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Testing the acceleration function in
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Abstract
The accelerated life time model is considered. First, test proce-

dures for testing the parameter of a parametric acceleration function
is investigated; this is done under the assumption of parametric and
nonparametric baseline distribution. Further, based on nonparamet-
ric estimators for regression functions tests are proposed for checking
whether a parametric acceleration function is appropriate to model
the influence of the covariates. Resampling procedures are discussed
for the realization of these methods. Simulations complete the con-
siderations.

Keywords and phrases: Accelerated life time model, parametric regres-
sion, nonparametric regression estimation, L2-type test, resampling, simula-
tion
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1 Introduction

Let T be a random life time which depends on some explanatory variable X;
examples for X are the dose of a drug, temperature or stress. To describe
the influence of the covariate X on the life time there are several proposals.
A well-known model is the accelerated life time model (ALT), which is in-
tensively studied in the book of V. Bagdonavičius and M. Nikulin (2001). In
difference to the models studied by these authors we will assume throughout
the paper that the covariate does not depend on time. We suppose that the
covariate X reduce a basic life time, say T0, by a factor ψ(X) and write the
life time T as

T =
T0

ψ(X)
.

The conditional survival function of T given X = x is defined by

S(t|x) = P(T > t|X = x) = S0(tψ(x)),

where S0(·) = P(T0 > ·) is the survival function of the baseline life time
T0. The distribution function is denoted by F0. It is assumed that T is an
absolute continuous random variable.
In the present paper we study the problem of testing the acceleration function
ψ under different assumptions on the underlying model. Given independent
copies (Ti, Xi), i = 1, . . . , n of the pair (T, X) we will propose test statistics
and consider their limit distributions under the hypotheses. Test procedures
formulated on the basis of these limit statements are only asymptotic α-tests.
Thus it seems to be useful to discuss some resampling methods for the real-
ization of these tests in practice. We will complete these discussions by sim-
ulations. The program files (written in the R-language) for these simulations
can be found on our web site http://www.mathematik.hu-berlin.de/ liero/.

2 The parametric ALT model

We start with the simplest model, namely the completely parametric model,
where it is assumed that both the survival function S0 and the acceleration
function ψ belong to a known parametric class of functions. That is, there
exist parameters ν ∈ Rk and β ∈ Rd such that

S0(t) = S0(t; ν) and ψ(x) = ψ(x; β),



2 Parametric ALt model 3

where the functions S0(·; ν) and ψ(·; β) are known except the parameters ν
and β. A hypothesis about the function ψ is then a hypothesis about the
parameter β, and we consider the test problem

H : β = β0 against K : β 6= β0

for some β0 ∈ Rd.
The classical way for the construction of a test procedure is to estimate β
by the maximum likelihood estimator (m.l.e.) and to use the likelihood ratio
statistic (or a modification like the Rao score statistic or the Wald statistic)
for checking H. In V. Bagdonavičius and M. Nikulin (2001) this approach
is carried out for several distributions, for ψ(x; β) = exp(−xT β) and for
censored data.
Another possibility is to take the logarithm of the life time Y = log T . Then
with

m(x; ϑ) = µ − log ψ(x; β) ϑ = (µ, β)

we obtain the parametric regression model

Yi = m(Xi; ϑ) + εi (1)

with

µ = E log T0 = µ(ν) and Eεi = 0.

Assuming ψ(0; β) = 1 the parameter β can be estimated by the least squares
estimator (l.s.e.).
In the case that T0 is distributed according to the log normal distribution
the resulting regression model is the normal model. Then the maximum
likelihood estimator and the least squares estimator coincide. Furthermore,
assuming ψ(x; β) = exp(−xT β) we have the linear regression, and for testing
H we apply the F -test, which is exact in this case.
Now, suppose that log T is not normally distributed. Then it is well-known
that under regularity conditions the m.l.e. for β is asymptotically normal,
and an asymptotic α- test is provided by critical values derived from the
corresponding limit distribution.
Let us propose another method, a resampling method, to determine critical
values. We restrict our considerations here to maximum likelihood method;
the regression approach is discussed in detail in the following section. For
simplicity of presentation we consider the case d = 1 .

1. On the basis of the (original) data (ti, xi), i = 1, . . . , n compute the
maximum likelihood estimates for ν and β, say ν̂ and β̂.
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2. For r = 1, . . . , R

(a) generate

t∗i =
t∗0i

ψ(xi; β̂)
where t∗0i ∼ F0(·; ν̂)

(b) Compute for each sample the m.l.e. β̂∗(r).

3. (a) Naive approach Take the quantiles of the empirical distribution
of these β̂∗(r)’s as critical values, i.e. let β̂∗[1], β̂∗[2], . . . , β̂∗[R] be the
ordered estimates, then reject the hypothesis H if

β0 < β̂∗[Rα/2] or β0 > β̂∗[R(1−α/2)].

(The number R is chosen such that Rα/2 is an integer.)

(b) Corrected normal approach Estimate the bias and the variance
of the estimator by

bR = β∗ − β̂, vR =
1

R− 1

R∑
r=1

(β̂∗(r) − β∗)2,

where β∗ = 1
R

∑R
r=1 β̂∗(r) and accept the hypothesis H if β0 be-

longs to the interval

[β̂ − bR − √
vR u1−α/2 , β̂ − bR +

√
vR u1−α/2].

Here u1−α/2 is the 1−α/2-quantile of the standard normal distri-
bution.

(c) Basic bootstrap As estimator for the quantiles of the distribution
of β̂ − β take β̂∗[Rα/2]− β̂ and β̂∗[R(1−α/2)]− β̂, respectively. Thus,
accept H if β0 belongs to

[
β̂ − (β̂∗[R(1−α/2)] − β̂) , β̂ − (β̂∗[Rα/2] − β̂)

]

To demonstrate this proposal we have carried out the following simulations:
As baseline distribution we have chosen the exponential distribution, the
covariates are uniformly distributed and for computational simplicity the
acceleration function has the form ψ(x; β) = exp(−xβ).
We generated n realizations (ti, xi) of random variables (Ti, Xi): The Xi’s
are uniformly distributed over [2, 4], the Ti’s have the survival function

S(t|xi) = exp(−tψ(xi; β0)/ν) with ψ(x; β0) = exp(−xβ0)
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for the parameters

n = 12, β0 = 2, ν = 2.

As values of the m.l.e. we obtained β̂ = 1.82 and ν̂ = 3.42 The asymptotic
confidence interval based on the asymptotic normality of the m.l.e. was:

[0.839 , 2.800]

With R = 1000 resamples constructed by the methods given above we ob-
tained as confidence intervals (α = 0.05) for β

Method lower bound upper bound
naive approach 0.550 2.973

corrected normal 0.681 2.979
basic bootstrap 0.666 3.089

Figure 1 shows a histogram of the β̂∗(r)’s. In this case the true parameter
β0 = 2 is covered by all intervals, also by that based on the limit distribution.
Moreover, this interval is shorter. We repeated this approach M = 100 times.
The number of cases, where the true parameter is not covered, say w was
counted. Here are the results:

Method w
asymptotic distribution 8

naive approach 4
corrected normal 4
basic bootstrap 5

Thus, the price for the shortness of the interval based on the normal approx-
imation is that the coverage probability is not preserved.

3 The ALT model with nonparametric base-

line distribution

Consider the situation that the acceleration function ψ has still a known
parametric form ψ(·; β), β ∈ Rd but the underlying distribution of the base-
line life time is completely unknown. Thus we have an infinite dimensional
nuisance parameter and the application of the maximum likelihood method
is not possible. We use the regression approach to estimate and to test the
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Figure 1: Histogram of the resampled beta’s

parameter β. Using the asymptotic normality of the l.s.e. in the regression
model often confidence intervals or tests for β are based on the quantiles of
the normal (d = 1) or χ2-distribution (d > 1). For large n the results will
turn out satisfactory. But for small n this asymptotic approach is not justi-
fied. Here one can use resampling procedures for regression, see for example
Davison and Hinkley (1997) or Efron and Tibshirani (1993).

For simplicity we consider the problem of testing a single component βj. In
our simulation study we compared the following two methods:

1. On the basis of the regression model (1) with the original data compute
the l.s.e. µ̂ and β̂ for µ and β, respectively. Derive the residuals ei and
let

ri =
ei√

(1− hi)
=

yi − ŷi√
(1− hi)

be the modified residuals. Here the ŷi’s are the fitted values m(xi; µ̂, β̂),
and the hi’s are the leverages.

Let V be a variance estimator for the Varβ̂.
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2. For r = 1, . . . , R

1. (a) Model- based resampling
For i = 1, . . . , n

i. set x∗i = xi

ii. randomly sample ε∗i from the centered modified residuals
r1 − r, . . . , rn − r

iii. set y∗i = m(x∗i ; µ̂, β̂) + ε∗i
(b) Resampling cases

i. sample l∗1, . . . , l
∗
n randomly with replacement from the in-

dex set {1, . . . , n}
ii. for i = 1, . . . , n set x∗i = xl∗i and y∗i = yl∗i .

2. Derive the l.s.e. β̂∗(r) and the variance estimator V
∗(r) based on

the observations (y∗i , x
∗
i ).

3. Compute the standardized

z
∗(r)
j =

β̂
∗(r)
j − β̂j√

V
∗(r)
jj

.

3. A confidence interval for the component βj is given by
[
β̂j −

√
Vjj z

∗[R(1−α/2)]
j , β̂j −

√
Vjj z

∗[Rα/2]
j

]
.

For our simulation study we took the same parameter constellation as before.
As estimator for the variance we used

V =

∑
e2

i

n
∑

(xi − x)2
.

Again this approach was repeated M times. In the following table confidence
intervals constructed by the methods above (R = 1000, M = 1) are given;
in the last column you find the number of cases out of M = 100, where the
true parameter is not covered.

Method lower bound upper bound w
asymptotic normality 0.641 3.536 11

model- based resampling 0.389 3.808 9
resampling cases 0.752 4.00 7
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4 The ALT model with parametric baseline

distribution and nonparametric acceleration

function

Now, consider an ALT model where it is not assumed that the acceleration
function has a parametric form, but we wish to check whether a prespecified
parametric function ψ(·; β) fits the influence of the covariates. In this section
we assume that the baseline distribution is known, except a finite dimensional
parameter ν. The test problem can be formulated in the following way:

H : S ∈ Apar against K : S ∈ A, (2)

with

Apar = {S |S(t|x) = S0(tψ(x; β); ν) β ∈ Rd, ν ∈ Rk}

and

A = {S |S(t|x) = S0(tψ(x); ν) ψ ∈ Ψ, ν ∈ Rk}

where Ψ is a nonparametric class of acceleration functions.
A possible solution for this test problem is to apply a goodness-of-fit test
similar to the classical Kolmogorov test or the Cramér-von Mises test. The
conditional survival function S can be estimated by a conditional empiri-
cal survival function Ŝ, which is a special case of the so-called U -statistics
considered by Stute (1991) and Liero (1999). Such a test would compare
Ŝ with S0(·ψ(·; β̂); ν̂). But this approach seems to be inadequate. Namely
the alternative does not consist of ”all conditional survival functions”, but
of functions defined by A, and Ŝ is an estimator, which is ”good for all
conditional survival functions”.
So we follow the regression approach: Instead of (2) we consider model (1)
and the test problem

H : m ∈M against K : m /∈M,

where

M = {m |m(x) = m(x; ϑ) = µ − log ψ(x; β), β ∈ Rd, µ ∈ R}.

Again, for simplicity we consider d = 1, and as test statistic we propose a L2-
type distance between a good estimator for all possible regression functions
m, that is a nonparametric estimator, and a good approximation for the
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hypothetical m ∈M. The general form of a nonparametric estimator is the
weighted average of the response variables

m̂n(x) =
n∑

i=1

Wbni(x,X1, . . . , Xn)Yi

where Wbni are weights depending on a smoothing parameter bn. The hy-
pothetical regression function can be estimated by m(·; β̂, µ̂), where β̂ and
µ̂ are estimators under the hypothesis. It is well-known that nonparamet-
ric estimators are biased, they are a result of smoothing. So it seems to
be appropriate to compare m̂n not with m(·; β̂, µ̂), but with the smoothed
parametric estimator

m̃n(x) =
n∑

i=1

Wbni(x,X1, . . . , Xn)m(Xi; β̂, µ̂).

A suitable quantity to measure the distance between the functions m̂n and
m̃n is the L2-distance

Qn =

∫ (
m̂n(x) − m̃n(x)

)2

a(x) dx

=

∫ ( n∑
i=1

Wbni(x,X1, . . . , Xn)(Yi −m(Xi; β̂, µ̂))
)2

a(x) dx.

Here a is a known weight function, which is introduced to control the region
of integration. The limit distribution of (properly standardized) integrated
squared distances is considered by several authors; we mention Collomb
(1976), Liero (1992) and Härdle and Mammen (1993). Under appropriate
conditions asymptotic normality can be proved.
For the presentation here let us consider kernel weights, that is m is estimated
nonparametrically by

m̂n(x) =

∑n
i=1 Kbn(x−Xi)Yi∑n
i=1 Kbn(x−Xi)

,

where K : R → R is the kernel function, Kb(x) = K(x/b)/b, and bn is a
sequence of smoothing parameters. To formulate the limit statement for Qn

let us shortly summarize the assumptions 1:

1. Regularity conditions on kernel K and conditions on the limiting be-
havior of bn.

1The detailed conditions can be found in Liero (1999).
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2. Smoothness of the regression function m and the marginal density g of
the Xi’s.

3. Conditions ensuring the
√

n-consistency of the parameter estimators β̂
and µ̂.

If these assumptions are satisfied we have under H

nb1/2
n (Qn − en)

D→ N(0, τ 2)

with

en = (nbn)−1σ2

∫
g−1(x) a(x) dxκ1 τ 2 = 2σ4

∫
g−2(x)a2(x) dxκ2

where

κ1 =

∫
K2(x) dx and κ2 =

∫
(K ∗K)2(x) dx

and

σ2 = σ2(ν) = Var(log T0).

On the basis of this limit theorem we can derive an asymptotic α-test: Reject
the hypothesis H if

Qn ≥ (nb1/2
n )−1 τ̂n zα + ên

where ên and τ̂n are appropriate estimators of the unknown constants en and
τ 2, and zα is the (1−α)-quantile of the standard normal distribution. Note,
that the unknown variance σ2 depends only on the parameter ν of the under-
lying baseline distribution. A simple estimator is σ̂2 = σ2(ν̂). The density
g is assumed to be known or can be estimated by the kernel method.

To demonstrate this approach we have carried out the following simula-
tions: First we simulated the behavior under H. We generated M = 100
samples (ti, xi), i = 1, . . . , n, with ti = t0i exp(xiβ), where the t0i’s are values
of exponentially distributed random variables with expectation ν (β and ν
as before). The sample size was n = 100, since the application of nonpara-
metric curve estimation always requires a large sample size. In each sample
the m.l.e.’s β̂ and ν̂ and the nonparametric kernel estimate were determined.
To evaluate the nonparametric estimates we used the normal kernel and an
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adaptive procedure for choosing bn. Based on these estimators Qn was com-
puted. As weight function a we took the indicator of the interval [2.25, 3.75];
so problems with the estimation at boundaries were avoided. Note, that in
this case the variance σ2 is known. It is σ2 = π2

6
, independent of ν. Thus, in

our simple simulation example it is not necessary to estimate en and τ . The
result of the simulations was that H was rejected only once.

The error which occurs by approximating the distribution of the test statistic
by the standard normal distribution depends not only on the sample size
n but also on the smoothing parameter. Thus, it can happen, that this
approximation is not good enough, even when n is large. So we considered
the following resampling procedures:
Carry out the step 1 and step 2(a) described in Section 2. Then

3. based on the resampled (y∗i , xi), y∗i = log(t∗i ) compute for r = 1, . . . , R

the nonparametric estimates m̂
∗(r)
n and the smoothed estimated hypo-

thetical regression m̃
∗(r)
n .

(a) Resampling Qn

Evaluate the distances Q
∗(1)
n , Q

∗(2)
n , . . . , Q

∗(R)
n .

(b) Resampling Tn

Compute

T ∗(r)
n = nb(r)

n

1/2 (
Q∗(r)

n − ê∗(r)n

)
/τ̂ ∗(r)n .

4. From the ordered distances a critical value is given by Q
∗[(1−α)R]
n , and

the hypothesis H is rejected if

Qn > Q∗[(1−α)R]
n .

Or, based on the T
∗(r)
n ’s we obtain: The hypothesis H is rejected if

nb1/2
n (Qn − ên) /τ̂n = Tn > T ∗[(1−α)R]

n .

Histograms of resampled Q
∗(r)
n ’s and T

∗(r)
n ’s for our chosen simulation pa-

rameters and R = 1000 are shown Figure 2. We repeated this resampling
procedure also M -times. The numbers of rejections are given in the second
column of the following table:

Method Hypothesis true Hypothesis wrong
normal distribution 1 22

resampling Qn 5 40
resampling Tn 3 30
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Figure 2: Resampling under H, R = 1000

Furthermore, we repeated the whole approach to demonstrate the behavior
under an alternative. That means, our original data (ti, xi) satisfy the model

ti = t0i exp(xiβ + sin(π ∗ xi/2)),

where the baseline times t0i are as above. The numbers of rejections in this
simulation are also given in table above.
Furthermore, Figure 3 shows the simulation results for one resampling pro-
cedure (M = 1). In the left figure you see the R resampled nonparametric
estimates curve estimates (thin lines) and the m̂n based on the original data
(bold line). The right figure shows the same, but here the nonparametric
estimates are resampled under the (wrong) hypothetical model, and the bold
line is the nonparametric estimate based on the original data from the alter-
native model.
Note, that our simulations under the alternative are only for illustration. A
further investigation of the power of these test procedures under alternatives
is necessary.
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Figure 3: Resampled nonparametric regression estimates under the hypothesis
and an alternative.

5 The nonparametric ALT model

Let us consider the same test problem as in the previous section, but in
difference we do not suppose that the baseline distribution is parametric.
Thus, the underlying model is a completely nonparametric one. The test
problem has the form

H : S ∈ Cpar against K : S ∈ C,
with

Cpar = {S | S(t|x) = S0(tψ(x; β)) β ∈ Rd, S0 ∈ S}
and

C = {S |S(t|x) = S0(tψ(x)) ψ ∈ Ψ, S0 ∈ S},
where S is a nonparametric class of survival functions.
We will apply the same idea of testing. The only difference is, that the
variance σ2 in the standardizing terms en and τ 2 has to be estimated non-
parametrically. Since the limit theorem gives the distribution under the
hypothesis, σ2 can be estimated by the usual variance estimator in the para-
metric regression model.
Furthermore, resampling methods for the determination of the empirical crit-
ical values must take into account the lack of knowledge of the underlying
distribution in the hypothetical model. Thus we combine the methods de-
scribed in Section 3 with those from the previous section:
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1. The parameter ϑ = (µ, β) is estimated by the least squares method.

2. (a) Based on the modified residuals ri, construct R samples of pairs
(y∗i , x

∗
i ), i = 1, . . . , n, by model-based resampling.

(b) Generated R samples of pairs (y∗i , x
∗
i ) by the method ”resampling

cases”.

3. Use these data to construct the nonparametric estimates m̂
∗(r)
n and the

smoothed estimated regression m̃
∗(r)
n .

4. Evaluate the distances Q
∗(r)
n andT

∗(r)
n . Reject the hypothesis as de-

scribed before on the basis of the ordered Q
∗[r]
n and T

∗[r]
n .

Using these procedures we obtained the following numbers of rejections:

Method Hypothesis true Hypothesis wrong
normal distribution 2 7

model- based resampling Qn 5 30
resampling cases Qn 0 0

model- based resampling Tn 5 26
resampling cases Tn 6 0

The results concerning the ”resampling cases” can be explained as follows:
If H is true Qn is small, the same holds for the resampled Q

∗(r)
n ’s. And under

the alternative Qn is large, and again, the same holds for the Q
∗(r)
n ’s. That

is, with this resampling method we do not mimic the behavior under the
hypothesis. Thus, this resampling method is not appropriate.
Moreover, let us compare these results with those obtained in the previous
section. It turns out that the test in the completely nonparametric model
distinguishes worse between hypothesis and alternative than in the model
with parametric baseline distribution.
A histogram for a simulation under the alternative is given in Figure 4. Here
we see that the values of the Q

∗(r)
n ’s are much larger for ”resampling cases”.

Final remark. The resampling methods presented here are only first in-
tuitive ideas. The proposed methods were demonstrated by very simple
examples, this was done to avoid computational difficulties. But, neverthe-
less, the results show, that resampling can be an useful tool for testing the
acceleration function.
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Figure 4: Histogram for simulations under the alternative. The histograms in the
bottom show the results for ”resampling cases”.



16 References

References
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