . + |Xn−1|)−1
, where (to avoid heavy notation, when no confusion is possible,

we do not write differently column and row vectors when multiplied by a matrix)

Sn :=

n−1∑

k=0

(Xk+1 − XkM) · 1, Tn :=

n−1∑

k=0

Xk · κ, κ := (M − ρ0I)1. (3.63)

It appears that Sn and Tn are of the same order of magnitude when λ2 < ρ0, while Tn dominates
Sn if λ2 > ρ0. In order to deal with the case λ2 < ρ0, we define for all n ∈ N, νn := 1+

∑n−1
k=0 Mkκ,

and

C1 := (ρ0 − 1)

∞∑

n=1

ρ−n
0

d∑

i=1

ηiνnVi
1νn = (ρ0 − 1)

∞∑

n=1

ρ−n
0

d∑

i=1

ηiΨiν
2
n,1.
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If λ2 > ρ0, then there exist vectors ζ1 and ζ2 such that (M − ρ0I) ζ = (M − I) ζ1 + ζ2, with
λ(ζ1) = λ, γ(ζ1) = γ and λ(ζ2) 6 1. If λ2 = ρ0, we set moreover

C2 :=

(
1 − 1

ρ0

)
lim

n→∞

∑d
i=1 ηiζ

1Vi
nζ1

ρn
0n2γ−1

. (3.64)

We can now quote Theorem 6.1 of [1]. Note that (2.5) implies that P(W > 0) > 0 (see e.g.

[2], Theorem 5.6.1). For notational convenience, it is assumed in this section just as in [1] that
P(W = 0) = 0. The results stated here are thus valid on the set of non-extinction.

Theorem 3.10 (S. Asmussen & N. Keiding, [1] Thm 6.1-6.3). Let us assume that the process

(Xk)k>0 is supercritical. Then, on the set of non-extinction, the estimator ρ̃n is consistent:

lim
n→∞

ρ̃n
a.s.
= ρ0, (3.65)

and has the following asymptotic distribution.

If λ2 < ρ0,

lim
n→∞

√
W

(
1 + . . . + ρn−1

0

)
(ρ̃n − ρ0)

D
= N (0, C1) . (3.66)

If λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W

(
1 + . . . + ρn−1

0

)

n2γ−1
(ρ̃n − ρ0)

D
= N (0, C2) . (3.67)

If λ2 > ρ0, there exist random variables Hn with lim |Hn| < ∞, such that

lim
n→∞

[
W

(
1 + . . . + ρn−1

0

)

λn−1(n − 1)γ−1
(ρ̃n − ρ0) − Hn−1

]
a.s.
= 0. (3.68)

We now define the constant

C0 :=

(∑d
k=1 kakρ−k

0 +
∑d

k=1 akρ−k
0

∑d
k=1 kbkρ−k

0 − ∑d
k=1 bkρ−k

0

∑d
k=1 kakρ−k

0

ρ0

(∑d
k=1 akρ−k

0

)2

)2

. (3.69)

We immediately deduce from Theorem 3.10 the following result.

Theorem 3.11. Let us assume that the process (Xk)k>0 is supercritical. Then, on the set of

non-extinction, the estimator θ̃X
n is consistent:

lim
n→∞

θ̃X
n

a.s.
= θ0, (3.70)

and has the following asymptotic distribution.

If λ2 < ρ0,

lim
n→∞

√
W

(
1 + . . . + ρn−1

0

)

C1C0

(
θ̃X

n − θ0

)
D
= N (0, 1) . (3.71)

If λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W

(
1 + . . . + ρn−1

0

)

n2γ−1C2C0

(
θ̃X

n − θ0

)
D
= N (0, 1) . (3.72)

If λ2 > ρ0, there exist random variables Hn with lim |Hn| < ∞, such that

lim
n→∞

[
W

(
1 + . . . + ρn−1

0

)

λn−1(n − 1)γ−1

(
θ̃X

n − θ0

)
− Hn−1

]
a.s.
= 0. (3.73)
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Proof. The strong consistency is immediate from (3.65). We then express θ̃X
n − θ0 as a function

of ρ̃n − ρ0, in order to deduce its asymptotic distribution from (3.66)-(3.68). We write

θ̃X
n − θ0

=

∑
k ak

(
ρ−k
0 − ρ̃−k

n

)
+

∑
k akρ−k

0

∑
k bk

(
ρ−k
0 − ρ̃−k

n

)
− ∑

k bkρ−k
0

∑
k ak

(
ρ−k
0 − ρ̃−k

n

)
∑

k akρ̃−k
n

∑
k akρ−k

0

, (3.74)

and use the fact that, for all k = 1 . . . d,

ρ−k
0 − ρ̃−k

n = (ρ̃n − ρ0)

∑k
l=1 ρl−k

0 ρ̃1−l
n

ρ̃nρ0
,

in order to obtain

θ̃X
n − θ0 = (ρ̃n − ρ0)

[ ∑d
k=1 ak

∑k
l=1 ρl−k

0 ρ̃1−l
n

ρ̃nρ0

∑d
k=1 akρ̃−k

n
∑d

k=1 akρ−k
0

+

∑d
k=1 akρ−k

0

∑d
k=1 bk

∑k
l=1 ρl−k

0 ρ̃1−l
n − ∑d

k=1 bkρ−k
0

∑d
k=1 ak

∑k
l=1 ρl−k

0 ρ̃1−l
n

ρ̃nρ0

∑d
k=1 akρ̃−k

n
∑d

k=1 akρ−k
0

]
. (3.75)

By (3.65), the square bracket of (3.75) almost surely converges to
√

C0, and (3.71)-(3.73) are
immediately deduced from (3.66)-(3.68).

Unfortunately this theorem is seldom of direct practical applicability, in particular because of
the differentiation between the three cases λ2 < ρ0, λ2 = ρ0 and λ2 > ρ0. We can not provide here
an asymptotic confidence interval solely based on the observations, as we did for the estimators
θ̂X
|X0| and θ̂Z

n (see Theorem 3.1 and Corollary 3.8).

Remark 3.12. ρ̃n seems to have no interesting asymptotical properties for n fixed, as |X0| → ∞,
when d > 1 (if d = 1 then it reduces to the Harris estimator which is also the CLSE, hence Section
3.1 can be applied), unless we assume that, for all i = 1 . . . d,

lim
|X0|→∞

X0,i

|X0|
a.s.
=

ηi

η · 1 . (3.76)

If this holds, then for any multitype branching process (Xk)k>0 of any class of criticality, lim|X0| ρ̃n
a.s.
=

ρ0. It is however obvious that assumption (3.76) is much too strong and nearly never applicable.

4 Comparison of the estimators and illustration of the asymp-

totic

4.1 Comparison of the estimators

In this section we compare the three estimators on a set of simulated trajectories, for several values
of |X0| and n. As a context of simulation, we choose the BSE epidemic in Great-Britain which, as
detailed in Section 5, can be modeled by a multitype branching process (Xk)k>0 of the form (2.1),
with d = 9 types. For all k = 1 . . . 9, Ψk(θ0) = akθ0 + bk is of the form (2.10), where θ0 = θhor.

(see Section 5), and the ak and bk are given in Table 6. The process is then subcritical (resp.
supercritical) for θ0 < θcrit. (resp. θ0 > θcrit.), with θcrit. ≃ 23.

We focus on the three following set of trajectories. Fixing the parameter θ0 = 15, we first
simulate trajectories of the unconditioned subcritical process (Xk)k>0, and then of the conditioned
subcritical process (Xk|Xk 6= 0)k>0. We finally simulate, with the parameter θ0 = 35, trajectories
of the unconditioned supercritical process (Xk)k>0. We consider different values of |X0| and n,
namely |X0| = 10, 100, 1000 and n = 10, 50, 100. For every couple (|X0|, n), we simulate, in each
of the previously mentioned cases, 100 trajectories of length n (i.e not extinct at time n), initiated
by X0 = (0, . . . , 0, |X0|), and compute the corresponding empirical means and standard deviations
of the estimators. These are reported in Tables 1-3, which allow to compare the three different
estimators in each of these situations.
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P
P

P
P

P
P

PP
n

|X0| 10 100 1000
mean std. dev. mean std. dev. mean std. dev.

10
θ̂X
|X0| 14.7179 4.8811 14.7806 1.5794 14.9930 0.4526

θ̂Z
n 14.7181 4.8805 14.7806 1.5794 14.9930 0.4526

θ̃X
n 22.2960 3.5440 22.1341 1.1615 22.3036 0.3438

50
θ̂X
|X0| / / 15.1834 0.9552 14.9675 0.3370

θ̂Z
n / / 15.1834 0.9551 14.9675 0.3371

θ̃X
n / / 19.0956 0.4860 18.9621 0.1803

100
θ̂X
|X0| / / / / / /

θ̂Z
n / / / / / /

θ̃X
n / / / / / /

Table 1: Empirical means and standard deviations of θ̂X
|X0|, θ̂Z

n and θ̃X
n corresponding to 100

trajectories of length n of the unconditioned subcritical process (Xk)k>0 initiated by X0 =
(0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 15, for different couples (|X0|, n).

P
P

P
P

P
P

PP
n

|X0| 10 100 1000
mean std. dev. mean std. dev. mean std. dev.

10
θ̂X
|X0| 14.4306 5.1569 14.8198 1.5400 14.9138 0.5442

θ̂Z
n 14.4306 5.1568 14.8198 1.5400 14.9138 0.5442

θ̃X
n 22.0041 3.6403 22.1723 1.1272 22.2378 0.4094

50
θ̂X
|X0| 16.0774 2.2719 15.0800 1.0376 15.0420 0.3276

θ̂Z
n 14.6195 3.3079 15.0595 1.0550 15.0428 0.3248

θ̃X
n 19.7192 1.1291 19.0371 0.5284 18.9985 0.1714

100
θ̂X
|X0| 17.7708 1.3873 15.1534 0.9573 15.0346 0.4027

θ̂Z
n 14.7098 2.6979 14.8563 1.0287 15.0208 0.4047

θ̃X
n 20.4621 0.7545 19.0074 0.4620 18.9211 0.1943

Table 2: Empirical means and standard deviations of θ̂X
|X0|, θ̂Z

n and θ̃X
n corresponding to 100

trajectories of length n of the conditioned subcritical process (Xk|Xk 6= 0)k>0 initiated by X0 =
(0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 15, for different couples (|X0|, n).

P
P

P
P

P
P

PP
n

|X0| 10 100 1000
mean std. dev. mean std. dev. mean std. dev.

10
θ̂X
|X0| 35.3485 6.2014 35.2777 1.6247 34.9629 0.6258

θ̂Z
n 35.3611 6.1672 35.2777 1.6295 34.9630 0.6271

θ̃X
n 38.4696 5.3626 38.5015 1.4765 38.2363 0.5670

50
θ̂X
|X0| 34.7898 1.2210 34.9792 0.2760 35.0008 0.0860

θ̂Z
n 34.7898 1.2205 34.9792 0.2764 35.0008 0.0953

θ̃X
n 34.8578 1.2613 35.0580 0.2816 35.0816 0.0877

100
θ̂X
|X0| 34.9942 0.1014 35.0056 0.0302 35.0021 0.0107

θ̂Z
n 34.9943 0.1042 35.0056 0.0300 35.0000 0.0000

θ̃X
n 34.9930 0.1025 35.0053 0.0313 35.0032 0.0116

Table 3: Empirical means and standard deviations of θ̂X
|X0|, θ̂Z

n and θ̃X
n corresponding to 100

trajectories of length n of the unconditioned supercritical process (Xk)k>0 initiated by X0 =
(0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 35, for different couples (|X0|, n).

18



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 2: Simulation of a trajectory of length n = 100 of the conditioned subcritical process
(Xk|Xk 6= 0)k>0, initiated by (0, . . . , 0, 100), with the infection parameter θ0 = 15.

The empty entries in Table 1 are due to the fact that for some given couples (|X0|, n), tra-
jectories of the subcritical process initiated by X0 with an extinction time greater than n occur
only with a very small probability. We recall that the estimator θ̂Z

n has no explicit form. Its

precision thus depends on the optimization method which is chosen, while the precision for θ̂X
|X0|

and θ̃X
n solely depends on the computing program. As a consequence, the estimations obtained

with θ̂X
|X0| and θ̂Z

n might slightly differ from each other, even when they are in theory equal, i.e.

on trajectories with no sequence of d − 1 = 8 zeros. We can see however in Table 1 and Table 3
that, in our example, this approximation error remains very small.

Table 1 enables to compare θ̂X
|X0| and θ̃X

n . As just mentioned, θ̂Z
n is, in this case, equal to

θ̂X
|X0| since no trajectory contains 8 consecutive zeros. Obviously, θ̂X

|X0| provides an estimation of

the parameter much closer to θ0 than θ̃X
n , which is of no surprise, since θ̃X

n is not proved to be
consistent in the subcritical case. This table provides moreover an illustration of the consistency
of θ̂X

|X0| and a probable non consistency of θ̃X
n , as |X0| tends to infinity, which appears clearly for

n = 10.
Table 2 illustrates again the fact that θ̃X

n is not accurate when the process is not super-

critical. This table is however very interesting to compare θ̂X
|X0| and θ̂Z

n on trajectories which
might present one or several sequences of 8 zeros, typically trajectories of the conditioned process
(Xk|Xk 6= 0)k>0 in the subcritical case, for n large enough (see Figure 2). It appears that for long

trajectories (e.g. n = 50 or n = 100), we obtain a better empirical mean with the estimator θ̂Z
n ,

which was expected since it takes into account more information, but a larger standard deviation.
This is particularly obvious when the initial size of the clinical population is small (|X0| = 10). In
order to better illustrate this phenomenon, we represent in Figure 3 the estimations obtained with
the estimators θ̂X

|X0| and θ̂Z
n for the 100 simulated trajectories, used in Table 2, of the conditioned

process with the infection parameter θ0 = 15, with |X0| = 10, respectively for n = 50 and for

n = 100. It appears that, as n increases, θ̂X
|X0| tends to overestimate θ0, while θ̂Z

n remains close to

θ0 but with a larger standard deviation. Moreover, Table 2 illustrates the consistency of θ̂Z
n , as n

tends to infinity, as well as its consistency, as |X0| tends to infinity (see Remark 3.9).

Finally, Table 3 allows to compare θ̂X
|X0| with θ̃X

n in the supercritical case (again, θ̂Z
n is here in

theory equal to θ̂X
|X0|). On those examples, θ̂X

|X0| provides a better estimation when the number

of observations is small (n = 10). However, when n increases, the consistency of θ̃X
n comes in

play, and it appears that θ̃X
n seems as good as the CLSE θ̂X

|X0|, although θ̃X
n is originally not built

as an estimator with usual characteristics (CLSE, MLE, moments estimator...), but rather as an
explicit estimator based upon realistic data.

4.2 Asymptotic normal distribution

The aim of this section is to illustrate the asymptotic normal distribution of each of the three
estimators, namely (3.15), (3.53) and (3.71) (occurring in the case λ2 < ρ0).
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Figure 3: Estimations with θ̂X
|X0| and θ̂Z

n for 100 simulated trajectories (used in Table 2) of length
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Figure 4: 1) Empirical distribution of (4.1) for 1000 trajectories of length n = 10 of the supercritical
process (Xk)k>0 initiated by X0 = (0, . . . , 0, 1000), with θ0 = 35. 2) Empirical distribution of (4.2)
for 1000 trajectories of length n = 100 of the conditioned subcritical process (Zk)k>0 = (Xk|Xk 6=
0)k>0 initiated by X0 = (0, . . . , 0, 10), with θ0 = 15. 3) Empirical distribution of (4.3) for 1000
trajectories of length n = 100 of the supercritical process (Xk)k>0 initiated by X0 = (0, 10), with
θ0 = 0.25. Comparison with the empirical Gaussian distribution.

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Cases 7137 14181 25032 36682 34370 23945 14302 8016 4312 3179

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Cases 2274 1355 1113 1044 549 309 203 104 53 33

Table 4: Yearly number of cases of BSE reported in Great-Britain from 1989 to 2008 ([17]).

then represent in Figure 4.3 the empirical distribution of

√
Xn.ξ

(
1 + . . . + ρn−1

0

)2
(ρ2n

0 βnC0)
−1

(
θ̃X

n − θ0

)
(4.3)

corresponding to the 1000 trajectories. It appears to be not so close to the Gaussian distribution,
which can be due to the several approximations just mentioned.

5 Illustration on the BSE epidemic in Great-Britain

Bovine Spongiform Encephalopathy is a fatal neurodegenerative transmissible disease, the main
routes of which are horizontal via protein supplements (Meat and Bone Meal, milk replacers),
and maternal from a cow to its calf, until the main feed ban regulation introduced by the British
government in July 1988. Even 20 years later, cases of BSE are still reported in Great-Britain (33
cases in 2008, see Table 4). Since most of cattle are slaughtered before the age of 10 years, and
since a previous statistical study concluded to the full efficiency of the 1988 feed ban (see [10]),
this could suggest the existence of an other source of horizontal infection, e.g. via the ingestion
of excreted prions from other alive infected animals. We aim at quantifying this infection, using
the yearly number of cases of BSE reported in Great-Britain from 1989 to 2008 (Table 4).

As detailed in [10] and [12], we can describe the incidence of the clinical cases by model
(2.9), with aM = 10. The parameters Ψk, k = 1 . . . 9, are given by (2.10). The observed sur-
vival probabilities in Great-Britain (Sk)16k610 are given in Table 5 ([16]). Basing ourselves on
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.97 0.65 0.36 0.30 0.25 0.18 0.10 0.06 0.02 0.01

Table 5: Observed survival probabilities of cattle in Great-Britain ([16]). Sk is the probability for
an (apparently) healthy animal to survive at least until k years.

k 1 2 3 4 5 6 7 8 9
ak.103 0.2192 1.9315 5.5275 9.2323 10.4353 8.3260 5.1357 1.8642 0.5569
bk.104 0.0738 0.5432 1.8025 3.7227 5.0766 4.3821 3.4238 1.2428 0.5569

Table 6: Values of ak and bk defined by (2.10).

[10], we choose for the intrinsic incubation period distribution a discretized Weibull distribution,

Pinc.(k) := e−
α−1
αβα (k−1)α − e−

α−1
αβα kα

, where α = 3.84 is the shape parameter, and β = 7.46 is the
mode of the probability density of the corresponding Weibull distribution. These values α and
β correspond to a maximum a posteriori Bayesian estimation, based on 22 observations during
the years 1981 and 1987-2007 (see [10]). We set moreover θvert. = 0.1, which is the maximum
likely maternal infection probability usually assumed in BSE. The unknown parameter is the hor-
izontal infection parameter θ0 := θhor. (corresponding to the mean number per infective and per
year of newly infected animals via ingestion of excreted prions), and we have, for all k = 1 . . . 9,
Ψk(θ0) = akθ0 + bk, with ak and bk given by (2.10). The values of ak and bk are given in Table 6.
Moreover, applying (2.7) we obtain that

the process is subcritical ⇐⇒
9∑

k=1

Ψk(θ0) < 1 ⇐⇒ θ0 < θcrit.,

where θcrit. = (1 − ∑9
k=1 bk)/

∑9
k=1 ak ≃ 23. Considering a previous maximum a posteriori

Bayesian estimation of θ0 (θ̂MAP = 2.43, see [10]), we can reasonably assume that we are in
the subcritical case. The initial time for the multitype process (Xk)k>0 corresponds here to the
year 1997, with the memory over the years 1989-1997. We thus have X0 = (4312, . . . , 7137) and
|X0| = 167977. Since, in the data provided in Table 4, there is no sequence of 8 zeros, the estimator

θ̂Z
n , which concerns the process Xk conditioned on the event Xk 6= 0, is equal to the estimator

θ̂X
|X0|. We obtain the following estimation

θ̂ := θ̂X
167977 = θ̂Z

11 = 2.4486. (5.1)

Using (3.15) we obtain the following asymptotic confidence interval in |X0|. We have |X0| =
167977, hence we choose the following coefficients αi defined in (3.13), α1 = X0,1/ |X0| =
4312/167977, . . ., α9 = 7131/167977. We compute

c1 :=

√√√√√

(∑10
k=0 a · Xk

) (∑10
k=0

∑d
j=1

∑d
i=1 X0,jaim

(k)
ji (θ̂)

)

∑10
k=0

∑d
j=1

∑d
i=1 X0,j

(
aiθ̂ + bi

)
m

(k)
ji (θ̂)

≃ 40.3938.

A confidence interval with asymptotic probability 95% is then [θ̂−1.96/c1, θ̂+1.96/c1], i.e. P

(
θ0 ∈

[2.4000, 2.4971]
)
≈ 0.95, which is very narrow.

Using (3.53) we obtain the following asymptotic confidence interval in n. Note that since no
sequence of 8 zeros appears in the trajectory, formula (3.53) can be simplified and we have

c2 :=

∑11
k=0

(
f ′

(
θ̂,Zk

))2

√
∑11

k=0

(
f ′

(
θ̂,Zk

))2

f
(
θ̂,Zk

)
(a · Zk)

−1/2

=

∑11
k=0 a · Xk√∑11

k=0

(
a · Xk + θ̂b · Xk

) ≃ 40.3939.
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A confidence interval with asymptotic probability 95% is then [θ̂−1.96/c2, θ̂+1.96/c2], i.e. P

(
θ0 ∈

[2.4000, 2.4971]
)
≈ 0.95.

We can justify as follows why the two constants c1 and c2 are in our example very close. The
number of clinical cases for the 9 first years 1989-1997 are very high compared to the following
years, so we can roughly approximate c1 and c2 by neglecting the values after 1997. The constant
c2 should be thus close to

c2 ≈
∑8

k=0

∑9−k
j=1 X0,jaj+k√∑8

k=1

∑9−k
j=1 X0,j

(
aj+kθ̂ + bj+k

) .

Moreover, since the values of the Ψk(θ̂) are much smaller than 1 (
∑9

k=1 Ψk(θ̂) ≈ 0.1), we can

neglect them and approximate the matrix M(θ̂) by the null matrix with an upper diagonal of

ones. We then have, for all i, j = 1 . . . d, m
(k)
ij (θ̂) ≈ δi,j+k if 0 6 k 6 8 and m

(k)
ij ≈ 0 if k > 8.

Together with the first approximation, the constant c1 can thus roughly be approximated by

c1 ≈

√√√√√

(∑8
k=0

∑9−k
j=1 X0,jaj+k

) (∑8
k=0

∑9−k
j=1 X0,jaj+k

)

∑8
k=0

∑9−k
j=1 X0,j

(
aj+kθ̂ + bj+k

) ,

which is the same approximation as for c2 and equals 38.3679.
This estimation of θ0 suggest that nowadays there could still be a minor infection which is not

of maternal type . The average number of newly infected animals via this mean of infection is only
of the order of 2 to 3 per infective and per year, which is really small compared to the estimations
obtained in [10] for the infection via Meat and Bone Meal or lactoreplacers (before 1989), which
are of the order of 1000. To be more reliable, this estimation should be completed by a sensitivity
analysis to the other parameters (incubation period, maternal infection). This will be done in a
further publication focusing on the BSE epidemic.

Remark 5.1. Estimating the Perron’s root of the process with the estimator (3.58), we obtain

θ̃X
11 = 7.5495, which is far from the expected value given by the Bayesian estimation θ̂MAP = 2.43.

6 Conclusion

According to the simulations presented in Section 4, the conditional least squares estimators θ̂X
|X0|

and θ̂Z
n appear to be accurate and equivalent estimators of θ0 at finite distance (|X0|, n) in the

epidemic model introduced in Section 2.2, with moreover good asymptotic properties for any class
of criticality. In addition, the estimator θ̂Z

n , which takes into account more information, provides
for long trajectories with sequences of zeros, estimations which are, according to the simulations,
better in mean but which have a larger standard deviation. The estimator θ̃X

n derived from the
explicit estimator ρ̃n of the Perron’s root introduced in [1], only provides satisfying estimations in
the supercritical case, which are, in this case, not as good or are equivalent to the ones obtained
with θ̂X

|X0|. Due to the differentiation of three cases and to the presence of unexplicitly known
random variables in its asymptotic distribution, it is not possible to build an asymptotic confidence
interval of θ0 based on θ̃X

n . The use of θ̃X
n is thus in our specific case less appropriate than the

use of the CLSE, which is confirmed by the results obtained on the concrete example of Section
5. However, we point out that θ̂X

|X0| and θ̂Z
n are of an extremely more limited use that ρ̃n, since

they do not provide an estimation of the Perron’s root and only concern very specific processes,
while ρ̃n is suitable for any multitype BGW process.
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