
 
 
 
 
 

On Gibbsianness of infinite-dimensional diffusions 
 
 
 

David Dereudre  
 

Sylvie Roelly 
 
 
 
 
 
 

 
 
 

Mathematische Statistik und  
Wahrscheinlichkeitstheorie 

 
 
 

UNIVERSITÄT POTSDAM 
Institut für Mathematik 



Universität Potsdam – Institut für Mathematik 

 
Mathematische Statistik und Wahrscheinlichkeitstheorie 

 
 
 
 

On Gibbsianness of infinite-dimensional diffusions 
 
 

 

 
David Dereudre,  

 
Université de Valenciennes et du Hainaut-Cambrésis, France 

e-mail: David.Dereudre@univ-valenciennes.fr 

 
Sylvie Roelly 

 
Institut für Mathematik der Universität Potsdam 

e-mail: roelly@math.uni-potsdam.de 
 
 
 
 
 

Preprint 2004/01 
 

Januar 2004 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Impressum 

 

 

© Institut für Mathematik Potsdam, Januar 2004 
 
Herausgeber: 
 
 
Adresse: 
 
 
Telefon: 
Fax: 
E-mail: 
 
 
 

Mathematische Statistik und Wahrscheinlichkeitstheorie 
am Institut für Mathematik 
 
Universität Potsdam 
PF 60 15 53 
14415 Potsdam 
 
+49-331-977 1500 
+49-331-977 1578 
neisse@math.uni-potsdam.de 
 

ISSN 1613-3307 
 



On Gibbsianness of infinite-dimensional diffusions

David Dereudre*
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Abstract

We analyse different Gibbsian properties of interactive Brownian diffusions X indexed
by the lattice Z

d : X = (Xi(t), i ∈ Z
d, t ∈ [0, T ], 0 < T < +∞). In a first part, these

processes are characterized as Gibbs states on path spaces of the form C([0, T ], R)Z
d

. In

a second part, we study the Gibbsian character on R
Z

d

of νt, the law at time t of the
infinite-dimensional diffusion X(t), when the initial law ν = ν0 is Gibbsian.
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1 Introduction

We first recall the results of the celebrated article of Kolmogorov (1937) : Zur Umkehrbarkeit
der statistischen Naturgesetze, rewritten by using the modern vocabulary of stochastic cal-
culus.
Let I be a finite index set and X = (Xi(t), i ∈ I, t ∈ [0, T ]) be an R

I -valued diffusion
solution of the following finite-dimensional stochastic differential equation (s.d.e.)

dXi(t) = dBi(t) −
1

2
U ′(Xi(t)) dt + bi(X(t)) dt , i ∈ I, t ∈ [0, T ] (1)

where

• U is a C2 self potential ;

• b = (bi)i∈I : R
I→R

I is a smooth bounded function ;

• (Bi)i∈I is a sequence of independent, real-valued Brownian motions.

This stochastic dynamics corresponds to a perturbation by the interactive drifts (bi)i∈I

of a sequence of finitely many free dynamics driven by the self potential U ′.
The question posed - and solved - by Kolmogorov was : under which conditions on

the drift b one can assure the existence of an equilibrium for the system, that is an initial
distribution µ, probability measure on R

I , which is invariant under the dynamics :

X(0) ∼ µ =⇒ X(t) ∼ µ,∀t ∈ [0, T ].

The answer is the following : the drift b has to be of gradient form, i.e. it should exist a
smooth function h from R

I into R such that bi = −1
2∇ih, i ∈ I. In this case, the unique

time-invariant measures under the dynamics (1) - which are moreover also reversible - are
proportional to the following measure :

µ(dx) = exp(−h(x)) ⊗i∈I exp(−U(xi))dxi = exp(−h(x)) ⊗i∈I m(dxi) (2)

where m is the equilibrium distribution for the one-dimensional free dynamics. Often can
µ be renormalised to become a probability measure (f.e. when U is such that exp−U
is Lebesgue integrable and h is bounded). We remark that the equilibrium distribution
has a particular form : it is absolutely continuous with respect to a reference measure
(here ⊗i∈Im(dxi)) and the density is the exponential of the function h whose gradient
generates the dynamical interaction between the coordinates of the process. This form for
the equilibrium distribution will remain ”locally” for infinite-dimensional diffusions, if the
measure µ becomes Gibbsian.

Let us then consider the so-called gradient diffusion X solution of the s.d.e. (1) with
b of the gradient form :

dXi(t) = dBi(t) −
1

2
U ′(Xi(t)) dt −

1

2
∇ih(X(t)) dt , i ∈ I, (3)

and let us have a look at the structure of the law Qν of X, when the initial distribution
X(0) ∼ ν on R

I is not necessarily equal to the equilibrium distribution µ. Qν is a proba-
bility measure on Ωf = C([0, T ], R)I . As reference measure on the path space Ωf we take
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P = W⊗I the stationary law of the free system, equal to the system (3) with h ≡ 0. (W
is itself the stationary law on C([0, T ], R) of the free one-dimensional system with m as
equilibrium distribution.)

Due to Girsanov theorem, it is clear that (under some growth conditions on h and its
derivatives) if ν is absolutely continuous with respect to m⊗I with density on R

I given
by exp−h̃, then Qν is absolutely continuous with respect to the reference measure P and
the density on the path level is given by

dQν

dP
(X) =

dν

dm⊗I
(X(0)) ×

exp−

(

1

2

∑

i∈I

∫ T

0
∇ih(X(t))dXi(t) +

1

4

∑

i∈I

∫ T

0
∇ih(X(t))

(1

2
∇ih(X(t)) + U ′(Xi(t))

)

dt

)

= exp−

(

1

2
h(X(T )) +

(

h̃ −
1

2
h
)

(X(0))

−
1

4

∫ T

0

(

(

∆h −
1

2
|∇h|2

)

(X(t)) −
∑

i∈I

∇ih(X(t))U ′(Xi(t))

)

dt

)

. (4)

The last expression is obtained applying Ito formula to the function 1
2h(X(t)) between

times 0 and T . This means that the density of Qν with respect to P has the following
form :

dQν

dP
(X) = exp−

(

h̃(X(0)) + H(X)

)

where H is a smooth functional on the path space Ωf . Similar to the role of the Hamilto-
nian function in statistical mechanics, we can interpret here H as a Hamilton functional
on Ωf . Furthermore, still inspired by the equilibrium statistical mechanics, we remark
that on the path level, even if the system in not time invariant (ν different from µ or h̃
different from h), its law is in some sense an equilibrium law since it has a Gibbsian form.

Our pourpose here is, starting from these remarks about well known finite dimensional
diffusions, to analyse if the above structure of Qν is partially conserved if we replace the
finite index set I of the system (3) by an infinite one, for example by Z

d. It is clear that as
soon as I is no more finite, the expression of the above density could explode. So we will
be obliged to restrict ourselves on ”local” properties, as usual in statistical mechanics.

The organisation of this paper is as follows.
In Section 2, we review Gibbsian properties of Qν as probability measure on path spaces

in various situations. These results are based on former works of the second author. But
they are revisited under a new angle, answering the question : how strong is the notion of
that Gibbsianness?
In the first paragraph, the simplest case of infinite-dimensional gradient diffusions with
bounded Hamiltonian h is treated. We show that, under some assumptions, Qν is a strong
Gibbs measure on Ω = C([0, T ], R)Z

d

in the usual sense of bounded spin systems, since it
is associated to a potential on Ω which is an absolutely summable functional on this path
space.
In second paragraph, we discuss the case of more general infinite-dimensional diffusions.
As soon as the drift is the gradient of an unbounded Hamiltonian h, the Gibbsianity is
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present only in a weak form. In fact, we can recover in certain cases a nice Gibbsianness
of Qν if we restrict it on a subspace of Ω. We present also a case of infinite-dimensional
diffusions with non Markovian drift ( and then a fortiori non-gradient). The interaction
functional can not be defined on the full path space, but anyway we can identify a weak
Gibbsianness property.

The Section 3 contains new results obtained by a current collaboration between both
authors.
Coming back to the finite-dimensional framework presented above, it is clear that if the
initial measure ν is absolutely continuous with respect to m⊗I (with density given by
exp−h̃), this property propagates, that is : at each time t > 0 the law νt of X(t) on R

I ,
which is also equal to the projection at time t of Qν , remains absolutely continuous with
respect to m⊗I (with density given by exp−ht for some function ht). When I is replaced
by Z

d, the question whether the global absolute continuity propagates is irrelevant since
the stationary measure itself is no more globally absolutely continuous with respect to
m⊗Z

d

, but the question if the local absolute continuity is conserved is relevant and equiv-
alent to the following : does the Gibbsianness of the initial measure propagate?
Although, on the path level, the infinite-dimensional diffusion in several cases is regular
in the sense that it is strongly Gibbsian as recalled in the second Section, its projection
at each fixed time t can behave badly in the sense that the sum of the interactions be-
tween the (infinitely many) components can explode. So, to obtain a positive answer to
the above question, we should restrict our study to two particular regimes which can be
better controlled. In the first paragraph, we present the propagation of Gibbsianness for
small time t, and in the second paragraph, we analyse the case of small interactions be-
tween the coordinates - but arbitrary times.
To our knowledge, the results we present in Section 3 are the first which are related to the
propagation of Gibbsianness under a continuous stochastic evolution like a diffusion with
values in an infinite-dimensional vector space (here R

Z
d

). We were inspired by the very
nice paper [8] where the question of possible loss and recovery of Gibbsianness is treated in

the context of particle systems with values in {−1, +1}Z
d

which follow a high-temperature
Glauber dynamics (see also [18] for related results for Kawasaki dynamics).
Our present results are only partial, and they can certainly be developed and/or amelio-
rated. This is the subject of a forthcoming paper [6].

2 Infinite-dimensional diffusions as Gibbs states on the path

level

2.1 Gradient diffusions with bounded interaction

Let us first introduce some definitions and notations.
An interaction potential - or interaction - φ on R

Z
d

is a collection of functions φΛ

from R
Z

d

into R ∪ {+∞} where Λ varies in the set of finite subsets of Z
d, which are mea-

surable with respect to the canonical projections on R
Λ.

The interaction φ is said to be of finite range if it satisfies :
(FR) ∃r > 0, diameter Λ ≥ r =⇒ φΛ ≡ 0
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The interaction φ is said to be regular bounded if it satisfies :
(RB) ∀Λ, φΛ is C3, bounded with bounded derivatives.

The interaction φ is said to be absolutely summable if it satisfies :
(AS) ∀i ∈ Z

d,
∑

Λ∋i ‖φΛ‖∞ =
∑

Λ∋i sup
x∈RZd |φΛ(x)| < +∞

When an interaction φ is (AS) one can define the collection hφ = (hφ
Λ)Λ⊂Zd of associated

Hamiltonian functions on R
Z

d

by

hφ
Λ =

∑

Λ′:Λ′∩Λ6=∅

φΛ′ . (5)

In fact, as soon as the serie on the right hand side converges pointwise, one can define a
Hamiltonian function associated to a (possibly non absolutely) summable interaction.

To simplify we will always denote by hφ
i the function hφ

{i}, i ∈ Z
d.

We call ρ a Gibbsian measure on R
Z

d

associated to the reference measure m and to an
interaction φ for which the serie (5) converges if it satisfies the following generalisation
of (2); the family of its conditional expectations (ρ(dxi/xj , j 6= i))i∈Zd should satisfy the
system of Dobrushin-Landford-Ruelle (DLR) equations :

ρ(dxi/xj , j 6= i) =
1

zi
exp−

(

hφ
i (x)

)

m(dxi), i ∈ Z
d.

The set of such measures will be denoted by G(φ,m). (For general reference on Gibbs
measures, see [13] and [22].)
The measure ρ will be called strong Gibbsian if the associated interaction is (AS).

Let ϕ be a so-called dynamical interaction on R
Z

d

satisfying (FR) and (RB). Then
it satisfies automatically (AS). Under the above assumptions on ϕ, for all i ∈ Z

d, the
hamilton function hϕ

i , denoted by hi to simplify, is C3, bounded with bounded derivatives.
We can now consider the infinite-dimensional version of the system (3) given by :

dXi(t) = dBi(t) −
1

2
U ′(Xi(t)) dt −

1

2
∇ihi(X(t)) dt , i ∈ Z

d, t ∈ [0, T ]. (6)

Let ν be a probability measure on R
Z

d

which satisfies some integrability conditions (f.e.
the sequence (

∫

x2p
i ν(dx))i∈Zd belongs to the dual set of tempered sequences on Z

d for
some p ∈ N). Following [24] Theorem 4.1 (or [7] if the interaction is reduced to a pair
interaction), the infinite-dimensional stochastic system (6) with initial condition X(0) ∼ ν
has a unique strong solution X with values in the infinite product of continuous trajectories
Ω = C([0, T ], R)Z

d

.
Deuschel ([4],[5]) was the first to describe the structure of the law Qν of X, probability

measure on Ω , as a lattice Gibbs measure, when ν itself is Gibbsian. Using a decoupling
method between the ith coordinate Xi and the others and applying Girsanov formula, he
proved an infinite-dimensional generalization of the equation (4). In [1], we completed and
generalised his results by showing a bijection between the set of initial Gibbs measures on
R

Z
d

and a set of Gibbs measures on the path space Ω.
Let us recall this main result ([1], Théorème 3.7):
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Theorem 1 Let Q be a probability measure on Ω = C([0, T ], R)Z
d

with projection at time

0 a measure ν on R
Z

d

. Q is equal to Qν , the diffusion solution of (6) where the initial
distribution ν is in G(ϕ̃, m) if and only if Q is a Gibbs measure in G(ϕ̃ + Φ,W ), that is
Qν satisfies the following DLR equations :

Qν(dXi/Xj , j 6= i) =
1

Zi
exp−

(

h̃i(X(0)) + Hi(X)

)

W (dXi), i ∈ Z
d, (7)

where H is the Hamilton functional on Ω associated to Φ by (5) and defined by

Hi(X) =
1

2
hi(X(T )) −

1

2
hi(X(0))

−
1

4

∫ T

0

(

∑

j:|j−i|≤r

(

∆jhi −
1

2
|∇jhj |

2
)

(X(t)) −∇ihi(X(t))U ′(Xi(t))

)

dt.(8)

Moreover, we deduce from the explicit expression (8) the regularity of the underlying
interaction functional Φ if we suppose the following supplementary assumption

sup
Λ⊂Zd

sup
i∈Λ

sup
x∈RΛ

|U ′(xi).∇iϕΛ(x)| < +∞. (9)

(It is a balance condition between the self-potential U and the dynamical potential ϕ.
This is satisfied for example for any potential ϕ constant at infinity.)

Corollary 2 Under condition (9), if the initial condition ν is strong Gibbsian on R
Z

d

,
Qν , the law of the diffusion solution of (6), is also strong Gibbsian on the path level Ω =

C([0, T ], R)Z
d

in the sense that the associated interaction functional Φ on Ω is absolutely
summable (AS), bounded continuous and has a finite range bounded by 2r if r is the range
of ϕ.

In the case when ϕ is a pair interaction (ϕΛ ≡ 0 when Card Λ > 2), the reader can find
the explicit form of Φ as function of ϕ in [1], equation (3.18). In particular, Φ is a 3-body
interaction ( ΦΛ ≡ 0 when Card Λ > 3) and, for example, Φ{i,j,k} is given by

Φ{i,j,k}(X) = −
1

4

∫ T

0

(

∇iϕ{i,j}∇iϕ{i,k} + ∇kϕ{i,k}∇kϕ{j,k} + ∇jϕ{i,j}∇jϕ{j,k}

)

(X(t))dt.

(10)

From the above bijection between sets of strong Gibbs measures on R
Z

d

and on
C([0, T ], R)Z

d

, we conclude that if the set G(ϕ̃, m) is reduced to a unique element ν, the
set G(ϕ̃ + Φ,W ) contains also a unique element, Qν , the law of the system (6).
In other words, the strong Gibbsianness propagates from the initial distribution

on the configuration space R
Z

d

to the path level, and the uniqueness property

(i.e. absence of phase transition) also.

2.2 Gradient diffusions with a general interaction

If ϕ, the dynamical interaction on R
Z

d

, does not satisfy anymore (FR) or (RB), for example
if ϕ is an infinite range unbounded interaction, it is non trivial at all to give a sense to
the equation (6), and also to exhibit a subset of R

Z
d

in which a solution could live.
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One classical interesting example is given by the pair potential ϕ{i,j}(x) = J(i − j)xixj

where J is a tempered sequence on Z
d and ϕΛ ≡ 0 if Card Λ 6= 2. If J is positive, this is

the ferromagnetic Ising interaction for continuous spins.
This problem was solved in [24] and [7] (see also [23] were the above example is analysed
very clearly). The authors gave a number of hypothesis (let us call them H) on ϕ and
its derivatives (cf. assumption [C ′] in [24]) in such a way that existence and uniqueness
of solutions for the infinite-dimensional gradient system is proved inside of the space
S ′(Zd), dual of the tempered sequences in Z

d (or subpolynomial sequences). This means
that if the initial distribution ν carries S ′(Zd) and satisfies some moment condition, the
solution X takes its values a.s. in S ′(Zd), and then Qν is a probability measure on
C([0, T ],S ′(Zd)) ⊂ Ω. In other words, the Hamilton function h associated to ϕ, which has

no sense on the whole space R
Z

d

, is well defined on S ′(Zd), and at the path level the same
kind of phenomena appears. Inspired by [1] Théorème 4.19, we have the following.

Proposition 3 Under assumptions H, if the initial condition ν is a Gibbsian measure
in G(ϕ̃, m) with support included in S ′(Zd), then Qν is a Gibbs measure in G(ϕ̃ + Φ,W )
with support included in C([0, T ],S ′(Zd)). The associated interaction functional Φ is well
defined on C([0, T ],S ′(Zd)) and it is pointwise summable.

This furnishes an example of Gibbsian property on the path space which cannot be
strong since every ingredient (spin, interaction, sum) is unbounded. Anyway the Gibbsian
structure exists and contains informations on the process. In [1], one can find applications
of the Gibbsianness to the identification of reversible states for the gradient dynamics,
and behavior of the process under time reversal.

Let us now consider a more general equation than (6), where the drift can be non-
regular and non-Markovian :

dXi(t) = dBi(t) −
1

2
U ′(Xi(t)) dt + bi,t(X) dt , i ∈ Z

d, t ∈ [0, T ], (11)

where bi,t : Ω −→ R is a bounded functional, measurable with respect to the σ-algebra
generated by the canonical projections (X(s), s ≤ t) and local in space, that is, there
exists a finite neighborhood N (i) of i such that bi,t(X) depends only on the coordinates

of X inside of N (i). Typically, bi,t can take the form : bi,t(X) =
∫ t

0 bi(X(s))π(ds), where
bi(x) = bi(xN (i)) and π is a measure on [0, T ].

Let us suppose that the system (11) admits a solution Qν , a probability measure on
Ω. Using the same methods as before, it is simple to check that if the initial distribution
ν is in G(ϕ̃, m), we can obtain for Qν the following representation :

Qν(dXi/Xj , j 6= i) =
1

Zi
exp−

(

h̃i(X(0)) + Hi(X)

)

W (dXi), i ∈ Z
d, (12)

where H can be decomposed as Hi =
∑

N (j)∋i ΦN (i) and Φ is given by :

ΦN (i)(X) = −

∫ T

0
bi,t(X)dXi(t) +

1

2

∫ T

0
bi,t(X)

(

bi,t(X) − U ′(Xi(t))

)

dt. (13)

But now the functional b is no more of gradient type and we cannot replace the
stochastic integral in (13) by a usual integral using Ito formula. Then, the interaction
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functional Φ is not defined a priori on the whole Ω but only for such X for which the
stochastic integral

∫ T

0 bi,t(X)dXi(t) makes sense. Since W is the law of a one dimensional
Brownian semi-martingale with drift −1

2U ′, one has

ΦN (i)(X) = −

(
∫ T

0
bi,t(X) dB̃i(t) −

1

2

∫ T

0
b2

i,t(X) dt

)

, (14)

where B̃i are independent Brownian motions under P . The boundedness of b implies that
ΦN (i) ∈ L2(W ) and then ΦN (i) makes sense W-almost surely.

We have here an example of ”almost-sure Gibbsian property” on the path space which
cannot be stronger since the interaction, by its nature, cannot be defined on the whole
space Ω but only almost-surely. Nevertheless, the Gibbsian structure contains strong
informations on the process. In [2], we studied, in a space-time stationary context, a
modification of this Gibbsianness in terms of space-time Gibbsian property (cf. also [21],
[20]), and proved that the DLR-approach is equivalent to the variational approach. This
allowed us to prove in [3] an existence result for the system (11) for an interaction b

sufficiently small, using the characterisation of the solution as space-time Gibbs field and
constructing it by cluster expansion in the small coupling parameter. To our knowledge,
no method using infinite-dimensional stochastic calculus could solve the existence problem
for (11). This is an indication that the concept of Gibbsianness, even almost-sure, is really
powerful.

3 Propagation of Gibbsianness during the stochastic diffu-

sive evolution

In the last section, we have seen that under reasonable conditions, the law Qν of an
infinite-dimensional Brownian diffusion with Gibbsian initial condition ν is a Gibbs state
on the path level. Now, we would like to know if at each time t, the law of X(t), which

we denote by νt, a probability measure on R
Z

d

, remains Gibbsian (in a strong or weak
sense). Clearly, νt is the projection at time t of Qν , but projections are maps which do
not conserve a priori the Gibbsianness (see the famous examples of [9], and also [10], [11]
amoung others).

In [1], we remarked that, projecting at time 0 a general strong Gibbs measure on the
path space, the image measure which is obtained on the state space preserves a Gibbsian
form in the following weak sense : it is associated to a modification (cf. [13] Section 1.3,
for the exact definition), roughly speaking to a family of compatible local densities with
respect to a reference measure. But now the regularity of the density and the existence
of an underlying nice interaction potential is completely unclear. In the Remarks after
Proposition 2.5 in [1], we sent the reader to the work of Kozlov to clear this question.
This will be the object of this section, not only for the projecting at time 0 but also at
time t > 0.

The challenge is to controll the evolution of the initial (AS) interaction ϕ̃ under the
dynamics. It is clear that, even if ϕ̃ is (FR) this properties immediately disappears for
time t > 0 since the Brownian motions carry instantaneously the information between
the coordinates. So, to assure that at time t, the process is still Gibbsian and associated
to a ”good” interaction, i.e. an (AS) one, we are obliged to restrict our study to two
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cases; first for small times t, which implies that the process stays close to the initial
Gibbsian condition. Secondly, for small dynamical interaction ϕ between the coordinates,
which assures that the sum of the initial interaction and the interaction induced by the
dynamics does not explode.

To explore this problematic, we were inspired by the work of van Enter, Fernandez, den
Hollander and Redig, who consider in [8] the question of Gibbsianness/non Gibbsianness in

the context of particle systems with values in {−1, +1}Z
d

which follow a high-temperature
Glauber dynamics. They treat several cases and can exhibit situations where the process
at time t is strong Gibbsian, and other situations where it is not. Unfortunately, since our
state space R

Z
d

is unbounded, we cannot use all the criteria they have at their disposition
(in particular, the criterion of non Gibbsianness contained in [11]) to test the Gibbsian-
ness/non Gibbsianness of νt. So our present results only concern situations for which the
Gibbsianness is conserved. We hope to extend them soon to some non-Gibbsian example.

3.1 Small times

Let us consider the infinite-dimensional gradient system introduced in the section 2.1,
where the self-potential U is included in the hamiltonian h and which is induced by an
interaction ϕ through (5).

{

dXi(t) = dBi(t) −
1
2∇ihi(X(t)) dt , i ∈ Z

d, t ∈ [0, T ],
X(0) ∼ ν ∈ G(ϕ̃, dx)

(15)

We have the following result.

Theorem 4 Let us suppose that

• the initial interaction ϕ̃ is of finite range (FR), C1 with bounded derivatives

• the dynamical interaction ϕ is of finite range (FR), C2 with bounded derivatives.

Then, there exists a time t0 > 0 depending only on ϕ̃ and ϕ such that, for any t ≤ t0,

{νt = L(X(t)) : ν ∈ G(ϕ̃, dx)} ⊂ G(ϕt, dx)

where ϕt is an absolutely summable (AS) interaction depending only on ϕ̃ and ϕ.

We do not enter into the details of the proof since the reader will find them in [6]. We
only give a sketch of the steps of the proof :

Our aim is to represent the family of conditional expectations of νt as follows :

νt(dxi/xj , j 6= i) =
1

zi
exp−

(

ht
i(x)

)

dxi, i ∈ Z
d,

where ht derives from an (AS) interaction ϕt.

• The existence of the nice interaction ϕt will be a consequence of the regularity of ht

by using a result of Kozlov ([17] Theorem 1, cf. also [13] Theorem 2.30). He proved
the existence of an underlying (AS) interaction under two assumptions : for each
Λ ⊂ Z

d,
(i) uniform boundedness : ∃cΛ, CΛ,∀x ∈ R

Z
d

, 0 < cΛ ≤ ht
Λ(x) ≤ CΛ < +∞

(ii) quasilocality : lim∆րZd supx,x̄:x∆=x̄∆
|ht

Λ(x) − ht
Λ(x̄)| = 0

9



• One approximates uniformly ht by a sequence (ht
∆)∆⊂Zd of finite volume Hamiltoni-

ans, for which the verification of (i) and (ii) is easier. For each ∆, the Hamiltonian
ht

∆ = (ht
i,∆)i∈Zd is obtained as follows : exp(−ht

i,∆(x)) is proportional to the density

of the ∆-finite volume approximation νt
∆ of νt with respect to the ∆-finite volume

measure νi,t
∆ obtained by decoupling the ith coordinate.

• One can express νt
∆ in the following way:

dνt
∆

dx∆
= E

(dν∆

dx∆
(X∆(t))/X(0) = x

)

= E
(

exp−
(

Ht
∆(X) + h̃∆(X(t))

)

/X(0) = x
)

where the first expression is obtained using the reversibility of Lebesgue measure
under the Brownian dynamics and the last expression comes from Girsanov formula.
So, the density of νt

∆ can be interpreted as a partition function, say Zt
∆(x), and as

such, one expands it in clusters with respect to the small time parameter t .

• Since ht
i,∆(x) is the sum of a regular function and the function log

Zt

∆
(x)

Zt

∆\{i}
(x)

, using the

criterium of Kotecký-Preiss ([16]) one can write a cluster expansion in t for ht
i,∆(x),

with nice cluster estimates. This implies that ht
∆(x) satisfies - uniformly in ∆ - the

above conditions (i) and (ii) of Step 1, and then, due to Step 2, ht too. �

Let us remark that unfortunately we are not able to prove that, in general, each element
of G(ϕt, dx) corresponds to the law νt of the diffusion at time t for some adequate initial
condition, which would correspond to the following set equality :

{νt = L(X(t)) : ν ∈ G(ϕ̃, dx)} ≡ G(ϕt, dx).

This is obviously true when the cardinal of G(ϕt, dx) is reduced to 1.

3.2 Small dynamical interactions

Let us now consider the infinite-dimensional gradient dynamics (6) where the dynamical
interaction has a small uniform norm. To this aim, we introduce a small parameter β > 0
as follows :

{

dXi(t) = dBi(t) −
1
2U ′(Xi(t)) dt − β

2∇ihi(X(t)) dt , i ∈ Z
d, t ∈ [0, T ]

X(0) ∼ ν ∈ G(ϕ̃, m).
(16)

This dynamics is then a small perturbation of a free system, which is furthermore
supposed to have nice ergodic properties, in such a way that its behavior for large times
is close to the stationary one.

In the previous section, no particular assumption was given on the set of Gibbs mea-
sures G(ϕ̃, dx), which contains the initial distribution ν. Thus G(ϕ̃, dx) could be a singleton
or it could have more than one element (phase transition). On the contrary, in this sec-
tion, to control the evolution of the interaction at each time t we use techniques involving
Dobrushin’s uniqueness condition, and therefore, we should suppose that G(ϕ̃, m) = {ν}.
Let us then introduce two definitions.

10



The self potential U is said to be ultracontractive if the semi-group associated to the
one-dimensional diffusion process dx(t) = dB(t) − 1

2U ′(x(t)) dt, where B is a real-valued
Brownian motion, is ultracontractive.

A set of sufficient conditions for U to be ultracontractive is the following (cf. Theorem
1.4 in [15]) :

U ′′ −
1

2
(U ′)2 is bounded from above, 0 < lim|x|→∞U ′′(x) and

∫ ∞ 1

U ′(x)
dx < +∞,

and a typical example is given by U(x) = |x|s+2 for some s > 0.

We say that an interaction φ on R
Z

d

satisfies the strong Dobrushin’s condition if :

(SDC) supi∈Zd

∑

Λ∋i(CardΛ − 1) supx,y∈RΛ |φΛ(x) − φΛ(y)| < 2.

In [8] such an interaction is called a ”high temperature interaction”. It is well known
that if an interaction φ satisfies (SDC), then it satisfies the Dobrushin’s uniqueness con-
dition which implies that G(φ,m) contains at most one element (cf. [13], Proposition
(8.8)).

We can now present our result.

Theorem 5 Let us suppose that

• the self-potential U is ultracontractive

• the initial interaction ϕ̃ satisfies (SDC)

• the dynamical interaction ϕ is of finite range (FR), regular bounded (RB) and sat-
isfies condition (9).

Then, there exists β0 > 0 depending only on ϕ̃ and ϕ such that, for any β ≤ β0 and for
all t > 0,

νt = L
(

X(t)/{ν} = G(ϕ̃, m)
)

∈ G(ϕt,m)

where ϕt is an absolutely summable (AS) interaction.
Moreover, for large times t,

CardG(ϕt,m) = 1.

As for the last theorem, we refer the reader to [6] for details and give only a sketch of
the steps of the proof :

Let us first remark, that for ϕ̃ small enough, we could use similar techniques as in the
proof of Theorem 4, writing the cluster expansion no more with respect to the time but
with respect to both small parameters ϕ̃ and β. Anyway, we want to obtain more than
a perturbative result around the free dynamics case. Therefore we have to develop other
techniques than before.

As already remarked, it is not directly useful to consider νt as projection of Qν in the
study of its Gibbsianness. Nevertheless, it is effective if we introduce one more step : νt is
the projection on the second coordinate of the joint distribution of (X(0), (X(t)) denoted

by Q0,t, which is itself the projection of Qν on the bi-space R
Z

d

×R
Z

d

. (In the framework
of Probabilistic Cellular Automata, the idea to analyse the properties of the process on a
bi-space was already powerful, cf. [26]).
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• Similar to the previous section, our aim is to decompose νt as follows :

νt(dyi/yj , j 6= i) =
1

zi
exp−

(

ht
i(y)

)

m(dyi), i ∈ Z
d,

where ht derives from an (AS) interaction ϕt. The existence of ϕt will come from
the regularity of ht, i.e. boundedness and quasilocality in the sense of Kozlov ([17]
Theorem 1).

• Let us compute the conditional probability of Q0,t freezing an exterior condition
outside a bi-volume ∆ × Λ ⊂ Z

d × Z
d. Using Girsanov formula which is available

since the volumes Λ and ∆ are finite, we obtain :

Q0,t
(

(dx∆, dyΛ)/x∆c , yΛc

)

= Qν
(

(X(0), X(t)) = (dx, dy)/X∆c(0) = x∆c , XΛc(t) = yΛc

)

= C exp−

(

h̃∆(x) + H0,t
∆,Λ(x, y)

)

m⊗∆(dx∆)m⊗Λ(dyΛ) (17)

where H0,t is directly related to the Hamiltonian H in (8). It is then clear that

νt(dyi/yj , j 6= i) = C lim
∆րZd

∫

R∆

exp−

(

h̃∆(x) + H0,t

∆,{i}(x, y)

)

m⊗∆(dx∆) m(dyi).

(18)

So, boundedness and quasilocality of h̃∆(x)+H0,t

∆,{i}(x, .) uniformly in ∆ and x would

imply the regularity of ht.

• Suppose first that β vanishes, that is the dynamics is free. Then, one proves the
uniform regularity of the function h̃+H0,t using the smoothness of the free semigroup
and the uniqueness, for each fixed Λ ⊂ Z

d and yΛc ∈ R
Λc

, of a Gibbs measure on
R

Z
d

× R
Λ associated to the Hamiltonian h̃ + H0,t

.,Λ(., .yc
Λ).

• When the dynamics is not independent but β remains small, one has a small per-
turbation of the above Hamilton functional. Making a space-time cluster expansion
of H with respect to β in the same spirit as in [3] (cf. also [14]), we obtain the
regularity of h̃ + H0,t even uniformly in the time t.

• The uniqueness criterion for t large is obtained using the fact that the free dynamics
is ultracontractive; thus the Hamiltonian of Q0,t on the bi-space satisfies Dobrushin’s
uniqueness criterium, which implies in particular that the specifications of Q0,t are
not only local but also global ([11] and [12]). As consequence, one obtains that the
projection at time t of Q0,t is Gibbsian and Card G(ϕt,m) = 1. �

Remark 6 : i) If the self potential U is not ultracontractive, it is still true that
Gibbsianness propagates at time t but the critical value β0 depends on t.

ii) The above proof implies in fact more general results in the case of independent
dynamics (β = 0). In this situation, for any U (not necessarily ultracontractive) and any
time t, initial uniqueness propagates in time, that is Card G(ϕt,m) = 1.
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