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Empirical Minimax Linear Estimates

Henning Läuter

Institute of Mathematics, University of Potsdam, Germany
e-mail: laeuter@uni-potsdam.de

Abstract: We give the explicit solution for the minimax linear estimate. For scale dependent
models an empirical minimax linear estimates is defined and we prove that these estimates
are Stein’s estimates.
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1 Introduction

In the past years some progress has been made with the study of minimax linear
estimates in convex linear models. Considering linear models

Y = Xβ + ε, (1.1)

Eε = 0, Var Y = σ2I

with the condition

(β, σ2) ∈ B = {(β, σ2) : (β, σ2) ∈ Rp × R+, βtX tMXβ ≤ k2σ2}, (1.2)

where the nonrandom design matrix X is an n×p matrix, i.e. X ∈ Mn×p. M is a known
positive semidefinite matrix such that H = X tMX has a full rank. β ∈ Rp and σ2 are
unknown parameters. Our aim is to estimate the parameter γ = CXβ +c with the s×n
matrix C and c ∈ Rs. In the class of linear estimators γ̂ with

γ̂(y) = Ty + t, T ∈ Ms×n, t ∈ Rs
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we look for a minimax linear estimate. With the risk

R(T, t; β, σ2) =
1

σ2
E(β,σ2) (γ̂(Y )− γ)t Z (γ̂(Y )− γ),

where Z is a positive semidefinite s× s matrix, an estimate γ∗ and γ∗(y) = T ∗y + t∗ is
called a minimax linear estimate (MILE) if

sup
B

R(T ∗, t∗; β, σ2) = min
T,t

sup
B

R(T, t; β, σ2).

This problem was discussed and solved by J. Kuks & V. Olman (1972) for rank Z = 1.
For general Z a characterization of the MILE was given by H. Läuter (1975) and K.
Hoffmann (1978). The equivalence with a spectral characterization was discussed in H.
Drygas&H. Läuter (1994). H. Drygas and J. Pilz (1996) and also V.L. Girko (1996)
showed the equivalence of spectral theory and bayesian analysis in minimax estimation
problems. In N. Gaffke & B. Heiligers (1989) and J. Pilz (1991) several special cases are
discussed. B.F. Arnold & P. Stahlecker (2000) determined for another objective function
the minimax solution. An explicit representation of the MILE was not known up to now.
The present paper is organized as follows. In the next chapter we formulate the explicit
general solution for the MILE. As a consequence we give an empirical MILE for scale
dependent models (1.2). Here the term ”empirical” is used in the similar sense as in
empirical Bayes estimates. The risk of such estimates is calculated and we see that under
normal distributions some of these estimates are Stein estimates.

2 Representation of the MILE

Let us consider the scale invariant model (1.1) with (1.2) and the parameter γ = CXβ+c
is to be estimated. In Läuter (1975) it was remarked that

χ(T ) := sup
B1

R(T ∗, t∗; β, σ2) = tr ZTT t + k2 λmax[Z
1
2 (TX − CX)H−1(TX − CX)tZ

1
2 ],

where λmax(A) is the largest eigenvalue of A. Let R(A) be the space spanned by the
column vectors of the matrix A and PR(A) denotes the orthogonal projection on R(A).
For a symmetric matrix A with the spectral representation

A =
k∑

i=1

µiaiai
t, µ1 ≥ µ2 ≥ ... ≥ µl > 0 ≥ µl+1 ≥ ... ≥ µk

we denote by A> the positive part

A> =
l∑

i=1

µiaiai
t.
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With
V = k2H− 1

2 X tXH− 1
2 =: k2Ṽ , (2.3)

G =
1

k2
H

1
2 (X tX)−1X tCtZCX(X tX)−1H

1
2 =:

1

k2
G̃ (2.4)

we denote
Ãη = Ṽ −1/2(ηṼ −1 − Ṽ 1/2G̃Ṽ 1/2)>Ṽ −1/2 (2.5)

and

Aρ :=
1

k2
Ã ρ

k2
. (2.6)

Obviously Aρ ∈ Mp×p is positive semidefinite (denoted by Aρ ≥ 0). Then the following
theorem gives the general representation of the MILE.

Theorem 1 1. There exists a ρ0 ≥ 0 such that

tr [(G + Aρ0)
1/2] =

√
ρ0(1 + tr (V −1)). (2.7)

2. With

Dρ0 :=
1√
ρ0

(G + Aρ0)
1/2 − V −1

and
T ∗ = k2 CXH− 1

2 Dρ0H
− 1

2 X t(I + k2 XH− 1
2 Dρ0H

− 1
2 X t)−1 (2.8)

the estimator γ∗ with
γ∗(y) = T ∗y + c

is a MILE for γ.

Now the problem is reduced to find a solution of (2.7) for the given Aρ and this is
easy to determine. The restriction to linear estimates is not really so restrictive. This
is justified by the maximality of the normal distribution in the sense of the risk for
the best unbiased estimate (BUE) being maximal under normality and the BUE being
linear.
From (2.8) it becomes clear that the MILE is a type of shrinkage estimate. With the

orthonormal eigenvectors e1, ...ep ∈ R(X) of k2 XH− 1
2 Dρ0H

− 1
2 X t and corresponding

eigenvalues λ1, ..., λp we have

T ∗ = CPR(X) − C

p∑
i=1

1

1 + λi

eie
t
i. (2.9)

From the representation

Dρ0 =
1√
ρ0

1

k
(G̃ + Ã ρ0

k2
)1/2 − 1

k2
Ṽ −1

we see the explicit dependence on k and ρ0. This can be used for the calculation of the
λi for different k and ρ0.
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2.1 MILE for commutable G̃, Ṽ

Assuming that G̃, Ṽ are commutable, i.e. they have the same eigenvectors, say h1, ..., hp.
G̃ has the eigenvalues γ,..., γp and Ṽ has the eigenvalues ν1, ..., νp. Then Aρ from (2.6)
has the eigenvalues

1

k2νi

(
ρ

k2νi

− γiνi)+, i = 1, ..., p

with a+ := max(0, a). Consequently Dρ has the eigenvalues

1√
ρ k

√
γi +

1

νi

(
ρ

k2νi

− γiνi)+ − 1

k2νi

=
1

kνi

(νi
√

γi√
ρ
− 1

k

)
+
. (2.10)

Hence we have the spectral representation

k2 XH− 1
2 DρH

− 1
2 X t =

p∑
i=1

λiei e
t
i (2.11)

with

λi =
kνi√

ρ

√
γi + (

ρ

k2ν2
i

− γi)+ − 1 =
(kνi

√
γi√

ρ
− 1

)
+
. (2.12)

Theorem 2 For the unique ρ0 with trDρ0 = 1 we have

T ∗ = CPR(X) − C

p∑
i=1

1

1 +
(

kνi
√

γi√
ρ0

− 1
)

+

ei e
t
i.

Proof : From (2.10) follows that

trDρ =

p∑
i=1

1

kνi

(√
γiν2

i√
ρ

− 1

k

)
+

is a monotone decreasing function in ρ and for ρ ≤ max{1/(γik
2ν2

i ), i = 1, ..., p} it is
continuous and strictly monotone from ∞ to 0. Hence, ρ0 with trDρ = 1 exists and it
is unique. Now from (2.9) the assertion follows.

2

3 Empirical minimax linear estimate

By construction it follows from (2.7) that ρ0 depends on k, consequently ρ0 = ρ0(k). If
k is unknown then the MILE is also unknown. If one substitutes an estimation κ̂ for k
we get empirical minimax linear estimates. Using (2.9) then λi and ei depend on k. If
we substitute κ̂ instead of k directly in (2.8) then we get

T̂ ∗y = κ̂2 CXH− 1
2 Dρ0(κ̂)H

− 1
2 X ′(I + κ̂2XH− 1

2 Dρ0(κ̂)H
− 1

2 X ′)−1y. (3.13)
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More generally

T̂ ∗ = CPR(X) − C

p∑
i=1

µi

1 + λ̂i

êi ê
t
i (3.14)

is an empirical MILE if the µi’s are positive constants ≤ 1 and λ̂i, êi are estimates for
the corresponding λi, ei. An appropriate estimation κ̂ is those with

κ̂2 = η||M1/2y||2 = η yt M y (3.15)

for a positive constant η. ||z|| denotes the Euclidean norm of z. We calculate the risk
for an empirical MILE.

3.1 Risk of empirical MILE

Assuming that G̃, Ṽ are commutable, i.e. they have the same eigenvectors, say h1, ..., hp.
From section 2.1, it follows that also the hi’s are the eigenvectors from Ãη and so
the eigenvectors h1, ..., hp of Aρ are independent of ρ. These h1, ..., hp are also the

eigenvectors of Dρ for any ρ. Consequently e1, ...ep with hi = H− 1
2 X tei is a system of

orthonormal eigenvectors of XH− 1
2 Dρ0H

− 1
2 X t. Using (2.10) the empirical MILE (3.13)

can be written as

T̂ ∗ = CPR(X) − C

p∑
i=1

µi

1 +
(

κ̂νi
√

γi√
ρ0(κ̂)

− 1
)

+

ei e
t
i.

From (2.10) and the condition tr Dρ0 = 1 it follows that
√

ρ0 ≈ 1/k at least for large
k. Then we consider the empirical MILE

T̂ ∗ = CPR(X) − C

p∑
i=1

µi

1 + λ̂i

ei e
t
i

emp3 with

λ̂i =
(
κ̂2 νi

√
γi − 1

)
+

(3.16)

according to (2.12). This estimation T̂ ∗y is of the form

T̂ y = CPR(X)y − CQy

for an n× n matrix Q = Q(ytMy) with Q(ytMy) ≤ PR(X). Denote

L =

p∑
i=1

γi ei e
t
i.

Then we get the following representations.
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Lemma 1 We have

1.
MCtZCQ = Q1/2LQ1/2 (3.17)

2.

M1/2+QCtZCM1/2 =

p∑
i=1

γiµi

1 + λ̂i

M1/2+ei e
t
iM

1/2+

for orthogonal vectors M1/2+ei, i = 1, ..., p.

3.

tr QCtZC =

p∑
i=1

γiµi

1 + λ̂i

et
iM

+ei (3.18)

4.

Y tQ1/2LQ1/2Y

Y tMY
≤ λmax

(
M1/2+Q1/2LQ1/2M1/2+

)
= max

i
{ γiµi

1 + λ̂i

et
iM

+ei}

5.

Y tQCtZCQY

Y tMY
≤ λmax

(
M1/2+QLQM1/2+

)
= max

i
{ γiµ

2
i

(1 + λ̂i)2
(et

iM
+ei)

2}

By Stein’s identity we get a bound for the risk of the empirical MILE.

Lemma 2 For R(M) ⊆ R(X), Y ∼ Nn(Xβ, σ2 I) we have

σ2 R(θ, T̂ ) ≤ σ2 tr ZCCt−2 tr E Q(Y tMY )CtZC+ (3.19)

+4 E
Y tQ1/2(Y tMY )LQ1/2(Y tMY )Y

Y tMY
+ E Y tQ(Y tMY )CtZCQ(Y tMY )Y.

The empirical MILE is defined with

Q =

p∑
i=1

µi

1 + λ̂i

ei e
t
i

and λ̂i as in (3.16). In order to find conditions for an empirical MILE to be minimax it
is more convenient to look at

Q̃(ytMy) = Q(ytMy) ytMy.

We see that

Q̃(ytMy) =

p∑
i=1

µi y
tMy

1 + (η ytMy νi
√

γi − 1)+

ei e
t
i
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is an increasing matrix in ytMy and it is bounded by

Q̃(ytMy) ≤
p∑

i=1

µi

ηνi
√

γi

ei e
t
i.

Then the next theorem gives a condition for the empirical MILE to be minimax.

Theorem 3 Let be R(M) ⊆ R(X) and Y ∼ Nn(Xβ, σ2 I). If

2E
1

Y tMY
tr M1/2+Q̃1/2LQ̃1/2M1/2+ ≥ 4E

1

Y tMY
λmax

(
M1/2+Q̃1/2LQ̃1/2M1/2+

)
+

+E
1

Y tMY
λmax

(
M1/2+Q̃LQ̃M1/2+

)
(3.20)

then the empirical MILE is minimax.

Here one sees that p ≥ 3 is necessary because for p = 1 or p = 2 we have

R :=
tr M1/2+Q̃1/2LQ̃1/2M1/2+

λmax

(
M1/2+Q̃1/2LQ̃1/2M1/2+

) ≤ 2.

And if R > 2 then one finds small µi’s so that (3.20) is fulfilled, because the last term
in (3.20) depends on Q̃ in a quadratic way and the others only linearly.
This Theorem 3 gives several possibilities for constructing Stein’s estimators. Let
γ1, ..., γq be the eigenvalues larger 0. We put ai := et

iM
+ei and choose for any positive

constant c such values µi that

µi
√

γi ai

νi

= c, i = 1, ..., q

and we admit only such c that µi ≤ 1.

Theorem 4 Let be R(M) ⊆ R(X) and Y ∼ Nn(Xβ, σ2 I). If ν1
√

γ1 =
max{νi

√
γi, i = 1, ..., p} and

2

q∑
i=1

νi
√

γi

ν1
√

γ1

− 4 ≥ c

η
max{ 1

γjaj

; j = 1, ..., q} (3.21)

then the empirical MILE (3.14) is a Stein’s estimator.

One recognizes that only the ratio c/η plays a role. Also we see that under the condition

q∑
i=1

νi
√

γi

ν1
√

γ1

> 2 (3.22)

such c/η exist. Obviously this condition can be fulfilled only for q ≥ 3. This is the same
condition as in the other known Stein’s estimates.

7



4 Proofs

Proof of Theorem 1: We have from (2.5) for any ρ

Aρ = V −1/2(ρ V −1 − V 1/2 GV 1/2)> V −1/2 ≥ 0.

Moreover we have the spectral representation

ρ V −1 − V 1/2 GV 1/2 =

p∑
i=1

µi fi f
t
i , µ1 ≥ µ2 ≥ ... ≥ µl > 0 ≥ µl+1 ≥ ... ≥ µp

for orthonormal eigenvectors fi and the corresponding eigenvalues µi. Consequently we
have

Aρ = ρV −2 −G−
p∑

i=l+1

µiV
−1/2fif

t
i V

−1/2.

From this follows
1

ρ
(G + Aρ) ≥ V −2.

Therefore, a positive semidefinite matrix B exists with

1√
ρ
(G + Aρ)

1/2 = V −1 + B. (4.23)

For

C :=
1√
ρ
(G + Aρ)

1/2V Aρ

we get C = Aρ, because

CtC =
1

ρ
AρV (G + Aρ)V Aρ = A2

ρ

and for any c ∈ Rp we have
ctCtCc = ctA2

ρc

and so
|(I + BV )Aρc|2 = |Aρc|2. (4.24)

Here we have B ≥ 0, V > 0 and hence I + BV only has real eigenvalues ≥ 1. From
(4.24) it follows BV Aρ = 0. From (4.23) we get

C =
1√
ρ
(G + Aρ)

1/2V Aρ = Aρ. (4.25)

We see that Aρ depends continuously and monotone increasing on ρ. We have Aρ = 0
for small ρ and for ρ ≥ λmax(G)λmax(V )2 we have

Aρ = ρV −2 −G

8



and then
1√
ρ
(G + Aρ)

1/2 = V −1.

Hence, there exists a ρ0 from (2.7), i.e.

tr [(G + Aρ0)
1/2] =

√
ρ0(1 + tr (V −1)).

For such a ρ0 we have from (4.23)

1√
ρ0

(G + Aρ0)
1/2 ≥ V −1

and it follows from (4.25)

1√
ρ0

(G + Aρ0)
1/2V Aρ0 = Aρ0 .

In Läuter (1975) it was shown that with such a Aρ0 the matrix T ∗ in (2.8) yields a
MILE for γ = CXβ + c.

2

Proof of Lemma 1: The matrices G̃, Ṽ are given by (2.4) and (2.3). For hi, γi from
section (2.1) we define

gi := X(X tX)−1H1/2hi

and it follows from this
MCtZCgi = γigi

and consequently
M1/2CtZCM1/2M1/2+gi = γiM

1/2+gi.

This means that {M1/2+gi, i = 1...p} is a system of orthogonal eigenvectors and the γi

are eigenvalues of M1/2CtZCM1/2. From (2.11) follows

k2H−1/2X tXH−1/2Dρ0H
−1/2X tei = λiH

−1/2X tei.

From the commutability of Ṽ and Dρ0 we obtain now that

H−1/2X tei = αihi

for some constants αi. This means now ei = αigi and so

MCtZCQ =

p∑
i=1

eie
t
i = Q1/2LQ1/2.

From this representation we get directly

M1/2+QCtZCM1/2 =

p∑
i=1

γiµi

1 + λ̂i

M1/2+eie
t
iM

1/2+ (4.26)

and the orthogonality of M1/2+ei, i = 1, ..., p was found already. From (4.26) follows
(3.18).

9



2

Proof of Lemma 2:
With κ̂2 in (3.15) and λ̂i in (3.16) and

Q = Q(ytMy) =

p∑
i=1

µi

1 + λ̂i

we have

R(ϑ, T̂ ∗) = E
(
CY − CXβ − CQY

)t

Z
(
CY − CXβ − CQY

)
=

= σ2 tr ZCCt − 2EY tQCtZC(Y −Xβ) + EY tQCtZCQY. (4.27)

Using Q̃ = Q̃(x) := xQ(x) we have that Q̃ is bounded, continuous and piecewise
continuously differentiable. Here d

dx
Q̃ =: Q̃′ is positive semidefinite where it exists. This

Q̃′ has the same eigenvectors as Q̃, only the eigenvalues change. By construction there
exist disjoint subsets A1, ..., Ap+1 of Rn with

Rn =
⋃

Aj

and with Q̃ is differentiable in the interior of Aj. With Stein’s identity based on
integration by parts we obtain

EY tQCtZC(Y −Xβ) = tr E
Q̃CtZC

Y tMY
− 2 tr E

MY Y tQ̃CtZC

(Y tMY )2
+

+ 2
∑

j

∫

Aj

tr MξξtQ̃′CtZC

ξtMξ
p(ξ|Xβ) dξ (4.28)

The eigenvalues of Q̃′ are nonnegative. Hence the last term in (4.28) is nonnegative.
This leads to

R(ϑ, T̂ ∗) ≤ σ2 tr ZCCt − 2 tr E
Q̃CtZC

Y tMY
+ 4 tr E

MY Y tQ̃CtZC

(Y tMY )2
+

+ tr E
Y Y tQ̃CtZCQ̃

(Y tMY )2

= σ2 tr ZCCt − 2 tr EQCtZC + 4E
Y tQCtZCMY

Y tMY
+

+E Y tQCtZCQY.

From (3.17) the desired relation (3.19) follows.

2
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Proof of Theorem 3: We calculate with (3.17) and (3.18)

tr EQCtZC = tr E
Q̃CtZC

Y tMY
= tr E

M1/2+Q̃1/2LQ̃1/2M1/2+

Y tMY
.

Moreover, from (3.17) it follows

Y tQCtZCMY

Y tMY
=

Y tQ1/2LQ1/2Y

Y tMY
≤ 1

Y tMY
λmax

(
M1/2+Q̃1/2LQ̃1/2M1/2+

)

and in the same way

Y tQCtZCQY ≤ 1

Y tMY
λmax

(
M1/2+Q̃LQ̃M1/2+

)
.

From Lemma 2 the assertion follows.

2

Proof of Theorem 4: We put Ỹ = Y tMY . Then for i = 1, ..., q easy calculations give

µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

=





c νi
√

γi Ỹ for η νi
√

γi Ỹ < 1

c

η
otherwise ,

µ2
i γi aiỸ

2

[1 + (ηỸ νi
√

γi − 1)+]2
=





c2 ν2
i Ỹ 2

ai

for η νi
√

γi Ỹ < 1

c2

η2γiai

otherwise .

Hence we have

max
i
{ µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

} =





c ν1
√

γ1 Ỹ for η ν1
√

γ1 Ỹ < 1

c

η
otherwise ,

max
i
{ µ2

i γi aiỸ
2

[1 + (ηỸ νi
√

γi − 1)+]2
} ≤ c2

η2
max{ 1

γiai

; i = 1, ..., q}. (4.29)

Because of

tr M1/2+Q̃1/2LQ̃1/2M1/2+ =

q∑
i=1

µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

, (4.30)

λmax

(
M1/2+Q̃1/2LQ̃1/2M1/2+

)
= max

i
{ µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

}, (4.31)
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λmax

(
M1/2+Q̃LQ̃M1/2+

)
= max

i
{ µ2

i γi aiỸ
2

[1 + (ηỸ νi
√

γi − 1)+]2
}. (4.32)

Therefore under (3.22)

f(Ỹ ) := 2M1/2+Q̃1/2LQ̃1/2M1/2+ − 4λmax

(
M1/2+Q̃1/2LQ̃1/2M1/2+

)
− (4.33)

is a strictly monotone increasing function in Ỹ ≤ 1
ηνq

√
γq

and moreover in Ỹ ≤ 1
ην1

√
γ1

it

is linear in Ỹ . With these representations we get by easy calculations that for any Ỹ

2

q∑
i=1

µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

− 4 max
i
{ µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

}−

−max
i
{ µ2

i γi aiỸ
2

[1 + (ηỸ νi
√

γi − 1)+]2
} ≥ 0. (4.34)

Consequently it follows

E
1

Ỹ

[
2

q∑
i=1

µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

− 4 max
i
{ µiγi aiỸ

1 + (ηỸ νi
√

γi − 1)+

}−

−max
i
{ µ2

i γi aiỸ
2

[1 + (ηỸ νi
√

γi − 1)+]2
}
]
≥ 0. (4.35)

With (4.30), (4.31), (4.32) and the assertion of Theorem 3 we get that the MILE (3.14)
is a Stein’s estimate.

2
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