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Abstract
We consider an infinite system of hard balls in Rd undergoing Brownian motions and submit-

ted to a smooth pair potential. It is modelized by an infinite-dimensional Stochastic Differential
Equation with an infinite-dimensional local time term. Existence and uniqueness of a strong so-
lution is proven for such an equation with fixed deterministic initial condition. We also show that
Gibbs measures are reversible measures.
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1



1 Introduction

The aim of this paper is to construct and analyze an infinite system of interacting hard balls
undergoing Brownian motions in Rd and starting from a fixed initial condition.

R. Lang ([Lan77]) constructed in a pioneer paper the reversible solution of an infinite gradi-
ent system of Brownian particles (balls with radius 0, i.e. points) submitted to a smooth pair
interaction. It is a so-called equilibrium dynamics in Statistical Physics, since this process has a
time-stationary distribution. J. Fritz solved some years later in [Fri87] the non-reversible case,
which occurs when the initial distribution is no more Gibbsian. For this type of systems, the main
difficulty comes from a possible explosion (i.e. an infinite number of particles can enter in a finite
volume after a finite time).

On another side, a reversible system of infinitely many Brownian hard balls (without external
potential) was studied by H. Tanemura [Tan96]. He constructs a unique solution to an infinite-
dimensional Skohorod type equation where the hard core situation – balls can not overlap –
appears as a local time term in addition to the basic Brownian motion. The (reversible) initial
condition is ditributed like a Gibbs measure associated to the hard core potential.

In the present paper, the model is a mixture of both Lang’s and Tanemura’s models. We
deal with Brownian motions submitted to the sum of a hard core potential and a smooth finite
range pair potential. In [FR00] we proved existence and uniqueness of a reversible solution of the
corresponding stochastic differential equation (E), under the condition that the initial distribution
is Gibbs with a small activity. We propose here the construction of a strong non-reversible solution
of (E), in the sense that the initial condition can be any deterministic configuration in a set of
allowed configurations which is clearly identified.
Allthough some techniques in the proof of the main results are similar to those in [FR00], we
adopt a new pathwise approach for the construction of the solution of (E) which is much finer
than in [FR00], where the time-stationarity of the solution was used at several places. Moreover
the set of allowed initial configurations is explicitly given in Theorem 3.2, and we prove that any
Gibbs measure associated with the dynamical interaction carries a.s. this set.

After a second section where notations are introduced, in section 3 we present the infinite
dimensional equation (E) and we state the results. The sequence of approximating solutions is
built in section 4. In section 5 we prove technical estimates needed in section 6, for the convergence
of the approximations. Finally, section 7 is devoted to complete the proof of the main results.

2 Configuration spaces and notations

The particles we deal with in the present paper evolve in Rd, for a fixed d>1, endowed with the
euclidian norm denoted by | |. B(y, ρ) will denote the closed ball centered in y ∈ Rd with radius
ρ and more generally, for any A ⊂ Rd, we define

B(A, ρ) = {y ∈ Rd such that d(y,A)6ρ}

where d(y,A) denotes the (euclidian) distance between y and A. The volume of a subset A in Rd

is also denoted by |A|.
The modelization of point configurations may be done at least in two ways.
The first possibility (used in Mathematical Physics) is to represent an n point configuration

in Rd as a subset (with multiplicity) of cardinal n in Rd, that is as an equivalence class on (Rd)n

under the action of the permutation group Sn on {1, . . . , n}. This modelization is especially useful
for integral calculus.

The second and equivalent (more probabilistic) modelization uses point measures. An n point
configuration in Rd is also a point measure

∑n
i=1 δξi on Rd, and, more generally, the set of all

2



point configurations in Rd will be the set M of all point Radon measures on Rd :

M =

{
ξ =

∑

i∈I
δξi such that I ⊂ N, ξi ∈ Rd and ∀Λ compact in Rd , ξ(Λ) < +∞

}
.

Following the first representation of configurations, M will also be viewed as the set of all finite
or countable subsets (with multiplicity) of Rd whose intersection with any compact subset of Rd

is finite. M is endowed with the topology of vague convergence. We introduce the following
notations :

• For A ⊂ Rd, NA is the counting variable on M : NA(ξ) = Card{i ∈ N, ξi ∈ A}.

• For A ⊂ Rd, BA is the σ-algebra on M generated by the sets {NB = n}, n ∈ N, B ⊂ A, B
bounded.

• For z > 0, πz (resp. πzA) is the Poisson process on Rd (resp. on A) with activity z, that is
with intensity measure z dy (resp. z dy|A).

• π (resp. πA) is the Poisson process on Rd (resp. on A) with intensity measure the Lebesgue
measure dy (resp. dy|A), i.e. π = π1 and πA = π1

A.

The particles we deal with in this paper are not reduced to points but are hard spheres (or balls)
of diameter r, for a fixed r > 0. Since balls may not overlap, the set of “allowed configurations”
is the following subset of M :

A = {ξ ∈ M such that ∀i 6= j |ξi − ξj |>r} .

As long as it does not produce confusion, we will identify the point measure on Rd, the subset
of Rd corresponding to its support, and the representants of this subset in (Rd)N, writing for
example ξΛ = ξ ∩ Λ for the restriction of the configuration ξ to some subset Λ of Rd, ξη for the
concatenation of both configurations ξ and η, or A ∩ (Rd)n for the set of all allowed n points
configurations.

Let us denote C(R+,M) the set of continuous M-valued paths on R+, endowed with the
topology of uniform convergence on each compact time interval. C(R+,M) is the set of all
possible paths, and the subset of all allowed paths is

C(R+,A) =
{
X ∈ C(R+,M) such that ∀t>0 X(t) ∈ A

}
.

Sets C([0, T ],M) and C([0, T ],A) are defined similarly for any positive final time T .

Remark 2.1 : We study here the evolution of a particles configuration under the influence of
an interaction potential with finite range R. Then a fixed particle can interact with at most a finite

number N of particles. N only depends on d and R/r and is clearly bounded by (R+r/2)d

(r/2)d − 1 =

(1 + 2R/r)d − 1. See figure 1.

3 Statement of the results

Let (Ω,F , P ) be a probability space with a right continuous filtration {Ft}t>0 such that each
Ft contains all P -negligible sets and let (Wi(t), t>0)i∈N be a family of Ft-adapted independent
d-dimensional Brownian motions.
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r/2

R

Figure 1: Example : Why N = 18 if d = 2 and R = 2r.

We consider the following infinite system of stochastic equations :

(E)






For i ∈ N, t ∈ R+,

Xi(t) = Xi(0) +Wi(t) −
1

2

∑

j∈N

∫ t

0
∇ϕ(Xi(s) −Xj(s))ds

+
∑

j∈N

∫ t

0
(Xi(s) −Xj(s))dLij(s)

where

• (Xi(t), t>0)i∈N is a family of continuous A-valued processes, i.e. satisfying

|Xi(t) −Xj(t)| > r for t>0 and i 6= j

• ϕ is a smooth stable pair potential with finite range R;

• (Lij(t), t>0)i,j∈N is a family of non-decreasing R+-valued continuous processes satisfying :

Lij(0) = 0, Lij ≡ Lji and Lij(t) =

∫ t

0
1I|Xi(s)−Xj(s)|=r dLij(s) .

By convention, we will always take Lii ≡ 0.

A solution of the system (E) is a family (Xi(t), Lij(t), t>0, i, j ∈ N) (or simply (Xi(t), t>0)i∈N)
of processes such that the equation (E) and the above conditions are satisfied.

The process (Xi(t), t>0)i∈N evolves under a dynamics which contains a Brownian part as
diffusion term and a drift modelizing a pair interaction which derives from the action of two
potentials :

ϕ a pair potential, function on Rd of class C2 with finite range R > r, i.e. satisfying ϕ(x) = 0
if |x|>R and ϕ(x) = ϕ(−x) (then ∇ϕ(0) = 0).

ψ a r-diameter hard core pair potential defined by ψ(x) = +∞ if |x| < r and ψ(x) = 0
otherwise.

4



Since the dynamics only depends on the sum ϕ + ψ, which is infinite for |x| < r, the values of
ϕ(x) may be chosen arbitrary for |x| < r. In particular, we may assume without restriction that ϕ
vanishes in a neighborhood from 0. For the same reason, the smallest value of interaction between
two particles is given by

ϕ = inf
|x|>r

ϕ(x) 6 0.

This quantity ϕ is important in our study, in particular if it vanishes (repulsive potential) or if it
is negative (partly attractive potential).

We now define the set G(z) of Gibbs states associated to the potential ϕ + ψ with activity
parameter z ∈ R+ (see e.g. [Geo79]). They are measures on M which are locally absolutely
continuous with respect to πz in the following sense :

For each compact subset Λ of Rd, let us define a local density function by :

fzΛ(ξ|η) =
1

ZΛ,η
z

exp
(
− 1

2

∑

ξi,ξj∈Λ
i6=j

(ϕ+ ψ)(ξi − ξj) −
∑

ξi∈Λ
ηj∈Λc

(ϕ+ ψ)(ξi − ηj)
)

=
1

ZΛ,η
z

1IA(ξΛηΛc) exp
(
− 1

2

∑

ξi,ξj∈Λ
i6=j

ϕ(ξi − ξj) −
∑

ξi∈Λ
ηj∈Λc

ϕ(ξi − ηj)
)

(1)

where ZΛ,η
z is the renormalizing constant determined by

∫
fzΛ(ξ|η) dπzΛ(ξ) = 1, i.e.

ZΛ,η
z = e−z|Λ|

(
1+

+∞∑

n=1

zn

n!

∫

Λn

1IA(y1 · · · yn ηΛc) exp
(
−

∑

16i<j6n

ϕ(yi−yj)−
∑

16i6n
ηj∈Λc

ϕ(yi−ηj)
)
dy1 · · · dyn

)

Definition 3.1 A Probability measure µ on M belongs to the set G(z) of Gibbs states with activity
z and associated potential ϕ+ ψ if and only if, for each compact subset Λ ⊂ Rd,

dµ(ξ|BΛc)(η) = fzΛ(ξ|η) dπzΛ(ξ) for µ-a.e. η

that is if and only if, for each bounded measurable function F on M
∫

M
F (η) dµ(η) =

∫

M

∫

MΛ

F (ξηΛc) fzΛ(ξ|η) dπzΛ(ξ) dµ(η)

=

∫

M

e−z|Λ|

ZΛ,η
z

(
F (ηΛc) +

+∞∑

n=1

zn

n!

∫

Λn

F (y1 · · · ynηΛc) 1IA(y1 · · · ynηΛc)

exp
(
−

∑

16i<j6n

ϕ(yi − yj) −
∑

16i6n
ηj∈Λc

ϕ(yi − ηj)
)
dy1 · · · dyn

)
dµ(η) .

Remark that any Gibbs measure in G(z) has its support included in A. Dobrushin proved
in [Dob69], using compactness argument, that there exists at least one element in G(z) when
the potential contains a hard core component. Furthermore the set G(z) is convex and compact.
About the cardinality of G(z), remarking that the sum of the hard core and the smooth potential
ϕ is superstable and lower regular in the sense of Ruelle [Rue70], we do the following remarks :
- If z is small enough Ruelle proved that uniqueness holds. In our case, a sufficient condition

would be : z ≤ eNϕ−1(|B(0, r)| +
∫

1Ir<|y|<R|1 − e−ϕ(y)|dy)−1.
- For z large enough it is conjectured (see [Geo79]) but still not proved that phase transition
occurs : Card G(z) > 1.
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The main results of this paper are the following theorems, proved in the next sections.

Theorem 3.2 The stochastic equation (E) admits a solution with values in A for any determinis-
tic initial configuration which belongs to the set A ⊂ A defined by A = {x ∈ A : P (Ωx

0 ∩Ωx
1) = 1}

(sets Ωx
0 and Ωx

1 are given in (14) and (22) ). This solution is unique as element of C ⊂ C(R+,A),
a subset of paths with some regularity defined in section 7.

Theorem 3.3 If the initial configuration of the stochastic equation (E) is random with distribu-
tion µ ∈ G(z) for some z > 0 and µ(A) = 1, then this solution is time-reversible, that is its law
is invariant with respect to the time reversal.

Proposition 3.4 Let zc be a critical value of the activity given by: zc =
exp(2Nϕ)

(Rd − rd)|B(0, 1)| . Any

Gibbs measure µ ∈ G(z) with 0 < z < zc has its support included in A.

Remark 3.5 : The critical value zc given here appears for technical reasons in corollary 5.5,
where a percolation type estimate is computed.

4 Construction of approximating processes

The solution of (E) will be constructed as a limit of approximating processes (X l)l∈N∗ . We
construct here an approximation by penalization. In this whole section, l ∈ N∗ is fixed.

The approximating process X l verifies :

• if X l
i(0) does not belong to [−l, l]d then X l

i(·) is constant

• if X l
i(0) ∈ [−l, l]d then X l

i(·) “essentially” stays in [−l, l]d (in a sense which will be clear at
the end of the section).

In order to obtain such a behavior, we introduce in the equation (E) a supplementary drift
∇ψl,X(0) which vanishes in a subset of [−l, l]d and is repulsive outside of [−l, l]d. More precisely,
for an allowed configuration η with support outside [−l, l]d we fix a R+-valued function ψl,η on
Rd which

• is C2 with bounded derivatives

• vanishes on every y ∈ [−l, l]d such that yη = {y} ∪ η is an allowed configuration (and only
on these y), that is

ψl,η(y) = 0 ⇔ y ∈ [−l, l]d and yη ∈ A ⇔ y ∈ [−l, l]d and d(y, η)>r .

We extend the definition of ψl,η to configurations η ∈ A not necessarily belonging to (([−l, l]d)c)N

by taking into account only the points of η which are in ([−l, l]d)c, i.e. :

ψl,η = ψl,η∩([−l,l]d)c

.

We also suppose that, for every η ∈ A,

∑

l∈N∗

∫

Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy 6 1. (2)

Such a family (ψl,η)l∈N∗,η∈A exists; choose for example ψl,η(y) = ld+1δ(y) where δ is a C2

function with bounded derivatives which is equivalent on Rd to d(·,ΛrB(ηΛc , r)) with Λ = [−l, l]d
(see [Ste70] p 171), that is which verifies :

∃C,C ′ > 0 such that ∀x ∈ Rd C d(x,Λ rB(ηΛc , r)) 6 δ(x) 6 C ′ d(x,Λ rB(ηΛc , r)).
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Figure 2: The grey area represents the set where ψl,η vanishes.

For η ∈ A still fixed, and for n ∈ N∗, let us now study the n-dimensional stochastic differential
equation :

(E l,ηn )






∀i ∈ {1, . . . , n}, ∀t>0,

dXi(t) = dWi(t) −
1

2



∇ψl,η(Xi(t)) +
∑

j=1,...,n

∇ϕ(Xi(t) −Xj(t))

+
∑

j:ηj∈Λc

∇ϕ(Xi(t) − ηj)



 dt

+
∑

j=1,...,n

(Xi(t) −Xj(t))dLij(t)

By a solution of (E l,ηn ), we mean a family

(
(Xi)16i6n, (Lij)16i,j6n

i6=j

)
of continuous processes such

that

• ∀t>0 (Xi(t))16i6n ∈ A ∩ (Rd)n

• ∀i, j Lij = Lji

• ∀i, j ∀t>0 Lij(t) =

∫ t

0
1I|Xi(s)−Xj(s)|=r dLij(s)

(E l,ηn ) is a finite dimensional stochastic differential equation reflected in A ∩ (Rd)n with drift

−1
2∇β

l,η
n where

βl,ηn (x1, . . . , xn) =
∑

i=1,...,n


ψ

l,η(xi) +
1

2

∑

j=1,...,n
j 6=i

ϕ(xi − xj) +
∑

j:ηj∈Λc

ϕ(xi − ηj)


 . (3)
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Since this drift is bounded and Lipschitz continuous, the equation (E l,ηn ) has a unique strong
solution for each initial configuration x ∈ A ∩ (Rd)n (see theorem 5.1 of [ST86]). We will denote
this solution by X l,η,n(x, ·).

Proposition 4.1 The solution of (E l,ηn ) with initial distribution νl,ηn is reversible, where νl,ηn is
the finite measure defined on (Rd)n by

dνl,ηn (x1, . . . , xn) = exp(−βl,ηn (x1, . . . , xn)) 1IA(x1, . . . , xn) dx1 . . . dxn

The time reversible law of X l,η,n starting from νl,ηn will be denoted by Ql,ηn :

Ql,ηn (Θ) =

∫
P (X l,η,n(x, ·) ∈ Θ) dνl,ηn (x)

Like νl,ηn , the finite measure Ql,ηn is not necessarily a Probability measure.

Proof of prop 4.1

In this proof, l, η and n are fixed, hence we drop the indices and simply write β, ν, Q for βl,ηn ,
νl,ηn , Ql,ηn , etc. Again by theorem 5.1 of [ST86], the stochastic differential equation

∀i ∈ {1, . . . , n} ∀t>0

Xi(t) = Xi(0) +Wi(t) +

∫ t

0

∑

j=1,...,n

(Xi(s) −Xj(s)) dLij(s)

Lij(t) =
∫ t
0 1I|Xi(s)−Xj(s)|=r dLij(s)

has a unique strong solution. Let P
x

denote the distribution on C([0, T ],A∩(Rd)n) of the solution
X starting from x ∈ A ∩ (Rd)n. It is known (see e.g. theorem 1 of [ST87]) that the measure
P =

∫
A∩(Rd)n P

x
dx is invariant with respect to the time reversal τ on [0, T ] :

τ : C([0, T ],A ∩ (Rd)n) −→ C([0, T ],A ∩ (Rd)n)
X(·) −→ X(T − ·)

Applying Girsanov theorem, we see that the process

t −→



Xi(t) −Xi(0) −
∫ t

0

n∑

j=1

(Xi(s) −Xj(s))dLij(s) +
1

2

n∑

i=1

∫ t

0
∇iβ(X(s))ds





16i6n

is a Brownian motion under the measure Qx defined on C([0, T ],A ∩ (Rd)n) by

dQx

dP
x (X) = exp



−1

2

∑

i=1,...,n

∫ T

0
∇iβ(X(s)) dWi(s) −

1

8

∫ T

0
|∇β(X(s))|2 ds





for each x ∈ A ∩ (Rd)n.

As consequence, Qx is the distribution of the unique strong solution of (E l,ηn ) starting from x, and
Q =

∫
A∩(Rd)n Q

x dν(x) is the law of the solution with initial distribution ν. Using Ito’s formula
applied to the smooth function β, we can compute the density :

dQ

dP
(X) = exp

(
−1

2
(β(X(0)) + β(X(T )))

+
1

2

∫ T

0

∑

i,j=1,...,n

∇iβ(X(s)) (Xi(s) −Xj(s)) dLij(s)

+

∫ T

0

(
1

4
∆β(X(s)) − 1

8
|∇β(X(s))|2

)
ds

)

8



Since P and dQ

dP
are invariant with respect to time reversal τ , Q is time reversal invariant too,

which exactly means that the solution of (E l,ηn ) starting from ν is reversible.

�

The finite measure νl,ηn on (Rd)n is an approximation, up to a renormalization constant, of
the distribution of n particles under (ϕ+ ψ)-interaction in [−l, l]d. We now define a Probability

measure µl,ηz which will represent the distribution of a random number of particles in [−l, l]d, this
number following a Poisson distribution with intensity measure z dy.

Let us consider the direct sum

+∞⋃

n=0

(Rd)n (by convention (Rd)0 = {∅}) endowed with the

product σ

(
+∞∏

n=0

Bor((Rd)n)

)
of the Borel σ-algebras on the (Rd)n. The Probability measure µl,ηz

on
+∞⋃

n=0

(Rd)n is given by :

∀A0 ×A1 × · · · ×An × · · · ∈
+∞∏

n=0

Bor((Rd)n)

µl,ηz (A0 ×A1 × · · · ×An × · · · ) =
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!
νl,ηn (An)

(4)

where Z l,ηz = e−z2
dld

+∞∑

n=0

zn

n!
νl,ηn ((Rd)n) (with the convention νl,η0 ({∅}) = 1). Similarly, consider

the Probability measure on

+∞⋃

n=0

C(R+, (Rd)n) defined by

Ql,ηz (Θ) =
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!
Ql,ηn (Θ) =

∫
P
(
X l,η,Card(x)(x, ·) ∈ Θ

)
dµl,ηz (x) .

This Probability measure is time reversal invariant, thanks to proposition 4.1, and has its support
included in A, as a mixing of A-supported measures.

Finally, let us randomize the external configuration η and consider the following infinite di-
mensional stochastic equation

(E l)






∀i ∈ N such that xi ∈ [−l, l]d ∀t>0

X l
i(t) = xi +Wi(t) −

1

2

∫ t

0



∇ψl,x(X l
i(s)) +

∑

j

∇ϕ(X l
i(s) −X l

j(s))



 ds

+
∑

{j:xj∈[−l,l]d}

∫ t

0
(X l

i(s) −X l
j(s)) dL

l
ij(s)

∀i ∈ N such that xi 6∈ [−l, l]d X l
i(·) ≡ xi

∀i, j Llij = Ll,ηji , Llij(0) = 0, Llij non decreasing

and ∀t>0 Llij(t) = 1Ixi∈[−l,l]d1Ixj∈[−l,l]d

∫ t

0
1I|Xl

i(s)−Xl
j(s)|=rdL

l
ij(s)

Remember that ψl,x only depends on x∩ ([−l, l]d)c, so that this dynamics is Markovian. For each
deterministic initial configuration x ∈ A, the equation (E l) has a unique strong solution (X l,x, Ll,x)

since it reduces to the dynamics of (E l,ηn ) with η = x ∩ ([−l, l]d)c and n = Card(x ∩ [−l, l]d) :

X l,x(·) = X l,x∩Λc,Card(x∩Λ)(x ∩ Λ, ·) xΛc with Λ = [−l, l]d .
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5 Probability of “bad” paths

In this section, we want to prove that the probability of “bad” trajectories, i.e. trajectories of
particles which interact too much, vanishes asymptotically when l → +∞. We will use this result
to construct the limit of (X l,x)l in the next section.

Nice paths are ω’s such that each particle interacts only with a finite number of particles during
a finite time interval ; X l,x(ω) is then the (unique) solution of a finite dimensional equation. Bad
ω’s are paths such that at least a particle interacts with a great number of other ones, either
because it moves very fast, or because it belongs to a large chain of particles where each one
interacts with its neighbors.

To simplify, we restrict the study of the paths on the time interval [0, 1]. It is obvious that
all the results in the sequel hold true on any time interval [0, T ], T>1, up to a change of the
constants.

5.1 Probability of fast motion

We obtain here an estimate of the probability that a particle moves “too fast”. In order to
establish this estimate, obtained in prop 5.2, we first compute the probability of fast motion
between two fixed bounded domains in Rd.

For every bounded subsets A0 and A1 of Rd and every ε > 0 and δ ∈]0, 1], let Fm(A0, A1, ε, δ)
denote the event “at least a particle goes from A0 to A1 with an oscillation greater than ε in a
time interval smaller than δ”, i.e.

Fm(A0, A1, ε, δ) = {X ∈ C([0, 1],A), ∃i s.t. Xi(0) ∈ A0, Xi(1) ∈ A1 and w(Xi, δ) > ε}

where w(Xi, δ) = sup
|t−s|<δ
06s,t61

|Xi(t)−Xi(s)| is the usual modulus of continuity of the path Xi on [0, 1].

Lemma 5.1 For each A0, A1 bounded subsets of Rd and each ε > 0, δ ∈]0, 1], we have :

∀l ∈ N∗ ∀η ∈ A ∀n ∈ N∗

Ql,ηn (Fm(A0, A1, ε, δ))) =

∫
P (X l,η,n(x, ·) ∈ Fm(A0, A1, ε, δ)) dν

l,η
n (x)

6 41 n e−2Nϕ νl,ηn−1((R
d)n−1)

1

δ
exp

(
− ε

2

5δ

)∫

Rd

(1IA0 + 1IA1)e
−ψl,η

dy (5)

and

∀l ∈ N∗ ∀η ∈ A

Ql,ηz (Fm(A0, A1, ε, δ))) 6 41 z e−2Nϕ 1

δ
exp

(
− ε

2

5δ

)∫

Rd

(1IA0 + 1IA1)e
−ψl,η

dy (6)

From this lemma proved below, we easily deduce an estimate of the probability under Ql,ηz
that a particle starting from B(0,K) moves too fast. For every K ∈ N∗, ε > 0 and δ ∈]0, 1], let
Fm(K, ε, δ) be the following event :

Fm(K, ε, δ) = {X ∈ C([0, 1],A) s.t. ∃i, Xi(0) ∈ B(0,K) and w(Xi, δ) > ε}

Proposition 5.2 The following upper bounds hold :

∀K ∈ N∗ ∀ε > 0 ∀δ ∈]0, 1] ∀l ∈ N∗ ∀η ∈ A
Ql,ηn (Fm(K, ε, δ)) 6 n Cd e

−2Nϕ νl,ηn−1((R
d)n−1)

1

δ
exp

(
− ε

2

6δ

)
Kd

Ql,ηz (Fm(K, ε, δ)) 6 z Cd e
−2Nϕ 1

δ
exp

(
− ε

2

6δ

)
Kd

10



where Cd is a constant depending only on dimension d. And similarly one has :

∀K ∈ N∗ ∀ε > 0 ∀δ ∈]0, 1] ∀l ∈ N∗ ∀η ∈ A
Ql,ηn (Fm(K, ε, δ)) 6 246 n e−2Nϕ νl,ηn−1((R

d)n−1)
1

δ
exp

(
− ε

2

5δ

) ∫

Rd

e−ψ
l,η(y) dy

Ql,ηz (Fm(K, ε, δ)) 6 246 z e−2Nϕ 1

δ
exp

(
− ε

2

5δ

) ∫

Rd

e−ψ
l,η(y) dy

Proof of lemma 5.1

We first need an estimate of Ql,ηn (Fm(A0, A1, ε, δ)).

Let (X l,η,n, Ll,η,n) denote the unique strong solution of (E l,ηn ) starting from νl,ηn , and recall that

the distribution Ql,ηn of X l,η,n is time reversible on [0, 1]. By construction the processes :

Wi(t) = X l,η,n
i (t) −X l,η,n

i (0) +
1

2

∫ t

0
∇iβ

l,η
n (X l,η,n(s))ds

−
∫ t

0

∑

j=1,...,n

(X l,η,n
i (s) −X l,η,n

j (s))dLl,η,nij (s),

16i6n, 06t61

and

Ŵi(t) = X l,η,n
i (1 − t) −X l,η,n

i (1) +
1

2

∫ 1

1−t
∇iβ

l,η
n (X l,η,n(s))ds

−
∫ 1

1−t

∑

j=1,...,n

(X l,η,n
i (s) −X l,η,n

j (s))dLl,η,nij (s),

16i6n, 06t61

are both n-dimensional Brownian motions starting from 0. Remarking that

∀t ∈ [0, 1] X l,η,n(t) −X l,η,n(0) =
1

2

(
W (t) + Ŵ (1 − t) − Ŵ (1)

)

and using the equality in law between (X l,η,n(1 − ·), Ŵ ) and (X l,η,n,W ), we obtain :

Ql,ηn (Fm(A0, A1, ε, δ))

=

∫

(Rd)n

P




∃i6n s.t. X l,η,n
i (x, 0) ∈ A0, X

l,η,n
i (x, 1) ∈ A1 and

sup
|t−s|<δ
06s,t61

|Wi(t) −Wi(s) + Ŵ (1 − t) − Ŵ (1 − s)| > 2ε


 dνl,ηn (x)

6

∫
P


∃i6n s.t. X l,η,n

i (x, 0) ∈ A0 and sup
|t−s|<δ
06s,t61

|Wi(t) −Wi(s)| > ε


 dνl,ηn (x)

+

∫
P


∃i6n s.t. X l,η,n

i (x, 1) ∈ A1 and sup
|t−s|<δ
06s,t61

|Ŵ (t) − Ŵ (s)| > ε


 dνl,ηn (x)

6

∫
P (∃i6n s.t. xi ∈ A0 and w(Wi, δ) > ε) dνl,ηn (x)

+

∫
P (∃i6n s.t. xi ∈ A1 and w(Wi, δ) > ε) dνl,ηn (x)

The right hand side is smaller than

n∑

i=1

νl,ηn (xi ∈ A0) P (w(Wi, δ) > ε) +

n∑

i=1

νl,ηn (xi ∈ A1) P (w(Wi, δ) > ε)

6 n P (w(W1, δ) > ε)
(
νl,ηn (x1 ∈ A0) + νl,ηn (x1 ∈ A1)

)

11



(Ql,ηn and νl,ηn are permutation invariant).

We know from appendix 8 that

P (w(W1, δ) > ε) 6
41

δ
exp

(
− ε

2

5δ

)
.

According to the definition (3) of βl,ηn , since a particle interacts with at most N other particles
(cf remark 2.1) :

βl,ηn (x1, . . . , xn) = ψl,η(x1) +

n∑

j=2

ϕ(x1 − xj) +
∑

j,ηj∈Λc

ϕ(x1 − ηj) + βl,ηn−1(x2, . . . , xn)

> ψl,η(x1) + 2Nϕ+ βl,ηn−1(x2, . . . , xn) (7)

which implies that

νl,ηn (x1 ∈ A0)

=

∫

(Rd)n

1Ix1∈A0 1IA(x1, . . . , xn) e
−βl,η

n (x1,...,xn) dx1 · · · dxn

6

∫

(Rd)n

1Ix1∈A0 1IA(x2, . . . , xn) e
−βl,η

n−1(x2,...,xn) e−2Nϕ e−ψ
l,η(x1) dx1 · · · dxn

6 e−2Nϕ νl,ηn−1((R
d)n−1)

∫

A0

e−ψ
l,η(y) dy

(8)

and the same result holds for A1. This leads to the estimate :

Ql,ηn (Fm(A0, A1, ε, δ))

6 n e−2Nϕ νl,ηn−1((R
d)n−1) 41

1

δ
exp

(
− ε

2

5δ

)∫

Rd

(1IA0 + 1IA1)e
−ψl,η

dy ;

by summing this over n we obtain the desired result :

Ql,ηz (Fm(A0, A1, ε, δ))

=
e−z2

dld

Z l,ηz

+∞∑

n=1

zn

n!
Ql,ηn (Fm(A0, A1, ε, δ))

641
e−z2

dld

Z l,ηz
z

(
+∞∑

n=1

zn−1

(n− 1)!
νl,ηn−1((R

d)n−1)

)
e−2Nϕ 1

δ
exp

(
− ε

2

5δ

)∫
(1IA0 + 1IA1)e

−ψl,η

dy

641 z e−2Nϕ 1

δ
exp

(
− ε

2

5δ

)∫

Rd

(1IA0 + 1IA1)e
−ψl,η

dy .

�

Proof of prop 5.2

For j in N, let aj = K +
√

ε2

δ + 5j. The sequence (aj)j increases from a0 = K + ε√
δ

to +∞. Now

for Q = Ql,ηn or Q = Ql,ηz consider

Q(Fm(K, ε, δ)) = Q (∃i, |Xi(0)|6K and w(Xi, δ) > ε)

6 Q (∃i, |Xi(0)|6K and w(Xi, δ) > ε and |Xi(1)|6a0)

+
+∞∑

j=0

Q (∃i, |Xi(0)|6K and aj < |Xi(1)|6aj+1)

12



But |Xi(0)|6K and |Xi(1)| > aj imply that w(Xi, 1) > aj −K, so this is smaller than

6 Q (∃i, |Xi(0)|6K, |Xi(1)|6a0 and w(Xi, δ) > ε)

+

+∞∑

j=0

Q (∃i, |Xi(0)|6K, aj < |Xi(1)| < aj+1 and w(Xi, 1) > aj −K)

Using lemma 5.1 and 161
δ , we obtain :

Q(Fm(K, ε, δ))

6 C(Q)
1

δ
exp

(
− ε

2

5δ

)∫
(1IB(0,K) + 1IB(0,a0))e

−ψl,η

dy

+ C(Q)
+∞∑

j=0

exp

(
−1

5
(
ε2

δ
+ 5j)

)∫
(1IB(0,K) + 1IB(0,aj+1)rB(0,aj))e

−ψl,η

dy

6 C(Q)
1

δ
exp

(
− ε

2

5δ

)∫ 

1IB(0,K) + 1IB(0,a0) +
+∞∑

j=0

e−j1IB(0,K) +
+∞∑

j=0

e−j1IB(0,aj+1)rB(0,aj)



 e−ψ
l,η

dy

with C(Ql,ηn ) = 41 n e−2Nϕ νl,ηn−1((R
d)n−1) and C(Ql,ηz ) = 41 z e−2Nϕ.

Using e−ψ
l,η(y)61 and the inequality

√
α+ β6

√
α+

√
β for α, β > 0, one has for j>1 :

∫
1IB(0,aj+1)rB(0,aj) e

−ψl,η

dy 6 (aj+1)
d |B(0, 1)|

6 (K +
ε√
δ

+
√

5(j + 1))d |B(0, 1)|

6 3d Kd |B(0, 1)| max(1,
ε√
δ
)d
√

5(j + 1)
d

(9)

and similarly :
∫

1IB(0,a0) e
−ψl,η

dy 6 (a0)
d |B(0, 1)| 6 (K +

ε√
δ
)d |B(0, 1)| 6 2d Kd |B(0, 1)| max(1,

ε√
δ
)d

Since

+∞∑

j=0

e−j62 and

+∞∑

j=0

(
√
j + 1)d e−j62 this leads to :

Q(Fm(K, ε, δ))

6 C(Q)
1

δ
exp

(
− ε

2

5δ

)
Kd |B(0, 1)|

(
1 + 2d max(1,

ε√
δ
)d + 2 + 2 × 3d max(1,

ε√
δ
)d
√

5
d
)

6 C(Q)
1

δ
exp

(
− ε

2

5δ

)
|B(0,K)| 3 × 3d max(1,

ε√
δ
)d
√

5
d

Finally

Ql,ηn (Fm(K, ε, δ)) 6 n e−2Nϕ νl,ηn−1((R
d)n−1) Cd

1

δ
exp

(
− ε

2

6δ

)
Kd

Ql,ηz (Fm(K, ε, δ)) 6 z e−2Nϕ Cd
1

δ
exp

(
− ε

2

6δ

)
Kd

where Cd = 41 |B(0, 1)| 3 × 3d
√

5
d

supx∈R+ e−x
2/5 max(1, x)dex

2/6.

An alternative bound for Q(Fm(K, ε, δ)) may be obtained using the fact that each indicator
function is smaller than 1 :

Q(Fm(K, ε, δ)) 6 C(Q)
1

δ
exp

(
− ε

2

5δ

) ∫

Rd

6 e−ψ
l,η(y) dy.

This completes the proof.

�
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5.2 Probability of large chains

Recall that two particles interact instantaneously only if the distance between their centers is
smaller than R, the range of the potential ϕ. But more generally, a particle can have an influence
on several others during any small time interval. To modelize this, we introduce the notion of
(R+ ε)-chain of particles.

Definition 5.3 Let x ∈ A and ε > 0. Each subset {x1, · · · , xn} of x verifying |x1 − x2|6R +
ε, · · · , |xn−1 − xn|6R+ ε is called an (R+ ε)-chain of particles of x.

Now, let us fix K ∈ N∗, M ∈ N∗ and ε > 0 and let Ch(K,M,R + ε) denote the event that
there exists an (R+ ε)-chain of M particles with one end inside of B(0,K), that is :

Ch(K,M,R+ ε)
= {x ∈ A, ∃{x1, · · · , xM} subset of x, |x1| < K and |x1 − x2|6R+ ε, · · · , |xM−1 − xM |6R+ ε}

Our aim here is to estimate the µl,ηz -probability that such a chain exists.

Proposition 5.4 For every M ∈ N∗, K ∈ R+ and ε > 0, and for every l ∈ N∗ and η ∈ A, we
have :

νl,ηn (Ch(K,M,R+ ε))

6
n!

(n−M)!
e−2MNϕ

(
((R+ ε)d − rd)|B(0, 1)|

)M−1
νl,ηn−M ((Rd)n−M )

∫

B(0,K)
e−ψ

l,η(y)dy

and

µl,ηz

(
+∞⋃

K=1

Ch(K,M,R+ ε)

)
6

(
z |B(0, 1)| e−2Nϕ ((R+ ε)d − rd)

)M−1

From this proposition, we easily deduce the following corollary used in section 5.3.

Corollary 5.5 There exists a critical activity zc given by

zc =
exp(2Nϕ)

(Rd − rd) |B(0, 1)|
such that for each positive z, each ε ∈]0, 1[ and each M ∈ N∗

sup
l∈N∗

sup
η∈A

µl,ηz

(
+∞⋃

K=1

Ch(K,M,R+ ε)

)
6

(
z

zc

(R+ ε)d − rd

Rd − rd

)M−1

Proof of prop 5.4

Each configuration in (Rd)n ∩ Ch(K,M,R + ε) has exactly n!
(n−M)! representants in (Rd)n such

that (xn−M+1, . . . , xn) is a fixed M -uple verifying |xn−M+1| < K and |xn−M+1 − xn−M+2|6R +
ε, · · · , |xn−1 − xn|6R + ε. In order to fix the representant of the configuration, we demand that
(xn−M+1, . . . , xn) ∈ O, that is for n−M + 16i6n one has |xi − xi+1| = min{|xi − xj |; i < j6n}.
This fix the labelling of the points in the chain, except for the (negligible) set of configurations

containing two points which are exactly at the same distance of a third one. Since βl,ηn (x1, . . . , xn)
and 1IA(x1, . . . , xn) do not change by permutation of the xi’s, this leads to :

νl,ηn (Ch(K,M,R+ ε))

=
n!

(n−M)!

∫

(Rd)n

1I|xn−M+1|<K

n−1∏

i=n−M+1

1I|xi−xi+1|6R+ε 1IO(xn−M+1, . . . , xn)

1IA(x1, . . . , xn) e
−βl,η

n (x1,...,xn)dx1 · · · dxn

14



We use again inequality (7) established in the proof of lemma 5.1 :

βl,ηn (x1, . . . , xn)>2Nϕ+ βl,ηn−1(x1, . . . , xn−1)

Reamrking that
1IA(x1, . . . , xn) 6 1I|xn−xn−1|>r 1IA(x1, . . . , xn−1) ,

using again inequality (7) and integrating with respect to xn we obtain :

νl,ηn (Ch(K,M,R+ ε))

6 n
(n− 1)!

((n− 1) − (M − 1))!

∫

(Rd)n

1I|xn−M+1|<K

n−2∏

i=n−M+1

1Ir6|xi−xi+1|6R+ε 1IO(xn−M+1, . . . , xn−1)

1IA(x1, . . . , xn−1) 1Ir6|xn−xn−1|6R+εe
−2Nϕ e−β

l,η
n−1(x1,...,xn−1) dx1 · · · dxn

6 n e−2Nϕ
(
((R+ ε)d − rd)|B(0, 1)|

)
νl,ηn−1(Ch(K,M − 1, R+ ε)) .

By iteration in n and M , we obtain for n>M (which is the only interesting case, since there
always are less particles in the chain than in the whole space) :

νl,ηn (Ch(K,M,R+ ε))

6
n!

(n−M + 1)!
e−2(M−1)Nϕ

(
((R+ ε)d − rd)|B(0, 1)|

)M−1
νl,ηn−M+1(Ch(K, 1, R+ ε))

Using inequality (7) and the same idea as in the proof of inequality (8)

νl,ηn−M+1(Ch(K, 1, R+ ε))

= νl,ηn−M+1(x ∩B(0,K) 6= ∅)
6 (n−M + 1)

∫

B(0,K)

∫

(Rd)n−M

1IA(y) e−β
l,η
n−M+1(y) dyn−M+1 · · · dy1

6 (n−M + 1) e−2Nϕ νl,ηn−M ((Rd)n−M )

∫

B(0,K)
e−ψ

l,η(y) dy

Thus

νl,ηn (Ch(K,M,R+ ε))

6
n!

(n−M)!
e−2MNϕ

(
((R+ ε)d − rd)|B(0, 1)|

)M−1
νl,ηn−M ((Rd)n−M )

∫

B(0,K)
e−ψ

l,η(y) dy

By definition of µl,ηz (cf (4) ) we have

µl,ηz (Ch(K,M,R+ ε)) =
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!
νl,ηn (Ch(K,M,R+ ε))

=
e−z2

dld

Z l,ηz

∑

n>M

zn

n!
νl,ηn (Ch(K,M,R+ ε)) (10)

Using this, the above inequality and iterating the result on M , we obtain :

µl,ηz (Ch(K,M,R+ ε))

6 e−2Nϕ ((R+ ε)d − rd) |B(0, 1)| e
−z2dld

Z l,ηz
z
∑

n>M

zn−1

(n− 1)!
νl,ηn−1(Ch(K,M − 1, R+ ε)

6 z e−2Nϕ ((R+ ε)d − rd) |B(0, 1)| µl,ηz (Ch(K,M − 1, R+ ε))

6

(
z e−2Nϕ ((R+ ε)d − rd)|B(0, 1)|

)M−1
µl,ηz (Ch(K, 1, R+ ε))

6

(
z e−2Nϕ ((R+ ε)d − rd)|B(0, 1)|

)M−1
.
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Since the event Ch(K,M,R+ ε) increases as a function of K

µl,ηz

(
+∞⋃

K=1

Ch(K,M,R+ ε)

)
= lim

K→+∞
µl,ηz (Ch(K,M,R+ ε))

6

(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)M−1
.

�

5.3 Probability of too high interaction between particles

Let B(m, a, ε) denote the set of “Bad trajectories”, that is the event that either a particle has a
high oscillation in a small time interval or belongs to a large chain of interacting particles :

∀m ∈ N∗ ∀a>1 ∀ε > 0 B(m, a, ε) = B̃(m, a, ε) ∪ ˜̃B(m, ε)

where

B̃(m, a, ε) =

{
X ∈ C([0, 1],A), ∃i, w(Xi,

1

m
) >

ε

4
and ∃t61, |Xi(t)|6a+ 2m2

}

and

˜̃B(m, ε) =




X ∈ C([0, 1],A),

∃k ∈ {0, . . . ,m− 1}, there exists an

(R+ ε) − chain of particles of X( km)
with diameter greater than m−R− ε






Let us remark that a 7→ B̃(m, a, ε) is non-decreasing but B̃(m, a, ε) is not monotone as a function

of ε. Our aim in this section is to estimate the probability of B(m, a, ε) under Ql,ηz .

Proposition 5.6 For each m ∈ N∗ and each a>1 :

sup
l∈N∗

sup
η∈A

Ql,ηz (B̃(m, a, ε)) 6 z C ′
d e

−2Nϕ ad m2d exp

(
− ε

2

96
m

)

where the constant C ′
d only depends on dimension d. One also has, for each m ∈ N∗ :

sup
l∈N∗

sup
η∈A

Ql,ηz

(
˜̃B(m, ε)

)
6 m

(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)[ m
R+ε

]

If z < zc and ε small enough (depending on z), this implies that the left hand side decreases
exponentially fast as a function of m.

Proof of proposition 5.6

We first estimate the probability

Ql,ηz (B̃(m, a, ε)) = Ql,ηz

(
∃i, w(Xi,

1

m
) >

ε

4
and ∃t61, |Xi(t)|6a+ 2m2

)

It is clearly smaller than

6 Ql,ηz

(
∃i, w(Xi,

1

m
) >

ε

4
and |Xi(0)|6a+ 3m2

)

+ Ql,ηz
(
∃i, |Xi(0)| > a+ 3m2 and ∃t61, |Xi(t)|6a+ 2m2

)

But the second term of the sum is smaller than

+∞∑

j=1

Ql,ηz
(
∃i, a+ (2 + j)m2 < |Xi(0)|6a+ (3 + j)m2 and w(Xi, 1) > jm2

)
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Thus using proposition 5.2, we obtain :

Ql,ηz (B̃(m, a, ε))

6 Ql,ηz

(
Fm(a+ 3m2,

ε

4
,

1

m
)

)
+

+∞∑

j=1

Ql,ηz
(
Fm(a+ (3 + j)m2, jm2, 1)

)

6 z Cd e
−2Nϕ m exp

(
− ε

2

96
m

)
(a+ 3m2)d

+ z Cd e
−2Nϕ

+∞∑

j=1

exp

(
−j

2m4

6

)
(a+ (3 + j)m2)d

We now use the multinomial formula (a+ 3m2)d = (a+m2 +m2 +m2)d64dadm2d.
Similarly (a+ (3 + j)m2)d6(j + 4)dadm2d62djd4dadm2d. This leads to :

Ql,ηz (B̃(m, a, ε))6 z Cd e
−2Nϕ 8d ad m2d



exp

(
− ε

2

96
m

)
+

+∞∑

j=1

exp

(
−j

2m4

6

)
jd





Since j2m4/6>(j2 +m4)/12 and m4

12 > ε2

96m for ε61 one has :

Ql,ηz (B̃(m, a, ε))

6 z Cd e
−2Nϕ 8d ad m2d



exp

(
− ε

2

96
m

)
+

+∞∑

j=1

jd exp

(
− j

2

12

)
exp

(
−m

4

12

)



6 z Cd e
−2Nϕ 8d ad m2d exp

(
− ε

2

96
m

)

1 +
+∞∑

j=1

jd exp

(
− j

2

12

)

 .

Defining the constant C ′
d by

C ′
d = Cd 8d



1 +

+∞∑

j=1

jd exp

(
− j

2

12

)

 < + ∞

we obtain

Ql,ηz (B̃(m, a, ε)) 6 z C ′
d e

−2Nϕ ad m2d exp

(
− ε

2

96
m

)
.

We now have to find a similar estimate for

Ql,ηz

(
˜̃B(m, ε)

)
= Ql,ηz



∃k ∈ {0, . . . ,m− 1},
there exists an (R+ ε) − chain

of particles of X( km) with
diameter greater than m−R− ε



 .

Thanks to the stationarity of Ql,ηz , this probability is smaller than

6

m−1∑

k=0

µl,ηz



x ∈ A,
there exists an (R+ ε) − chain
of particles of x with
diameter greater than m−R− ε)



 .

It is necessary to have at least [ m
R+ε ] + 1 particles ( [x] denotes the integer part of x) to construct

a chain of length greater than m − R − ε with every particle at a distance smaller than (R + ε)
from its neighbors. Thus the above quantity is smaller than

6 m µl,ηz

(
+∞⋃

K=1

Ch(K, [
m

R+ ε
] + 1, R+ ε)

)
.

Due to proposition 5.4, this is bounded from above by

6 m
(
z |B(0, 1)| e−2Nϕ ((R+ ε)d − rd)

)[ m
R+ε

]
.

�
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6 Convergence of the approximations

The aim of this section is to prove the convergence of the sequence (X l,x)l to a limit process X∞,x.
We shall check in the next section that X∞ is a solution of (E).

Through this whole section, µ denotes a fixed element of G(z) with z < zc.
We fix x ∈ A.
As usual for infinite-dimensional stochastic equations, we study (E l) for each ω in a set Ωx

0 ⊂ Ω
and prove that the set Ω r Ωx

0 is negligible.
For each ρ ∈ N∗ and l>ρ− r + 1, let m(ρ, l) and a(ρ, l) denote the following integers :

m(ρ, l) =
[√

l − ρ− r
]
− 1 and a(ρ, l) = ρ+m(ρ, l). (11)

Remark that
a(ρ, l) +m(ρ, l)2 + 1 < l − r (12)

and
∀C > 0

∑

l

a(ρ, l)d m(ρ, l)2d e−Cm(ρ,l) < +∞ . (13)

Let 1/N denote the set {1, 1/2, 1/3, · · · } of real numbers ε such that 1/ε ∈ N. Let us now define
the set Ωx

0 as follows :

Ωx
0 = {ω ∈ Ω s.t. ∃ε0 ∈ 1/N, ∀ε6ε0 ∀ρ ∈ N∗ ∃l0 ∈ N∗, ∀l>l0

X l,x(ω, ·) 6∈ B (m(ρ, l), a(ρ, l), ε) and X l+1,x(ω, ·) 6∈ B (m(ρ, l), a(ρ, l), ε)
}

(14)

= lim inf
ε→0

⋂

ρ∈N∗

lim inf
l→+∞

{
X l,x 6∈ B (m(ρ, l), a(ρ, l), ε)

}
∩
{
X l+1,x 6∈ B (m(ρ, l), a(ρ, l), ε)

}
.

The set Ωx
0 satisfies the following properties :

Proposition 6.1 For each Gibbs measure µ ∈ G(z) with z < zc one has

∫

M
P (Ωx

0) dµ(x) = 1

that is, for µ-almost each x in A, P (Ωx
0) = 1. This means that for A = {x ∈ A, P (Ωx

0) = 1},
one has

∀z < zc ∀µ ∈ G(z) µ(A) = 1.

Proposition 6.2

(i) For every x ∈ A, every ω in Ωx
0 and every i ∈ N, the sequence (X l,x

i (ω, t), Ll,xij (ω, t), j ∈ N, t ∈
[0, 1])l∈N∗ of elements of C([0, 1],Rd × RN

+) converges (in the sense of uniform convergence
of continuous paths) to a limit denoted by (X∞,x

i (ω, t), L∞,x
ij (ω, t), j ∈ N, t ∈ [0, 1]).

Moreover, this sequence is stationary :

∀x ∈ A ∀ω ∈ Ωx
0 ∀i ∈ N ∃l0, ∀l>l0

X l,x
i (ω, ·) = X∞,x

i (ω, ·) on [0, 1] and ∀j ∈ N Ll,xij (ω, ·) = L∞,x
ij (ω, ·) on [0, 1]

(ii) Furthermore, the convergence takes place in C([0, 1],M), i.e.

∀x ∈ A ∀ω ∈ Ωx
0 X∞,x(ω, ·) = lim

l→+∞
X l,x(ω, ·) on [0, 1]

(iii) Since
∫
P (Ωx

0)dµ(x) = 1 for µ ∈ G(z) avec z < zc, the sequence of processes (X l)l∈N∗ ∈
C([0, 1],M) starting from µ converges indeed in distribution to the process X∞ ∈ C([0, 1],A)
starting from µ.

18



Proof of proposition 6.1

Recall that µ ∈ G(z) is fixed. We want to prove that

∫

A
P (Ω r Ωx

0) dµ(x) = 0

By definition of Ωx
0 :

P (Ω r Ωx
0)

= P

(
∀ε0 ∈ 1/N, ∃ε6ε0 ∃ρ ∈ N∗ ∀l0 ∈ N∗ ∃l>l0,

X l,x ∈ B (m(ρ, l), a(ρ, l), ε) or

X l,x ∈ B (m(ρ, l − 1), a(ρ, l − 1), ε)

)

For each ε0 ∈ 1/N, this is smaller than

6
∑

ε6ε0

∑

ρ∈N∗

P
(

lim sup
l→+∞

{
X l,x ∈ B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l − 1), a(ρ, l − 1), ε)

})

Thanks to Borel-Cantelli lemma, this vanishes as soon as there exists ε0 ∈ 1/N such that

∀ε6ε0 ∀ρ ∈ N∗
+∞∑

l=ρ+2

∫

A
P
(
X l,x ∈ B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l − 1), a(ρ, l − 1), ε)

)
dµ(x) < +∞ .

(15)

We shall show (step 1) that for each l ∈ N∗ and for Λ = [−l, l]d, the following inequalities hold :

sup
Θ∈F1

∣∣∣∣
∫

A
P (X l,x ∈ Θ)dµ(x) −

∫

A
Ql,ηz (Θ)dµ(η)

∣∣∣∣

6

∫

A
sup
‖f‖61

∣∣∣∣
∫

A
f(x) dµ(x|η([−l,l]d)c) −

∫

A
f(x) dµl,ηz (x)

∣∣∣∣ dµ(η)

and ∀η ∈ A sup
‖f‖61

∣∣∣∣
∫

A
f(x) dµ(x|η([−l,l]d)c) −

∫

A
f(x) dµl,ηz (x)

∣∣∣∣ 6 2

(
1 − ZΛ,η

z

Z l,ηz

)
(16)

and (step 2) that

∀η ∈ A 0 6 1 − ZΛ,η
z

Z l,ηz
6 z e−2Nϕ

∫

Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy (17)

Inequality (17) and assumption (2) on ψl,η imply that

+∞∑

l=1

∫

A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η) < +∞

Then for each ρ and l fixed, we choose

Θ = B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l − 1), a(ρ, l − 1), ε)

Thanks to (16) and (17), in order to prove (15), we only have to prove that

∃ε0 ∈ 1/N ∀ε < ε0 ∀ρ ∈ N∗
+∞∑

l=ρ+2

∫
Ql,ηz

(
B̃(m(ρ, l), a(ρ, l), ε) ∪ B̃(m(ρ, l − 1), a(ρ, l − 1), ε)

)
dµ(η)

+

+∞∑

l=ρ+2

∫
Ql,ηz

(
˜̃B(m(ρ, l), ε) ∪ ˜̃B(m(ρ, l − 1), ε)

)
dµ(η) < +∞
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By proposition 5.6, this is smaller than

∫
z C ′

d e
−2Nϕ

+∞∑

l=ρ+2

a(ρ, l)d m(ρ, l)2d exp

(
− ε

2

96
m(ρ, l)

)

+a(ρ, l − 1)d m(ρ, l − 1)2d exp

(
− ε

2

96
m(ρ, l − 1)

)
dµ(η)

+

∫ +∞∑

l=ρ+2

m(ρ, l)
(
z |B(0, 1)| e−2Nϕ ((R+ ε)d − rd)

)[
m(ρ,l)
R+ε

]

+m(ρ, l − 1)
(
z |B(0, 1)| e−2Nϕ ((R+ ε)d − rd)

)[
m(ρ,l−1)

R+ε
]
dµ(η).

Since the factors in the integrals do not depend on η and since the sums over l only differ by their
first terms, we only have to prove that

∃ε0 ∈ 1/N ∀ε < ε0 ∀ρ ∈ N∗
+∞∑

l=ρ+2

a(ρ, l)d m(ρ, l)2d exp

(
− ε

2

96
m(ρ, l)

)
< +∞

and

+∞∑

l=ρ+2

m(ρ, l)
(
z |B(0, 1)| e−2Nϕ ((R+ ε)d − rd)

)[
m(ρ,l)
R+ε

]
< +∞.

The first series converges for each ε ∈ 1/N and each ρ ∈ N∗ thanks to (13). The second one also

converges thanks to (13) again, as soon as
(
z |B(0, 1)| e−2Nϕ ((R+ ε0)

d − rd)
)
< 1, which is true

for ε0 small enough when z < zc.

It remains to prove (16) and (17).

Step 1 : Proof of (16)

Let us fix l ∈ N∗ and Λ = [−l, l]d. For each event Θ on C([0, 1]), by definition of Ql,ηz :

∫

A
P (X l,x ∈ Θ)dµ(x) −

∫

A
Ql,ηz (Θ)dµ(η)

6

∫

A

∫

A
P (X l,xηΛc ∈ Θ) dµ(x|ηΛc) dµ(η) −

∫

A

∫

A
P (X l,η,Card(x)(x, ·) ∈ Θ) dµl,ηz (x) dµ(η)

If xη ∈ A then P (X l,η,Card(x)(x, ·) ∈ Θ) = P (X l,x,ηΛc ∈ Θ) i.e. the integrated functions are equal,
and since they are bounded by 1, we obtain :

∣∣∣∣
∫

A
P (X l,x ∈ Θ)dµ(x) −

∫

A
Ql,ηz (Θ)dµ(η)

∣∣∣∣ 6

∫

A
sup
‖f‖61

∣∣∣∣
∫

A
f(x) dµ(x|ηΛc) −

∫

A
f(x) dµl,ηz (x)

∣∣∣∣ dµ(η)

Since µ ∈ G(z), using the conditional density of µ with respect to πz and the definition of µl,ηz ,
one has for each f : A → R bounded by 1 :

∣∣∣∣
∫

A
f(x) dµ(x|ηΛc) −

∫

A
f(x) dµl,ηz (x)

∣∣∣∣

=

∣∣∣∣∣∣∣∣

e−z|Λ|

ZΛ,η
z


f(ηΛc) +

+∞∑

n=1

zn

n!

∫

Λn

f(yηΛc) 1IA(yηΛc) exp
(
−

∑

16i<j6n

ϕ(yi − yj) −
∑

16i6n
ηj∈Λc

ϕ(yi − ηj)
)
dy




−e
−z2dld

Z l,ηz

(
f(ηΛc) +

+∞∑

n=1

zn

n!

∫

(Rd)n

f(yηΛc) e−β
l,η
n (y) 1IA(y) dy

)∣∣∣∣∣
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Note that βl,ηn (y) =
∑

16i<j6n

ϕ(yi−yj)+
∑

16i6n
ηj∈Λc

ϕ(yi−ηj) for the y ∈ Λn verifying yηΛc ∈ A, because

ψl,η(yi) = 0 for each i in this case. Thus the above quantity is equal to

∣∣∣∣∣f(ηΛc)

(
e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

)
+

+∞∑

n=1

zn

n!

(
e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

)∫

Λn

f(yηΛc) 1IA(yηΛc) e−β
l,η
n (y) dy

−e
−z2dld

Z l,ηz

+∞∑

n=1

zn

n!

∫

(Rd)n

f(yηΛc) e−β
l,η
n (y) (1IA(y) − 1IA(yηΛc) 1IΛn(y)) dy

∣∣∣∣∣

Recall e−z|Λ| = e−z2
dld and

ZΛ,η
z = e−z|Λ|

(
1 +

+∞∑

n=1

zn

n!

∫

Λn

1IA(yηΛc) e−β
l,η
n (y) dy

)

6 e−z2
dld

(
1 +

+∞∑

n=1

zn

n!

∫

(Rd)n

1IA(y) e−β
l,η
n (y) dy

)
= Z l,ηz .

Since f is bounded by 1, we then obtain :

∣∣∣∣
∫

A
f(x) dµ(x|ηΛc) −

∫

A
f(x) dµl,ηz (x)

∣∣∣∣

6

∣∣∣∣∣
e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

∣∣∣∣∣ e
z|Λ|ZΛ,η

z +
e−z2

dld

Z l,ηz

∣∣∣ez2
dldZ l,ηz − ez|Λ|ZΛ,η

z

∣∣∣ = 2

(
1 − ZΛ,η

z

Z l,ηz

)

and (16) is proven.

Step 2 : Proof of (17)

This final step of the proof of proposition 6.1 is straightforward, simply using the definitions of
Z l,ηz , ZΛ,η

z and ψl,η :

1 − ZΛ,η
z

Z l,ηz
=

1

Z l,ηz
(Z l,ηz − ZΛ,η

z )

=
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!

∫

(Rd)n

1IA(ξ1, . . . , ξn) e
−βl,η

n (ξ1,...,ξn)

(
1 −

n∏

i=1

1IΛ−B(ηΛc ,r)(ξi)

)
dξ1 · · · dξn

6
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!

∫

(Rd)n

1IA(ξ1, . . . , ξn) e
−βl,η

n (ξ1,...,ξn)

(
n∑

i=1

1Iψl,η(ξi)>0

)
dξ1 · · · dξn

and using inequality (7), this is

6
e−z2

dld

Z l,ηz

+∞∑

n=0

zn

n!
n

∫

(Rd)n

1IA(ξ1, . . . , ξn) e
−ψl,η(ξ1) e−2Nϕ e−β

l,η
n−1(ξ2,...,ξn)1Iψl,η(ξ1)>0 dξ1 · · · dξn

6
e−z2

dld

Z l,ηz

+∞∑

n=1

z
zn−1

(n− 1)!
νl,ηn−1((R

d)n−1) e−2Nϕ

∫

Rd

1Iψl,η(y)>0 e
−ψl,η(y) dy

6z e−2Nϕ

∫

Rd

1Iψl,η(y)>0 e
−ψl,η(y) dy

�

In order to prove proposition 6.2, we need the following lemma which states that, for nice
trajectories only a finite number of other particles interacts with each fixed particles. Thus
dynamics (E) reduces to an infinite number of SDE involving only a finite random number of
particles up to time 1.
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Lemma 6.3 Let us assume that the path X ∈ C([0, 1]) does not belong to B(m, ρ+m, ε) for some
ε ∈ 1/N∗, some m ∈ N∗ and some ρ ∈ N∗. For k in {0, 1, · · · ,m − 1} we define Jk(X) as the
set of indices i ∈ N such that either |Xi(

k
m)|6ρ + m2 − km + R + ε or Xi(

k
m) belongs to some

(R+ε)-chain of particles which intersects B(0, ρ+m2−km+R+ε). Then the following inclusions
hold :

{i ∈ N, |Xi(0)|6ρ} ⊂ Jm−1(X) ⊂ · · · ⊂ Jk+1(X) ⊂ Jk(X) ⊂ · · · ⊂ J0(X).

Particles of Jk(X) stay around the origin in the following sense :

∀i ∈ Jk(X) ∀t ∈ [
k

m
,
k + 1

m
] |Xi(t)| 6 ρ+m2 +m+ 1.

They are also far away from the others :

∀i ∈ Jk(X) ∀j 6∈ Jk(X) ∀t ∈ [
k

m
,
k + 1

m
] |Xi(t) −Xj(t)| > R+

ε

2
. (18)

Proof of lemma 6.3

The set Jk(X) is defined as the set of indices i ∈ N such that Xi(
k
m) belongs to B(0, ρ + m2 −

km+R+ ε) or is connected to B(0, ρ+m2 − km+R+ ε) by some (R+ ε)-chain of particles of
X( km); thus

∀j 6∈ Jk(X) |Xj(
k

m
)| > ρ+m2 − km+R+ ε

and

∀i ∈ Jk(X) ∀j 6∈ Jk(X) |Xi(
k

m
) −Xj(

k

m
)| > R+ ε

Since X 6∈ B(m, ρ+m, ε) then X( km) does not include any (R+ε)-chain of particles with diameter
greater than m−R− ε :

∀i ∈ Jk(X) |Xi(
k

m
)| 6 (ρ+m2 − km+R+ ε) + (m−R− ε) = ρ+m2 − (k − 1)m (19)

Again since X 6∈ B(m, ρ+m, ε), no particle of X entering B(0, ρ+m+2m2) moves for more than
ε
4 during a time period of length 1

m :

∀i ∈ Jk(X) ∀j 6∈ Jk(X) ∀t ∈ [
k

m
,
k + 1

m
] |Xi(t) −Xj(t)| > R+

ε

2

and

∀i ∈ Jk(X) ∀t ∈ [
k

m
,
k + 1

m
] |Xi(t)| 6 ρ+m2 − (k − 1)m+

ε

4
6 ρ+m2 +m+ 1 .

Moreover

∀j 6∈ Jk(X) |Xj(
k + 1

m
)| > ρ+m2 − km+

3

4
ε > ρ+m2 − km ;

using (19) this leads to
j 6∈ Jk(X) =⇒ j 6∈ Jk+1(X)

which implies the decreasing property of the sets Jk(X).

Now, using once more the “slow motion” property of X, we see that

|Xi(0)|6ρ =⇒ |Xi(1)|6ρ+
ε

4
m 6 ρ+m2 − (m− 1)m+R+ ε =⇒ i ∈ Jm−1(X)

and the proof is complete. �
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Proof of proposition 6.2 (i)

In this whole proof, x ∈ A, ω ∈ Ωx
0 and ρ ∈ N∗ are fixed; we also fix a corresponding ε ∈ 1/N

as in the definition of Ωx
0 and an l ∈ N∗ greater than (or equal to) l0 associated to ω, ε, ρ in the

definition of Ωx
0 . Consequently, m(ρ, l) and a(ρ, l) = ρ+m(ρ, l) are fixed too, and will simply be

denoted by m and a = ρ+m.

Since X l,x(ω, ·) 6∈ B(m, a, ε) and X l+1,x(ω, ·) 6∈ B(m, a, ε), the results obtained in lemma 6.3 hold
for X l,x(ω, ·) and X l+1,x(ω, ·). In particular, recalling (12) we have for each k in {0, 1, · · · ,m−1} :

∀i ∈ Jk(X
l,x(ω, ·)) ∀t ∈ [

k

m
,
k + 1

m
] |X l,x

i (t)| 6 ρ+m2+m+1 < l−r =⇒ ψl,x(X l,x
i (t)) = 0

and since

∀i ∈ Jk(X
l,x(ω, ·)) ∀j 6∈ Jk(X

l,x(ω, ·)) ∀t ∈ [
k

m
,
k + 1

m
] |X l,x

i (t) −X l,x
j (t)| > R+

ε

2

no interaction is possible during the time interval
[
k
m ,

k+1
m

]
between the particles of Jk(X

l,x(ω, ·))
and the other particles. In this case equation (E l) verified by X l,x(ω) during the time interval[
k
m ,

k+1
m

]
reduces to the following equation (E(k, Jk, X

l,x)) for the indices in Jk(X
l,x(ω, ·)) :

∀i ∈ Jk(X
l,x(ω, ·)), ∀t ∈

[
k

m
,
k + 1

m

]
,

X l,x
i (ω, t) = X l,x

i (ω,
k

m
) +Wi(ω, t) −Wi(ω,

k

m
)

−1

2

∫ t

k
m

∑

j∈Jk(Xl,x(ω,·))
∇ϕ(X l,x

i (ω, s) −X l,x
j (ω, s)) ds

+

∫ t

k
m

∑

j∈Jk(Xl,x(ω,·))
(X l,x

i (ω, s) −X l,x
j (ω, s)) dLl,xij (ω, s)

(20)

For the same reasons, the equation (E l+1) verified byX l+1,x(ω, ·) during the time interval
[
k
m ,

k+1
m

]

reduces to the following equation (E(k, Jk, X
l+1,x)) for the indices in Jk(X

l+1,x(ω, ·)) :

∀i ∈ Jk(X
l+1,x(ω, ·)), ∀t ∈

[
k

m
,
k + 1

m

]
,

X l+1,x
i (ω, t) = X l+1,x

i (ω,
k

m
) +Wi(ω, t) −Wi(ω,

k

m
)

−1

2

∫ t

k
m

∑

j∈Jk(Xl+1,x(ω,·))
∇ϕ(X l+1,x

i (ω, s) −X l+1,x
i (ω, s)) ds

+

∫ t

k
m

∑

j∈Jk(Xl+1,x(ω,·))
(X l+1,x

i (ω, s) −X l+1,x
i (ω, s)) dLl+1,x

ij (ω, s)

(21)

But since X l,x(ω, 0) = X l+1,x(ω, 0) = x and Ll,x(ω, 0) = Ll+1,x(ω, 0) = 0, the sets J0(X
l,x(ω, ·))

and J0(X
l+1,x(ω, ·)) are equal and equations (20) and (21) coincide for k = 0. The strong

uniqueness of the solution then implies that :

∀t ∈ [0,
1

m
] ∀i, j ∈ J0(X

l,x(ω, ·)) = J0(X
l+1,x(ω, ·))

X l,x
i (ω, t) = X l+1,x

i (ω, t) and Ll,xij (ω, t) = Ll+1,x
ij (ω, t)

and because J1(X
l,x(ω, ·)) ⊂ J0(X

l,x(ω, ·)) (and idem for J1(X
l+1,x(ω, ·))) this in turn implies

that J1(X
l,x(ω, ·)) = J1(X

l+1,x(ω, ·)). But again, since

∀i, j ∈ J1(X
l,x(ω, ·)) = J1(X

l+1,x(ω, ·)) X l,x
i (ω,

1

m
) = X l+1,x

i (ω,
1

m
) and Ll,xij (ω,

1

m
) = Ll+1,x

ij (ω,
1

m
)
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equations (20) and (21) coincide for k = 1, and the strong uniqueness implies the equality of

X l,x
i (ω, t) and X l+1,x

i (ω, t) (and Ll,xij (ω, t), Ll+1,x
ij (ω, t)) for i in J1(X

l,x(ω, ·)) = J1(X
l+1,x(ω, ·)

and t in [ 1
m ,

2
m ], which in turn implies that J2(X

l,x(ω, ·)) = J2(X
l+1,x(ω, ·).

By induction, we thus obtain that

∀k ∈ {1, . . . ,m− 1} Jk(X
l,x(ω, ·)) = Jk(X

l+1,x(ω, ·))

and

∀k ∈ {1, . . . ,m− 1} ∀i, j ∈ Jk(X
l,x(ω, ·)) ∀t ∈

[
0,
k + 1

m

]

X l,x
i (ω, t) = X l+1,x

i (ω, t) and Ll,xij (ω, t) = Ll+1,x
ij (ω, t).

Using the inclusion chain {i ∈ N, |xi|6ρ} ⊂ Jm−1(X) ⊂ · · · ⊂ J1(X) ⊂ J0(X) which holds
for X = X l,x(ω, ·) and X = X l+1,x(ω, ·) because X l,x(ω, 0) = X l+1,x(ω, 0) = x, we obtain that

X l,x
i (ω, ·) and X l+1,x

i (ω, ·) are equal on [0, 1] for i’s such that |xi|6ρ and the same result holds

for (Ll,xij (ω, ·))i,j and (Ll+1,x
ij (ω, ·))i,j because both local times coincide if j in J0(X

l,x(ω, ·)) and
identically vanish otherwise. Since ρ may be chosen arbitrary large, proposition 6.2(i) is proven.
�

Proof of proposition 6.2 (ii)

Recall that M is endowed with the vague topology, i.e.

(ξn)n
in M−−−−−−→

n→+∞
ξ∞ ⇐⇒ ∀f ∈ Cc(Rd)

∑

i

f(ξni ) −−−−−−→
n→+∞

∑

i

f(ξ∞i )

where Cc(Rd) is the space of continuous functions with compact support.
Then the convergence of (X l,x(ω, ·))l takes place in C([0, 1],M) if and only if

∀f ∈ Cc(Rd)
∑

i

f(X l,x
i (ω, t)) −−−−−−→

l→+∞

∑

i

f(X∞,x
i (ω, t)) uniformly in t ∈ [0, 1]

Since f has a compact support, all the terms in the above sum vanish except at most for a finite
number of indices. Thus the convergence follows directly from proposition 6.2 (i), where the
stationarity was proven uniformly on compact time intervals. �

Proof of proposition 6.2 (iii)

The convergence in C(R+,M) is defined as the convergence in C([0, 1],M). We then have to prove
that for each bounded continuous function g on C([0, 1],M)

∫ ∫
g(X l,x(ω, ·))dP (ω)dµ(x) −−−−−−→

l→+∞

∫ ∫
g(X∞,x(ω, ·))dP (ω)dµ(x)

This is obvious by proposition 6.2 (ii) and the dominated convergence theorem. �

7 Proofs of the main results

Theorem 3.2, theorem 3.3 and proposition 3.4 are now direct consequences of Propositions 7.1,
7.5 and 7.6 enounced and proved in this section. In order to prove these propositions, we need
some more notations. We first fix x ∈ A. For m̃ ∈ N∗, ã>1 and ε ∈ 1/N fixed, let Ωx(m̃, ã, ε) be
the set of ω’s such that X l,x(ω, ·) does not belong to B̃(m̃, ã, ε) for an infinite number of indices
l :

Ωx(m̃, ã, ε) =
{
ω ∈ Ω : ∀p ∈ N ∃l>p, X l,x(ω, .) 6∈ B̃(m̃, ã, ε)

}
= lim sup

l→+∞
{X l,x 6∈ B̃(m̃, ã, ε)}
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We also define

Ωx
1 =

{
ω ∈ Ω s.t. ∀ε ∈ 1/N for ρ large enough and for an infinite number of l’s X l,x 6∈ B̃(ρ,R, ε)

}

=
⋂

ε∈1/N

lim inf
ρ→+∞

Ωx(ρ,R, ε) (22)

We have the following result :

Proposition 7.1 For every x ∈ A and ω ∈ Ωx
0 ∩Ωx

1 , the process (X∞,x(ω, .), L∞,x
ij (ω, .)) satisfies

equation (E) with X∞,x(ω, 0) = x.

Thus, for any x ∈ A = {ξ ∈ A : P (Ωξ
0 ∩ Ωξ

1) = 1}, the process (X∞,x, L∞,x
ij ) is a solution of (E)

with initial condition x.
Moreover for each z < zc and µ ∈ G(z) µ(A) = 1.

Before proving this proposition, we first establish some useful results on Ωx(m̃, ã, ε) and Ωx
1 .

Lemma 7.2 For each µ ∈ G(z), for each ε ∈ 1/N, m̃ ∈ N∗ and ã>1, one has

∫
P (Ωx(m̃, ã, ε)c)dµ(x) 6 z C ′

d e
−2Nϕ ãd m̃2d exp

(
− ε

2

96
m̃

)

As a corollary :

∫
P (Ωx

1)dµ(x) = 1

Lemma 7.3 For each m̃ ∈ N∗, ã>1 and ε ∈ 1/N one also has

∀ω ∈ Ωx
0 ∩ Ωx(m̃, ã, ε) X∞,x(ω, ·) 6∈ B̃(m̃, ã, ε)

and consequently

∀x ∈ A ∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 X∞,x(ω, ·) 6∈ B̃(ρ,R, ε)

Proof of lemma 7.2 By definition of Ω(m̃, ã, ε) one has

Ωx(m̃, ã, ε)c = lim inf
l→+∞

{
ω ∈ Ω s.t. X l,x(ω, ·) ∈ B̃(m̃, ã, ε)

}
.

By Fatou lemma

∫
P (Ωx(m̃, ã, ε)c)dµ(x) 6 lim inf

l→+∞

∫
P (X l,x(ω, ·) ∈ B̃(m̃, ã, ε))dµ(x).

Using inequality (16) (see the proof of proposition 6.1 step 1) applied to the event Θ = B̃(m̃, ã, ε)
we obtain the following bound :

∫
P (Ωx(m̃, ã, ε)c)dµ(x) 6 lim inf

l→+∞

∫

A
Ql,ηz (B̃(m̃, ã, ε)) dµ(η) + 2

∫

A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η);

thus by proposition 5.6

∫
P (Ωx(m̃, ã, ε)c)dµ(x)

6

∫

A
z C ′

d e
−2Nϕ ãd m̃2d exp

(
− ε

2

96
m̃

)
dµ(η) + 2 lim

l→+∞

∫

A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η)
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Inequality (17) implies that lim
l→+∞

∫

A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η) = 0 thus

∫
P (Ωx(m̃, ã, ε)c)dµ(x) 6 z C ′

d e
−2Nϕ ãd m̃2d exp

(
− ε

2

96
m̃

)
.

Replacing m̃, ã by ρ,R in the above inequality, we obtain :

∀ε ∈ 1/N
+∞∑

ρ=1

∫
P (Ωx(ρ,R, ε)c)dµ(x) < +∞.

By Borel-Cantelli lemma, this leads to :

∀ε ∈ 1/N

∫
P (lim sup

ρ→+∞
Ωx(ρ,R, ε)c)dµ(x) = 0

and consequently

∫
P ((Ωx

1)c)dµ(x) =

∫
P (

⋃

ε∈1/N

lim sup
ρ→+∞

Ωx(ρ,R, ε)c)dµ(x) = 0.

�

Proof of lemma 7.3

According to proposition 6.2(i)

∀x ∈ A ∀ω ∈ Ωx
0 ∀i ∈ N ∃l0 ∈ N ∀l>l0 X∞,x

i (ω, ·) = X l,x
i (ω, ·) on [0, 1].

Consequently, for x ∈ A and ω ∈ Ωx(m̃, ã, ε) ∩ Ωx
0 and for i ∈ N, there exists an l>l0 such that

X l,x(ω, ·) 6∈ B̃(m̃, ã, ε), i.e.

X∞,x
i (ω, ·) = X l,x

i (ω, ·) on [0, 1] and w(X l,x
i (ω, ·), 1

m̃
)6
ε

4
or ∀t61, |X l,x

i (ω, t)| > ã+ 2m̃2

Thus

∀x ∈ A ∀ω ∈ Ωx(m̃, ã, ε)∩Ωx
0 ∀i ∈ N w(X∞,x

i (ω, ·), 1

m̃
)6
ε

4
or ∀t61, |X∞,x

i (ω, t)| > ã+ 2m̃2.

By definition of Ωx
1 , ∀x ∈ A ∀ω ∈ Ωx

0 ∩ Ωx
1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 ω ∈ Ωx(ρ,R, ε)

thus

∀x ∈ A ∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 ∀i ∈ N

w(X∞,x
i (ω, ·), 1

ρ
)6
ε

4
or ∀t61, |X∞,x

i (ω, t)| > R+ 2ρ2

that is ∀x ∈ A ∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 X∞,x(ω, ·) 6∈ B̃(ρ,R, ε). �

Proof of proposition 7.1

Let us fix µ ∈ G(z) for some z < zc. As corollary of proposition 6.1 and lemma 7.2,

∫
P (Ωx

0 ∩
Ωx

1)dµ(x) = 1 . This proves that for µ-almost every x in A, P (Ωx
0 ∩ Ωx

1) = 1 and then µ(A) = 1.

We fix now x ∈ A and ω ∈ Ωx
0 ∩ Ωx

1 .

We first use the fact that ω ∈ Ωx
0 . For ε ∈ 1/N smaller than ε0 corresponding to ω in the

definition of Ωx
0 , for each ρ ∈ N∗, for each l>ρ + 1 greater than l0 associated to ω, ε, ρ, we have
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X l,x(ω, ·) 6∈ B(m(ρ, l), ρ +m(ρ, l), ε). Lemma 6.3 and inequality (12) then imply, as in the proof

of proposition 6.2(i), that |X l,x
i (ω, t)| < l − r for t ∈ [0, 1] and for i’s such that |xi|6ρ. Equation

(E l) then reduces to the simpler equation :

∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ρ ∈ N∗ ∃l0 s.t. ∀l>l0 ∀i s.t. |xi|6ρ ∀t ∈ [0, 1]

X l,x
i (ω, t) = xi +Wi(ω, t) −

1

2

∫ t

0

∑

j∈N

∇ϕ(X l,x
i (ω, s) −X l,x

j (ω, s)) ds

+

∫ t

0

∑

j∈N

(X l,x
i (ω, s) −X l,x

j (ω, s)) dLl,xij (ω, s).

(23)

Since ω belongs to Ωx
1 too, for each ε ∈ 1/N∗ there exists ρ0 such that ω ∈ Ωx(ρ,R, ε) for each ρ>ρ0.

Let us fix such a ρ. Since ω ∈ Ωx(ρ,R, ε), there exists an infinite number of indices l such that
X l,x(ω, ·) 6∈ B̃(ρ,R, ε). Remark that R+2ρ2>ρ+ ε

4ρ+R so for l’s such that X l,x(ω, ·) 6∈ B̃(ρ,R, ε)
we have :

∀i ∈ N |xi|6ρ =⇒ ∀t ∈ [0, 1] |X l,x
i (ω, t)|6ρ+

ε

4
ρ

∀j ∈ N |xi| > ρ+
ε

2
ρ+R =⇒ ∀t ∈ [0, 1] |X l,x

j (ω, t)| > ρ+
ε

4
ρ+R

(24)

Equation (23) holds for these indices l provided l>l0(ω, ρ, ε) and in this case we may replace the
sums over j ∈ N by sums over {j, |xj |6ρ+ ε

2ρ+R}, due to (24) .

∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0

for an infinite number of l’s and for all i s.t. |xi|6ρ ∀t ∈ [0, 1]

X l,x
i (ω, t) = xi +Wi(ω, t) −

1

2

∫ t

0

∑

{j:|xj |6ρ+ ε
2
ρ+R}

∇ϕ(X l,x
i (ω, s) −X l,x

j (ω, s)) ds

+

∫ t

0

∑

{j:|xj |6ρ+ ε
2
ρ+R}

(X l,x
i (ω, s) −X l,x

j (ω, s)) dLl,xij (ω, s)

(25)

Since the set {j : |xj |6ρ+ ε
2ρ+R} is finite, using proposition 6.2(i) we can choose l large enough

such that (25) holds and

∀j s.t. |xj |6ρ+
ε

2
ρ+R X l,x

j (ω, ·) = X∞,x
j (ω, ·) on [0, 1].

Consequently

∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 ∀i s.t. |xi|6ρ ∀t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) −

1

2

∫ t

0

∑

j,|xj |6ρ+ ε
2
ρ+R

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+

∫ t

0

∑

j,|xj |6ρ+ ε
2
ρ+R

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s)

(26)

On the other hand, since ω ∈ Ωx(ρ,R, ε) ∩ Ωx
0 for each ρ>ρ0, lemma 7.3 leads to : X∞,x(ω, ·) 6∈

B̃(ρ,R, ε). As already remarked for X l,x(ω, ·), this implies that it is equivalent to sum over j ∈ N

or over {j, |xj |6ρ+ ε
2ρ+R} in the above equation :

∀ω ∈ Ωx
0 ∩ Ωx

1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ>ρ0 ∀i s.t. |xi|6ρ ∀t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) −

1

2

∫ t

0

∑

j∈N

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+

∫ t

0

∑

j∈N

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s)
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Then the equation does not depend on ε and ρ any more. It is simply :

∀ω ∈ Ωx
0 ∩ Ωx

1 ∀i ∈ N ∀t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) −

1

2

∫ t

0

∑

j∈N

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+

∫ t

0

∑

j∈N

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s)

This prove that for ω ∈ Ωx
0 ∩ Ωx

1 , X∞,x(ω, ·) satisfies (E) and is such that X∞,x(ω, 0) = x. �

Remark 7.4 : Ωx
1 is constructed here as

⋂

ε∈1/N∗

lim inf
ρ→+∞

Ωx(m̃(ρ), ã(ρ), ε) with the choice m̃(ρ) =

ρ and ã(ρ) = R, but any choice of m̃(ρ), ã(ρ) such that
∑

ρ

ã(ρ)dm̃(ρ)2d exp

(
− ε

2

96
m̃

)
< +∞ is

convenient to obtain
∫
P (Ωx

1) dµ(x) = 1 and any choice such that ã(ρ) + 2m̃(ρ)2>ρ + ε
4ρ + R

suffices to construct X∞,x solution of (E) on Ωx
1 .

Proposition 7.5 The process (X∞,x
i (t), L∞,x

ij (t), i, j ∈ N, t ∈ R+) is the unique solution of equa-
tion (E) with initial point x ∈ A inside the class of paths C defined as follows :

X ∈ C(R+,A) belongs to C if there exists ε > 0 and p ∈ N∗ such that for all ρ,m0 ∈ N∗ there
exists an integer m>m0, a sequence 0 = t0 < t1 < · · · < tm′ = 1 in Q verifying tk+1 − tk6

1
m and

bounded open sets C0, C1, · · · , Cm′−1 in Rd which satisfy

B(0, ρ+m) ⊂ Cm′−1 ⊂ B(Cm′−1, ε) ⊂ Cm′−2 ⊂ · · · ⊂ B(C1, ε) ⊂ C0 ⊂ B(0, ρ+m+mp)

and

∀k ∈ {0, · · · ,m′ − 1} d ({Xj(u), j ∈ N∗, u ∈ [tk, tk+1]}, ∂Ck) >
R

2
+
ε

4

Proof of prop 7.5

We first check that for ω ∈ Ωx
0 , X∞,x(ω, ·) ∈ C :

We choose ε = ε06R as in the definition of Ωx
0 and p = 2. For each ρ and m0 in N∗, one may find

l>l0(ω, ρ, ε) large enough to have m(ρ, l)>m0. Then m = m(ρ, l), m′ = m, tk = k
m and

Ck = B

(
0, ρ+m2 − km+

R+ ε

2

)
∪

⋃

i∈Jk(X∞,x(ω,·))
B

(
X∞,x
i (ω,

k

m
),
R+ ε

2

)

are convenient choices (Recall lemma 6.3 and the proof of proposition 6.2(i) which implies that

d

(
{X∞

j (u), j ∈ N∗, u ∈ [
k

m
,
k + 1

m
]}, ∂Ck

)
>
R

2
+
ε0
4

and that B(Ck, ε) ⊂ B(0, ρ+m2 − (k − 1) +m+ ε
4 + ε) ⊂ Ck−1).

The proof of uniqueness is then a direct generalization of the proof of uniqueness for hard core
potential made by Tanemura [Tan96], Lemma 5.4; so we omit it (the basic idea is to decompose
the time interval in a union of intervals [k/m, (k+1)/m], on which each coordinate of the process
is the unique solution of a finite-dimensional stochastic differential equation like (20)). �

Proposition 7.6 If µ, the law of X∞(0), belongs to G(z) , then the process X∞ solution of
equation (E) is a reversible process.
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Proof of proposition 7.6

We have to prove that for any T ∈ [0, 1], for f1, . . . , fk bounded continuous functions on M with
compact support and for t1, . . . , tk ∈ [0, T ] :

∫
E

(
k∏

i=1

fi(X
∞,x(ti))

)
dµ(x) =

∫
E

(
k∏

i=1

fi(X
∞,x(T − ti))

)
dµ(x) (27)

But X∞ is, by construction, the weak limit of X l. Then equality (27) holds if the following
equality holds :

lim
l→+∞

∫
E

(
k∏

i=1

fi(X
l,x(ti)) −

k∏

i=1

fi(X
l,x(T − ti))

)
dµ(x) = 0

Like in the proof of proposition 6.1 step 1 (cf inequalities (16) and (17)), we go back to the process

X l,η, which is (by proposition 4.1) reversible when its initial distribution is µl,ηz :

∣∣∣∣∣

∫
E

(
k∏

i=1

fi(X
l,x(ti)) −

k∏

i=1

fi(X
l,x(T − ti))

)
dµ(x)

∣∣∣∣∣

6

∣∣∣∣∣

∫

A

∫

A

k∏

i=1

fi(X(ti)) −
k∏

i=1

fi(X(T − ti)) dQ
l,η
z (X) dµ(η)

∣∣∣∣∣

+ 2

k∏

i=1

sup
ξ∈A

|fi(ξ)|
∫

A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η)

where Λ = [−l, l]d. The first term of the right hand side is equal to 0 and the second term tends
to zero as l tends to infinity. �

8 Appendix : Estimate of the probability of fast oscillation for

Brownian motion

Proposition 8.1 If W is a (one-dimensional) Brownian motion on (Ω,F , P ) then for every
ε > 0 and every δ ∈]0, 1]

P (w(W, δ)>ε) 6
41

δ
exp

(
− ε

2

5δ

)

Proof of proposition 8.1

We first use Doob’s inequality for the submartingale exp(2W (·)2/5s0) and then the Gaussian
property E(exp(aW (1)2)) = 1/

√
1 − 2a to obtain

P (∃s6s0 , |W (s)|>β) = P

(
sup

06s6s0

exp(
2W (s)2

5s0
) > exp(

2β2

5s0
)

)

6 exp(−2β2

5s0
)E

(
exp(

2W (s0)
2

5s0
)

)
= exp(−2β2

5s0
)E

(
exp(

2W (1)2

5
)

)
=

√
5 exp(−2β2

5s0
) (28)

Splitting the time interval [0, 1] in pieces of length δ/8 and using, first the translation invariance

29



of the distribution of W (s+ u) −W (s), then inequality (28) and finally 161/δ we obtain :

P (w(W, δ)>ε) = P


 sup

|t−s|<δ
06s,t61

|W (t) −W (s)|>ε




6 P

(
∃i ∈ {0, δ

8
,
2δ

8
,
3δ

8
, · · · } ∩ [0, 1] ∃s ∈ [i, i+

δ

8
[ ∃t ∈ [s, s+ δ[ s.t. |W (t) −W (s)|>ε

)

6

([
8

δ

]
+ 1

)
P

(
∃s ∈ [0,

δ

8
[ ∃t ∈ [0,

δ

8
+ δ[ s.t. |W (t) −W (s)|>ε

)

6

(
8

δ
+ 1

)
P

(
∃s ∈ [0,

δ

8
[ ∃t ∈ [0,

9δ

8
[ s.t. |W (s)|>ε

4
or |W (t)|>3ε

4

)

6

(
8

δ
+ 1

)(
P

(
∃s ∈ [0,

δ

8
[ s.t. |W (s)|>ε

4

)
+ P

(
∃t ∈ [0,

9δ

8
[ s.t. |W (t)|>3ε

4

))

6

(
8

δ
+ 1

)(√
5 exp(−2

5

ε2

16

8

δ
) +

√
5 exp(−2

5

9ε2

16

8

9δ
)

)

6
9

δ
2
√

5 exp(− ε
2

5δ
)

6
41

δ
exp(− ε

2

5δ
)
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