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Increasing coupling of
Probabilistic Cellular Automata

P.-Y. Louis

Institut fiir Mathematik, Potsdam Universitdt,
Am neuen Palais, Sans Souci,
Potsfach 60 15 53, D-14 415 Potsdam

Abstract

We give a necessary and sufficient condition for the existence of an increasing cou-
pling of N (N > 2) synchronous dynamics on SZd(PCA). Increasing means the
coupling preserves stochastic ordering. We present our main construction theorem
in the case when S is totally ordered; applications to attractive PCA are given.
When S is only partially ordered we compare our results with previous ones. We
also prove an extension of our main result to some class of partially ordered spaces.

Key words: Probabilistic Cellular Automata, Stochastic ordering, Monotone
Coupling
2000 MSC: 60K35, 60E15, 60J10, 82C20, 37B15, 68W10

1 Introduction

Probabilistic Cellular Automata (usually abbreviated in PCA) are discrete-time Markov
chains on a product space S* (configuration space) whose transition probability is a prod-
uct measure. Usually S is assumed to be a finite set (so called spin space). We denote by
A (set of sites) a subset, finite or infinite, of Z¢. Since the transition probability kernel
P(do|o’) (o,0" € S*) is a product measure, all interacting elementary components called
spins {0} : k € A} are simultaneously and independently updated (parallel updating).
This synchronous transition is the main feature of PCA and differs from the one in the
most common Gibbs samplers, where only one site is updated at each time step (sequen-
tial updating). In opposition to these dynamics with sequential updating, it is simple to
define PCA’s on the infinite set SZ° without passing to continuous time.
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Probabilistic Cellular Automata were first studied as Markov chains in the 70’s, these
results are collected in Toom et al. (1978). We refer to Louis (2002) for recent detailed
historical informations and list of possible applications of Cellular Automata dynamics,
which, like for continuous time interacting particle systems are to be found in physics,
biology... Let us here just mention their important use in image restoration (see Younes
(1998)) The theoretical works cited above emphasise the variety of behaviours PCA dy-
namics may present. Let us only mention the following fact: in opposition to usual discrete
time sequential updating dynamics, for a given measure p, there is no canonical way to
construct a PCA for which p is stationary. Moreover, there exists Gibbs measures on Sz
such that no PCA admits them as stationary reversible measures (cf. Theorem 4.2 in
Dawson (1974)).

Coupling means the construction of a product probability space on which several dynam-
ics may evolve at the same time and with the property the marginals coincide with each
one of these dynamics. The original idea comes from the pioneer work of Doeblin (Doe-
blin (1938)) who used such construction to investigate the ergodic behaviour of Markov
Chains. Coupling techniques for stochastic processes are now established powerful tools
of investigation (cf. Liggett (1993)). We refer to Lindvall (1992) and Thorisson (2000) to
a more extensive review and applications to a large scope of probabilistic objects. For
instance, coupling techniques are used in fiability theory (cf. Cocozza-Thivent and Rous-
signol (1995)) and in statistical mechanics (see Chapter 4 in Georgii et al. (2001)). For
the analysis of the time asymptotics of markovian dynamics (cf Griffeath (1978)) or more
precisely Interacting Particle Systems, coupling arguments were developed and used (see
for instance Liggett (1985); Chen (1992)). The idea goes back to Harris (1955) and Spitzer
(1970).

The first use of a coupling of Probabilistic Cellular Automata is in Vasershtein (1969)
(see also Chapter 3 in Toom et al. (1978)). It was also used in Maes (1993) to state some
ergodicity criterion for PCA when there is a weak dependence between the sites. Recently,
the coupling constructed in this paper was used to state some necessary and sufficient
condition for exponential ergodicity for attractive PCA (see Louis (2004)). This last result
relies on the fact that our coupling preserves the stochastic order between configurations
(so called increasing coupling). In Lopez and Sanz (2000) the authors give some necessary
and sufficient condition for the existence of a preserving stochastic ordering coupling of two
(possible different) PCA on SZ‘where S admits a partial order. As emphasised in this work,
the synchronous evolution of all the components leads to a more complicated situation as
in the sequential updating case. In this paper, we give necessary and sufficient condition
for the existence of an increasing coupling of any finite number of possibly different PCA
dynamics. As some counter examples state it in section 5, there is a gap between increasing
coupling of two PCA and a number N of PCA with N > 3. Moreover, we give here an
explicit algorithmic construction of this coupling. It is a kind of graphical construction, as
the usual one introduced in Harris (1972, 1978) to construct Interacting Particle Systems.
We also give several examples and general applications of the constructed coupling. The
motivation of coupling three or more PCA comes indeed from the paper Louis (2004) were
comparison between four different PCA dynamics was useful.



In section 2 we state our main result, namely the existence, under some necessary and
sufficient condition of monotonicity (Definition 2.2), of an increasing coupling of several
PCA dynamics (Theorem 2.3). Corollary 2.4 states the existence of some universal cou-
pling of an attractive PCA. Important examples are also presented. In section 3 we prove
these results, and state some important property (Lemma 3.2) of coherence between the
different coupling. We then present in section 4 some useful consequences of the coupling.
In section 5 we consider the case where S is a partially ordered set. Despite the fact
that a coupling of two PCA may be considered, two counter-examples state that it can
happen that an increasing coupling of N PCA dynamics do not exist when N > 3. A
generalisation of Theorem 2.3 and Corollary 2.4 to the case where S is partially linearly
ordered is presented.

Finally, let us notice that the motivation for considering partially ordered spin spaces
comes from considering ’block dynamics’ where not all sites are updated at the same
time, but group of them. It means considering PCA on (ST)Zd where 7 is the number of
sites in these blocks. And even if S is totally ordered, (S”) is not naturally totally ordered.

Pay attention all the measures considered in this paper are probability measures.

2 Definitions and main results

Let S be a finite set, with a partial order denoted by <. Let s < s’ such that s # s’ be
denoted with s = §'. Let P denotes a PCA dynamics on the product space SZ' which
means a time-homogeneous Markov Chain on SZ" whose transition probability kernel P
verifies, for all configuration n € S2°, o = (0% ) peza € Sz

P(do|n)=© pi(dox|n),

where for all site k € Z%, py( . |n) is a probability measure on S, called updating rule. In
other words, given the previous time step (n— 1), all the spin values (wg(n)),cze at time n
are simultaneously and independently updated, each one according to the probabilistic
rule pi( . | (ww(n —1))peza). We will denote P = ®@ pj. Let us assume that the PCA
keZ

dynamics considered here are local which means Vk € Z¢, 3V, € Z%, pi( . |n) = pi( - |mv.),
where the notation A € Z¢ means A is a finite subset of Z¢. For any subset A of Z¢, and
for all configurations ¢ and 7 of SZ' the configuration oanac is defined by oy, for k € A,
Nk elsewhere. Let oa = (0%)ren to0O.

For v probability measure on Sz (equipped with the Borel o-field associated to the
product topology), vP refers to the law at time 1 of the PCA dynamics with law v at
time 0: vP(do) = [ P(do|n)v(dn). Recursively vP™ = (vP" V)P is the law at time



n of the system evolving according to the PCA dynamics P and initial law v. For each
function f on S%, P(f) denotes the function defined by P(f)(n) = [ f(o)P(do|n).

Let us now define some notions of stochastic ordering <. Two configurations ¢ and 7 of
SA (with A € Z9) satisfy o < n if VK € A, 0, < . A real function f on S* will to be
increasing if 0 < n = f(0) < f(n). Thus two probability measures 14 and v, satisfy the
stochastic ordering vy < v, if, for all increasing functions f on S, v (f) < vo(f), with the
notation v;(f) = [ f(o)vi(do). As Markov chain, a PCA dynamics P on S* (A C Z9) is
said to be attractive if for all increasing function f, P(f) is still increasing. It is equivalent
to the property p; < po = 1 P < e P where pq, 1o are probability measures on Sz

Definition 2.1 (Synchronous coupling of PCA dynamics)

Let P',P?% ..., PN be N probabilistic cellular automata dynamics, with P' = ®dp§€. We
keZ

call synchronous coupling of the (P')1<i<y a Markovian dynamics Q on (SZ)N ~ (SN2,

which is a PCA dynamics too, and with marginals the P'. It means that Q = ®d qr with
keZ

Vie{l,...,N}, VsieS, V(es”,
P ¢ =3 a( (% ™) [ (M), (1)

s1€S,j#i

Let us now introduce a notion of order between PCA dynamics on SZ°.

Definition 2.2 (Increasing N-uple of PCA dynamics) Let (P, P% ... P"N) bea N-
uple of PCA dynamics where N > 2 and P' = ® pk (1 <i< N). It is said (monotone)
increasing if: V(' < (2 < ... < (Y,

PSP 1)< < PY(L | ¢Y) (2)

Since P( . |o) is a product measure, according to Proposition 2.9 in Toom et al. (1978)
condition (2) is equivalent to:
V' PV, VR e Zl,

pel- 1) = 1) < =sp (- ¢Y) (3)

Here is now our main statement:

Theorem 2.3 Let S be a totally ordered space. Let (P*)1<i<n be a N-uple of PCA dynam-

ics on S, It emists a synchronous coupling Q called increasing coupling of (P!, P2, ..., PY)
with the following property: for any initial configuration o' < o? < ... <oV, Vn >1
Q(w'(m<...x¥m) | @ ,wM)0) = (0., 0") ) =1 (4)



if and only if (P, ..., PY) is increasing.
We will denote the one we construct by P ® P?® ... ® PV,

Note that the property of preserving the order implies the coupling has the coalescence
property. It means, if two components take the same value for some time, then they (and
all the components inbetween) will have the same value from this time on.

Lemma 3.3 will state, for a PCA dynamics P, that if P is an attractive dynamics then
for all N > 2, the N-uple (P, P, ..., P) is increasing. An immediate consequence of The-
orem 2.3 is the

Corollary 2.4 Let S be a totally ordered space, P be a PCA dynamics on S%* and N > 2.
It exists an increasing coupling

P = p®V (5)
iof and only iof P is attractive.

Lemma 3.1 to be shown in section 3 gives a practical constructive criteria for testing if
an N-uple of PCA dynamics is increasing or the attractiveness of some PCA P. We use
it in the following examples.

Example of a family of different PCA dynamics
Let S ={—1,+1} and the (P%"),c;cxy a family of N PCA dynamics on {—1,+1}*
defined by Vk € Z4, Vn € {—1,+1,}%", Vs € {1, +1}

(s ) = 5 (14 stanh(B 3 K~ B+ k). )

k'eza

where (53;)1<i<n are positive real numbers, (h;);<i<y real numbers, and K : Z¢ — R is
an interaction function between sites which is symmetric and has finite range R > 0 (i.e.
for all k of Z* such that ||k|| > R then K(k) = 0, with [[k|| = >0, k).

This example is an important family of PCA dynamics. PCA of this form are the most
general ones among the reversible PCA dynamics on {—1, +1}Zd (which means it admits
at least one reversible probability measure) (see subsection 4.1.1 in Louis (2002)). When
B; = 3, for hy < ... < hy, the N-uple (P?") ., is increasing. On the other hand,
note that in the case h; = 0, the assumption 3; < ... < By does not imply the N-uple
(PP9)i<n is increasing. Consider for instance (; = %, By = 3, d = 2, K such that
Vi ={k —ei,k+ei,k— ek + ey} where (e, ¢e3) is a basis of R2. Condition (3) is false
considering k = 0, C‘l/o consisting of four —1, and Q‘Q/O of three —1 and one +1.

Example of an attractive PCA dynamics

Let PP" some PCA dynamics defined thanks to the updating rule (6) (8 > 0, h € R).
This dynamics is attractive if and only if /C(.) > 0 holds (cf. Proposition 4.1.2 in Louis
(2002)). For a more systematic study of this class, let us refer to Dai Pra et al. (2002)
and Louis (2004).



Example of an attractive PCA dynamics with #S5 =¢q, ¢ > 2
Let S={1,...,4} (¢ = 2), and consider the updating rule
eﬁNk(s7U)

d 74 _
VkeZ® VseS, YoeS%, p(slo)= S eg €FNk(0)

(7)

where § > 0 and Ni(s,0) is the number of oy (K’ € Vi) which are larger than s. It is
attractive for any 3 non-negative.

3 Proof of the main results

Assume in this section that S is a totally ordered set. Let us then enumerate the spin
set elements with S = {—,...,s,s + 1,...,4+} where we denote with + (resp. —) the
(necessarily unique) maximum (resp. minimum) value of S and for s € S, (s+ 1) denotes
the only element in S such that there isno s” € S, s 2 " X s+ 1.

A real valued function f on S%"is said local if 3IA; € Z?, Yo € S, f(0) = f(oa,).

Lemma 3.1 When S is a totally ordered space, the monotonicity condition (3) is equiv-
alent to

VEeZ' V' < (2= g (N e (ST vse S
Fi(s,¢") = Fi(s, %) = .o 2 BY(s,¢Y), (8)

where F}(s, o) is the repartition function of pi(.|o):

Fi(s,0)= ¥ pi(s'lo)  (s€S,oeS™ ie{l,...,N}). (9)

s'<s

Proof. The implication (3) = (8) is straightforward using the increasing function f(s") =
1y<s. To prove (8) = (3) it is enough to remark that, for any function f: S — R,

pi(flo) = f(+) + 2 (o) = fls+ 1) Fi(s,0). (10)

Proof of Theorem 2.3 We explain the way to construct explicitly the coupling P'® P?®
...® PY. Let n be a fixed time, and let us describe how to construct (w!,...,w™)(n + 1)
€ SV, knowing the configuration (w',...,w")(n). Let (Ug)rea be a family of independent
identically distributed uniform laws on |0, 1[. Since we are constructing a synchronous
coupling, it is enough to define the rule for a fixed site & € Z?. Let call r a realization of
the random variable Uy. Use the following algorithmic rule to choose the value wi(n + 1)



forany i (1 <i < N):

if Fi(s—1,0'(n)) <r < Fi(s,w'(n)), sz —, assignwi(n+1)=s a1

if 0 < r < Fi(—,w(n)) assign wi(n+1) = —

This rule corresponds to the definition of the coupling between times n and n+1 according
to

Vk € 7%, <w,i(n + 1)) = <(F;§( : >wi(n)))_1(Uk))

where (F})~! denotes the Lévy probability transform (generalised inverse probability
transform) of the F} repartition function

1IN 1IN

(F)) ' (t) = inf{s € S: Fi(s) > t}, t€]0,1].

ES

Finally, remark that the stochastic dependence between the components i comes from the
fact that we use the same realisation r of U, for all the components. The fact that this
coupling preserves stochastic ordering is then easy to check according to this construction,
when the monotonicity of (P!, ..., PY) is assumed, since it is equivalent to check (8)
(Lemma 3.1).

Reciprocally, the condition (8) is necessary. Assume it exists a synchronous coupling
(qr)reze of N PCA dynamics on SZ" which preserves the stochastic ordering. It means
that for ¢' < ... < ¢, q( . [(¢h, ..., ¢Y)) > 0 only on (SY)* where (SN)Jr is the subset
{(st,...,8V) st g ... 58V of SN . Let s€ S, 1<i< N,and (' <... < (" be fixed.
Using the condition (1) on the i-th marginal of a coupling, we have

F(s,¢)= 5 al(sh s ¢,
(st,...,sV )AL
where AZ

= {(s",...,s") € ()" : 5" < s}. Decompose A} = A7 U A] with A} =
{sh,...,s") e

(S )+ "2 s < s} (U denotes the disjoint union). Finally note that

Fi(s,¢) = F7(s,¢" + X al(sh . sMIC - ¢Y)

(517"'75N)6A§

where the last term is non negative. O

Pay attention to the compatibility property that the introduced coupling presents:

Lemma 3.2 Let N and N' be two integers such that 1 < N < N'. Let (P',..., PN") be
N’ PCA dynamics. The projection of the coupling P*® P?...® PN on any N components
(i1,...,in) coincides with the coupling (P, ... P™V).



Proof. According to the construction of the increasing coupling, this result can be checked
straightforward. O

Lemma 3.3 Let P be a PCA dynamics on SZ It is an attractive dynamics if and only
if, for all N > 2, the N-uple (P, P, ..., P) is increasing.

Proof. Assume P is attractive. Let k € Z? be fixed, and let f be a local increasing
function on S. It may be considered as a function on S%’such that Vo € S, f(0) = f(o).
Since P(f) = pi(f) is an increasing function, relation (3) holds with p} = py,Vi. The
equivalence (3) <= (2) gives (P,..., P) increasing for any N > 2.

Reciprocally, (P, P) is assumed to be increasing. Then relation (8) holds with the same
dynamics on the two components. Let f be an increasing function on S%such that 3k €
7%, Yo € ¥, f(0) = f(ok). According to the formula (10), we conclude that P(f) is
increasing. Recursively, we can state the same result for all local functions, because of
the product form of the kernels. Since S is finite, S%‘is compact, and a density argument
gives the conclusion. O

Proof of Corollary 2.4 Thisresult is a direct consequence of Theorem 2.3 and Lemma 3.3.
One only needs to justify the notation P to denote the coupling P® P®...® P of N times
the same attractive PCA dynamics P. Using the compatibility property of the constructed
coupling (Lemma 3.2), when the dynamics on each components are identical, the marginal
of P®N" on N components chosen in {1,.., N'} is the same as the coupling P®". So the
notation P can be used to denote the coupling P®Y for N large enough. O

4 Applications

In this section, let us first, for dynamics on S* (A € Z%) associated to a PCA on SZ(cf.
formul (12)), give a structural property for some of their stationary measures (Proposi-
tion 4.1). The relation between these measures and the stationary measures for the PCA
dynamics on S%'is then established (Proposition 4.2). It is analogous to Theorem 2.3 in
Liggett (1985) with the advantage here of the finite volume approach. In particular, note
we state the coincidence between spatial limits and temporal limits (cf. equations (15)
and (16)). Proposition 4.4 state inequalities comparing the behaviour of the PCA with
the one of these associated finite volume PCA. See also Louis (2004) for applications.

Let P = ®dpk be an attractive PCA dynamics on SZ¢ where S is, as in the previous
keZ

section, a totally ordered space.



4.1  Finite volume PCA dynamics

Let A € Z¢ be a finite subset of Z?, called finite volume. We call finite volume PCA
dynamics with boundary condition T (T € SZ or 7 € SAY), the Markov Chain on S*
whose transition probability Py is defined by:

Pi(doa [na) = & pel dok | maTac ). (12)
It may be identified with the following infinite volume PCA dynamics on S%°:

Pi(do [ na ) = k@gApk( doy | NaTae ) ® 7, (dope) (13)

where the spins of A evolve according to Pf, and those of A° are almost surely ‘frozen’ at
the value 7. We assume that the finite volume PCA dynamics Py are irreducible and ape-
riodic Markov Chains. They then admit one and only one stationary probability measure,
called v}, (i.e. v{ P{ = v}); furthermore Pf is ergodic, which means lim,, .. pa(P})™ = v}
in the weak sense, for any initial condition p,.

A sufficient condition for the irreducibility and aperiodicity of Py is for instance to assume
that PCA dynamics studied are non degenerate ones. It means: Yk € Z4, Vn € SZd, Vs €
S, pr( s |n) > 0. The following Proposition states that the finite volume stationary mea-
sures associated with extremal boundary conditions satisfy some sub/super-DLR relation,
which means are sub/super-Gibbs measures. In the very special case S = {—1,+1} and
for P reversible this result was shown in Dai Pra et al. (2002).

Proposition 4.1 Let v{ (resp. vy ) be the unique stationary probability measure asso-
ciated with the finite volume PCA dynamics Py (resp. Py ) with + (resp. —) extremal
boundary condition . Let A C A" € Z¢. Following inequalities hold for any o:

vp(loana) 7 va () and v (foana) < vl (). (14)

Proof. First remark, using (3) that the pair of PCA (P, Py ® dy,,,) (resp. (Py ®

o_ AN Py) on SV is increasing. Using the increasing coupling defined in Theorem 2.3, we

state, for any initial condition o, and for n > 1,
P& (P @01, ) (F&20) = £ ()] @102)(0) = (0.0) ) 20,
where f is any increasing function on SZ' Thus

Py(fwmn) [w(0) =0) < Py @0, (fw(n)) | w(0) = o).

Letting n going to infinity, and using finite volume ergodicity, it holds vy, < vi ® d, AnA

Analogously, vy ®d_, . X vy

AN\A



Let oana € SA\A Let B be the event B = {w e SN wana = oana - Consider a sequence
of independent, identically distributed random variables (Z,) 1), with distribution Vi
Let Y be a random variable with distribution v} ® d, ANA . Let N be the stopping time
inf{n > 1: Z, € B}. We prove that almost surely, Vn>1,7,<Y.Soit holds Zy XY,
which in distribution means v, (.Joana) < v3(.). The other 1nequality is proved in the
same way. O

Proposition 4.2 Let A € Z¢. The measure vX (resp. v} ) is the maximal (resp. minimal)
measure of the set {v} : 7€ S2°}. Let vt and v~ denote the mazimal and the minimal
elements of the set S of stationary measures on S% associated to the PCA dynamics P.
Following relations hold:

v o= Llim Vp(r) ® O(=)prye = Jim 5_P™ 16)

where for L integer, B(L) is the ball B(0, L) with respect to the norm ||k|| = >, |kil,
k’: (k’l,k’g,...,k’d) GZd.
In particular, P admits a unique stationary measure v if and only if v~ = vt.

Proof. First prove that 7 < 7/ = v < v/ . Let 7 et 7/ be two boundary conditions such
that 7 < 7/ and let f be an increasing function on S%". It is easy to check that (P, P{’)
is a increasing pair, thus P{ ® PX’ preserves stochastic order. Let o € SZ% be an initial
condition. Because, opTAc X 0AT)c, at time n this inequality is preserved, and using the
monotonicity of f, we have:

P{ @ Ff (f(w’(n) = f(@'(n))] (@",&?)(0) = (0,0) ) 0.

Thus
PY(f(w(n)) | w(0) = 0) < P (f(w(n)) | w(0) = o).

The first result follows letting n going to infinity, and using finite volume ergodicity. The
extremality of v} and v follows.
Then, note that lim; (V) ® 6(-),,,.) and lim L_,OO(I/B ® O(4)51c ) €Xist due to mono-

tonicity of the following sequences (VB(L ® O(=)s1)e )L and (VB(L ® 6(_,_ sy )L+ This comes

from the fact that o, v{ < v where A @ A’ € Z%, and p, denotes the projection on

A, which is easily checked using the increasing coupling (P}, PY). Since VE(L) is Py-
stationary, (resp. vy, is Py -stationary the limits limz o0 (V) ® 0(—)y ) and

th_m(yB ® O+ B(L)C) are P-stationary.

Let v be a P- statlonary measure, and L any positive integer. Since the coupling PBT( L) ® P® ng( L)
preserves stochastic order, using finite volume ergodicity, one can state:

Vl;(L) ® 5(‘)5@)6 SV V?&’-(L) ® 6(+)B(L)C'

10



We then have:

Lh_IEO Vg(L) ® 5(‘)5@)6 SV LIEIOIO VI—S"-(L) ® 6(+)B(L)C' (17)

On the other hand, it is easy to check . P < d4, so using P’s attractivity, (63 P"™),cy is
decreasing. Analogously, (6_P™),cy is increasing. Thus, the limits lim,, ., d_ P™ and
lim,, .o 64 P exist, and then are obviously P-stationary measures.

Let v be a P-stationary measure. Because P is attractive and 0_ < v < 44, we have:

lim 0_P™ 5 v < lim 6, P™. (18)

n—oo n—oo

Using the fact that all measures limL_,oo(l/g(L) ® 5(—)3@)«:)’ liquoo(Vg(L) ® O()pe ) iMoo 5_pP™
and lim,,_.., 64 P are P-stationary, we apply to them inequalities (17) and (18). Con-
clusions follow. O

4.2 Comparison of finite & infinite volume PCA

The PCA dynamics P on the infinite volume space SZ° considered in this subsection is
assumed to be translation invariant (or space homogeneous). It means: Vk € Z%, Vs € S,
Ve S%, pe(s|n) =po(s|O_in), where O, (o) defines the translation of a configuration
o of S%° with 6, (0) = (0%—g, )xeze- Remark that according to the construction of the
coupling in Theorem 2.3, if the PCA dynamics to be coupled are translation invariant, so
is the coupled dynamics.

As Proposition 4.2 shows, in order to study the behaviour of a PCA dynamics P on SZ°
there is advantage to use finite volume associated dynamics P{ on S* with A € Z%. In
particular, their time asymptotics is known. So, let us state the following Proposition 4.4
where important relations are stated. They are extensively used in the paper Louis (2004)
to show that exponential ergodicity of the dynamics P is equivalent to the decrease, with
exponential speed in L, of the quantity ( [ o9 dl/g(L) — [0y dl/l;(L)). To this aim, the
behaviour of this sequence is related to the one of (p(n)),>o where

pn) =P (wh() £ B!, w7)(0) = (= +) ). (19)

with P the coupling introduced in Corollary 2.4.
Let A C Z%. Let P} (resp. Py ) be the dynamics on S* defined in (13) with the maximal
(resp. minimal) boundary condition + (resp. —). First note the easily checked fact:

Lemma 4.3 If the PCA dynamics P is attractive then (Py, P, ..., P, P\) is increasing,
and thus the increasing coupling Py ® P® ... ® P ® P{ can be defined.

Proposition 4.4 Let o,n € SZ be such that o < 1. The following inequality holds:

11



P (wh() # w0 = (1))
< p(n) < Py @ PY(h(n) £ A () [(@!,67)(0) = (=+) (20)

where (p(n))nen~ 18 defined by (19/.
For each initial condition & on S* and for any time n, it holds:

Py (w(n) € |w(0) = &a(=)a) (21)
< P(w(n) € [w(0) = &) < P (w(n) € |w(0) = En(+)ae).

The sequence (p(n))nen+ is decreasing, and P is ergodic if and only if lim, .., p(n) = 0.
Moreover,

P(f(w(n))|w(0) = o) - V(f)‘ <2 p(n) (22)

where v denotes the unique stationary measure and where we define, for each f continuous
function on the compact SZ and for all k in 79,

sup
o

As(k) = sup {|(0) = F)| : (01) € (S™) oy = e (23)

and the semi-norm ||| f |[|= Xpeze Af(k).

Proof. The proof of the left inequality in (20) is straightforward using the compatibility
property 3.2. The right inequality comes from the preserving stochastic order property
and compatibility property of the coupling Py ® P ® P ® P}

Since the coupling Py ® P ® P, is increasing, (21) is a consequence of the fact that any
initial condition & in SZ° is such that &y(=)ae < € < Ea(+)ae

The monotonicity of the sequence (p(n)),en+ comes from the coalescence property of the
increasing coupling P.

If P is ergodic, there can be only one stationary measure on SZ%and so lim,,_s p(n) =0.
Reciprocally, let f be a local function. For any o, 7 configurations in SZd, let us write:

PU@m)]w(0) = 7) = P(f m)w(0) = 1)
<[P (s @) - f2) @ w0 = (=)

| (24)
HP (S ) = £20) @ w))O) = ()|
Since f is local, for all ¢!, &2, ‘f(gl) — f(&?)

only in a finite number of sites. Using interpolating configurations between §}\f and 5[2\f
we write:

depends only on 511\,- and 512\f which differ
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|f(EY) — f(E2)] < >ken, Af(k) 1y, 2y, and so using the translation invariance assumption
and the left part of (20), we obtain

P(f(w(n)|w(0) = o) = P(f(w(n))|w(0) =n)| < 2 ([ [ Il p(n), (25)

which inequality is enough to conclude the reciprocal and to prove (22). O

5 Partially ordered spin space case

In all this section, S is a partially ordered space. When S is totally ordered, a necessary
and sufficient condition for existence of an increasing coupling of PCA dynamics is given
in section 3 by the inequality (8). It is done in term of the repartition function Fy(.,0) (o
given) of the probability pi( . |o) (of the subset [z, +] of S). In what follows, we first recall
(Proposition 5.2) previous result of 26), who gave a necessary and sufficient condition for
the existence of an increasing coupling of two PCA dynamics. The quantity which now
makes sense is the generalised function Fj(I', o) defined by > . cr pr(s’|o) where I' is an
upset of S (see Definition 5.1).

Nevertheless, there is a gap between coupling two PCA or at least three PCA. The ex-
amples D and E presented here show that, even when the PCA are the same the coupling
of three such dynamics may not exist. So we deduce that condition (26) of Lopez and
Sanz (2000) is not sufficient for the existence of an increasing 3-coupling when S is any
partially ordered space.

These counter-examples rely on examples 1.1 and 5.7 in Fill and Machida (2001) of
stochastically monotone family of distributions, indexed by a partially ordered set, which
are not realisable monotone. Let (Q,)aca be a family of probability distributions on a
finite set S indexed by a partially ordered set A. In Fill and Machida (2001), the authors
define the system (Q,)aca as stochastically monotone if ;<4 an implies Qo X5 Qa,- It
is said realisable monotone if it exist a system of S-valued random variables (X, )acA ,
defined on some probability space, such that the distribution of X, is @), and a;=4 ao
implies X,,<s Xa, a.s.

In our case the existence of a coupling of the N PCA dynamics (P!,..., P") implies, for
any k € Z¢ fixed, the system of probability distributions on S (p( '|0Vk))0VkE svi, which is

indexed by the partially ordered set S*, is realisable monotone. In the counter-examples
presented here, the distributions are stochastically monotone but not realisable monotone.

Let us define:

Definition 5.1 A subsetI' of S is said to be an up-set (or increasing set) (resp. down-set
or decreasing set) if r e,y e S;sexy=y €l (resp.zel,ye Sz y=yel).

Note that the indicator function of an up-set (resp. down-set) is an increasing (resp.
decreasing) function. Moreover, Theorem 1 in Kamae et al. (1977) state that two measures
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on S puy, po are such that py < pe if and only if 1 (T') < pe(T) for all up-sets I' of S, which
is equivalent to 1 (I") > po(T") for all down-sets I' of S.

Proposition 5.2 (Lopez-Sanz)
Let P! and P? be PCA dynamics on SZd, where S is a partially ordered finite set. It exists
an increasing synchronous coupling of these two PCA dynamics if and only if

Vk € Z° Yo < n, VT up-set inS = ¥ pi(s|o) < %:sz(sm). (26)

sel

In particular, if P* = P? = P we obtain the following: P is attractive if and only if (26)
holds.

Example A
Let S = {0, 1}? with the natural partial order represented in Figure 1(a) (where (0, 1) and

(1,0) are not comparable). Let P = ® p; (for any dimension d) with py( . [0) = px( . |o)
keZ

as follows
(- |(070)):%(5(00 + 0(1,0))
pe( - 1(1,0)) = 5(60,0) + d1.1)) 27
(- |(a1)):%(5(01 + 0(1,0))
pi( - 1(1,1) = 5(80,0) + 61,1)

It is simple to check this PCA dynamics is attractive. Nevertheless, P®* can not exist since
(pe( - 1(0,0)), pe( - [(1,0)), pr( - [(0,1)), p( - [(1,1))) is a stochastically monotone family
which is not realisable monotone (cf. example 1.1 in Fill and Machida (2001). Remark
this PCA is in fact a collection of independent S-valued Markov Chains, whose transition
probability is po(.|.). This example state the non-existence of a coupling of four times this
Markov Chain.

Example B
Let S = {z,y, z,w}, considered with the following partial order z < 2,y < 2,2 < w and
x and y are not comparable (cf. Figure 1(B)). Let take the dimension d = 1. Con51der the

PCA P = k®Zpk with pi( . [0) = pr( . |ofkk+1)) as follows:
€

pi( - |(2,y)) = 5(0: +6y) pe( - (y,2)) = 0.
pil - |(2,2)) = 3(0: + du) pi( - |(z,2)) = 6.
pil - |(2,9)) = 5(d, + du) pi( - (2, 2)) =0, (28)
pi( - |(2,2)) = 5(3. + du) pi( - |(y,2)) = 6.
pe( - (v, y)) =9, pi( - |otherwise) =

It is an attractive PCA, nevertheless an increasing markovian coupling P®* can not exist
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since (pr( . |(z,9)),pe( - |(z,2)),pk( - |(z,9)),pk( . |(2,2))) is a stochastically monotone
family which is also non realisable monotone (cf. example 5.7 in Fill and Machida (2001)).

(1,1) w
RN |
(1,0) (0,1) P
N N
(0,0) x y
(A) Example A (B) Example B
Figure 1.

Let us now present some generalisation of our main results, Theorem 2.3 and Corollary 2.4,
when the spin space S belongs to a special class Z of partially ordered sets introduced
in Fill and Machida (2001) and called linearly ordered spaces. The figure 2(a) gives an
example of such a space, and the spin space represented in Figure 3 do not belong to this
class.

We call predecessor (resp. successor) of s (s € S) any element s’ such that s < s (resp.
s»=s)and s x 8" 5 = 5" € {s, 5} (resp. s = 5" =5 = " € {s,5}). S is said to
belong to class Z when, for any s € S only one of the following situations occurs:

e s admits exactly one successor and one predecessor ;
e s admits no predecessor and at most two successors ;
e s admits no sucessor and at most two predecessors.

It means one can define on S a natural linear order <,, by numbering the elements of
S: {s1,...,s,} (where n = #5) and saying s; <,, s; if ¢ < j. The figure 2(b) gives the
natural linear order corresponding to the example of figure 2(a). Note that such linear
order is in general not consistent with the partial order < originally defined on S.
Define, for s; € S (1 < i < n), the subset («+, s;] of S with

(e, 8] ={s; €5 155 < 8} (29)

Remark the sets (<, s| (with s € S) are either upsets or downsets of S. For instance,
in Figure 2(a), (<, s5] is an up-set and (<, s¢] is a down-set. The generalised function
Fi(T', o) introduced before becomes in that case the probability of («, s:

Fus,o)=pi( (—,s]|o)= ¥ pu(slo) seS,oes™ (30)

s'€(,s]

When S is a linearly ordered set the monotonicity condition (3) is equivalent to the
following conditions for the generalised associated repartition functions (Lemma 5.5 in Fill
and Machida (2001)):
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VEk e Z49(C, 2. Y)Y e (SEDN such that (P <2< ... < (N VseS,

Vs such that («,s] downset Fl(s | ¢Y) = F2(s | ¢H) > ...> FV(s| )  (31)
Vs such that («,s] upset F}(s | (") < F2(s | 3 <... < F(s | M) (32)

We can now state:

Proposition 5.3
When S is a linearly ordered spin space, Theorem 2.3 and Corollary 2.4 hold.

Proof. The proof of such results relies on the following construction. Let us define the
generalised probability transform, for o € SZ% and k € Z? fixed:

(Fi(.,0))7 Y (t) = inf {sp : t < Fy(s,0)} t €]0, 1],

Xxn

where the infimum is given in term of the linear order <,,. Construction of the increasing
coupling hold as before thanks to the following evolution rule between time n and n + 1:

vk € Z¢, <w,i(n + 1)) = ((F;i( : ,wi(n)>)_1(Uk))

1IN 1<i<N
The coherence of this coupling with the partial orderd < is insured by Lemma 6.2 in Fill
and Machida (2001). O

Sa EN

7N VRN

53 S5 ST Sg

/ \ / \ §) — Sp — 83 — 84 — S5 —— Sg —— S7 —— 83 —— Sy —— S10

52 56 S10

51 (B) Example C with total order <,,

(A) Example C with partial order <

Figure 2.

Figure 3.
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