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On Approximate Likelihood
in Survival Models

Henning Läuter

Institute of Mathematics, University of Potsdam, Germany
e-mail: laeuter@uni-potsdam.de

Abstract: We give a common frame for different estimates in survival models.
For models with nuisance parameters we approximate the profile likelihood and
find estimates especially for the proportional hazard model.
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tional hazard model;
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1 Introduction

We consider a random life time Y which depends on some explanatory vari-
able X. For describing the dependence between Y and X there are different
possibilities. One well-known model is a proportional hazard model which
was introduced by Cox (1972, 1975) and he considered the partial likelihood
and conditional likelihood estimates. Anderson et al. (1993) discussed a lot
of new ideas for the inference in survival models. Bagdonavičius and Nikulin
(2002) investigated accelerated life models and several models for time de-
pending covariates. Dabrowska (1997) considered models where the baseline
hazard rate also depends on the covariates. Nonparametric estimates are
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considered in Liero (2003). We give some results and proposals for estimat-
ing the influence of covariates. The problem is formulated as the estimation
of finite dimensional parameters β if nuisance parameters η are included.
Here the proportional hazard model is a good example.
If Ln(β, η) is the full likelihood then the profile likelihood for β is defined by

pLn(β) = sup
η

Ln(β, η).

This profile likelihood has nice properties at least if it is finite. The aim
of the paper is to give a common frame for the different estimators in sur-
vival models. The starting point is the profile likelihood and with different
approximations of the profile likelihood we obtain corresponding estimates.
We discuss the resulting estimates in examples. One of these examples is the
proportional hazard model.

2 Likelihood in proportional hazard models

We study the problem of estimating the conditional distribution of Y given
X = x. Let C be a random censoring time independent from Y . Assuming
there are independent copies (Yi, Ci, Xi), i = 1, ..., n of (Y,C,X) and we
observe (Ti, ∆i, Xi), i = 1, ..., n for Ti = min(Yi, Ci), ∆i = 1(Yi ≤ Ci).
The conditional hazard rate of Yi given X = x is λ(yi | x). For continuous
random life times the likelihood function is proportional to

n∏
i=1

λ(ti | xi)
δi e−Λ(ti|xi)

for

Λ(z | x) =

∫ z

0

λ(ξ | x) dξ.

For the proportional hazard model we have

λ(yi | x) = λ0(yi)ψ(x, β)

where the baseline hazard rate λ0 and the finite dimensional parameter β are
unknown. The parametric form of the function ψ is known. Then this leads
to the full likelihood function (up to factors)

Ln(β, λ0) =
n∏

i=1

λ0(ti)
δiψ(xi, β)δi exp

(
− ψ(xi, β)

∫ ti

0

λ0(ξ) dξ
)
. (1)
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Here β is the finite dimensional parameter of interest, and λ0 is a infinite
dimensional nuisance parameter η.

3 Likelihood in parametric models

In parametric models some expressions are given explicitly. Moreover we use
the representations given here in section 4.1. Considering parametric models
of independent and identically distributed Yi, i = 1, ..., n where the distri-
bution is known up to an unknown parameter µ ∈ Rk+s. The asymptotic
inference in parametric models goes back to LeCam and Hajek. A summary
is given e.g. in Bickel et al. (1993). The m.l.e. µ̂n maximizes the log-
likelihood ln(µ) and under mild conditions it is an efficient estimator and we
have √

n(µ̂n − µ) −→ Nk+s(0,J −1(µ)),

where J (µ) is the Fisher information matrix. We estimate J (µ) by the
”observed” information matrix

Jn(µ) = − 1

n

(
∂2

∂µi∂µj

ln(µ)

)

i,j=1,...,k+s

. (2)

If the parameter µ is partioned as µ = (β, η) and β ∈ Rk is a parameter of
interest, while η ∈ Rs is a nuisance parameter then

[An(µ̂n)−Bn(µ̂n)C−1
n (µ̂n)Bt

n(µ̂n)]−1 (3)

with

Jn(µ) =

(
An(µ) Bn(µ)
Bt

n(µ) Cn(µ)

)

for a k×k matrix An and a s×s matrix Cn is an asymptotic unbiased estima-
tor for the asymptotic variance of β̂n. With the similar block representation
for J (µ) we find

√
n(β̂n − β) −→ Nk(0, [A(µ)−B(µ)C−1(µ)Bt(µ)]−1).

For computing the observed information matrix or the mentioned variances
we have to know the second derivatives of ln and especially ∂2

∂µi∂µj
ln(µ̂n) as

good approximations of ∂2

∂µi∂µj
ln(µ). This is one reason why we want to work
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with this full log-likelihood function. In the parametric case we have under
general mild conditions

1

n
ln(µ̂n) −→ Eµ ln f(Y1, µ).

4 Profile likelihood

We consider distributions P(β,η) where β ∈ Rk and η is a high dimensional
nuisance parameter. The profile likelihood pLn(β, η) has many properties of
the original likelihood, at least if the nuisance parameter is finite dimensional
(Barndorff-Nielsen and Cox (1994), Murphy and van der Vaart (2000). In
any case the m.l.e. β̂n maximizes pLn. In some models pLn is infinite. Then
the likelihood principle fails. For instance in the proportional hazard model
we have

pLn(β) = ∞ ∀β
with β = β, η = λ0. A similar result we meet in a standard situation of
nonparametric regression.

Example: Consider a nonparametric regression model with nonrandom re-
gressors

Yi = m(xi) + εi, εi ∼ N(0, σ2), i.i.d.

β = σ2 is the parameter of interest and η = m is the nuisance parameter.
The points xi, i = 1, ..., n should be different. Then we have

sup
β

pLn(β) = ∞ ∀n.

Here a function m̂ with m̂(xi) = yi is an estimate for m. So one cannot
estimate the variance of the errors with such an unrestricted estimate m̂.
Obviously all information from the observations is used for the estimation of
the nuisance parameter and the estimation of β is impossible.
We learn from these two cases that the estimation of the nuisance parameter
without restrictions about η can lead to undesired problems. One has to
work with restrictions and this is expressed by approximations of the likeli-
hood or profile likelihood. A first possibility for finding an estimation of the
parameter β is to restrict the space of the nuisance parameter.
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4.1 Smoothness classes

Let M be a linear space which contains all possible η. Then we define a
sequence of dj-dimensional sets Mj and

Mj ⊂Mj+1, Mj −→M, j = 1, 2, ...

HereMj −→M is understood in the convergence of some norm in M. Then
Ln can be maximized over the k + dj-dimensional space Rk ×Mj. Let be

max
Rk

max
Mj

Ln(β, η) = Ln(β̂(j)
n , η̂(j)

n ). (4)

Of course β̂
(j)
n is an approximation of β and at the same time η̂

(k)
n is an esti-

mation for η. The setMj is to be chosen in such a way that (β, η) ∈ Rk×Mj

is identifiable. The rate of convergence of (β̂
(j)
n , η̂

(j)
n ) to (β, η) is determined

by the dimension dj of Mj.
Usually the Fisher information J (β, η) or Jn(β, η) are defined as linear op-
erators. We choose a basis in M in such a way that η ∈ Mj is represented
by a infinite dimensional vector where all components are 0 except the first
dj components. So the elements of Mj are ”smoother” in comparison with
the elements of M. Then under (β, η) ∈ Rk ×Mj the observed information
matrix as in (2) has the form

Jn(β, η) =




An(β, η) B̃n(β, η) 0

B̃t
n(β, η) C̃n(β, η) 0

0 0 0


 (5)

for a k× k matrix An, dj × dj matrix C̃n, k× dj matrix B̃n and is considered
as an approximation for Jn(β, η) for (β, η) ∈ Rk ×M. Then as in (3) we

approximate the variance of β̂
(j)
n by

Varβ̂(j)
n ≈ [An(β̂(j)

n , η̂(j)
n )− B̃n(β̂(j)

n , η̂(j)
n )C̃−1

n (β̂(j)
n , η̂(j)

n )B̃t
n(β̂(j)

n , η̂(j)
n )]−1. (6)

Really we are only interested in the convergence of the estimate of the param-
eter of interest. Considering again the nonparametric regression example.

Example: (Continuation)
We consider the nonparametric normal regression model. Assuming the re-
gression function is square-integrable and with an orthonormal basis {gs, s =
1, ...} we have the representation

m(t) =
∞∑

s=1

ηs gs(t).
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With the n× dj matrix

X(j) =




g1(t1) · · · gdj
(t1)

. . .

g1(tn) · · · gdj
(tn)


 , y(j) =




y1
...

ydj




we have

σ̂2 =
1

n
| (I − Pj)y(j) |2

where Pj is the orthogonal projection on the space spanned by the columns
of X(j) and | · | is the Euclidean norm. We see that with increasing n and j
under dj/n −→ 0 the σ̂2 is an efficient estimate for σ2.
In other problems the rate of convergence depends on dj in a more compli-
cated way.
This was an approach for finding estimates of β without changing the like-
lihood. We restricted the space of nuisance parameters in such a way that
the whole space is approximated by a sequence of finite dimensional spaces.
Another possibility for a similar approximation was proposed by Huang and
Stone (1998). They considered classes of splines and found convergence rates
for the estimates.
Up to this point we worked with an approximation of the profile likelihood.
Another approach for constructing estimates of the parameter of interest
bases on the replacement of the full likelihood Ln by an appropriate function
L̃n. The then desired estimator is the maximizer of L̃n.

4.2 Approximate likelihood function

We approximate the likelihood function in two different ways. We formulate
this for proportional hazard models.

4.2.1 Λ0 is approximated by a stepwise constant function.

Let the steps of Λ be in the observed points t1, . . . , tn. This leads to

Λ̃0(ti) =
∑

j:tj≤ti

λj

and put λ0(tj) = λj (Andersen et al. (1993), Murphy and van der Vaart
(1997, 2000), Owen (2001), Lawless (2003).
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Substituting this in (1) we get the approximated likelihood

L̃n(β, λ1, . . . , λn) =
n∏

i=1

λδi
i ψ(xi, β)δi exp

(
−ψ(xi, β)Λ̃0(ti)

)
.

Here λ1, . . . , λn, and β are unknown. Maximizing this w.r.t. λ1, . . . , λn we
obtain the profile likelihood. If R(t) denote the set of individuals which are
alive and uncensored to time t and Vs(t) = 1(s ∈ R(t)) then the profile
likelihood is

pL̃n(β) ∝
n∏

k=1

( ψ(xk, β)∑
j Vj(tk)ψ(xj, β)

)δk

.

This coincide with the partial likelihood of Cox. Firstly Breslow (1974)
remarked that the conditional likelihood estimate of Cox is also a partial
likelihood estimate. By construction it is also a nonparametric maximum
likelihood estimate. Without censoring the profile likelihood is rewritten in

pL̃n(β) ∝
n∏

k=1

ψ(xk, β)∑
j:tj≥tk

ψ(xj, β)
.

From this representation it is clear that the estimate of β is a rank statistic.

4.2.2 Λ0 is approximated by a continuous piecewise linear func-
tion.

Let Λ0 be a continuous piecewise linear function. Because of

Λ̃0(t) =

∫ t

0

λ̃0(s) ds

the corresponding hazard rate λ̃0(s) is piecewise constant. Let t(1), . . . , t(n)

be the ordered observations then we have

Λ̃0(t) =
k−1∑
i=1

λ̃0(t(i))(t(i) − t(i−1)) + λ̃0(t(k))(t− t(k−1))

for t(k−1) ≤ t ≤ t(k), k = 1, . . . , n. Here is t(0) = 0.

Consequently

Λ̃0(t(i)) =
i∑

j=1

λ̃0(t(j))(t(j) − t(j−1))
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holds. The likelihood function is approximated by

L̃n(β, λ1, . . . , λn) =
n∏

i=1

λ̃0(t(i))ψ(x[i], β) e−ψ(x[i],β)
P[i]

j=1 λ̃0(t(j))(t(j)−t(j−1))

where λi := λ̃0(t(i)) and [i] = j if t(i) = tj. We consider the λi as nuisance

parameters and determine the profile likelihood. For fixed β the function L̃n

is maximized by
1

λk

= (t(k) − t(k−1))
∑

i≥k

ψ(x[i]).

So the profile likelihood is

pL̃(β) := max
λ1,...,λn

L̃(β, λ1, . . . , λn) ∝
n∏

k=1

( 1

t(k) − t(k−1)

ψ(x[k], β)∑
i V[i](t(k))ψ(x[i], β)

e−n
)δ[k]

and therefore

pL̃(β) ∝
n∏

k=1

( ψ(xk, β)∑
j Vj(tk)ψ(xj, β)

)δk

.

Consequently the maximal β̃n of the profile (approximated) likelihood is the
same as in the previous approximation, i.e. in both cases the Cox estimator
is the corresponding solution.

We remark: β̃n depends on the t1, . . . , tn only in a restricted way: It is not
important how large the differences t(i+1) − t(i) are. Without censoring it is

obviously that the solution β̃n is a rank statistic in the observations. But
these differences can have a large information about the regression part where
we are interested in.

5 Statistical arguments

In section 4.2 both approximations for Λ used n parameters and the second
approximation is a continuous function. But both had the same solution.
From the asymptotic point of view the resulting Cox estimator is an efficient
estimator (Efron 1977). For relatively small sample sizes from the statistical
point of view it is very important to include the distances between different
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failure times because there is an information about the influence of the co-
variates. So it is better - at least in these cases - to work with estimates from
section 4.1. But here arises the problem of choosing an appropriate class Mj

of smooth nuisance parameters. Often this is a step of experience or prior
knowledge. In general one cannot judge which approach is the better one. A
broad simulation study can help for giving recommendations. For different
types of baseline rate functions and moderate sample sizes n - here I mean
sample sizes four or six times the unknown parameter number - samples are
generated and the variances of the resulting estimates are computed.
We give now a numerical example from Feigl and Zelen, given in Cox and
Oakes (1984).
Example: Two groups of leukaemia patients are considered and the failure
time (time to death) in weeks is observed. For any patient the white blood
counts (WBC) are given. The two groups are characterized by a positive
(17 patients) or negative (16 patients) gene AG. In Cox and Oakes (1984) a
proportional hazard model with 3 exploratory variables is taken,

x(1) = 1AG=pos.,

x(2) = ln(WBC)− 9.5,

x(3) = (x(1) − 0.5152)x(2).

The proposed model is

λ(t, x, β) = λ0(t)ψ(x, β)

= λ0(t) exp
(
β1x(1) + β2x(2) + β3x(3)

)
.

Using the approach in section 4.1 we choose M1 as the exponential of
quadratic polynomials and so we use

λ̃0(t) ≈ exp(η1 + η2t + η3t
2).

The resulting estimations are with n = 33

β̂
(1)
33 = [−1.398, 0.413, 0.44] (7)

η̂
(1)
33 = [−0.832, 0.125, 0]. (8)

Using the approach in section 4.2 then the estimate is the Cox estimator

Ĉox = [−1.14, 0.4, 0.5]. (9)
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The plots of the predictor β1x(1) + β2x(2) + β3x(3) with (7) and (9) in Fig.
5 show some differences between both estimates but no other tendency. We
point out that in the estimate β̂

(1)
33 the failure times are really used not only

their ranks. With the first method for a longer region the WBC are less for
the group of positive genes than for those with negative genes.

ln(WBC)

AG=positive

AG=negative

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5
8 9 10 11 12

x

Fig. 1. Data of Feigl and Zelen

with Cox estimator ——, with approx. MLE · · · · · ·
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