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Abstract

Estimation and testing of distributions in metric spaces are well known. R.A. Fisher, J. Neyman,
W. Cochran and M. Bartlett achieved essential results on the statistical analysis of categorical data. In
the last 40 years many other statisticians found important results in this field.
Often data sets contain categorical data, e.g. levels of factors or names. There does not exist any
ordering or any distance between these categories. At each level there are measured some metric or
categorical values. We introduce a new method of scaling based on statistical decisions. For this we
define empirical probabilities for the original observations and find a class of distributions in a metric
space where these empirical probabilities can be found as approximations for equivalently defined
probabilities. With this method we identify probabilities connected with the categorical data and
probabilities in metric spaces. Here we get a mapping from the levels of factors or names into points
of a metric space. This mapping yields the scale for the categorical data.
From the statistical point of view we use multivariate statistical methods, we calculate maximum
likelihood estimations and compare different approaches for scaling.

Key words: Multivariate scaling, discrimination, power of multivariate tests

1 Introduction
Estimation and testing for distributions of metric random variables are known since the end of the nineteenth cen-
tury. R.A. Fisher and many other statisticians developed very efficient statistical methods for analyzing medical
and biological data. These methods correspond to regression, multivariate analysis and in general to data analysis.
Many procedures, e.g. the procedures of the analysis of variance belong to the basic methods in applied statistics.
Essential contributions about statistics of categorical data were developed first by R.A. Fisher, J. Neyman,
W. Cochran and M. Bartlett. One finds very different strong results for analyzing categorical data since the 1960s.
Mostly data structures from social, biological, medical and technical areas are analyzed. In biomedical applica-
tions categories as sex, race or social strata are considered, in technical problems one works with technical patterns
or places. In social problems one uses verbal assessments or marks, in political or philosophical context one finds
arrangements as ”liberal”, ”moderate” or ”conservative”.
In this paper we introduce a method of scaling based on statistical decisions, especially classification methods are
used. We will concentrate on methods and examples with categorical data. But it will be clear that the proposed
procedures can be used as a pretreatment in other data structures for generating such transformed data which con-
form with assumptions in standard software.
Multidimensional scaling is considered by several authors. In most of the cases they use similarities or dissimilar-
ities and then they find scales for the categories (Everitt and Dunn (2001)).

2 Basic model and estimation
2.1 Basic model
We consider a parametric family of multivariate multinomial distributions. The parameters are partly global which
have an influence on each component of the random vectors and partly such ones which correspond only to one
component.
Let

Θ = M×T



be the parameter space. For given probabilities p1, ..., pk with

pi ≥ 0, ∀i,
k∑

i=1

pi = 1

and a positive integer n we denote by Mult(n, p1, ..., pk) a k-nomial distribution.

Definition 1. For given L and n1, ..., nL the class of distributions of the vector

W = (W1, ...,WL)

for independent Wl, l = 1, ..., L and

Wl ∼ Mult(nl, p1(µ, tl), ..., pk(µ, tl)), l = 1, ..., L

for (µ, tl) ∈ Θ ∀ l and probabilities p1(µ, tl), ..., pk(µ, tl) with

pi(µ, tl) ≥ 0, ∀i,
k∑

i=1

pi(µ, tl) = 1

is called the basic model.

Voinov and Nikulin (1993) considered multivariate multinomial distributions for identically distributed Wl,
here we use a more general model. We observe realizations w of W with

w = (h11, ..., h1k, h21, ..., hLk).

Here all frequencies hli are nonnegative, (hl1, ..., hlk) is a realization of Wl with

k∑

j=1

hlj = nl, P(hl1, ..., hlk) =
nl

hl1! · ... · hlk!
p1(µ, tl)hl1 · ... · pk(µ, tl)hlk . (1)

Such observation w can be represented in form of a table

Frequen- h11 h21 h31 · · · hL1

cies h12 h22 h32 · · · hL2

...
...

...
...

...
h1k h2k h3k · · · hLk

marginal sums h1+ = n1 h2+ = n2 h3+ = n3 · · · hL+ = nL

2.2 Estimation problem
The L and n1, ..., nL are given in the basic model. The parameters µ, t1, ..., tL determine the distribution of W .
Therefore the estimation problem can be formulated. Given a realization w of W we have to find an estimation of
(µ, t1, ..., tL) or only for (t1, ..., tL).

2.3 Typical example
We consider the classification of observations as a typical example. Here we consider realizations of p-dimensional
random variables with the possible distributions Pϑ1 , ..., Pϑk

. These continuous or discrete distributions character-
ize classes K1, ..., Kk and we assume that densities fϑ1 , ..., fϑk

w.r.t. a σ-finite measure are given. Let π1, ..., πk

be a priori probabilities for the classes. Let Y be a variable with the density

f(y) =
k∑

j=1

πjfϑj (y).



Then the conditional probability for y ∈ Ki given y is a realization Y is determined by

P(y ∈ Ki | Y = y) =
πifϑi(y)∑k

j=1 πjfϑj (y)
=: p̃i(y). (2)

Assuming at first that Y is a discrete random variable. For independent n observations we find nl-times the value yl.
We denote the frequencies hl1, ..., hlk of the classes K1, ..., Kk in the nl observations and see that (hl1, ..., hlk)t is
a realization of a multinomial distribution Mult(nl, p̃l1, ..., p̃lk) with p̃li = p̃i(yl). From (2) we see that p̃li depend
on

µ = (ϑ1, ..., ϑk, π1, ..., πk)
and (y1, ..., yL), i.e.

p̃li = : pi(µ, yl).

Hence with (2) we have the representation

p̃li = pi(µ, yl) =
πifϑi(yl)∑k

j=1 πjfϑj
(yl)

. (3)

For given n1, ..., nL the data can be represented in a k × L−table :

l 1 2 3 · · · L

class 1 h11 h21 h31 · · · hL1

class 2 h12 h22 h32 · · · hL2

...
...

...
...

...
...

class k h1k h2k h3k · · · hLk

Remember that n1, ..., nL with

nl =
k∑

i=1

hti, l = 1, ..., L

. So we can interpret this table as a stratified two-dimensional table. The columns are realizations of independent
variables

Wl ∼ Mult(nl, p̃l1, ..., p̃lk), l = 1, ..., L.

We remark that (2) holds also for continuous distributions and therefore the stratified tables are obtained for all
considered distributions.

2.3.1 Meaning of the parameters
In subsection 2.3 we considered a typical situation. The parameter µ determines the distribution, the parameters
y1, ..., yL determine the locations where we observe. Hence we call µ the distributional parameter. The parameter
(y1, ..., yL) is called the location. At the points y1, ..., yL we have the same probabilities or empirical frequencies as
at the objects or categories. Hence one calls the parameters y1, ..., yL the scale parameters. These scale parameters
lie in a metric space and therefore statistical analyses on the categories can be done with these new scale parameters.

2.3.2 Numerical example
We consider a one-way classification problem as it is known e.g. in analysis of variance. At L = 8 levels of a
factor we observe some electrical resistances given in the table.
One-way classification

Factor A
Levels 1 2 3 4 5 6 7 8
resistances 64.8 65.7 63.9 65.2 60.2 64.5 61.9 62.5

63.2 63.1 62.5 63.2 58.9 62.9 60.5 62.1
61.7 62.8 59.9 62.1 58.3 60.1 59.2 60.1
65.2 66.3 64.9 65.9 60.6 66.0 60.1 62.6



We suppose that the resistances depend on the levels, otherwise the levels would have the same value on a scale.
The levels are characterized by geometric forms, there is no natural ordering or distance between them. Our aim
is to find an appropriate scale for the levels and this scale should be dependent on the measured resistances.
On each level resistances are observed, some are small, some others are moderate or high. In this example we say
that values in in I1 := (64.0, 100] are high, in I2 := (61.0, 64.0] are moderate, in I3 := (0, 61.0] are small. These
are classes 1, 2, 3. The frequencies for these classes are given in the table.

Frequencies for the classes and levels

Levels 1 2 3 4 5 6 7 8
class 1 2 2 1 2 0 2 0 0
class 2 2 2 2 2 0 1 1 3
class 3 0 0 1 0 4 1 3 1

For each level l we have nl = 4 observations. We denote by q(j|l) the conditional probability for observing
values in an interval Ij at level l. Then we can assume that the frequencies at level l are realizations of
Mult(nl, q(1|l), q(2|l) q(3|l)).
Modelization means that we postulate that there is a space (here now R1) with distributions Pϑ1 , ..., Pϑ3 and
corresponding densities fϑ1 , fϑ2 , fϑ3 such that with appropriate a priori probabilities the conditional probabilities
(3) are near to q(i|l). This assumption says that the probabilities at special points of the metric space are the same
as the empirical probabilities coming from the original observations. The estimates of the distributions yield the
scaling for levels.

2.4 Estimation of the parameters
2.4.1 Maximum likelihood estimation
We observe w = (h11, ..., h1k, h21, ..., hLk) as a realization of W . With (1) the likelihood function is given by

L(µ, t1, ..., tL | w) =
L∏

l=1

nl

hl1! · ... · hlk!
p1(µ, tl)hl1 · ... · pk(µ, tl)hlk (4)

and therefore the log likelihood is determined up to factors by

l̃(µ, t1, ..., tL | w) =
L∑

l=1

k∑

i=1

hli ln pi(µ, tl). (5)

Definition 2. Any value (µ̂, t̂1, ..., t̂L) maximizing l̃, is called maximum likelihood estimate for (µ, t1, ..., tL).

2.4.2 Least squares estimate
hli/hlj are well motivated estimates for pli/plj . Therefore it is a possibility to define estimates for (µ, t1, ..., tL)
on the basis of these pli/plj .

Definition 3.
(π̂1, ..., π̂k, ϑ̂1, ..., ϑ̂k, ŷ1, ..., ŷL)

is called least squares estimate for

(π1, ..., πk, ϑ1, ..., ϑk, y1, ..., yL),

if
k∑

i=1

k∑

j=1

L∑

l=1

( π̂ifϑ̂i
(ŷl)

π̂jfϑ̂j
(ŷl)

− nli

nlj

)2

= min
π,ϑ,a

k∑

i=1

k∑

j=1

L∑

l=1

( πifϑi(yl)
πjfϑj (yl)

− nli

nlj

)2

. (6)



3 Test-based estimation of scaling parameters
The partial parameters y1, ..., yL describe the scaling parameters which can be determined separately.
M.G. Kendall and A. Stuart (1967) and lateron H. Ahrens and J. Läuter (1981) introduced a method for scal-
ing which bases on a test statistic and the y1, ..., yL are determined in such a way that the power of a connected
test is maximal.

3.1 Multivariate analysis of variance
We consider k classes with the distributions Np(ν1, Σ), ..., Np(νk, Σ). We observe

v11, ..., v1n1 , ..., vk1, ..., vknk
,

where vij is a realization of the distribution Np(νi,Σ). For testing the hypothesis

H : ν1 = ... = νk against K : νi 6= νj for at least one pair (i, j)

often Hotelling’s T 2
0 is used. This statistic has the form

T 2
0 =

n− k − p + 1
(k − 1)(n− k)p

k∑
t=1

nt(vt· − v··)tS−1(vt· − v··),

where

n =
k∑

i=1

nk, vt· =
1
nt

nt∑

j=1

vtj , v·· =
1
n

k∑
t=1

ntvt·,

S :=
1

n− k

k∑
t=1

nt∑
s=1

(
vts − vt·

)(
vts − vt·

)t

.

With

H =
k∑

t=1

nt

(
vt· − v··

)(
vt· − v··

)t

we find
T 2

0 =
n− k − p + 1

(k − 1)(n− k)p
tr(HS−1).

H. Läuter (2007) showed that this method can be applied to our scaling problem. One defines the
observations vij in an appropriate way. The categories should be denoted by C1z, ..., CLz and the
components of the vector z are values describing the categorical variables to be scaled. We observe
mtl = number of cases where category l leads to class t. With

Dt : =
(mt1

nt
− km·1

n

)
C1 + ... +

(mtL

nt
− km·L

n

)
CL

and
Ftl := Cl − 1

nt

(
mt1C1 + ... + mtLCL

)

we get

H :=
k∑

t=1

ntDt z ztDt
t, S :=

1
n− k

k∑
t=1

L∑

l=1

mtlFtl z ztF t
tl.

Hence we have

T 2
0 =

n− k − p + 1
(k − 1)(n− k)p

zt
[ k∑

i=1

niD
t
iS
−1Di

]
z. (7)

For a good decision in the analysis of variance it is necessary that the observed value of the test statistic is large.
Then it is natural to look for such z-values which maximizes T 2

0 .

Definition 4. If z∗ maximizes T 2
0 then the vectors C1z

∗, ..., CLz∗ are called test-maximal scaling of the cate-
gories.

The calculation of these z∗ is rather difficult. With methods from optimal experimental design one finds
solutions numerically. In special cases explicit solutions are given.



3.1.1 Once again the example
We considered an example in subsection 2.3.2. There we had 8 levels and at each level 4 resistances were measured.
The connection between the resistances and the levels is expressed by scaled values. We obtain with the test-
maximal values the following table.

Scaled values

Factor A
Levels 5 7 8 3 6 1 2 4
scaled values -0.9007 -0.5999 0.0017 0.0670 0.1324 0.4331 0.4331 0.4331

Here we see that the levels 1, 2, 4 have the same response, also 3, 6 are similar. The response under levels 5 and
1, 2, 4 are very different.

4 Comparison of the different scaling
We characterize the different estimated scaled parameters. Especially for two-way classification problems we dis-
cuss and compare the maximum-likelihood and the test-maximal scaling. Here it will be shown that the bias of the
maximum-likelihood scaling is smaller than for the test-maximal scaling.
At first one sees from (7) that the norm of z∗ is not restricted. Therefore the test-maximal scaling cannot be a
consistent estimate for some distributional parameters. One has some degrees of freedom in choosing the direc-
tion and norm of z∗. Maximum likelihood scale estimates and least squares estimates are consistent under some
conditions.

Theorem 1. For k = 2 no consistent estimate exists for (µ, t1, ..., tL).

Theorem 2. Let be Pϑi = N(ϑi, 1). For p = 1, k ≥ 3, L ≥ 2 and 0 = ϑ1 < ϑ2 the maximum likelihood
estimate for (µ, t1, ..., tL) is consistent.

The result from Theorem 2 holds also for other distributions, but at least properties as monotone likelihood
ratio are needed.
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