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Goodness of Fit Tests of L,-Type

Hannelore Liero
Institute of Mathematics, University of Potsdam

Abstract

We give a survey on procedures for testing functions which are based on quadratic
deviation measures. The following problems are considered: Testing whether a
density function lies in a parametric class of functions, whether continuous random
variables are independent; testing cell probabilities and independence in sparse data
sets; testing the parametric fit of a regression homoscedasticity in a regression model
and testing the hazard rate in survival models with censoring and with and without
covariates.

Keywords and phrases: Density tests, sparse data, testing independence, regression
fit, homoscedasticity, hazard rate under censoring with covariates
AMS subject classification: Primary 62G10, 62G20



1 Introduction

We give a survey on procedures for testing functions in several nonparametric setups.
The common idea of all considered tests is to express the deviation of the alternative
from the hypothesis by a quadratic distance measure between a nonparametric kernel
type estimator for the function of interest and a smoothed function characterizing the
hypothetical function. Based on limit theorems stating that these quadratic functionals
are asymptotically normally distributed we formulate asymptotic a-tests. Several as-
pects of the application of these test procedures are investigated.

So, in Section 2.1 after introducing a test statistic for checking whether a density function
belongs to a parametric class we discuss the behavior of the power of the resulting test
in detail. In Section 2.2 we apply similar ideas to test independence of two continuous
random variables. Here the main point is to find good estimators for the standardizing
terms in the limit theorem to avoid bias problems in the application of this limit state-
ment for the formulation of the test.

In Section 3 the discrete analogues of the density test problems are considered. For
estimating cell probabilities in sparse multinomial data sets Simonoff (1996) introduced
local polynomial estimators. We use a special case of these kernel estimators to test
hypothetical cell probabilities and compare our approach with the ”classical” test proce-
dure based on frequencies. Furthermore, the connection between testing in sparse data
sets and testing a density is investigated. The case of testing independence in a sparse
contingency table completes these considerations for sparse data.

In the following two sections we consider the nonparametric regression model. In Sec-
tion 4 about testing whether a regression function has a parametric form we review the
results of Hérdle and Mammen (1993) to show, that bootstrap methods can be useful
to apply tests of Lo-type in practice.

Section 5 deals with testing homoscedasticity in a regression model. Here we show, how
the conditional variance can be estimated nonparametrically. Further, we mention the
problem of estimating the variance in a nonparametric homoscedastic regression model
with random design.

In the last section tests for testing the hazard function in survival models for censored
observations are given. Firstly the case without covariates is investigated; here the main
point is to handle the maximum likelihood estimator for the unknown parameter in the
hypothetical hazard function. In Section 6.2 the model with fixed covariates is studied.
Here, following the approach of Van Keilegom and Veraverbeke (2001), we construct our
test statistic on the basis of a weighted estimator for the hazard function, where the
weights depend on the covariates.

2 Tests for densities

2.1 Testing whether a density has a parametric form

Let Z1,..., Z, be independent and identically distributed (i.i.d.) random variables with
Lebesgue density f. We wish to test whether f lies in the parametric class

F={fo=f(9) :9€0CR"}



against the alternative that f does not belong to F, i.e.
H: feF aganst K: f&F.

The idea of the test procedure is to compare an estimator fn, which is ”good for all
possible densities f”, with the hypothetical one. It is well-known that the Rosenblatt-
Parzen kernel estimator

. " -7
fn(t> = nlbnz_;K<t by >

is such a good nonparametric estimator. Here K is the kernel function satisfying some
regularity conditions and {b,} is a sequence of bandwidths tending to zero as n tends
to infinity. As deviation measure we choose the weighted Lo-distance. This approach
was studied among others by Bickel and Rosenblatt (1973), Ghosh and Huang (1991),
Liero, Lauter and Konakov (1998). Note, that the kernel estimator fn is not an unbiased
estimator. Thus, deriving the limiting distribution of this distance one has to handle
the bias. To avoid this problem it seems to be useful to take instead of the difference
between fn and a hypothetical fy the difference of fn from its expectation under H, that
is from

Excfa(t) = bln/K (tz;f) F(z,9)dz = /K(x)f(t—xbn,#}) da.

In other words, we compare the smoothed data with a smoothed version of the hypo-
thetical density. Since this expectation depends on the unknown parameter ¥ one has
to replace it by a suitable estimator. Liero et al. (1998) propose to use the maximum
likelihood estimator, say 1§n, which is y/n-consistent under H. Thus, finally we define
the following test statistic:

Q= [ ()= entt.£5)) " att)a

with e, (t, f3 ) = [ K(2)f(t — xby, Un)dz and a weight function a, which is introduced
to control the region of integration and has to be chosen by the statistician. Before
we formulate the basic limit statement let us introduce some notation, which are used
also in the next sections: For b > 0 we write K;(t) = $K(t/b). Further, we define
k? = [K?(z)dz and the convolution £*(2) = [ K(u)K(z + u)du. Throughout the
paper we assume

(K) The kernel K is a Lipschitz continuous density function with finite support.

(W) The weight function a is nonnegative, piecewise continuous and bounded on R;
(resp. on R?)

Theorem 2.1 Suppose that (K), (W) and the following assumptions are satisfied: Any
density f € F is bounded on R, Lipschitz continuous and partially differentiable w.r.t.
9; Vo f(-,+), the vector of the partial derivatives, is bounded and uniformly continuous in
both arguments. The estimator Uy, is \/n-consistent under H. Further, J Ve f(t,9)]a(t)dt <
oo for each ¥ € © and nb, — oo, b, — 0 and b,(logn)¢ — 0 for some ¢ > d/2. Then
under H

nb}/Q

Ofn

(Qn - ,ufn) i’ N(Ov 1)



where

Pfn = (nbn)lm2/f(t, On) a(t)dt and

o2 =2 / F(t 9,2 a2(1) dt / (K*(2))2 d.

Applying this limit statement we obtain an asymptotic a-test of H against I by the
rule: Reject H if Qp > ppn + za afn/(nbyll/Q), where z, is the (1 — «)-quantile of the
standard normal distribution.

Some Remarks. 1. This test may be regarded as an analogue of a modified Cramér-
von Mises test for testing whether an unknown distribution function lies in a parametric
family of distribution functions. In contrast to the test for densities the limit distribution
under the null hypothesis of the Cramér-von Mises test statistic with estimated param-
eter depends on the error of the parameter estimation. This is due to the fact that the
normalizing factor n in the Cramér-von Mises test statistic is of the same order as the
square of the rate of consistency of the parameter estimation, while in the density case
this factor is nb,ll/ ? which tends to infinity slowlier. Therefore the error of the parameter
estimation can be neglected in the problem presented here.

2. One can show (see Liero (1999)) that the limit statement formulated in Theorem 2.1

holds true if the bandwidth b, is replaced by an adaptively chosen bandwidth by, as long

as by /bn, LY. ¢ for an arbitrary but fixed deterministic bandwidth b,, satisfying the
conditions of Theorem 2.1 and some positive constant c.

3. Theorem 2.1 says nothing about the order of convergence of the distribution of the
standardized test statistic to its limit. Simulations show that the approximation of the
critical values by those of the standard normal distribution may fail for moderate sample
size n. Therefore this limit theorem should be considered more as a theoretical result
which gives an insight into the behavior of the test statistic, but it is not recommended
for the approximate calculation of the critical values.(See also Section 4.)

Power considerations. It is easy to show, that the proposed Lo-test is consistent,
that is, if the alternative holds then the probability for rejecting H tends to one. There-
fore, for a characterization of the test and the comparison with other tests it is useful to
investigate the asymptotic behavior of the power under local alternatives. In the litera-
ture there are different approaches to that problem. Here we will follow the “classical”
approach and consider local alternatives of the form

Kn : fn() = f(vﬁ)"’_An()

where {A,,} is a sequence of functions tending to zero and ¥ is arbitrarily fixed. The aim
is to study how the power depends on the convergence behavior of the disturbing function
A,. Such investigations were done under different aspects by Bickel and Rosenblatt
(1973), Rosenblatt (1975), Ghosh and Huang (1991) and Liero et al. (1998). They
considered the following types of alternatives: The so-called Pitman alternatives, sharp
peak alternatives and alternatives with rapidly oscillating disturbing functions. To derive

the behavior of the power II(A,) = Py, (@n > o + zaafn(nbim)_l) , where Py, is
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the probability measure with respect to the local alternative, one has to study the
asymptotic properties of the parameter estimator ¥U,, under local alternatives. This is
done in the paper of Liero et al.(1998), where an asymptotic expansion of the maximum
likelihood estimator is given.

Generally speaking, the results in the paper mentioned above say that the Lo-test is
sensitive against local alternatives IC,,, where the weighted Le-norm of the disturbing
function A, behaves asymptotically as n=/2b, L 4, in other words II(A,) tends to a
number between « and 1, if nl/Qb,ll/A‘HAnal/QHz —c#0.

In more detail one can prove the following results: 1. The error of the parameter estima-
tion has an influence on the value of the limit of the power under Pitman alternatives
and rapidly oscillating disturbing terms. Under sharp peak alternatives the value of the
power does not depend on that estimation error.

2. Measured in the Lo-norm all three types of alternatives tend to the hypothesis at the
same rate of convergence.

3. The highly oscillating disturbing function can be interpreted as a function with a
growing number of peaks. But, here more sharpness of the peaks is compensated by a
larger number of peaks. Thus, the Lo-norm of the disturbing function does not depend
on the sharpness of the peaks, and the asymptotic behavior of the power under highly
oscillating alternatives and under Pitman alternatives does not differ qualitatively.

4. If we translate our problem of testing a density function into a problem of testing
distribution functions we get the following results: Pitman alternatives remain Pitman
type alternatives also in the context of distribution functions. Therefore, our Lo-density
test is worse than the Cramér-von Mises test, if we compare both with respect to this
type of alternatives. The sharp peak disturbing function yields for distribution functions
a disturbing function of sharp peak type, but with other ”less sharp peaks”. That means
that there exist alternatives of sharp peak type which are detected by the test based
on density estimators, but not by the classical Cramér - von Mises test. The reason is
that integration of the alternative density smoothes the sharp peak away. Integration
of the rapidly oscillating disturbing function leads to the following result: Although the
behavior of the power of the Lo-test under Pitman and highly oscillating alternatives
is qualitatively the same, we can find highly oscillating disturbing functions where the
Cramér-von Mises test fails, but the Lo- density test does not. The explanation is, that
also these ’infinitely many peaks’ are smoothed away by the translation from density to
distribution function, despite of their growing number.

5. The investigations show that a larger bandwidth improves the power. Heuristically
speaking, this means, that the rate of convergence of the alternative, measured in the
Lo-norm, may increase if the variance of the kernel estimator tends to zero faster. This
feature, incidentally, conflicts with the fact discussed before stating that the approxima-
tion of the distribution of the test statistic by the standard normal distribution improves
if the bandwidth tends to zero faster.

6. A test based on the integrated difference of fn from the hypothetical f 5. 18 discussed
by Liero (1999). Here the additional bias term can lead to an increase or an decrease of
the power.

7. In the paper of Liero et al. (1998) a so-called L.-test, which is based on the (normal-
ized) maximal deviation of f, from Ey f,(¢) is studied. The power considerations carried
out there show that with respect to Pitman alternatives the Lo-test behaves better than
the Loo-test. Further, it is proved that there exist local alternatives of sharp peak type



for which the Lso-test distinguishes between hypothesis and alternative, but the Ls-test
does not.

2.2 Testing independence

Let (U1,V1),...,(Un,Vy) be a sample of i.i.d. (R x R)-valued random variables with
density f. We wish to test whether U; and V; are independent, that is the test problem
has the form

H: f=g-h against K: f#g-h,

where g and h are the marginal densities of U; and V;, respectively. Again we will use a
kernel estimator for the construction of our test statistic. It is defined by

. sV—t
fuls anZ ( by )

Here K : R?> — R is the kernel function and b,, is the bandwidth sequence. We take a
kernel of product form, i.e.

K(z,y) = Ki(x) K2(y) with /KJ(.CL‘) dz =1 for j=1,2. (1)
The estimators of the marginal densities are given by

" 1 - S — Ui

gn(s)_nbn;m( 5 > and A ( nb Z < )

The formulation of the test procedure goes back to Rosenblatt (1975). His idea was to
compare a kernel estimator of f with the estimator of f under the hypothesis, that is
with the product of kernel estimators of the marginal densities. This leads to the test
statistic

L = [(hulsit) = dn(s) - hnlt) Passt) st

where @ is again a suitable weight function and the integration is taken over R?. Let us
denote the expectations of f,, gn, and hy, by f,,, 7, and h,, respectively. Further, define

gfn = (nbi)_lDln - (nbn)_lDQn
with

Dy, = //K%(u)g(s — uby) du/Kg(v)h(t —vby) dva(s,t)dsdt

Dop = / <gi(s) / K2(0)h(t — vby) d
2 t)/K%(u)g(s — uby) du> a(s,t)dsdt,
and
7‘]% = 2/g2(s)h2(t)a2(s,t) dsdt /(K1 % K1)2(r)dr /(K2 x K3)2(v) du.

With these notations we can formulate:



Theorem 2.2 Suppose that the marginal densities g and h are Lipschitz continuous and
bounded. Let the kernel K be of product type (1). The K;’s (j = 1,2) satisfy condition
(K) and the weight function a condition (W). If f = g - h, then

nba (In = &) = N(0,77) )
as b, — 0 and nb2 — oo.

To apply limit statement (2) for the construction of the test procedure we have to replace
the unknown terms D1, and Dy, by estimators which are consistent with a certain rate
of convergence. To avoid bias problems we do not follow the proposal of Rosenblatt
(1975), who replaced the unknown functions g and h by the kernel estimators g, and

A

hy. Observe, that

Dy, = b2 / Qun(s) Qon(t) a(s,t)dsdt  and

Doy = b1 / (0 () Qon(t) + [n(t)]” Qunls)) als, 1) ds

where Q,,(s) = EK? (%) and o, (t) = EK3 (t;:f) .

We estimate these quantities by

n

~ 1 — s —U; ~ 1 t—-V;
an(s):nZK%( b > and 92"(t):nZK22< b >

i=1 i=1

and obtain as estimator for Dy,
Dy, = bn2/ Quin(s) Qan(t) a(s, t) dsdt,
A

which is consistent and unbiased under H. Estimators of Do, and TJ% are given by
Do =" [ (0 (6) an(0) + [0 D1(5)) s, 1) ds e and
A
??n = 2/@2(3) h2(t) a®(s,t) ds dt /(K1 * K1)?(u) du /(Kg x K9)?(v) do.

Set £ = (nb2) "Dy, — (nby) 'Dgy. Tt is easy to verify that the limit statement
formulated in Theorem 2.2 remains valid if the unknown terms {¢,, and 7y, are replaced
by these estimators. Thus, an asymptotic a-test is provided by: Reject H, if I, >

En + 2o Tin/(nby).

Some remarks. 1.) In difference to the approach of Rosenblatt (1975) we propose
another estimator of the standardizing terms in the limit theorem for I,,. The advantage
of our method is, that this estimator is unbiased. So we do not need additional assump-
tions on the smoothness of the underlying densities to ensure that the limit theorem
remains valid with the estimated standardizing terms.

2.) The behavior of the power of this test is qualitatively very similar to that of the
Lo-test considered in Section 2.1. As there one can show that the power tends to a
nontrivial limit, i.e. a number between o and 1, if v/nby,||Ana'/?||z — ¢ # 0, where the
disturbing function A,, describes the deviation from independence.



3 Tests for sparse data sets

In the classical case the number of cells, say k, in a multinomial distribution or a con-
tingency table is assumed to be fixed. But there are data sets where the total number of
observations is moderate in comparison to the total number of cells. Consequently the
number of observations falling in each cell is rather small. We describe such sparseness
mathematically by assuming k = k,, — oo as n tends to infinity. It is known that for
sparse data nonparametric smoothing techniques provide estimators of the cell probabil-
ities, which have a better asymptotic performance than the frequency estimators, see for
example Aerts et al. (1997) and Simonoff (1996). Here we use such smoothed estimators
to define a test statistic of Lo-type.

3.1 Testing cell probabilities in sparse multinomial data

Let p, = (Pn1,---,Puk, )t be the vector of cell probabilities of a k,-cell multinomial
distribution, where n is the total sample size. The simplest test problem is to test

H: ppi = mp foralli=1,... k, against K: puy # mny for some i, (3)

where 7, = (Tn1,..., Tk, )" is a vector of given cell probabilities. To formulate the
test procedure we start with the definition of the estimators of the cell probabilities
Pni, i =1,...,k,. As smoothed estimators we propose local constant estimators, which

are the simplest local polynomial estimators introduced by Simonoff (1996). For the
definition of these estimators let x,; = (j — %) /kn be equidistant design points on the
interval [0,1] and denote the relative frequency of cell i by p},. The data (z,;, p;j) can
be considered as regression type data. Following the idea of smoothing in the regression
set-up we estimate the cell probability p,; by

kn
Tn Tni
ZK< 5. ) Py
A p=1
Pni = Fon )
ZK (mnu_xn'L)
p=1

where K is a kernel function and b,, is a sequence of bandwidths introduced already in
the previous section. For simplicity of writing we skip the subscript n in the notation of
the cell probabilities and the design points; furthermore we write

1 &

. —z . K(u)
P = L; (x”b x’)p* with  L;(u) = —.
knbn ; ) e S i ()

As test statistic we propose the sum of squared differences between the estimators and
their expectations under the hypothesis:

k k
= 1 = Ti—x;
A~ A\2 . N
T, = E (Pi — Enpi)”  with Epp; = bk ]E:l L; ( an Z) Ty

=1
Set
1 En [ En ) kn i
frn = nk%; ;Li,bn(%’ — i) mj = ;Lz‘,bn(%‘ - i) 7



where L;,(u) = $L;(%), and

kn  kn kn,
o2, = 2k>b, Z Z C? mmm with Cp, = k2 Z Liy, (21 — x3) Lip, (xm — 2;).
I=1 m=1 i=1

The following limit theorem shows that T,, is asymptotically normal under H.

Theorem 3.1 Assume (K) and |mp; — mnj| < Lkyt|zn — anj| for all i,j and some
constant L. If b, — 0, b,k, — oo and nb, — oo as n — oo, then under H

nkn by,

T (T — fin) 2. N(0, 1).
Under the assumptions of Theorem 3.1 we get the test: Reject the hypothesis H if
Tn 2 pan + 2a Uﬁn/(nkn\/i)n)

Comparison to the ”classical” approach. Another possibility to test (3) is the
quadratic deviation of the unsmoothed estimators of the cell probabilities, that is to use
the test statistic

kn
Sn = Y — )

=1

Applying results proved by Holst (1972) and Burman (1987) one can show that this
statistic, properly standardized, is also asymptotically normally distributed. The asymp-
totic a-test based on this limit statement has the following form: Reject the hypothesis

H, 3 Su = ExSn + prnza/(nVhn), where ExS, = L (1 - T2 ), and g2, =

n

2k, Z?ll 7Tj2- is a sequence of positive numbers tending to a positive constant.
To compare both test procedures we consider the behavior of the power under local
alternatives of the form: K, : p; := m + §; with Zle 6 = 0.
Let us denote the power of the test based on the (unsmoothed) frequency estimators by
B1n, and that of the test based on the p,;’s by (o2,. Then under mild conditions on the
disturbing terms ¢; in Liero (2001) it is proved that

lim @ <1,

n—oo 2n
where ”=" holds if nk,v/b, >0 62 =0 or nyvk, >0, 62 — oc.
That means, roughly speaking, the test based on the quadratic deviation of the local
polynomial estimator is better than the test based on the frequency estimators. Only
in the case that the square of the Lo-norm of the disturbing terms, i.e. Y. 67, is very
large, the power of both tests tends to one; and in the case that the bandwidth b, is
very small, i.e. we smooth only ”a little bit”, both tests behave poorly.



Connection to the goodness-of-fit test using densities. Suppose that the cell
probabilities p; and 7; are generated by latent densities f and fj, respectively, which are
defined on [0, 1]:

/ flz)dz, m = / fo(x)dx where I; = [(i —1)/kn,i/ky].
I;
Then the test problem (3) corresponds to the simple problem

H: f=fo against K : f=# fo. (4)
Furthermore it follows from results proved by Augustyns (1997) that

fom = (nknba) 152 + 0(1)) and  lim o2, — 2/f0 dx/ ()2 dz.

n—oo

Thus we have the following correspondence between the test for the cell probabilities
and the modified test for testing (4) (where the weight function a is the indicator of
0,1]):

kn Ty = kn SSF (pi — Exgpi)? corresponds to Qn = [(fu(t) — Exfn(t))?dt,

knpinn  to  pp, = nb -1 2f0 fo(t) and the variance term o2,

2 Jy J3(0)dt J(r

Moreover, let us consider the behavior of the power from the viewpoint of the exis-
tence of a latent density. For that purpose we erte the local alternative in the form
K'n: fn:= fo+ An. Suppose that S5 62 ~ fo A2 (u) du. Then, expressed in
terms of densities, the power of the second test tends to a nontr1v1a1 limit, if the square
of the Ly-norm of the disturbing function A,, is asymptotically equivalent to (nv/b,) !
Note, that this is the same rate of convergence as in the problem of testing a density

obtained before.

to 0]2% =

3.2 Testing independence in sparse contingency tables

We consider a two-dimensional contingency table with k,, = l,, - m,, cells, where [,, — oo
and my, — oo. The (joint) cell probabilities are denoted by py;, the marginal cell
probabilities by g,; and r,;. To test independence we have to check the hypothesis

H: Pnij = qniTn; for all (4,7) against K : puijr # g 7oy for some (i, 5').(5)

For testing (5) we will use

mp  In

Mn = ZZ (ﬁnu - (jm 'rf’nj>2u

i=1 j=1

where pp;j, gni and 7,; are the local constant estimators of py;;, gni and r,;. Following
the ideas presented in the previous sections these estimators have the following form (we
skip the n in the subscript if appropriate):

Mmp  In

K(zu_zl Yv— y])

A ;; pMV My In . xl yu y]

bij = %lzn et ey :mnl b2 2;&]( bn )puv’
K (o5 )

p=1v=1

10



where z, = (u— 3)/m, and y, = (v — 1) /l,, are equidistant design points on the interval
[0,1] x [0,1], pj; is the relative frequency of cell (4, ) and

K (u,v)
n In — Ty v—Yj ’
Mnlan Em ZV:l K (ajubnajl7 ? bnyj)

Again we take a kernel of product type. Then as estimators of the marginal cell proba-
bilities ¢; = >, pij and r; = 3, p;; we obtain straightforward

l
A~ 1 el T —; * ~ 1 . Yv—Yj *
%= ;Lu( o )qu and 7; = b ;sz (7,% ]) ™

with weight functions

Lij(u,v) =

Lh(u) =

Ki(u) and Loj(v) = Ks(v)
mnb Zmn Ky <xu—xz) 2 lbnz (yu yg)

’IL

and marginal frequencies g;, and 7.
To formulate the asymptotic normality of M,, under H we make use of the following
notation: p;;,q;, and 7'j, are the expectations of p;;, ¢;, and 7;, respectively. Define

Epn = (nmplyb2) Hdi, — (nmplnby) t dap

with
Mnp Mnp ln
din = (mnln)_lbi ZZK%i,bn (Tp — Ti)qu ZZ 27, b Yy = Yj) 1w
i=1 p=1 j=1v=1
Mn Mn
don = bu | 1 Zr DD K, (@ = i)
i=1 p=1
i S5 Y K - s
=1 j=1lv=1
and
mp Iln
T}?n = 2myly Zqur? //(K*K)2(fv,y) dz dy.
i=1 j=1

The basis of our test is the following theorem:
Theorem 3.2 Suppose that the marginal probabilities satisfy for all i,u,j and v, and
some constants L1 and Lo

lgi — qul < legl |z — xu| and |r; — 1| < Lzlgl lyj — yul-

Further, the kernel K is of product type (1), and the K;’s (j = 1,2) satisfy (K). If the

hypothesis H holds, then
nMmplnby D
——— (My — &) — N(0,1)

Tpn

as b, — 0, mnlnb,21 — 00 and nb,% — 0.

11



To apply this limit statement for the construction of an asymptotic a-test we have to
replace the unknown terms di, and da, in &, by suitable estimators. To avoid bias
problems we choose

Jln = (mnln)_lbiZZK%z b \ T qM ZZ 2]b ) ,
i=1 p=1 Jj=lv=l

which is an unbiased /n-consistent estimator of dy,. The second term is estimated by
the consistent estimator

My Mnp
d2n = bn 1l ZT*Z ZZ 1¢ bn xl)q;
=1 p=1
mnzq;’azz 27, bn ) )

j=1lv=1

and the variance term can be replaced by

Mp In

= 2myl, ZZq*Q *2 //K*K (x,y)dz dy.

=1 j=1
It is easy to verify that under ‘H

b;l (Ciln — d1n> L 0, CZQn — dop, L 0 and ~5n — Tp2n L 0.
Thus, with épn = (nmnlﬂb%)_ljln - (nmnlnbn)_ljgn an asymptotic a-test is provided
by: Reject H, if M, > & + 2o Tpn/(nmiplnby).

4 Parametric versus nonparametric regression fit

Hérdle and Mammen (1993) investigated the problem of testing whether a regression
function has a parametric form. Let us shortly review their results. We have the following
model: The pairs (X;,Y;), i = 1,...,n, are i.i.d. (R x R)-valued random variables
satisfying

Y, = T(Xl) + \/U(Xi) Ei, 1=1,...,n, (6)

with the unknown regression function r(-) = E(Y1|X; = -) and the conditional variance
v(-) = E((Y1 —r(X1))?|X1 =-). Conditionally on X,..., X, the errors ¢ are inde-
pendent and identically distributed with expectation zero and variance one. The test
problem is:

H:re{r(,0):9e0CRY} against K: r¢{r(,0):9ec0CRY,

12



and as test statistic Hardle and Mammen propose the Lo-distance

Rn(ry ) = /(fn(t) — Kury (1)%a(t) dt.

Here 7, is the Nadaraya-Watson kernel estimator with bandwidth b,,, and IC,, 5, denotes

its smoothed version under H, J,, is a suitable parameter estimator. It is proved that
the properly standardized test statistic is asymptotically normal. The main point of the
paper is to investigate different bootstrap procedures for the approximation of the critical
values of the test. As already pointed out, the convergence of the distribution of an
ISE-type statistic to the normal distribution is very slow (see Remark 3 in Section 2),
therefore quantiles of the normal distribution are not appropriate for testing in practice.
Since this problem arises not only in the context of regression testing it seems to be
useful to think about, whether it is possible to apply similar bootstrap approaches also
in other setups.

Suppose that (X,Y;"), i = 1,...,n, is a bootstrap sample, then create R} (r;.) like
R, (r 1%) by the squared deviation between the parametric fit rj, and the nonpa;amet-
ric fit 7 (both computed from the bootstrap sample). The conditional distribution of
R} (rs.) under the (X;,Y;) can be approximated by Monte Carlo simulations. From
this Monte Carlo approximation (1 — «) quantile ¢, is defined, and one rejects H if
nb}l/ QRn(r 5 ) > o Hirdle and Mammen show that the naive resampling does not
work. The same is true for the so-called adjusted residual bootstrap. As an alternative
they propose the wild bootstrap. The idea is to construct a bootstrap sample (X7, Y*),
i = 1,...,n, such that E*(Y;*[X]) = ry (X7), where E* denotes the conditional ex-
pectation E(+|(X;,Y;),4 = 1,...,n). In simulation studies Hardle and Mammen consider
parametric models of polynomials of different degree. It turns out that in all cases wild
bootstrap estimates the distribution of nb,l/ 2 Ry, (ry, ) quite well. The normal approxi-
mation with estimated standardizing terms is totally misleading. The inaccuracy of the
normal approximation increases with the dimension of the parametric model. Moreover,
the authors give Monte Carlo estimates for the power of the test with bootstrapped
quantiles and consider the influence of the bandwidth on the level of the test.

5 Testing homoscedasticity in nonparametric regression

Again, assume model (6). Now, we wish to check whether the model is heteroscedastic,
that is, we wish to test the hypothesis

H:v(t) =v forsome v>0 andall ¢€0,1] against
K:ov(t) Zv forall v>0.

In the paper of Liero (2003a) the following approach is proposed: As test statistic we
take the Lo- distance between a nonparametric kernel estimator of v in the underlying
heteroscedastic model (6) and an estimator of the conditional variance in the hypothetical
homoscedastic model

Yvi = T(Xl) + \/552'» 1= 17'"7”7 (7)
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with v € R,. To avoid bias problems in the limit theorem we modify this difference and
use the following statistic:

Vo = [(@nlt) = monft))*alt)
The estimator 0,, has the form
R n n 1
on(t) = Y Y 5 (Y=Y Way(t, X1, X)
i=1 j=1,ij

with weights

t—X; t—X;

W, (tX X) K<b”)K<b"])
nij I 1ye-0sy n) — t—X _ )
S S B (52 ) (52

n

and the term 1, is defined by

n n 1
() = v+ D D S (r(X) = (X)) Wi (1, Xa, o, Xon).
i=1 j=1,i#j

Liero (1999) showed that V,, (properly standardized) is asymptotically normally dis-
tributed. But to apply this limit result for the construction of a test it is necessary to
replace the unknown terms r and v > 0 by suitable estimators. This leads to the problem
of estimating the variance in a homoscedastic regression model (7). For the fixed design
model this problem is investigated by several authors. For the present random design
model three different estimators for v are given by Liero (1999). It turns out that these
estimators are y/n-consistent under the hypothesis, which is sufficient to use them for
the construction of the desired asymptotic a-test. Furthermore, it seems to be useful to
replace the unknown regression function r in the term 7,, by a Nadaraya-Watson ker-
nel estimator with a suitable bandwidth. The question of an appropriate choice of this
bandwidth is discussed in Liero (2003a). Moreover, power considerations with respect
to different types of local alternatives complete the approach presented there.

6 Testing the hazard function under censoring

6.1 Survival model without covariates

Firstly we consider a survival model without covariates, that is: Let Yi,...,Y, be a
sequence of i.i.d. survival times with absolutely continuous distribution function F'. As
often occurs in applications the Y;’s are subject to random right censoring, i.e. the
observations are

where C1,...,C, are i.i.d. continuous random censoring times which are independent
of the Y- sequence. The §; indicates whether Y; has been censored or not. The function
of interest is the hazard rate A which is defined by

1
A(t) = 11?01 “Pt<Y; <t+s|Y;>t).
s S
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We wish to test whether A lies in a parametric class of functions, i.e.
H: el ={\-0)|0ec0CRY} against K: Mg L.

Since no parametric form of the alternative is assumed we will use a nonparametric esti-
mator of A for testing H against K. The idea for the construction of such a nonparametric
estimator goes back to the paper of Watson and Leadbetter (1964), who considered the
case without censoring. The censored case was investigated, for example by Lo and Singh
(1986) and by Diehl and Stute (1988). To describe the estimation procedure we intro-
duce the distribution function of the observations T; and the subdistribution function of
the uncensored observations:

H(t):=P(T;<t) and HY(t):=P(T; <t,6 =1).

Since

1 - H(t) = (1 - Gt)(1 - Ft) and HY(t) = /0 (1 - G(s))dF(s),

where G is the dlstrlbutlon function of the censoring times Cj;, the cumulative hazard
function A(t fo s)ds can be written as

(Y dF(s) [t dHY(s)
= /0 TEe0 b

Now, for estimating A we replace HV and H by their empirical versions, that is by

. 1 @& 1 &
HU(t):;Zl(Tigt,éizl) and  H,( gleq (8)
=1 =1

The resulting estimator

; boafaY(s) " LTy < 1) éy
Ap(t) := — = _
Q /ol—Hn(s_) Z n—i+1

1=
is the Nelson-Aalen estimator of A. Here T(l) <. < T(n) are the ordered observations

and 0y = d; if Tj = T{;). As estimator of the derivative of A we define the kernel
smoothed Nelson-Aalen estimator

Anlt) = bln/K <tl;s> dR(s) = 12":K(”)5” ()

by, 4 n—i+1
=1
where K is a kernel function and {b,} is a sequence of bandwidths tending to zero at
an appropriate rate. As before we choose as test statistic the Lo-distance of A, from the
”smoothed version of the hypothesis”

en(t, \y) :—/Kbn(t—s))\(s,ﬁ)ds _ /Kbn(t—s) dA(s, ),

where A(t, V) fo s,0¥)ds. Since the parameter ¥ is unknown we have to replace it
by a sultable estimator. We propose to take the maximum likelihood estimator. The
likelihood function is given by

Ln(9,T1,01,. .., Tn,6n) = [[ L9, T2, 6:)
=1
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with
LW, T;,6) = (1= G(T))" (1= P(T;,9))' % f(T;,0)" g(Ti)'
= MT;,9)" exp(=A(T;,9)) (1= G(T}))* g(T)' %, (10)
where g is the density of the censoring times. Thus, the maximum likelihood estimator

Uy, is a (measurable) maximizer of

n

() =Y (8ilog \(T3,9) — A(T3,9)).

=1

The test statistic is given by

L, = / (Aalt) = enlt. ;) alt)dr.

To formulate the test procedure we state the following limit theorem, proved in Liero
(2003b). Let Ty be the right end point of the distribution H and fix an arbitrary point
T' < Ty. Further set

i (Ag) = (nby) ™! 2 / % alt) dt,

o2(\g) =2 / <1>\_(t}}?t)>2a2(t) dt/(ﬁ*(z))Zdz.

Theorem 6.1 Suppose that the kernel satisfies (K), that the weight function a fulfills
(W) and vanishes outside [0,T"] and that the distribution function H is Lipschitz contin-
wous. Further, let any hazard rate A\ € L be bounded, Lipschitz continuous and partially
differentiable w.r.t. ¥; VyA(-,-) is bounded and uniformly continuous in both arguments.
Ifb, — 0 and nb? — oo, then under H we have for all A € L

nbl? ( [ (ntt) = entt 7o) ottt - unw) 2 N(0.0%(A)). (1)

To conclude from Theorem 6.1 to the asymptotic normality of our test statistic we use
the consistency of the maximum likelihood estimator. For that purpose we formulate
the following regularity conditions:

(i) For all t € [0,00) and all i, = 1,...,k the second derivatives V;V;A(t,9) and
ViV ;A(t, ) exist and are continuous on ©°, the open kernel of ©.

(ii) For all ¥ € ©° and all 4,5 =1,...,k

v, / At 9) dt = / VA(t, 9) dt,
Vivj/ A(t,9)dt = /Vivj‘)\(t,ﬂ) dt.

(iii) For any ¢ € ©° there exist a vy-neighborhood U (9, v) C ©° of 9, and a measurable
function M (-, -,4) with EM(T1,61,9) < oo such that

| ViVjlog L(Y, -, )| < M(-,-,9) forall ¥’ € U(9,v)

foralli,j=1,...,k
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(iv) The determinant of the Fisher information I(¢) = (1;;(¥)),

i,7=1,...,k with

1—H(t,v))

Iy (9) = / VAt 0) VAL ) g

is nonzero for all ¥ € ©°.

Under these conditions we have: Suppose that 1§n is consistent under H, then
\/ﬁ@n - 19) PN, I(9)7Y)

for any ¥ € ©°. That is, the maximum likelihood estimator 9, is v/n-consistent. There-
fore the limit statement (11) remains true for L,. Furthermore, in the standardizing
terms the unknown distribution function H can be replaced by H,. Thus, finally we
obtain an asymptotic a—test by the rule: Reject H, if L,, > M/\n + 2a a,\n/(nb,ll/z) , where

Urn = K2 fl . (t t)dt and o3, = 2 f( (t )2a2(t)dtf(/< (2))?dz

6.2 Survival model with fixed covariates

Now, let us extend the previous approach to survival models with covariates. That is,
at fixed design points r1 < x5--- < x, we have nonnegative survival times Y7,...,Y,.
For simplicity we assume that the support of the covariates z; is the interval [0,1].
Consequently, from the mathematical point of view, the Y;’s are no longer identically
distributed. We define analogously to section 6.1

Fp(t) = P(Y; <t), Hy(t):=P(T;<t), HY(t):=P(T;<t,6;=1) and

t t dHY(s)
= [ A(s)ds = / —r
/0 ( ) o 1— HIZ(S)

The problem of nonparametric estimation of A, the survival function 1 — F' and the
hazard X has been studied by several authors. We mention here: Gonzalez-Manteiga and
Cadarso-Suarez (1994) and Van Keilegom and Veraverbeke (1997, 2001, 2002). Roughly
speaking, the main aim of these papers is to approximate the distance between the
function of interest and its nonparametric estimator by a sum of independent random
variables. Based on such an approximation consistency properties are established and
asymptotic normality at fixed points ¢t and x is derived. A modification of a result proved
by Van Keilegom and Veraverbeke (2001) leads to a limit statement for the quadratic
deviation. First, let us define the estimators. The idea is the same as before - A is
estimated by a Nelson-Aalen type estimator. But to take into account the covariates we
take instead of the empirical distribution functions (8) weighted empirical distribution
functions:

Zwm 1Ty < t), wa Ty <t,6;=1).

Following Van Keilegom and Veraverbeke (2001) we will use Gasser-Miiller type kernel
weights wp;(x). They are defined as

1 Zj 1 — Tn 1
wrj(x) = / T w (x Z> dz with ¢,(x) = / W< > dz.
n(®) Jo;_, an an 0 Gn an,
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Here x¢p = 0, W is a symmetric kernel function and a, is a sequence of bandwidths.
Then a nonparametric estimator of A, (¢) is given by

Ron(t) == /tm _ f: 1(T() < t) 8y wapy (@)
01— Han(s-) - 1 Z;ﬁ_:ll Wy () (7)

Now, further smoothing with a kernel K and bandwidth b,, leads to the estimator of the
hazard function:

Aan(t) = / (

t_Ti Wi
_1 K( <>> b o
b” i=1 bn 1_Zk lwn[k]( )

Note that if we take the weights all equal to n~! then the estimator becomes the estimator
defined in (9) for the case without covariates. Now, consider the problem of testing the
simple hypothesis

> dAgn(s)

H o A(t) = Xo(t) for all t,x against K : Ay (t') # A% (') for some ¢/, 2’/

As test statistic we propose the following quadratic deviation:

_ Tllzn: / (Raunl®) = ea(t.22))” alt)
i=1

where

W6 X0) /Kb (t— 5) A2 (s) ds.

To formulate the limit theorem for this functional we introduce the following quantities.

Ca(N) = (napby) 1 rAW? Z/l_)\?[%a(t) dt, (12)
i=1 i

_ Qn—lizng / (%)2&@) dat / (k*(2))? d / (W (2))? dz,

where w* denotes the convolution of the kernel W. For the design points set s, =
min1<z<n( r;—r;_1) and 3, = maxj<;<,(r;—x;_1). Further define r,, = (na,b,) ! logn+
(0L + a2bY) (nan) "2 (log n) /2 + atb: .

The following assumptions are used:

() xp— 1, 58, =0(n""Y, 5 —s,=o0(n"1)

(ii) The derivatives %2712{, 8827[2{, gig; d aajggt exist and are continuous in the interval
[0,1] x [0, T"].

(iii)

[0,1] x [0,T"].

With these assumptions we can state the following theorem:

92HY  92HU

The derivatives 5.7 52 and %% exist and are continuous in the interval
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Theorem 6.2 Suppose that the kernels K and W satisfy (K). If assumptions (i)-(iii)
and (W) are fulfilled and r2n(anb,)"? — 0, 7o (anbn) ™% — 0, then under H
1/2

n{anOn /
(pn(bX?) (W, — (X)) 2 N(0,1).

The only unknown function in the standardizing terms is H,. We replace H, by its con-
sistent estimator Hyp. If ((na,)~"/2(logn)'/? 4 a2)(anb,)~/? — 0, then the estimation
error tends to zero fast enough such that the limit statement remains valid with the
estimated distribution function. So, finally we get the rule:

Reject H, if W,, > (%) + 2o fn(X)/(n(anby)/?) . Here ¢, (A\°) and 5,(\°) are defined

A

as in (12), where H, is replaced by Hy,.

Some remarks. 1.) The investigation of the power of this test requires more technical
effort than that carried out in Section 2, but roughly speaking it leads to the same
conclusion. Namely that the power tends to a nontrivial limit, if the squared Lo-norm
of the disturbing function tends to a nonnegative constant with a rate n(a,by)'/2.

2.) It seems to be not very difficult to extend the presented approach to the problem
of testing, whether the unknown hazard rate A, lies in a parametric class. A more
complicated problem is to test a semiparametric hypothesis. For example, suppose that
the hypothetical class of hazard functions is the class of proportional hazard functions
with unknown baseline hazard function «(-) and a parametric function describing the
influence of the covariates. For the construction of the test statistic one has to estimate
both functions. Using the partial likelihood method one obtains a suitable estimator for
the parametric part. To estimate the baseline function it seems to be useful to apply
an approach via the Breslow estimator for the cumulative baseline hazard. But for this
estimator rates of convergence are not derived. That means, it is not clear whether the
estimation error tends to zero fast enough such that the limit theorem remains valid
with the estimated hypothetical hazard function.
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