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Abstract

Studying the influence of the updating scheme for MCMC algorithm on spatially extended
models is a well known problem. For discrete-time interacting particle systems we study
through simulations the effectiveness of a synchronous updating scheme versus the usual
sequential one. We compare the speed of convergence of the associated Markov chains from
the point of view of the time-to-coalescence arising in the coupling-from-the-past algorithm.
Unlike the intuition, the synchronous updating scheme is not always the best one. The
distribution of the time-to-coalescence for these spatially extended models is studied too.

Keywords Interacting particle systems, Probabilistic Cellular Automata, Coupling From The
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1 Introduction

The question of sampling from a given probability distribution arises for several purposes, for
instance when one wants to find some coloring of a given graph or for dimer models as for
statistics purposes. Since the cardinality of the space under consideration may be — still fi-
nite but — huge, direct computations are not the useful and general ones. The Markov-Chain-
Monte-Carlo (MCMC) approach consists in realizing the considered probability distribution as
asymptotic-in-time state from some Markov process. There are some canonical ways to do
it: the Metropolis-Hastings algorithm and the Gibbs sampler. These algorithms are nowadays
known from all practitioners and their study is related to some huge literature, from practical
to theoretical aspects (see for instance | ,

: .

The main limiting aspect of this approach is: the probability is only reached as an asymptotic
state. From this point, studies develop two main directions. Either: one states results to control
the error between the steady state we are interested in and the Markov chain realized for a time
large enough (in some sense to be defined, so called burn-in time); or: through some modification
of the algorithm, one finds a way to sample exactly from the steady state. Propp and Wilson
proposed | ] such a modification using the idea of the reversed sequence,
see Subsection 2.1.

This modification is called exact sampling or perfect simulation. A new practical problem
arising within this approach is the termination of this algorithm in some reasonable machine-
time. In this article, we are interested in this running-time — also called time-to-coalescence for
some reasons to be explained further — for interacting particle systems.

An interacting particle system (IPS) is a (Markov) stochastic process (o(t))ier (I = N or RT)
on some product space S where S is the so-called spin-space and G is a graph. The time-
evolution of the stochastic process (o (t))icr associated to a site k € G is defined according to the
neighbor processes (o4/(t))ier (k' € Vi) where Vi, C G is the (finite) set of neighbors of & in G. Tt
means we are dealing with stochastic processes (0 (¢)):er interacting on some spatial structure G.
These stochastic processes were motivated as mathematical models for the dynamical evolution
of the statistical mechanics equilibrium models. The physical systems “states” are then modeled
as probability measure on S¢ and studied as steady states of interacting particle systems. The
heart of the study of such probabilistic objects lies in the relations between the limit increasing
size finite graph G and an infinite graph (called thermodynamics limit). That is a motivation
for considering state spaces with huge cardinality.

A whole theory has been developed for the case when the time-parameter is continuous
(I = R™). See for instance | | for the traditional basics. The probabilistic cellular
automata (PCA) are a class of such interacting particle systems with discrete time-parameter.
Their specificity is the synchronous updating: between time n and time n + 1 all the val-
ues (or(n)), k € G, are modified according to some probabilistic rules. They contrast to the
continuous-time interacting particle systems where during an infinitesimal amount of time ¢
the value of only one (possibly finitely many) site may be updated. In this case the val-
ues of the sites are updated one after the other, it is thus a (one site) sequential updating.
A general theory for PCA like the one for continuous-time processes is still to be developed
(see | | and references therein). Nevertheless, cellular automata (with deterministic
updating) and their probabilistic counterpart (PCA) are well known in the computer science
and used from practitioners (see for instance the applications part (Part. 2) of the proceed-

ings [ D)-
Since the time is discrete, PCA may be considered as a class of Markov chains. To ex-

emplify their specificity inside the MCMC theory, let us remark that quite differently to the
usual Hastings-Metropolis algorithm practice, for a given probability measure v on S, there



is no general recipe to construct a PCA for which v is stationary. In particular, there exists
Gibbs measures on SZ° such that no PCA admits them as stationary reversible measures (see
Theorem 4.2 in [ ).

Since a few years, an important literature has been dedicated to the study of convergence
rates to equilibrium for Markov chains, see | ]. The main question
is how fast the burn-in time (also called mizing time) grows with the characteristic size of the
model. See [ ]. Another related questions is the influence of the updating
scheme for models with a spatial extension like IPS or the Gibbs sampler. See for instance

[ ) J

In this article, we compare the speed of convergence of IPS with synchronous or sequential
updating by considering their time-to-coalescence. See | |. How is
it distributed? How does the distribution depend on the updating? We want to quantify in that
sense the effectiveness of sequential and parallel updating. Theoretical results are stated and
simulations are developed to confirm them and analyze the situation further. Simulations are
contradicting the intuition: synchronous updating is not always better than sequential updating.
We quantify this fact.

This article is organized as follow. We first present — Section 2 — the definitions and the
framework. In Section 4 we study the distribution of the time-to-coalescence and its evolution
in connection with dynamics parameters. In Section 5 we compare the effectiveness of both
updating schemes (parallel and sequential) from the point of view of the time-to-coalescence.
This work is based on simulations, whose details are developed in Section 3.

2 Backgrounds

2.1 CFTP algorithm, running-time 7,

Let (E, &) be a finite probability space and v a probability measure on it. There is an irreducible
aperiodic Markov transition kernel P(-,-) on F x E such that v is its unique stationary measure
i.e. vP = v where vP(dy) = [ P(xz,dy)v(dz). v is called steady state. The CFTP algorithm
uses P to draw a random sample according to the distribution v.

Let (X5 (p))n>0 denote the Markov chain whose transition kernel is P(-, -) and whose starting
condition Xy is drawn according to p. If p is a Dirac measure 9, i.e. if p = §, for some z € F,
then the starting condition is deterministic and we write the Markov chain (X,,(z)),>0. Recall
that, on a finite state space, irreducible aperiodic Markov transition kernel are ergodic: for any
starting distribution p, the chain converges in law towards the stationary measure v.

We consider Markov chains as iterated random functions, as introduced in |
this constructive approach is better for simulation purposes. Iterated random functions are a
special case of discrete-time dynamical system. A discrete-time dynamical system (f,m) is
defined by

e a probability space O,

e a sequence (6,),>1 of O-valued independent identically distributed random variables, with
the probability measure m as distribution for 4,

e a measurable application f: © x E — E. We use the notation fy(x) := f(z,0).

The Markov chain (X,,),>0 is then recursively constructed by independently choosing Xo and (6,,)n>1,
and defining for n > 0
K1 = f(enJrl,Xn)-
which is equivalent to
Xn = fo, 0...0 fo,(Xo0). (1)



It is always possible (see for instance Chapter 2 in | ]) to represent
a given transition kernel P(-,-) as a discrete-time dynamical system (f,m).

The Propp-Wilson coupling from the past algorithm (CFTP) makes use of the following
sequence (Yy,)n>0, also called backward iteration:

Yn = f91 Oo... Ofgn(Xo).

Remark that for any n > 0, Y,, has the same distribution as X,,. Nevertheless the random
sequences (X, )n>0 and (Y;)n>0 are not equal in distribution. In particular (Y,),>0 is not a
Markov chain. For a fixed n € N, the usual interpretation is to consider (Y)o<k<n as the chain
starting at time —n with initial distribution £(Xy) and evolving from time —n+k —1 (k> 1)
to time —n + k according to the transition probability kernel P(-,-). Let ({7, )x>0 be the
Markov chain defined by §~7 , = fo,_, (2. ;). Note the equality in distribution on the
path-space: L((Xg)r>0) = L((§,,1)k>0). The distribution at time 0 from {~" is then the one
from Y, i.e. we get {;" =Y,,. Note that we use the transition kernel P(-,-) and not the reversed
kernel w.r.t. v.

Let T, be the running-time of the CFTP-algorithm
T, :=inf{n : Y, = constant}

or equivalently 7, := inf{k : 3¢ € E, Vz € E s.t. 5:],; = z, fo_k = ¢} € N. Use the usual
convention inf () = co. It is a stopping-time with respect to the natural filtration.

We say that a random dynamical system (f,m) is monotone if E is a partially ordered set
and fp is a monotone application from E to E (m-almost surely) i.e. Vx <Xy, fo(z) = fo(y).
We say that the kernel P(-,-) is attractive (or monotone) if Vz,y € E, P(x,-) < P(y,-) where
the order on the set of probability measures M;(E) is given by: for any pi,us € Mi(E),
we say p1 =< po if Vf : E — R monotone, p1(f) <g po(f) where pi(f) = [ f(@)u(dz). If
FE is a totally ordered space, the existence of such a representation of the Markov dynamics
thanks to a monotone random dynamical system is equivalent to the transition kernel being
attractive. If E' is only a partially ordered space, the existence of some representation of the
Markov kernel through a monotone random dynamical system is a much stronger assumption
(called complete monotonicity). We refer to [ ]
for a detailed analysis.

Let us consider E a partially ordered set and assume there is a representation of the consid-
ered Markov kernel as monotone random dynamical system. Let Ex be the set of maximal and
minimal elements of E. It follows easily that

T, =inf{k:3c€ E, V2 € Exst. £} =z &P =ch

The monotonicity makes CFTP a very efficient algorithm since it reduces the number of paths
to control, from |E| to |Fx|. Pay attention that the same realizations of the #; random variables
are used for all the possible starting conditions.

Moreover, using the monotonicity and the irreducibility of the transition kernel P(-,-), it is
easy to prove that the stopping-time 7, is a.s. finite. With these assumptions, the distribution of
& T — Yr, is the steady state v of the transition kernel P(-,-). Hence the name ezact sampling.
See [ | for a more detailed presentation.

2.2 Convergence to equilibrium and time-to-coalescence T,

Let us denote with T, the time-to-coalescence or coupling time:

Te:=inf{n : 3c€ E, Vze€ E, X,(z)=c}.



Since the same realizations of the 6; random variables are used for all the possible starting
conditions, we get a coupling of the X,,(z) for all z € F on the same probability space. Moreover,
the monotonicity of the coupling implies the coalescence property: if two paths meet, they will
remain equal forever a.s. This implies that it is equivalent to check the coalescence before time 0
or at time 0. Using the time-translation invariance, it is then clear that £(1.) = £(7). Note that
this is true only for the time, not the state: indeed, X7, does not necessarily have distribution
v.

Let us recall the control of the distance to equilibrium of the Markov chain thanks to the
tail of the time-to-coalescence distribution. The total variation distance between probability
measures (i1, lo on F is defined by:

11 = pallry = max |pi (4) — pa(A)].
€&

It is easy to state

i — pallaw = 5 3 ln () — o).
rel
The following result gives the control in total variation distance of the distance to equilibrium
of the Markov kernel by the tail of the time-to-coalescence. For the proof, see Th. 1.2 Chap. 4
in | | or for a more systematic study | ].

Theorem 1 (source?). Let (X}), and (X2), be two Markov chains with values on some finite
state space E, associated to the same irreducible aperiodic Markov kernel P(-,-), defined on the

same probability space such that coalescence holds a.s. It holds:
HIPX}L — IPXELHTV < IP(TC > n)

In particular,
IpP" = vllzv < P(T. > n)

where v s the stationary measure and p any starting distribution.

This result motivates our approach to quantitatively compare the speed of convergence of
different transition kernel in term of their respective time-to-coalescence. It motivates as well the
study of the distribution of the time-to-coalescence, since any inequality relating the tail and the
moments, like the Markov inequality, will be useful (see examples developed in | 1)-

Moreover, let us recall the following relation between the time-to-coalescence and the mixing-
time:

Theorem 2 (see Th. 2 in | 1.

(e) < 6T.(1 +log(2)),

where the mixing-time 7(¢) is defined through

T(e) := maé(min{n :vn' >, H(SxP"I —v||rv < e}
[4S

2.3 Read-once modification of the CFTP Algorithm

The first version of the CFTP algorithm require to store de random bits used (the values of
(6r)n>1), because each backward iteration must use the same (6, ),>1 and not draw them again.
While it is often sufficient to only store the seed of a pseudo random number generator, this fact
was still considered as a drawback for the algorithm. Thus, Wilson | | suggested a
modification that allows one to use a read-once source of randomness, i.e. not having to store
the random bits. It is the running time of this version that we analyse here.



2.4 Sequential updating: Glauber dynamics

Before introducing the Markovian dynamics we are dealing with, let us define Gibbs measures.
They are strongly related in both cases (sequential and parallel updating dynamics) to the
time-asymptotics. Moreover, as will be exemplified through the simulations, when the phase
transition phenomenon occurs, there is a change of behavior for the coupling time 7.

2.4.1 Gibbs measures on lattice

From now on, we consider E = S¢ where S is a finite totally ordered space and G = Z% or
G = A € Z% (finite subset). A configuration o is an element of E, its coordinates are written
(0k)kec.- We note — (resp. +) the minimum (resp. maximum) from S, and — (resp. +) the
configurations for which Vk € G, o = — (resp. o = +).

A Gibbs measure is a natural measure related to some potential. A set of functions (v4)aca
is said to be a potential if for all A, ¢4 : S¢ — R depends only on the sites in A, i.e.
Vo € S ¢(0) = ¢(o4) where o4 = (0})rea. We define the associated Hamiltonian (H)ezd
by

Vo€ SO, Ha(o)= > qalo).
A ANAAD

We assume here for simplicity that ¢ is a finite range potential i.e.

AC >0, VA s.t. |A| > C, pa =0, (2)

Example The well-known Ising-potential is given by

*ﬁJiJO'iO'j When A = {i,j},
va(o) := < Bho; when A = {i},

0 otherwise.

The associated Ising Hamiltonian is then

Hp(o)=—p Z Ji joioj — ﬂhZak.

i, {1.5}NAZD keA

The model is parametrized through the “inverse-temperature” parameter 3 > 0, the magnetiza-
tion h € R and the (finite range) pair-interaction parameter .J; ; between the sites ¢, j. Here only
nearest neighbors can interact: J; ; > 0= ||i — j|[1 = 1.

For a fixed A € Z¢ (it is called a finite volume), we write A€ its boundary. The finite-volume
Gibbs measure p}, with boundary condition T € SA°is a probability measure on SM. Tt is
defined by:

Yop € SA, MR(O’A) = e—HA(UATAC)

zT

A
where the configuration (op7ac) is oy if k € A, 7, otherwise. The important structural relation
verified by this family of measures is:

TACTIA\A

VA CAe Zd7 VT, TIA\A"> OA MR(O—A' |77A\A’) = My (UA/)'

Since S is finite and the potential is finite range, one proves that there is (at least) one measure p
on the infinite space SZ% such that

VA € ZY, . | Tac) = uPe( . ):

Such a probability measure is called infinite-volume Gibbs measure with respect to the poten-
tial ¢. When more than one probability measure fulfill these conditions, this is called phase
transition. For more details and motivation on the theory of Gibbs measure, we refer to the
standard statistical mechanics literature, for instance | ].



2.4.2 Discrete-time Glauber dynamics

Let A be a finite subset of Z? and for simplicity S = {—1,+1}. We now describe the Metropolis-
Hastings algorithm, which gives a canonical way to associate an irreducible aperiodic Markov
kernel to a given probability measure ;1 such that this measure its only stationary measure.

Define the transition Markov kernel P{ on SA for o # n by
P{(n,0) := Qa(naTrc, 0) R(1ATAS, 0), (3)
where
e Q) is any Markov kernel on S* such that Q(n, o) > 0 implies Q(c,n) > 0;
e R is given for o # 1 by

h(%) if Q(n,0) #0

0 otherwise,

R(% U) = {

e 1 :]0,+00[ — ]0,1] is such that h(u) = uh(L).
Finally, normalize P{(n,n) so that P] is a Markov kernel on S*. Q is called proposal probability
kernel, R is the acceptance/rejection probability kernel.

We assume moreover that

e (), is any symmetric Markov kernel such that QA (n, o) > 0 if there is at most one site k € A
such that n; # og;

e R is given by
—HZ (")
ky _ e A

R(n,n") = —HL

(4)

where 1" is the configuration 7 with site k flipped: Vj # k, (n*); := n; and (%)), := —np.

77’“) + e_HX(n)

Here we made the choice h(u) := i (sometimes called Barker-rate). Another common choice
is the Metropolis-rate: h(u) = min(1,u).

The detailed balance condition

P{(n,o)up(n) = Pi(o,n)ui(o)

holds. It means that u} is a reversible measure w.r.t. P{ so it is a stationary one.
If we make the particular choice

ky ._ 1

QA(77>77 ) : ’A’ (5)
we get a random choice sequential updating (spin flip) dynamics. It is the discrete time equiv-
alent of the Glauber dynamics. A Glauber dynamics is a continuous-time Markov process on
S¢ where jumps occur at rate (4) between configurations differing in one site (see [ ,

| for more details). Asnoticed in | ],

the term Glauber dynamics does not have a precise agreed meaning. It means in general: local
(see (2)) single sites updates performed in random sequence. Remark that unlike its discrete-
time version, the continuous-time usual form can not be generalized on 52 1o a (fully) parallel
dynamics. This motivates PCA processes as models for the parallel updating.

In the particular case of the Ising model with A = 0 and nearest-neighbor interaction (i.e.

Jij = 1if [|i — j|| = 1, 0 otherwise), the acceptance/rejection probability becomes
Rlaf) = g )
’ 2cosh(B3 7.1 m5)



Remark Since S = {-1,+1},
R(n,n*) = iy (=) = pa(=nmelngeye), (7)

where p denotes the Gibbs measure on S,

Since the one-site conditional distribution is used, it is the spin-flip version of the usual
Gibbs sampler also called heat-bath dynamics. We refer to | | for more details and
to [ | for a comparison of the velocity
of convergence to equilibrium in term of the second-largest eigenvalue in absolute value between
the Gibbs-Sampler and the Hastings-Metropolis algorithm.

2.4.3 Deterministic sequential updating scheme

For the Gibbs sampler, it is a natural question (see | |) to study the role played by
the updating scheme: random or systematic scans (also called systematic sweep). In |

the authors study Glauber dynamics for graph coloring and compare the effectiveness of random
and systematic scan in term of mixing-time of the processes. In | ] the
authors give “the first analysis of a systematic scan version of the Metropolis algorithm” (sic).
According to these works, it seem that random update and systematic scan are comparable in
term of the velocity of convergence. But proof is still lacking except in special cases like some
considered therein. Our article is to be considered as a first step in extending these questions
towards a comparison between single updating and synchronous updating.

2.5 Parallel updating: PCA

We now want to apply the updating rule R(n, n*) synchronously. We use the Markov transition
kernel

oa(n.0) = [ pe(oxln)

keA
where the (local) updating rule is given by
pi(oxln) = gy (on). (8)

The stationary measure is not the finite-volume Gibbs measure any more but differ with some ad-
ditional boundary term. We refer to the detailed analysis made in |

(Proposition 3.1) for the precise expression of the stationary measure v} of p}. The updating
rule (8) may also be written

(1+ o tanh(8) ny)). 9)

g~k

| =

pr(okln) =

PCA are cellular automata where the local updating rule is probabilistic. There is a huge lit-
erature about cellular automata, from computer science to applications: we refer to the literature
referred in [ ]. The family we deal with here satisfies the property Vk € Z%,Vn,Vs € S, pr(s|n) > 0.
Such PCA are called purely stochastic PCA.

Note that here the value oy (n) is not involved in the updating rule pg(-|o(n)) used to deter-
mine the value oi(n + 1). If it were the case, the sequential time counterpart would still be the
Hastings-Metropolis one (6) but not coinciding with the Gibbs sampler (7) anymore. We do not
consider this case here.



2.6 Definition of the coupling

Since we want to run the CFTP algorithm for PCA dynamics as well as Glauber dynamics, we are
looking for a representation as a monotone dynamical system which has a product structure too.
For an IPS with local updating, PCA or Glauber dynamics, the monotonicity of the transition
kernel is equivalent to require

Vo <neE, VkeA, pi(-lo) < pr(-n) (10)

in the sense of the ordering between measures on S.
We recall the following result (see Th. 2.4 in | | for details) whose proof is given
here for algorithmic purposes.

Proposition 3. Let P be the transition kernel on SN (A € Z or = 7Z) of a discrete-time
Glauber dynamics or PCA dynamics. Assume the spin space S is totally ordered and P is
monotone. Then there is a representation as monotone random dynamical system.

Proof. Let (ox(n))geze be a PCA on E = S? with transition probability p = [[px. We define
0= XkEA[Oa 1]7 m = ®k€A)\|[011]

where /\‘[0 1 is the uniform distribution on [0, 1]. It means we consider a sequence of independent
identically distributed random variables (6(n)),>0 such that

Vn >0, 6(n)=ckerbk(n),

where the random variables (0x(n))gea are independent, uniformly distributed on [0,1]. Let
f:0 x E — E be defined through

f(0,0) = @ra gr(0k,0)

where § = Xpep O € O, and Vk € A, g : [0,1] x E — E be local updating functions to be
defined. Let Fi(-,0) (k € A, 0 € E) be the probability distribution function of p(-|o)

Fi(s,0) = Z pr(s'|o), (s €9).

s'<s
Let us define the local updating functions gx (k € A) through
gk(u70) - Fk(WU)(il)(u)

where u € [0,1], o € E and (F},)(~") denotes the Lévy probability transform (generalized inverse
probability transform) of the Fj, distribution function

(Fp) Y (u) = inf {s € S: Fu(s)>u}, uel0,1],
=
where < denotes the ordering on S. It is easy to check that (O, f,m) is a representation of p as
random dynamical system: Vn > 0, Vk € A:

op(n+1)=gOk(n+1),0(n)).

Let (01 (n))geze be a Glauber dynamics on E = S with transition kernel P as defined in (3)
with (4) and (5). In that case, let ©, m, (6(n)),, be defined as previously and f : O xAx E — E
be defined through

f0,K,0) = gx(Ok,0) @ren, kxx Idg(o)

10



where K € A and Idg(0) = 0. Define unif(A) be the uniform probability measure on A. It is
easy to check that (© x A, f,m X unif(A)) is a representation of the Glauber dynamics P as
random dynamical system.

Note that the local updating functions g; are applied either synchronously for the PCA or
sequentially with a uniform random choice for the Glauber dynamics. Further note that the
monotonicity of g (resp. P) means, Vk € A,

Vo xnekE, F(,o)>F(,n)

or
Vo = ne E7 Vu € [07 1]7 gk(u7o—) = gk(uvn)

So the functions f(6,-) (resp. f(0,K,-)) are monotone (on S* with the ordering <).
O O

We are here more precisely interested in the local updating rule on S = {—1,+1} given
by (9) which is the same as (6). It is easy to check that this rule is monotone: (10) holds.
As noted in Subsection 2.1, the monotonicity of the representation allows to run CFTP when
controlling only two copies of the same dynamics. We consider here the two copies (67 (n))n>0
(resp. (o7 (n))n>0 ) such that Vk € A, o, (0) = —1 (resp. Vk € A, o} (0) = +1). Since for the
coupling we are using the same random variables 0 (n) for all the copies of the dynamics, the
transition probability g on (S x S™) x (S x S) may be written too

_(n), o7 ) = B
) n§a+gn;§§ = pr(+1 \ ot (n )) pk(‘H | o7 (n)) (11)
)0t (n)) =

Note that, for any k, oy, (n) = aa (n) implies a.s. o} (n+1) = o7 (n+ 1) where Vi, = {j : j ~ k}.
So this coupling has the coalescence property: o~ (n) = ot (n) impliesa.s. 0~ (n+1) =ot(n+1).

For the coupling of the PCA dynamics, this updating rule ¢ is applied to all k between
time n and n+ 1. It means the coupled process is a PCA too but on the product space S* x SA.

For the coupling of sequential dynamics, the updating rule ¢ is applied to one randomly
uniformly chosen site k between time n and n+ 1. Note this site is the same for both the coupled
processes. So each coupled process is using first (5) and then (6). It means we are coupling in
an order preserving way the Glauber dynamics introduced in Section 2.4.2.

3 Simulations

Simulating those cellular automata is straightforward: simply have an array of cells, each cell
storing a spin (represented by a boolean). For parallel updating, we need two copies of the
array: to update all cells “at once”, we read the states in one copy and write the result of the
transition rule in the other. The running time is measured as the exact number of steps needed
to reach coalescence, not the wall-clock time. We considered only periodic boundary condition.
We simulated arrays of 1000 x 1000 cells. For some figures (if the time-to-coalescence was too
long for the choice of the other parameters, in particular 3), we used only 200 x 200 cells.

We needed one month of computation on a cluster of 16 Pentium IV Xeon biprocessor 2.6Ghz.
The source code for the program used is available at cimula.sf.net.

Since we are interested in the distribution of 7. and not in the realization of an unbiased
steady state, we do not run the CFTP algorithm but simulate the dynamics in a “forward
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iteration” manner (like (1)) and find realizations of the coupling-time T,.. I.e., the algorithm
compute a biased sample (which we discard immediately), but its running time exactly follows
the distribution of the time-to-coalescence.

Since the parallel dynamics performs |A| updates in one step time, we multiply the coupling
time of the sequential dynamics with |A| to compensate.

4 Distribution of the time-to-coalescence

We now analyze the results of simulations of the time-to-coalescence for the local updating
rule (9) on S = {—1,+1} applied sequentially (Glauber dynamics) or synchronously (PCA).

The distribution of the time-to-coalescence is important for the time needed to run the
CFTP-algorithm. As was explained in Section 2.2, the tail of the distribution gives a control on
the speed of convergence of the Markov chain (Mixing-time).

Let us define T}, the time-to-coalescence at site k € A:
Ty =inf{n :Vm >n, o, (m)=o}(m)} (12)

Remark o, (n) = o} (n) does not imply that this equality holds for all the successive times. The
time-to-coalescence for the entire volume A is

T. = Ty. 13
o= et (13)

Let TP™ denote the coalescence time defined in (13) with respect to the PCA dynamics
defined through (9). As remarked previously, since one site is updated for one time-unit in the
sequential updating case versus |A| in the parallel updating scheme, we renormalize this quantity
for the time-to-coalescence Ti %:

T5°9 = |A| max T 14
c ’ | kE/{( k ( )

4.1 Case 8 =0: theoretical result

The case f = 0 (in equation (9)) means spatial and temporal independence between the sites.
Take Vi, = {k}. According to the coupling (11), the definition (12) becomes

Ty = inf{n : o (n) = o} (n)}.

In that case, one can identify the infinitely-many interacting sites asymptotics of the time-to-
coalescence’s distribution.

First, recall that a real valued random variable G is said to have a Gumbel-distribution if its
distribution function is

_ T
e ¢

Such a distribution plays a central role in the theory of extreme values. Recall the following
Theorem:

Theorem 4 (Th. 3.2.3 in | ]). Let
(Xn)n>1 be a sequence of independent identically distributed random variables. Let M, :=
maxi<g<np Xp. Assume there exist a sequence (an)n>1 of positive real numbers, a sequence
(bn)n>1 of real numbers and a random variable G on R such that

Mn_bn L

A, n—oo

G. (15)
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Then, either G has a Dirac mass as distribution, or its distribution is one of the three following
extreme values distributions corresponding respectively to the cumulative distribution functions

Fi(z) =", Fy(@)= e # lgs, Fyz)=lge +e T 1,

Note that the assumption (15) is not true for any distribution. For instance, the Poisson
distribution does not admits a rescaling such that the maximum would converge towards a non
trivial distribution. We can now state

Proposition 5. When 8 = 0, T log2 — log |A| converges in distribution towards a Gumbel
distributed random variable G as |A| goes to +oo.

Proof. The random variables T}, are independent and for any k € A T}, is the distribution of
the first success in a Bernoulli trials with probability % which is a geometric distribution with
1

parameter 3.

Let x € R, kg € A. Tt follows:

x + log ]A|)>|A|
log 2

(1 1 )IA\ (1 e*x)\/\l
= T T z+log [A] | ~A|— OOl
Y

where |y| denotes the integer part of the real y. So the probability distribution function of
(log 2) TP* —log |A| converges with |A| going to co towards Fy. O O

P(TP" log2 — log |A| < ) = (IP(TkO <

Proposition 6. When 8 = 0, T.“/log2 — log |A| converges in distribution towards a Gumbel
distributed random variable G as |A| goes to +oo.

Proof. In the sequential updating case, the waiting time until coalescence will be distributed
like a geometric distribution with parameter ﬁ O O

4.2 Case 0 < § < f.: simulation results

Assume now [ > 0. The sites are interacting. Since the random variables (T})rep are not
independent anymore, it is difficult to prove the validity of an analogue result as Proposition 5.
Some generalizations of the Theorem 4 are known when the sequence of random variables is
stationary and a weak mixing condition holds (see for instance Th.2.1. in | ]). So
we may expect the Proposition 5 to hold for small values of 3. Nevertheless, proof is still to be
written. A first step in this direction are the results of the simulations. We state that the time-
to-coalescence distribution is still "near” to a Gumbel distribution for |A| large, whose parameters
are estimated. Thus we can statistically analyze how the parameter 3 of the dynamics influences
this distribution. As expected, there is a critical value G, of 8 such that approaching it, the
time-to-coalescence explodes. This will be analyzed in the following Section 6.1.

Let us first define the whole family of the Gumbel distributions. It is a family of probability
distributions parametrized through ¢ € R and s € RT. The probability density function is given
by

o _z—q
f(m) =e sq e ¢ ° ]IRJr(HZ'). (16)
We refer to the Chapter 21 in | | for details.
If G is a random variable with this distribution, let us only recall
E(G) = ¢+ 7s with v the Euler-constant (y ~ 0.577), (17)
Var(G) = %232.
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As presented in Section 3 we consider here the nearest neighbor Ising potential ¢ with A = 0.
We run simulations on one hand for the associated dynamics with parallel updating scheme
(PCA) and on the other hand for the dynamics with a systematic sequential updating scheme
(Glauber dynamics). For the PCA is means that k ¢ Vj. It is indeed a very precise model but
it remains a PCA dynamics and since much more detailed results are known about it, the analyze
will gain in accuracy. For instance, it was proven in |

that 8. = log(1+—2‘/§) ~ (0.44.

Let us synthesize results we stated from these simulations. We only present here the parallel
updating case, results for the sequential updating are similar. A comparative analysis is in
Section 5.

Claim 7. With |A| large, 0 < 5 < [,

1. the distribution of T, is approximated by a gemeralized extreme value distribution. For
small B, it is a Gumbel distribution. For (3 near to 3., it is a Fréchet distribution;

2. the parameter B in this interval does not modify the nature of the distribution, only its
associated parameters.

The coefficients ¢, $ are estimated through the usual estimators for expectation and vari-
ance and solving the Equations (17) (so called moments method). The maximum likelihood
estimation gives similar results. The Figures 1 shows the histogram of 7T, with the density of
the approximated Gumbel distribution. The Figure 2 shows the qqg-plot graph, which means
the quantile of the empirical distribution of 7, versus the quantile of the approximated Gumbel
distribution. The linear dependence confirms the hypothesis of the Claim 7. The graphical rep-
resentation of the sample’s empirical probability distribution function leads to the same result.

Statistical tests were made to justify these graphical results. The chi square test, the
Anderson-Darling test and the Kolmogorov-Smirnov test give the same conclusion. For small
postive values of 3, say 0 < 8 < 0.2, these tests advice to reject the null-hypothesis, that for A
large, the distribution of T is good fitted with an estimated Gumbel distribution (for the usual
significance levels @ = 0.01 and a = 0.05). For bigger values of 3, 0.2 < 8 < 0.44 < [, all
these tests indicate not to reject the null-hypothesis. For 0.44 < 8 < f., the null-hypothesis
is rejected. Nevertheless, for these values of 3, statistical test indicate not to reject the null-
hypothesis that a Fréchet distribution is a good approximation. The results are presented in
Table 1.

The distribution of 7, we are looking for when |A| is large (but finite in these simula-
tions) is discrete on the contrary to the Gumbel distribution. Nevertheless, we considered the
Kolmogorov-Smirnov statistical test (D). For the size of the samples we have, it is considered
as powerful as the chi squared test (see section 6 p. 19 in | ]). Results are going in
fact the same way as the chi-square and the Anderson-Darling tests.

For 0 < 8 < 0.2, the rejection of the null-hypothesis comes from the discreteness of T.’s
distribution. Several values arise with a high frequency in the samples. On the contrary, for 3
larger, the range of the sample’s values is bigger, so values are less repeated and the discreteness
becomes somehow negligeable.

5 Influence of the updating rule

5.1 Influence of the updating rule on the distribution of 7,

Developing for T:°? the same statistical analysis as before, we find the results summarized in
the Table 2.
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Figure 1: Histogram of T, and the density of the approximated Gumbel distribution, sample of
size 10,000.
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Figure 2: Histogram of T, and the density of the approximated Gumbel distribution, sample of
size 10,000.

The null-hypothesis is that the sample is Gumbel distributed, with parameters estimated.
With a level of significance from o = 0.01, we reject the null-hypothesis for 0 < § < 0.2, not
reject for 0.25 < # < 0.435 and reject for 0.438 < 3 < (.. For 0.438 < (3 < B, others test with
“adequation to a Fréchet distribution” as null-hypothesis suggest not to reject. So we claim:

Claim 8. For < f3., the updating scheme (parallel/sequential) does not modify the nature of
the distribution, only its associated parameters.

In the Figures 4, the estimated Gumbel parameters ¢, § are compared
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I 0 0.05 0.1 0.15 02 | 025 |
B 0.00 0.67 1.05 1.64 2.74 4.95
g 1.00 6.96 11.40 17.90 28.64 | 48.52
100D 9.64 27.82 17.08 11.56 7.43 4.37
pvalue | <le—04 | <le—04 | <le—04 | <le—04 | <le—04|0.0436

| B [03]035] 04 [041]042]0425] 043 [ 0.435 | 0.438 [ 0.439 | 0.440 [ 04405 | 5.
5 11 | 28 | 166 | 306 | 697 | 1204 | 2844 [ 10988 | 45533 | 836450 | 191275 | 332480 | 381848
q 93 | 227 | 1078 | 1814 | 3687 | 6042 | 11793 | 32382 | 86818 | 144605 | 281736 | 400076 | 492848

100D | 26 | 27 | 26 | 1.8 | 1.9 1.8 2.02 | 2.57 5.05 4.54 4.74 6.79 5.36
p-value | 0.48 | 0.44 | 0.5 | 0.9 | 0.8 0.9 0.81 | 0.52 | 0.01218 | 0.0323 | 0.0225 | 0.00019 | 0.00644

Table 1: Estimated coefficients ¢, 3 of a Gumbel distribution fitting to the sample of T2,
influence of the parameter 5. Kolmogorov-Smirnov Statistics D. Samples of size 1000. Lattice’s
size: 200 *x 200.

B 0 | 005 | 01 | 015 [ 02 | 025 |
S 1.08 1.29 1.62 2.39 3.26 5.39
q 11.09 13.46 17.05 22.69 32.43 | 50.69
100D 16.91 15.18 11.76 7.73 7.00 5.01
pvalue | <le—04 | <le—04 | <le—04 | <1le—04]0.00011 | 0.0132

| B ]03]035]04][041]042][0.425[0.43]0.435] 0.438 0.439 0.440 0.4405

5 11 [ 27 [ 158 ] 310 | 699 | 1317 [ 2851 | 9887 | 40761 75756 179204 276696

g 91 | 211 | 959 | 1571 | 3181 | 5138 | 9690 | 25562 | 61423 97189 166655 246785

100D |2.4512.39 [1.95| 2.54 | 2.04 | 2.39 | 2.08 | 2.89 7.47 7.62 11.01 11.52
p-value | 0.58 | 0.62 | 0.84 | 0.54 | 0.80 | 0.62 | 0.78 | 0.37 | <le—04|<le—04|<le—04|<le—04

seq

Table 2: Estimated coefficients ¢,§ of a Gumbel distribution fitting to the sample of T¢ -,
influence of the parameter 5. Kolmogorov-Smirnov Statistics D. Samples of size 1000. Lattice’s
size: 200 x 200.

5.2 Parallel versus sequential

For 3 < (3., drawing the mean of TF* /T'seqc sampled values in function of 3. — 3 leads to the
Figure 5. For a region of 3 away from 0 and f., note it is claiming the existence of a power law

relation
1

(Be —B)7

Moreover, it is underlining the fact that for 8 < 0.25, the relation T¢* < T2 holds between
the mean time-to-coalescence. For 3 > 0.3, T8™ > T:°4 holds. See the Figure 6. It means, for
small values of (3 (situation not so far from the independence case between the site), the PCA

dynamics is quicker than the sequential one, when considering the CFTP algorithm. For larger
values of 8 < f3., unlike the intuition, the PCA dynamics is slower.

Iy>0, T. =
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coalescing time vs dimension, beta=0.05
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Figure 3: Influence of the number of cells on the time-to-coalescence. Note the different scales.

6 Conclusion

6.1 Phase transition

From the reference | |, we know that the critical
parameter 3. delimits two region for the set of the Gibbs measures: uniqueness of the infinite-
volume Gibbs measure and existence of several Gibbs measure (so called phase transition regime)
for the potential ¢ naturally associated to the PCA dynamics. The critical value G, = 10g(1+7‘/§)
is the same as the one for the Ising potential. We know precisely how the PCA dynamics with
h = 0 and nearest-neighbor Ising potential behaves — in finite volume as well as infinite volume.

It is based on a precise analysis of the relations between the static — study of the Gibbs measures
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associated to a given potential — and the dynamics — ergodicity of the dynamics, characterization
from the stationary (respectively reversible) probability measures. Let us briefly recall, for the
infinite volume PCA dynamics (i.e. on SZ% or the infinitely many interacting sites asymptotics)
the critical value (. characterize two dynamical regimes too:

e for 0 < < (3, the PCA dynamics is ergodic and converges (exponentially fast) towards a
unique reversible state, which is also the unique (infinite volume) Gibbs measure associated
to the Ising potential;

e for B > (. there are several reversible probability measures, thus the dynamics is not
ergodic.

Since the PCA dynamics is purely probabilistic, the finite volume PCA-dynamics is always
ergodic and converges towards a unique stationary measure. When considering periodic bound-
ary conditions, this measure is also the unique finite-volume Gibbs measure with respect to the
chosen Ising potential. Nevertheless, the critical value 3. also plays a role there: when approach-
ing (. for below, we state with the simulations that the running-time from the CFTP algorithm
explodes. When considering the systematic sequential updating dynamics, similar phenomenon
holds too. See Figure 7.

The critical parameter (. related to two different behaviors of the infinitely many interacting
sites asymptotic dynamics plays a very important role for the finitely many interacting dynamics
too. It bounds two regions for the distribution of the CFTP algorithm’s running-time: in the
non phase transition regime § < (., we claimed T, has an extreme value distribution whereas in
the phase transition regime 3 > (3., the distribution of T, is unknown. The relations (13) and
(14) holds for any value of 3. Nevertheless, for § < 3. the random variables T}, are near from
independence enough to ensure the some renormalisation towards an extreme value distribution
like emphasized with Th. 4. For 8 > (., the algorithm has to wait until the coalescence takes
place for the majority of the sites. It explains the explosion observed.
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