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Abstract

The dependence between survival times and covariates is described e.g. by
proportional hazard models. We consider partly parametric Cox models and
discuss here the estimation of interesting parameters. We represent the ma-
ximum likelihood approach and extend the results of Huang (1999) from
linear to nonlinear parameters. Then we investigate the least squares esti-
mation and formulate conditions for the a.s. boundedness and consistency
of these estimators.
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1 Introduction

The relationship between the survival time and covariates very often is ex-
pressed through the proportional hazards model proposed originally by Cox
(1972). In several papers afterwards this model was investigated in several
directions (Kalbfleisch and Prentice (1980), Andersen, Borgan, Gill, Keiding
(1993), Bagdonavicius and Nikulin (2001)). For the estimation of parameters
of interest exist many approaches. In this paper we consider the maximum
likelihood and a least norm estimator. Both approaches have some advan-
tages. With the maximum likelihood method we can obtain consistent and
efficient estimators. With a least norm estimator it is possible to construct
strongly consistent estimators. Survival models describe the probabilistic
properties of a nonnegative failure time Y . We assume that Y depends on
covariates Z and we model the hazard rate

λ(t | z) = lim
h→0

P(t < Y ≤ t + h |Y > t, z)
h

.

We investigate parametric and semiparametric multiplicative proportional
hazard models

λ(t | z) = λ0(t) r(β, z) (1)

for a completely unspecified baseline hazard function λ0 and the relative risk
function r. The function r is assumed to be a partly parametric function. The
unknown parameter β is to estimate. The deterministic or random covariate
variable Z is constant in time.
We assume that Z = (X, V ) ∈ Rk × Rm and

log r(β, z) = g(x, β) + l(v) (2)

for a known regression functions g, an unknown function l. The covariate
X is controlled, but V is an auxilliary covariate. The aim is to estimate
β and so to find the influence of X = (X(1), ..., X(k)) on the survival time.
Such models for the hazard rate were considered by several authors. Starting
point was Cox(1972) with his proportional hazard rate model

λ(t) = λ0(t) exp(β′x), (3)

later on e.g. Andersen&Gill (1982) proved for the regression model (3) the
asymptotic normality of the maximum partial likelihood estimator (mple.)
for β. The special case of (2) is the semiparametric partial linear model

log r(β, z) = x′β + l(v) (4)
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which was considered by Sasieni (1992). He found an information bound
for the mple. for β in (4). In Andersen et al. (1993) a broad class of mul-
tiplicative and additive models for the hazard rate and related estimates
was studied. Bagdonavicius&Nikulin (2001) formulated a lot of models for
uncensored and censored variables and found properties for the estimates
in these models. Huang (1999) gave an approach for the estimation of β
in (4) and could prove the asymptotic efficiency of the approximated mple.
We will extend the model (4) to nonlinear functions g and discuss the pro-
perties of estimates in these models. In section 5 we discuss properties of
least squares estimators where the basis is a nonparametric estimation of the
hazard function. Here we use the Nelson-Aalen type estimator considered
by several authors, for example Van Keilegom and Veraverbeke (2001) and
Liero (2003). Especially we formulate conditions for the boundedness and
consistency of the estimator for β.

2 Types of regression functions

Under a precise knowledge of the considered or observed process one has so-
me special models for the hazard rate. The baseline function is unrestricted.
The model specification consists in (1) the function r or the function g. We
consider different choices of g.

2.1 Linear models

The linear models play a important role in all analyses. In the most of the
cases one understands these models as approximations for g or λ. In the
model

g(x, β) = x′β = x(1)β1 + ... + x(k)βk (5)

with x ∈ Rk, β ∈ Rk the dependence is linear in the controlled covariates
and the parameters. If the covariates have a nonlinear influence then

g(x, β) = w(x)′β = β1 + β2 x + ... + βk xk−1 (6)

is a polynomial model in one covariate x. Here w(x) ∈ Rk, β ∈ Rk. Polyno-
mial models in higher dimensional covariates are also possible.
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2.2 Nonlinear models

The simplest type of functions in this class is

g(x, β) = β1 exp(β2 x) (7)

for x ∈ R1, β ∈ R2. These are convex or concave curves. Another examples
are the logistic curves which one can describe in different form. The solution
g(x, β) := ν(x) of the differential equation

ν̇(x) = β1 ν(x)(β2 − ν(x)) (8)

is used very often. These curves have a saturation point β2. There is a huge
set of possible other regression curves. In difference to linear regression cur-
ves the statistical properties of estimates in nonlinear models depend stron-
gly on the space of parameters. In general the estimation problem leads to
ill-posed problems and one needs additional restrictions for β. We are inte-
rested in estimating β. There are different possibilities. One approach bases
on the likelihood principle. Here one expects that one gets consistent and
asymptotically efficient estimates. Another approach bases on a least squa-
res principle. Here one hopes that the corresponding estimates are strongly
consistent. We will discuss both possibilities.

3 Random covariates and partial likelihood

We consider the nonnegative failure time Y and the censoring time C. Y
depends on the covariate Z and we assume that Y and C are conditionally
independent given z. ∆ = 1Y≤C is the censoring indicator and we set T =
min{Y, C}. Our observable variable is

(T, ∆, Z) ∈ R+ × {0, 1} × Rk+m. (9)

There is given a random sample

(Ti, ∆i, Zi), i = 1, ..., n

from the distribution of (T, ∆, Z). Here we have

Zi = (Xi, Vi)

with Xi = (X(1)
i , ..., X

(k)
i )t, Vi = (V (1)

i , ..., V
(m)
i )t.

The idea of Sasieni (1992) and Huang (1999) consists in approximating the
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nonparametric term l(·) in (1) and (2) by a smooth function. They proposed
a spline approximation. Assuming

l(v) =
m∑

j=1

lj(v(j)) (10)

then

l(v) ≈
m∑

j=1

sj(v(j)) (11)

for splines sj of order q = q(n) ≥ 1. We assume that a ≤ V (j) ≤ b and
choose knots ξ1, ..., ξp with a ≤ ξ1 ≤ ... ≤ ξp ≤ b and p = p(n). Furthermore

max
s
|ξs − ξs−1| = O(n−α)

is assumed. In the space S̃n of polynomial splines of order q ≥ 1 there exists
a local basis B1, ..., Bνn such that the representation

sj(·) =
νn∑

t=1

bjtBt(·), 1 ≤ j ≤ m (12)

holds. Consequently we have with (11) the approximation

l(v) ≈ s̃n(v, b) :=
m∑

j=1

νn∑

t=1

bjtBt(v(j)) (13)

where b is the vector of unknown coefficients b11, ..., bmνn .

Assuming the model for the hazard rate function in the form

λ(t|x, v) = λ0(t) exp(g(x, β) + l(v))

then with

fn(x, v) = g(x, β) + s̃n(v, b)

the partial log-likelihood function is given by

ln(β, b) =
1
n

n∑

i=1

∆i{fn(Xi, Vi)− log
∑

j:Tj≥Ti

exp[fn(Xj , Vj)]}. (14)
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Any (β̂n, b̂n) which maximizes ln(β, b) is called a maximum partial likelihood
estimator (mple) for (β, b). The additive constant in (14) is free, so we de-
termine such a b̂n that

n∑

i=1

∆i

νn∑

t=1

b̂(j, t)
n Bt(V

(j)
i ) = 0, j = 1, ..., m

with

b̂T
n =

(
b̂(1,1)
n , ..., b̂(m, νn)

n

)T
.

The limit distribution of β̂n is given by the next theorem. For this we for-
mulate at first some assumptions.

Assumption 1 g is continuously differentiable w.r.t. β.

Assumption 2 β is an inner point of a bounded set in Rk or for any β̃ and
any sequence x1, x2, ... of realizations of X1, X2, ... we have

n∑

i=1

[g(xi, β̃)− g(xi,
˜̃
β)]2 →∞ for ‖ ˜̃

β‖ → ∞.

Assumption 3

E g(X, β)∆ = 0, E lj(V (j))∆ = 0, j = 1, ...,m.

Assumption 4

‖X‖ ≤ K a.s. for a finite constant K,

V ∈ [a, b]m.

Theorem 3.1 Under Assumptions 1 to 4 we have
√

n(β̂n − β) d−→ N(0, Σ), (15)

where

Σ−1 = E
[
∆

(
G(X,β)− a∗(T )− h∗(V )

)⊗ 2]

with x⊗ 2 := xx′ and

G(x, β) =
∂

∂β
g(x, β) ∈ Rk.
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Here a∗, h∗ are k-dimensional functions with

h∗(V ) =
m∑

j=1

h∗j (V
(j))

and

E∆‖G(X, β)− a(T )− h(V )‖2

is minimized by a∗, h∗.

Proof: The proof combines results from nonlinear regression estimation
and results of Huang (1999) for estimation in partly linear models.

2

This theorem formulates an expected result. Important are the assumptions.
We mention especially the finite supports for the covariates. The assumption
A2 ensures the estimability of the parameters. This assumption is important
for infinite parameter spaces.

3.1 Linear case

The linear case

g(x, β) = x′β

is of special interest. For such models Sasieni (1992) found a lower informa-
tion bound for the asymptotic variance of an estimator for β. Huang (1999)
proved that the maximum partial likelihood estimator β̂n achieves this lower
bound.
The result of theorem 3.1 can be used for choosing an appropriate experi-
mental design. We have to find such a random variable X that Σ is in some
sense minimal. This is then a general problem of nonlinear estimation.

4 Fix covariates and partial likelihood

For fix covariates z1, ..., zn the random variables (Ti,∆i, zi) are independent
distributed but not identically. The partial log-likelihood is given by

ln(β, b) =
n∑

i=1

∆i{fn(xi, vi)− log
∑

j:Tj≥Ti

exp[fn(xj , vj)]}. (16)
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Then a maximum partial likelihood estimator β̂n is given as before by such
a vector which maximizes ln. The asymptotic properties of β̂n depends on
the sequence of zi.

5 Least squares estimation

We consider a proportional hazard model (1) with log r(β, z) = g(x, β). The
estimation of the parameter β can be constructed as before by a maximum
likelihood principle but also by a least squares criterion. For this we point
out that we are interested in the hazard rate

λ(t | z) = λ0(t) r(β, z) (17)

or in the cumulative hazard rate

Λ(t | z) =
∫ t

0
λ0(s) ds r(β, z). (18)

The term which includes β is the same in (17) and in (18). Therefore for
the estimation of β there is no statistical difference in both equations. The
estimation of the cumulative hazard rate is of higher power than those for
the hazard rate λ.
In Van Keilegom and Veraverbeke (2001) one finds a nonparametric esti-
mator for the cumulative hazard function Λ. This is a Nelson-Aalen type
estimator and is constructed in the following way. We choose a kernel func-
tion W and a sequence of bandwidths {an} and define for any value of the
covariates z1, ..., zn the weights

wnj(z) =
W ( z−zj

an
)∑n

k=1 W ( z−zk
an

)
(19)

Then we have
∑n

j=1 wnj(z) = 1 for any z. An estimator for Λ is then

Λ̂n(t|z) =
n∑

i=1

1(Ti ≤ t)∆iwni(z)∑
j:Tj≥Ti

wnj(z)
. (20)

The parameter β is estimated by comparing Λ̂n with Λ under an appropriate
distance measure. We formulate this for the quadratic norm. We call β̂n a
least squares estimator if

arg min
β,λ

n∑

j=1

∫ (
Λ̂n(t|zj)−

∫ t

0
λ(s) ds · r(β, zj)

)2
bn(t) dt = (β̂n λ̂n).(21)
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Here {bn} is a sequence of nonnegative weight functions. With (β0, λ0) we
denote the true parameter in the hazard rate function and set

Λ0(t) =
∫ t

0
λ0(s) ds.

We use the notations

W 2
n(β0,Λ0, β, Λ) =

1
n

n∑

j=1

∫ (
Λ0(t) r(β0, zj)− Λ(t) r(β, zj)

)2
bn(t) dt,

Zn(β0, Λ0, β, Λ) =
1

nWn(β0, Λ0, β, Λ)
×

×
n∑

j=1

∫ (
Λ̂n(t|zj)−Λ0(t) r(β0, zj)

)(
Λ0(t) r(β0, zj)−Λ(t) r(β, zj)

)
bn(t) dt

if Wn(β0,Λ0, β, Λ) 6= 0 and put

ε2
n =

1
n

n∑

j=1

∫ (
Λ̂n(t|zj)− Λ0(t) r(β0, zj)

)2
bn(t) dt.

According to (21) our functional which is to minimize is

Qn(β, Λ) =
1
n

n∑

j=1

∫ (
Λ̂n(t|zj)− Λ(t) r(β, zj)

)2
bn(t) dt (22)

and with the introduced notations we have the representation

Qn(β, Λ) = W 2
n(β0, Λ0, β, Λ)+

+2Wn(β0,Λ0, β, Λ)Zn(β0, Λ0, β, Λ) + ε2
n. (23)

Assumption 5 The support of X is a subset X in Rk. The parameter β
lies in a set B. Both set are not necessarily bounded.

Assumption 6 ε2
n tends a.s. to a finite value σ2.

With (23) we obtain immediately a result on the boundedness of the least
squares estimator.
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Theorem 5.1 If A5 and A6 and

inf
|β|≥η

Wn(β0, Λ0, β,Λ) →∞ for η →∞

hold then β̂n is bounded a.s.

Sometimes one can check the behavior of Zn. Then the following result is
useful.

Theorem 5.2 If for any β0 there exist constants c(β0), d(β0) such that for
‖β‖ ≥ d(β0) for all n ≥ n0 the condition

Wn(β0, Λ0, β,Λ) ≥ c(β0)

and if for some positive η and a constant κ the inequality

inf
‖β‖≥η

Zn(β0, Λ0, β, Λ)
Wn(β0, Λ0, β, Λ)

≤ κ < 0.5 a.s.

holds then β̂n is bounded a.s.

The boundedness is necessary to prove consistency of β̂n. In general one
has two possibilities to prove the consistency. Either one assume that the
parameter lies in a compact set or one finds such conditions that one can
restrict itself on compact sets. Our formulated conditions in the previous
theorems are such assumptions that we can choose compact subsets which
contains the true value β0 and the estimates β̂n lie a.s. in these subsets.
The representation (23) leads to

Qn(β, Λ)−Qn(β0, Λ0) = nW 2
n(β0, Λ0, β, Λ)

[
1 + 2

Zn(β0, Λ0, β, Λ)
Wn(β0, Λ0, β, Λ)

]
(24)

This representation shows that the difference of the values of the functional
Qn for different parameter values is expressed by Wn and Zn

Wn
. These terms

played already a role in the theorems about the boundedness of the l.s.e.

Theorem 5.3 If there is a compact subset B̃ of the parameter space B such
that β̂n ∈ B̃ a.s. and if inf |β|≥η Wn(β0, Λ0, β, Λ) →∞ for η →∞ then under
A6 β̂n is strongly consistent.
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