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Abstract

We construct elliptic elements in the algebra of (classical pseudo-differential) operators on a
manifold M with conical singularities. The ellipticity of any such operator A refers to a pair
of principal symbols (σ0, σ1) where σ0 is the standard (degenerate) homogeneous principal
symbol, and σ1 is the so-called conormal symbol, depending on the complex Mellin covariable
z. The conormal symbol, responsible for the conical singularity, is operator-valued and acts
in Sobolev spaces on the base X of the cone. The σ1-ellipticity is a bijectivity condition for
all z of real part (n + 1)/2 − γ, n = dim X, for some weight γ. In general, we have to rule
out a discrete set of exceptional weights that depends on A. We show that for every operator
A which is elliptic with respect to σ0, and for any real weight γ there is a smoothing Mellin
operator F in the cone algebra such that A + F is elliptic including σ1. Moreover, we apply
the results to ellipticity and index of (operator-valued) edge symbols from the calculus on
manifolds with edges.

Mathematics Subject Classification:
Primary: 35S35
Secondary: 35J70
Keywords: Operators on manifolds with conical singularities, conormal symbols,
ellipticity of cone operators, parametrices and invertibility within the cone
calculus

Contents

Introduction 1

1 Operators in the Cone Algebra 2

2 Ellipticity with Respect to Prescribed Weights 6

3 The Case of Manifolds with Conical Singularities and Boundary 9

4 Some Consequences for Edge Symbols 12

References 14

Introduction

Elliptic (and other types) of operators on a manifold with conical singularities have been stud-
ied for a long time, both from the point of view of regularity and asymptotics of solutions in
weighted Sobolev spaces, cf. Kondratyev [5] (for the case of boundary value problems), Melrose,
Mendoza [6], Rempel, Schulze [?], and spectral geometry, index theory, or topology, cf. Cheeger
[3], or Shaw [11] (more references will be given below). Manifolds with conical singularities belong
to a hierarchy of categories of stratified spaces, containing manifolds with (smooth) boundary, or
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edge, corner, or higher polyhedral singularities (briefly referred to as manifolds with singularities).
Locally, such spaces are obtained by iteratively forming cones and wedges (starting from smooth
manifolds as bases of cones). Corresponding algebras of operators referring to the stratification
also have an iterative structure, cf. [9], [10]. Ellipticity of an operator A on a space of singularity
order k ∈ N (where k = 0 corresponds to smoothness, k = 1 to conical or edge singularities) is
a bijectivity condition on the components of a principal symbolic hierarchy σ = (σj)j=0,...,k. It
is interesting for many reasons to construct elliptic operators in that sense, starting from a given
operator that is only elliptic with respect to σ0, the standard homogeneous principal symbol on
the main stratum. Answers in general may be very complicated. In the case of conical singularities
we show the existence of a smoothing (in general non-compact) Mellin operator F belonging to
the cone algebra such that A+ F is also elliptic with respect to σ1 for a prescribed weight γ ∈ R
(where, of course, σ0(A+F ) = σ0(A)). As we shall see below, such a result considerably simplifies
the parametrix construction in the cone algebra. Other applications concern boundary symbols
of operators on a manifold with boundary (or, more generally, edge symbols on a manifold with
edge). Note that smoothing Mellin operators with the claimed properties in the case of a smooth
and closed base can also be deduced from the results of Witt [12]. It is difficult to predict to what
extent this approach works in other cases, for instance, boundary value problems. In any case, our
construction is relatively elementary and apparently rather general.
Our result concerns the general nature of pseudo-differential algebras on a manifold with singu-
larities. The presence of symbolic hierarchies is a new aspect, compared with the smooth case. It
is, of course, desirable that the construction of elliptic elements is not too problematic. However,
it is hard to decide whether ellipticity of conormal symbols is possible for a weight γ when the
non-smoothing part A0 of a σ0-elliptic operator is given. This depends on the individual operator
and requires information on “non-linear eigenvalues” contained in the conormal symbols; those
usually rule out a discrete set of weights. We construct here a new variety of explicit examples of
(σ0, σ1)-elliptic elements in the cone calculus, no matter what A0 and γ exactly are.

Acknowledgement: This paper has been produced during a working stay at the Chern Institute
of Mathematics at the Nankai University in Tianjin, PR China, and the authors thank Professor
Long Yiming for the generous support.

1 Operators in the Cone Algebra

Let M be a manifold with conical singularities v1, . . . , vN . For simplicity we consider the case
N = 1, and set v := v1 (the case of arbitrary N is similar and left to the reader). If X is a closed
C∞ manifold, the cone X∆ := (R+ ×X)/(R+ ×X) is an example of such an M ; in this case the
conical singularity is represented by {0} ×X in the quotient space. In general M is locally near v
modelled on such a cone. More precisely, M \ {v} is smooth, and we have a “singular chart”

χ : V → X∆ (1.1)

for some neighbourhood V of v in M and a smooth manifold X = X(v) where χ(v) is equal to the
vertex of X∆, and χreg := χ|V \{v} : V \ {v} → X∧ := R+×X is a diffeomorphism. If χ̃ : V → X∆

is another such map, then χ̃reg ◦χ−1
reg : X∧ → X∧ is asked to be the restriction of a diffeomorphism

R×X → R×X to X∧.
Let Diffmdeg(M) denote the set of all differential operators on M \ {v} with smooth coefficients that
are locally near v in the splitting of variables (r, x) ∈ X∧ (coming from χreg) of the form

A = r−m
m∑
j=0

aj(r)(−r∂r)j (1.2)

for coefficients aj ∈ C∞(R+,Diffm−j(X)). Here Diffk(·) means the space of all differential operators
of order k on the manifold in parentheses.
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By the cone algebra on M we understand an algebra of classical pseudo-differential operators
on M \ {v} that contains Diffmdeg(M) together with the parametrices of elliptic elements. The
ellipticity refers to a pair (σ0, σ1) of principal symbols. For A ∈ Diffmdeg(M) those are defined as
follows. The component σ0(A) is the standard homogeneous principal symbol of A as a function
in C∞(T ∗(M \ {v}) \ 0). In the splitting of variables (r, x) with x varying in an open set of
Rn, n = dimX, it has the form

σ0(A)(r, x, ρ, ξ) = r−mσ̃0(A)(r, x, rρ, ξ)

for the corresponding covariables (ρ, ξ), and a function σ̃0(A)(r, x, ρ̃, ξ) which is smooth up to
r = 0. To recall also the definition on σ1(A) we fix some notation on pseudo-differential operators
on a C∞-manifold X. The corresponding tools will be necessary anyway for the constructions
below. We need the operators in parameter-dependent form with a parameter λ ∈ Rl for some
l ∈ N for N = {0, 1, 2, . . . }. Locally in an open set in Rn those operators are defined in terms of
classical symbols a(x, ξ, λ) of order m where (ξ, λ) are treated as covariables, and the operators in
x are expressed via the Fourier transform. Here “classical” means that a(x, ξ, λ) has an asymptotic
expansion in functions that are homogeneous of order m− j, j ∈ N for |ξ, λ| ≥const for a constant
> 0. Based on an open covering of X by charts and a subordinate partition of unity we obtain
associated pseudo-differential operators, depending on λ. The space Lmcl (X; Rl) is defined to be the
set of those operator families, plus smoothing families that belong to S(Rl, L−∞(X)).
Let

Γβ := {z ∈ C : Re z = β}

for any β ∈ R, and denote by Lmcl (X; Γβ) the space of all operator fuctions a(z) depending on
z ∈ Γβ such that a(β + iρ) ∈ Lmcl (X; R).
For A ∈ Diffmdeg(M), locally near v written in the form (1.2) we set

σ1(A)(z) :=
m∑
j=0

aj(0)zj : Hs(X) → Hs−m(X); (1.3)

here X is assumed to be compact. In other words, we interpret σ1(A)(z) as a family of operators on
the base X of the cone, acting on Sobolev spaces of smoothness s. We have σ1(A)|Γβ

∈ Lmcl (X; Γβ)
for every β ∈ R. Let us call the operator σ0-elliptic, if σ0(A) does not vanish on T ∗(M \ {v}) \ 0,
and if the function σ̃0(A)(r, x, ρ̃, ξ) is non-vanishing up to r = 0. Moreover, A is called σ1-elliptic
with respect to a weight γ ∈ R if (1.3) is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and some
s ∈ R.
Let us now recall some well-known consequences of the σ0-ellipticity of A. In general, an operator
family in Lmcl (X; Rl) is called parameter-dependent elliptic (of orderm) if its homogeneous principal
symbol in (ξ, λ) is non-vanishing for all (ξ, λ) 6= 0. In particular, we have the notion of parameter-
dependent ellipticity in Lmcl (X; Γβ). Let A ∈ Diffmdeg(M) be σ0-elliptic; then σ1(A)(z) ∈ Lmcl (X; Γβ)
is parameter-dependent elliptic for every fixed β ∈ R. This property is uniform (in an obvious sense)
with respect to β = Re z in compact intervals. Thus, from the fact that a parameter-dependent
elliptic family induces isomorphisms Hs(X) → Hs−m(X) when the absolute value of the parameter
is sufficiently large (which is in our case uniform in compact β-intervals) it follws that there is a
non-empty set E ⊂ C such that (1.3) are isomorphisms for all z ∈ E. Moreover, since (1.3) is
a holomorphic family of Fredholm operators, there is a discrete set D ⊂ C such that (1.3) are
isomorphisms for all z ∈ C \ D. In particular, we have E = C \ D, and D ∩ {c1 ≤ Re z ≤ c2} is
finite for every c1 ≤ c2.
Define Hs,γ(X∧) as the set of all u ∈ Hs

loc(X
∧) such that

(2πi)−1

∫
‖Rs(z, λ1)Mγ−n/2u(z)‖2L2(X)dz <∞

where Rs(z, λ) ∈ Lscl(X; Γ(n+1)/2−γ × Rl) is some parameter-dependent family, elliptic of order s,
and λ1 ∈ Rl sufficiently large. Moreover, Mγ−n/2 is the weighted Mellin transform, first defined on
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C∞(R+, C
∞(X)) by the formula Mγ−n/2u(z) =

∫
rz−1u(r)dr|Re z=(n+1)/2−γ , and then extended

to u ∈ Hs,γ(X∧). This yields an isomorphism Mγ−n/2 : Hs,γ(X∧) → Ĥs(Γ(n+1)/2−γ ×X) where
Ĥs(Γβ ×X) is the image of the cylindrical Sobolev space Hs(R ×X) under the one-dimensional
Fourier transform v(t, x) →

∫
e−itρv(t, x)dt with ρ being interpreted as Im z for z ∈ Γβ . Globally

on a compact manifold M with conical singularity v the weighted space Hs,γ(M) is defined to be
the set of all u ∈ Hs

loc(M \ {v}) such that ωχ∗u ∈ Hs,γ(X∧) where χ∗ is the push forward under
(1.1) and ω a cut-off function on the half-axis (i.e., ω ∈ C∞0 (R+), ω = 1 close to 0). It can easily
be verified that an A ∈ Diffmdeg(M) induces continuous operators

A : Hs,γ(M) → Hs−m,γ−m(M) (1.4)

for all s, γ ∈ R. Operators A ∈ Diffmdeg(M), or, more generally, pseudo-differential operators in
the cone calculus of [7] will also be referred to as operators in the cone algebra. Some elements
of the theory will be outlined below. Close to v they are formulated in terms of meromorphic
operator-valued symbols. Later on we also need the spaces

Ks,γ(X∧) = {ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(X∧), u∞ ∈ Hs
cone(X

∧)}

where ω is any cut-off function, and (1−ω(r))Hs
cone(X

∧) = (1−ω(|x̃|))Hs(Rn+1
x̃ ) in the caseX = Sn

(the unit sphere in Rn+1
x̃ ); for general X we refer to a definition via the latter representation,

localised in conical subsets in Rn+1
x̃ \ {0} ∼= R+ × U for coordinate neighbourhoods U on X.

If E is a Fréchet space and U ⊆ C open then A(U,E) denotes the space of all holomorphic
functions on U with values in E. Applying that to E = Lmcl (X; Rl) (first for l = 0) we obtain the
space Mm

O (X), defined as the subspace of all h(z) ∈ A(C, Lmcl (X)) such that h|Γβ
∈ Lmcl (X; Γβ) for

every β ∈ R, uniformly in compact β-intervals. Also Mm
O (X) is Fréchet in a natural way; this allows

us to form the spaces C∞(R+ × R+,M
m
O (X)). For instance, we have h(r, z) :=

∑m
j=0 aj(r)z

j ∈
C∞(R+,M

m
O (X)), cf. the notation in (1.2), and A = r−mopδM (h) where opδM (·) means the pseudo-

differential operator based on the weighted Mellin transform, of weight δ ∈ R, namely,

opδM (h)u(r) =
∫∫

(r/r′)−(1/2−δ+iρ)h(r, r′, 1/2− δ + iρ)u(r′)dr′/r′d̄ρ, (1.5)

d̄ρ = (2π)−1dρ, here formulated for an (r, r′)-dependent Mellin amplitude function h. Recall that
the expression (1.5) makes sense as an oscillatory integral, first for u ∈ C∞0 (R+, C

∞(X)) and
induces a continuous operator C∞0 (R+, C

∞(X)) → C∞(R+, C
∞(X)). Clearly, (1.5) represents a

standard pseudo-differential operator on X∧, however, in the Mellin operator convention. The
operator r−mopγ−n/2M (h) extends to a continuous operator

r−mopγ−n/2M (h) : Hs,γ(X∧) → Hs−m,γ−m(X∧) (1.6)

when h is independent of r, r′ for large r, r′, for arbitrary γ ∈ R. Operators of the form (1.6) belong
to the ingredients of the cone algebra. Other operators are smoothing close to the tip (although
not necessarily compact), especially, smoothing Mellin operators with meromorphic symbols. Let
us call a sequence

R = {(rj , nj)}j∈Z ⊂ C× N (1.7)

a Mellin asymptotic type, when πCR := {rj}j∈Z intersects every strip c ≤ Re z ≤ c′ in a finite set,
for every c ≤ c′. Let M−∞

R (X) denote the space of smoothing Mellin symbols with asymptotic
type R, defined to be the set of all f(z) ∈ A(C \ πCR,L

−∞(X)) that are meromorphic with
poles at the points rj of multiplicity nj + 1 with Laurent coefficients at (z − rj)−(k+1) being finite
rank operators in L−∞(X), 0 ≤ k ≤ nj , such that for every πCR-excision function χ(z) we have
χf |Γβ

∈ L−∞(X; Γβ) for every β ∈ R, uniformly in compact β-intervals.
Let us set

Mm
R (X) := Mm

O (X) +M−∞
R (X) (1.8)
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which means the space of all h+f with h in the first, f in the second space on the right hand side.
The spaces (1.8) of meromorphic operator functions have many remarkable properties. First it is
clear that the z-wise composition preserves the spaces, i.e., we have

f ∈Mm
R (X), f̃ ∈M m̃

R̃
(X) ⇒ ff̃ ∈Mm+m̃

S (X) (1.9)

for a resulting asymptotic type S.
An element f ∈Mm

R (X) is called elliptic (of orderm) if for some β ∈ R, for Γβ∩πCR = ∅, the family
f |Γβ

∈ Lmcl (X; Γβ) is parameter-dependent elliptic (of order m). This condition is independent of
β.

Example 1.1. Let l(z) ∈M−∞
R (X); then f(z) = 1 + l(z) is elliptic of order 0. Moreover, there is

an m(z) ∈M−∞
S (X) for some S such that (1 + l(z))−1 = m(z).

Theorem 1.2. Let f ∈ Mm
R (X) be elliptic; then there is a (unique) f−1 ∈ M−m

S (X) for some
asymptotic type S such that ff−1 = 1, and f−1f = 1 in the sense of the multiplications (1.9).

A proof may be found, for instance, in [7, Section 2.2.5.]. To give an idea on the arguments
we can apply Theorem 1.4 below for l = 0. Up to a translation in the complex plane we may
assume that R

⋂
Γ0 = ∅; thenf |Γ0 has a parameter-dependent parametrix k ∈ L−mcl (X; Γ0). It

follows that V (ψ)k ∈ M−∞
O (X; Γ0) and fV (ψ)k = 1 + l for some l ∈ M−∞

P (X) for some P.
Then it suffices to apply the observation of Example 1.1 together with relation (1.9) and to set
f−1 = (V (ψ)k)(1 + l)−1.
Let us now sketch some aspects of the cone algebra on a compact manifold M with conical sin-
gularities. To illustrate the sitiuation let us first introduce the subspace Lmdeg(M \ {v}) of all
A ∈ Lmcl (M \ {v}) that are mod L−∞(M \ {v}) locally close to v of the form r−mOpr(a), a(r, ρ) =
ã(r, rρ) for some ã(r, ρ̃) ∈ C∞(R+, L

m
cl (X; Rρ̃)). The homogeneous principal symbol σ0(A) of

an operator A ∈ Lmdeg(M \ {v}) is locally near v in the variables (r, x) ∈ X∧ of the form
σ0(A)(r, x, ρ, ξ) = r−mσ̃0(r, x, rρ, ξ) for a (so-called reduced) symbol σ̃0(r, x, ρ̃, ξ), smooth up to
r = 0. The cone algebra over a compact manifold M with conical singularity consists of operators
of the form

A = ωr−mopγ−n/2M (h+ l)ω′ +Aint +G (1.10)

for cut-off functions ω, ω′, h(r, z) ∈ C∞(R+,M
m
O (X)), l(z) ∈ M−∞

R (X) for some R, moreover,
Aint ∈ Lmcl (M \ {v}) supported off some neighbourhood of v, and a so-called Green operator G,
defined by the mapping properties

G : Hs,γ(M) → H∞,γ−m+ε(M), G∗ : Hs,−γ+m(M) → H∞,−γ+ε(M), (1.11)

for some ε > 0 (depending on G) and all s ∈ R where G∗ means the formal adjoint with respect to
the H0,0(M)-scalar product. The first summand on the right of (1.10) refers to the local variables
(r, x) ∈ X∧ near v. The operators of the form (1.10) exhaust the space Lmdeg(M \ {v}) mod
L−∞(M \ {v}). From the space Lmdeg(M \ {v}) the operators A inherit σ0(A), and σ̃0(A). In
addition in the cone algebra we have the principal conormal symbol, defined as the operator family

σ1(A)(z) := h(0, z) + l(z) : Hs(X) → Hs−m(X) (1.12)

for s ∈ R. An operator A in the cone calculus is called σ0-elliptic if σ0(A) never vanishes as a
function in C∞(T ∗(M \ {v}) \ 0) and if in addition σ̃0(A) is non-zero up to r = 0. Moreover, A
is called σ1-elliptic if (1.12) consists of isomorphisms for all z ∈ Γ(n+1)/2−γ . We also need a few
notions from the cone calculus on the infinite stretched cone X∧. Here we can express everything
in the variables (r, x). The properties of the respective operators close to r = 0 are as before. An
extra assumption concerns Aint +G, cf. the formula (1.10). On Aint we assume that it belongs to
the classical exit calculus for r →∞ of weight 0 at ∞. Here we refer to the terminology of [8], and
we use the notation for the respective principal exit symbols σE := (σe, σψ,e). The conditions on
the Green operators G are replaced by mapping properties referring to the spaces

Sγ(X∧), γ ∈ R, , (1.13)
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defined as projective limits of the spaces 〈r〉−NKN,γ(X∧) over N ∈ N. The condition is

G : Ks,γ(X∧) → Sγ−m+ε(X∧), G∗ : Ks,−γ+m(X∧) → S−γ+ε(X∧), (1.14)

for some ε > 0 (depending on G) and all s ∈ R where G∗ means the formal adjoint with respect
to the K0,0(X∧)-scalar product. The role of the σ1-ellipticity (apart from the σ0-ellipticity) is
illustrated by the following theorem.

Theorem 1.3. Let A be an operator in the cone algebra on a compact manifold M with conical
singularity, and fix a weight γ ∈ R. Then the following conditions are equivalent:

(i) A is (σ0, σ1)-elliptic with respect to γ (the latter referring to σ1);

(ii) the operator (1.4) is a Fredholm operator for some s = s0 ∈ R.

Moreover, let A be an operator in the cone algebra on an infinite stretchend cone X∧ for smooth
closed X, and fix γ. Then the following conditions are equivalent:

(iii) A is (σ0, σ1, σE)-elliptic with respect to γ (the latter referring to σ1);

(iv) the operator
A : Ks,γ(X∧) → Ks−m,γ−m(X∧) (1.15)

is a Fredholm operator for some s = s0 ∈ R.

The Fredholm property then always holds for all s. Concerning the proof, cf. [7, Sections 2.2.1.
and 2.2.3.].
Next we pass to the kernel cut-off theorem. For purposes below we give the formulation for
parameter-dependent operator families with parameter λ ∈ Rl; for conical singularities the case
l = 0 is sufficient. Let Mm

O (X; Rl) defined to be the set of all h(z, λ) ∈ A(C, Lmcl (X; Rl)) such that
h|Γβ×Rl ∈ Lmcl (X; Γβ × Rl) for every β ∈ R, uniformly in finite β-intervals.
Consider an element a(z, λ) ∈ Lmcl (X; Γ0 × Rl), and let ϕ ∈ C∞0 (R+). Then the kernel cut-off
operator V (ϕ), applied to a Mellin amplitude function a is defined by the expression

V (ϕ)a(iρ, λ) :=
∫ ∞

0

θiρϕ(θ)k(a)(θ, λ)θ−1dθ (1.16)

where k(a)(θ, λ) :=
∫∞
−∞ θ−iρa(iρ, λ)d̄ρ.

Theorem 1.4. (i) For every ϕ ∈ C∞0 (R+) and f(w, λ) ∈ Lmcl (X; Γ0 × Rl) we have V (ϕ)f ∈
Mm
O (X; Rl).

(ii) Let ψ ∈ C∞0 (R) be a function that is equal to 1 in a neighbourhood of the origin; then
V (ψ)f |Γ0×Rl = f |Γ0×Rl modL−∞(X; Γ0 × Rl). Setting ψε(θ) := ψ(ε log θ), ε > 0, for every
f(w, λ) ∈ Lmcl (X; Γ0 × Rl) we have

limε→0V (ψε)f(w, λ) = f(w, λ).

This theorem is known from [7], see also [8]. A new proof was given in [?].

2 Ellipticity with Respect to Prescribed Weights

Theorem 2.1. Let h ∈ Mm
O (X) such that h|Γβ

∈ Lmcl (X,Γβ) is parameter-dependent elliptic for
some real β. Then for every fixed γ ∈ R there exists an f ∈M−∞

O (X) such that

(h− f)(z) : Hs(X) → Hs−m(X) (2.1)

is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and every s ∈ R.
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Proof. The above-mentioned discrete set D ∈ C intersects the weight line Γ(n+1)/2−γ in at most
finitely many points {p1, . . . , pN} such that (2.1) is invertible for all z ∈ Γ(n+1)/2−γ \ {p1, . . . , pN}.
Without loss of generality we assume γ = (n + 1)/2 since a translation parallel to the real axis
allows us to change γ. Moreover, let N = 1; the proof easily extends to the case of arbitrary N
which is left to the reader. In other words, we assume that (2.1) is invertible for all z ∈ Γ0 \{p} for
some p ∈ Γ0. Since (2.1) is a family of classical pseudo-differential operators that are Fredholm and
of index 0, there are finite-dimensional subspaces V,W ⊂ C∞(X), dimV = dimW =: d, such that
V = kerh(p) ⊂ C∞(X), and W + imh(p) = Hs−m(X) for every s ∈ R. Then for any isomorphism
k : Cd →W the row matrix

(
h k

)
:
Hs(X)
⊕
Cd

→ Hs−m(X)

is surjective for all s, and we have ker (h k) = kerh ⊕ {0} = V ⊕ {0}. Let t0 : V → Cd be
an isomorphism, and define a continuous operator t : L2(X) → Cd by composing t0 with the
orthogonal projection L2(X) → V. Then t extends (or restricts) to a continuous mapping t :
Hs(X) → Cd, and (

h k
t 0

)
:
Hs(X)
⊕
Cd

→
Hs−m(X)

⊕
Cd

is an isomorphism. By using the fact that that linear isomorphisms form an open set in the space
of linear continuous operators, for fixed s = s1 there is a c1 > 0 such that

(
h k
t c

)
:
Hs(X)
⊕
Cd

→
Hs−m(X)

⊕
Cd

(2.2)

is an isomorphism for s = s1, c := c1idCd . This implies that (2.2) is an isomorphism for all s ∈ R
since such a block matrix operator is an isomorphism if and only if the first row is surjective, and the
second row maps the kernel of the first one isomorphically to Cd. However, ker (h k) = kerh = V
is independent of s; therefore, the criterion is fullfilled for all s. From (2.2) we now produce an
invertible 2× 2 matrix(

h− kc−1t 0
0 c

)
=

(
1 −kc−1

0 1

) (
h k
t c

) (
1 0

−c−1t 1

)
,

with 1 denoting the identity operator in Cd. Since all factors are invertible, also

h− kc−1t : Hs(X) → Hs−m(X)

is invertible. Observe that when we replace the operator k in (2.2) by δk for any δ > 0 then the
kernel of the modified first row is isomorphically mapped by the second row to Cd, no matter how
large δ is. Thus the whole construction can be repeated with δk instead of k but the same second
row (t c).
Let us now choose a function δ(w) ∈ C∞0 (I) for I = {w ∈ Γ0 : |w − p| < b} for some b > 0, where
δ(p) 6= 0. Then, setting

hδ(w) :=
(
h(w) δ(w)k

)
:
Hs(X)
⊕
Cd

→ Hs−m(X),

for every ε > 0 there are b > 0 and δ ∈ C∞0 (I), δ(p) 6= 0, with ‖hδ(w)−hδ(p)‖L(Hs(X)⊕Cd,Hs−m(X)) <
ε for all w ∈ I.
In fact, for sufficiently small b we have ‖h(p) − h(w)‖L(Hs(X),Hs−m(X)) < ε/2 for all w ∈ I, since
h(w) is continuous with values in L(Hs(X),Hs−m(X)). Moreover,

supw∈I‖δ(p)k − δ(w)k‖L(Cd,Hs−m(X)) ≤ supw∈I |δ(p)− δ(w)|‖k‖L(Cd,Hs(X)) < ε/2
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when we choose first δ(w) ∈ C∞0 (I) arbitrary, δ(p) > 0, and then multiply δ by a sufficiently small
constant > 0 and denote the new δ again by δ. Thus

(
h(w) δ(w)k
t c

)
:
Hs(X)
⊕
Cd

→
Hs−m(X)

⊕
Cd

is a family of isomorphisms for all w ∈ I for sufficiently small ε > 0. Analogously as before we see
that

h(w)− δ(w)kc−1t : Hs(X) → Hs−m(X) (2.3)

is a family of isomorphisms for all w ∈ Γ0, first for w ∈ I, but then, since h(w) consists of isomor-
phisms for w 6= p and δ ∈ C∞0 (I), also for w 6∈ I.
In this consideration we have assumed that s ∈ R is fixed. However, the left hand side of (2.3)
consists of a family of elliptic pseudo-differential operators on X; therefore, kernel and cokernel
are independent of s, and hence we have isomorphisms (2.3) for all w ∈ Γ0, s ∈ R.
Let us interpret f1(w) := δ(w)kc−1t as an operator-valued Mellin symbol in the covariable w ∈ Γ0,
with compact support in w and values in operators ∈ L−∞(X) of finite rank.
In a final step of the proof we modify f1(w) to obtain an element f(w) ∈M−∞

O (X) that approxi-
mates f1(w) in such a way that (2.1) are isomorphisms for all w ∈ Γ0. First Theorem 1.4 gives us
f(ε)(w) := V (ψε)f1(w) ∈ M−∞

O (X), and f(ε) → f1 as ε → 0 in the topology of L−∞(X; Γ0). We
will show that we may set f(w) = f(ε)(w) for any fixed sufficiently small ε > 0. It is evident that
for any fixed compact interval K ⊂ Γ0 containing the point p there is an ε(K) > 0 such that for
all 0 < ε < ε(K) we have isomorphisms (2.1) for all w ∈ K. To argue for w ∈ Γ0 \K we employ
Theorem 1.2, i.e., there is an element h−1(w) ∈M−m

S (X) for some discrete Mellin asymptotic type
S with πCS ∩ Γ0 = {p} such that h−1(w)h(w) = 1. This gives us family of continuous operators

1− h−1(w)f(ε)(w) : Hs(X) → Hs(X) (2.4)

parametrised by w ∈ Γ0 \ K. Without loss of generality we take K so large that supp f1 ⊆ K1

for some subinterval K1 ⊂ intK. Let χ(w) ∈ C∞(Γ0) be any function which is equal to 0 in a
neighbourhood of supp f1 and 1 outside an open U ⊂ Γ0, K1 ⊂ U with U ⊂ K. Then f(ε) → f1 gives
us χf(ε) → 0 as ε→ 0 in the space S(Γ0, L

−∞(X)). Using that h−1(w) is a parameter-dependent
family of operators in L−mcl (X) with parameter w ∈ Γ0 \ {p} we also obtain h−1χf(ε) → 0 in
S(Γ0, L

−∞(X)). It follows that there is an ε̃(K) > 0 such that (2.4) are isomorphisms for all
0 < ε < ε̃(K) and all w ∈ Γ0 \ K. Thus we obtain altogether isomorphisms (2.1) for f(w) =
f(ε)(w), 0 < ε < min (ε(K), ε̃(K)) for all w ∈ Γ0.

Corollary 2.2. Let h ∈ Mm
R (X) be elliptic. Then for every γ ∈ R there exists an f ∈ M−∞

R (X)
such that (2.1) is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and every s ∈ R.

Proof. According to (1.8) we have a decomposition h = h0 + f0 for h0 ∈Mm
O (X), f0 ∈M−∞

R (X).
From Theorem 2.1 we find an f1 ∈M−∞

O (X) such that (h0− f1)(z) = (h− f0− f1)(z) : Hs(X) →
Hs−m(X) is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and every s ∈ R. Thus it suffices to
set f = f0 + f1.

Theorem 2.1 and Corollary 2.2 can be applied to the construction of parametrices in the cone
algebra. Although it has been known for a long time that the cone algebra is closed under forming
parametrices of elliptic elements, cf. [?], [7], it is desirable to formally apply the following simple
guideline. Assume we are given an operator algebra with a principal symbolic hierarchy σ(A) =
(σj(A))0≤j≤k where σ-ellipticity means a bijectivity condition for every σj(A), and σ-ellipticity
of two operators implies the same for the composition. Moreover, assume that there are operator
conventions that produce operators for a given symbol. If for an operator B which is elliptic with
respect to the symbolic components σj , 0 ≤ j ≤ l for an l < k we always find a σ-elliptic operator
Q such that σj(Q) = σj(B) for all j = 0, . . . , l, then the process is as follows. Assume A =: A0 is
σ-elliptic. Then we consider σ0(A0), form an operator B0 such that σ0(B0) = σ0(A0)−1 and pass
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to a σ-elliptic P0 with σ0(P0) = σ0(B0). Then the operator A1 := P0A0 is σ-elliptic and has the
property σ0(A1) = 1. The next step is to form a B1 with σj(B1) = σj(A1)−1 for j = 0, 1 and pass
to a σ-elliptic P1 with σj(P1) = σj(B1) for j = 0, 1. Then the operator A2 := P1A1 = P1P0A0

is σ-elliptic and has the property σj(A2) = 1 for j = 0, 1. By continuing this process we find a
σ-elliptic Pk such that P := PkPk−1 · · ·P0 has the property σj(PA) = 1 or σj(P ) = σj(A)−1 for
j = 0, . . . k. If the algebra admits a formal Neumann series argument (which is in our application
the case) then from P we obtain a parametrix of A with smoothing left-over terms.
Here for the cone algebra we have k = 1, and the above-mentioned step from B to Q is just what
we can do by Theorem 2.1 and Corollary 2.2.

3 The Case of Manifolds with Conical Singularities and
Boundary

Let M be a manifold with conical singularities and boundary. For simplicity we assume again that
there is one conical point v. Then M \{v} is a C∞ manifold with boundary. Moreover, M is locally
near v modelled on a cone X∆ where X is a compact C∞ manifold with boundary, similarly as
at the beginning of Section 1. Let 2M and 2X be the doubles of M and X, respectively (defined
as C∞ manifolds obtained by gluing together two copies of the respective manifolds along the
common boundary). Then 2M is a manifold with conical point as in Section 1 and 2X is the base
of the local cone.
On the non-compact smooth manifold M \ {v} with boundary we have the pseudo-differential
calculus of boundary value problems (BVPs) with the transmission property at the boundary, cf.
[2], consisting of spaces Bm,d(M \{v}),m ∈ Z, d ∈ N, of order m and type d. The BVPs themselves
are represented by 2× 2 block matrices of operators

A : C∞0 (int (M \ {v}), E1)⊕ C∞0 (∂(M \ {v}), J1) → C∞(int (M \ {v}), E2)⊕ C∞(∂(M \ {v}), J2)
(3.1)

for smooth complex vector bundles Ek over M \{v} and Jk over ∂(M \{v}), respectively, k = 1, 2.
Writing A = (Aij)i,j=1,2 we have A11 = r+Ae+ +G for A ∈ Lmtr (2M \ {v}, 2E1, 2E2) which is the
space of classical pseudo-differential operators over the respective manifold with the transmission
property at the boundary, acting between distributional sections of corresponding extensions of
the indicated vector bundles to 2M \ {v}, and e+, r+ denote extension by zero to the opposite side
of the double and restriction to int (M \{v}). Moreover, G is a so-called Green operator of order m
and type d (the latter means, roughly speaking, an involved differentiation of order d transversally
to the boundary), while A21 is a trace operator of order m+1/2 and type d (representing boundary
conditions), K is a potential operator of order m− 1/2, and Q ∈ Lmcl (∂(M \ {v}); J1, J2).
In the following we suppress the bundles Ek, Jk in the notation and formally assume that those
are trivial and of fibre dimension 1. All considerations are, of course, valid in general. The op-
erators A ∈ Bm,d over a smooth manifold with boundary have a principal symbolic structure
(σ0(A), σ′0(A)) where σ0(A) is the standard homogeneous principal symbol of A of order m and
σ′0(A) the (operator-valued) homogeneous principal boundary symbol of A. If A ∈ Bm,d, Ã ∈ Bm̃,d̃,
and A or Ã properly supported, we have AÃ ∈ Bm+m̃,

˜̃
d for ˜̃

d = max{m̃ + d, d̃}, and σ0(AÃ) =
σ0(A)σ0(Ã), σ′0(AÃ) = σ′0(A)σ′0(Ã).
We do not recall here all details on the cone calculus of BVPs; more details may be found in [?].
What we do here is to answer the question of conormal ellipticity for a prescribed weight, and we for-
mulate the tools up to the point where it becomes clear how the analogue of the approach of Section
2 works. The general frame of the cone calculus of BVPs is the subspace Bm,ddeg (M \{v}) of degener-
ate operators in Bm,d(M \{v}) that are locally near v defined in terms of Bm,d(X)-valued symbols,
more precisely, where the covariables cotain a parameter λ ∈ Rl from a parameter-dependent ana-
logue Bm,d(X; Rl) of Bm,d(X) (here for l = 1). Using the fact that Bm,d(X; R) is a Fréchet space in
a natural way we can form operator functions f̃(r, ρ̃) ∈ C∞(R+,Bm,d(X; Rρ̃)). Then Bm,ddeg (M \{v})
is defined as the subspace of all A ∈ Bm,d(M \ {v}) that are mod B−∞,d(M \ {v}) locally near v
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in the splitting of variables (r, x) ∈ R+ × X of the form r−mOpr(f), f(r, ρ) = f̃(r, rρ), for some
f̃(r, ρ̃) of the above-mentioned kind. Apart from the pair of principal symbols σ0(A), σ′0(A) of
A interpreted as an element of Bm,d(M \ {v}) for A ∈ Bm,ddeg (M \ {v}) we have the pair of re-
duced symbols σ̃0(A), σ̃′0(A) in the variables (r, x) ∈ X∧ and (r, x′) ∈ ∂X∧, respectively, defined
by σ̃0(A)(r, x, ρ, ξ) = rmσ0(A)(r, x, r−1ρ, ξ) and σ̃′0(A)(r, x′, ρ, ξ′) = rmσ′0(A)(r, x′, r−1ρ, ξ′) where
σ̃0(A), σ̃′0(A) are smooth up to r = 0.
Let Mm,d

O (X) defined to be the space of all h ∈ A(C,Bm,d(X)) such that h|Γβ
∈ Bm,d(X; Γβ) for

every β ∈ R, uniformly in compact β-intervals. Moreover, for a sequence (1.7) we define the space
M−∞,d

R (X) as the set of all f(z) ∈ A(C \R,B−∞,d(X)) which are meromorphic with poles at the
points rj of multiplicity nj + 1, where the Laurent coefficients at (z − rj)−(k+1) are finite rank
operators in B−∞,d(X) for 0 ≤ k ≤ nj , and such that for every R-excision function χ(z) we have
χf |Γβ

∈ B−∞,d(X; Γβ) for every β ∈ R, uniformly in compact β-intervals. Then we set

Mm,d
R (X) := Mm,d

O (X) +M−∞,d
R (X). (3.2)

An element f ∈ Mm,d
R (X) is called elliptic if for some β ∈ R for Γβ ∩ R = ∅ the family f |Γβ ∈

Bm,d(X; Γβ) is parameter-dependent elliptic. This property is again independent of β.

Theorem 3.1. Let f ∈Mm,d
R (X) be elliptic; then there is a (unique) f−1 ∈M−m,(d−µ)+

S (X), ν+ :=
max {ν, 0}, for some S such that ff−1 = 1 and f−1f = 1.

The proof of Theorem 3.1 may be obtained by applying similar arguments as for Theorem 1.2.
The cone algebra over a compact manifold M with conical singularity v and boundary consisits of
operators of the form

A = ωr−mopγ−n/2M (h+ l)ω′ +Aint +G (3.3)

for cut-off functions ω, ω′, h(r, z) ∈ C∞(R+,Mm,d
O (X)), l(z) ∈ M−∞,d

R (X) for some R, moreover,
Aint ∈ Bm,d(M \ {v}) supported off some neighbourhood of v, and a so-called Green operator G.
For type d = 0 such a G is defined by the mapping properties

G : Hs,γ(M)⊕Hs−1/2,γ−1/2(∂M) → H∞,γ−m+ε(M)⊕H∞,γ−m−1/2+ε(∂M), (3.4)

and, similarly, for the formal adjoint, for some ε > 0 (depending on G) and all s > 1/2. Moreover,
a Green operator of the cone calculus of type d ∈ N has the form

∑d
j=0Gjdiag (1, ∂jt ) for Green

operators of Gj of type 0 where ∂jt is an abbreviation of a j-th order differential operator which
is close to the boundary differentiating in t, the normal direction. The first summand on the right
of (1.10) refers to the local variables (r, x) ∈ X∧ near v. The operators of the form (3.3) exhaust
the space Bm,ddeg (M \ {v}) mod B−∞,d(M \ {v}). From the space Bm,ddeg (M \ {v}) the operators A
inherit the symbols σ0(A), σ′0(A) and σ̃0(A), σ̃′0(A). By (σ0, σ

′
0)-ellipticity of A we understand the

condition of non-vanishing of σ0(A) and bijectivity of σ′0(A) (including the case with tilde, then
up to r = 0). In addition in the cone algebra we have the principal conormal symbol, defined as
the operator family

σ1(A)(z) := h(0, z) + l(z) : Hs(X)⊕Hs−1/2(∂X) → Hs−m(X)⊕Hs−m−1/2(∂X) (3.5)

for s ∈ R, s > max {m, d} − 1/2. Moreover, A is called σ1-elliptic if (3.5) consists of isomorphisms
for all z ∈ Γ(n+1)/2−γ . The operators A in the cone algebra of BVPs on a compact manifold M
with conical singularities and boundary induce continuous operators

A : Hs,γ(M)⊕Hs−1/2,γ−1/2(∂M) → Hs−m,γ−m(M)⊕Hs−m−1/2,γ−m−1/2(∂M) (3.6)

for all s ∈ R, s > max {m, d} − 1/2.
Let us also recall a few notions from the cone calculus on the infinite stretched cone X∧. Again
we can express everything in the variables (r, x). The properties of the respective operators close
to r = 0 are as before. An extra assumption concerns Aint + G, cf. the formula (3.3). On Aint
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we assume that it belongs to the classical exit calculus for r → ∞ of weight 0 at ∞. Here we
refer to the terminology of [4], and we use the notation for the respective principal exit symbols
σE := (σe, σψ,e, σe’, σ∂,e’). The conditions on the Green operators G are replaced by mapping
properties referring to the spaces

Ks,γ(X∧) = Ks,γ(2X∧)|intX∧ , Sγ(X∧) = Sγ(2X∧)|X∧ , γ ∈ R. (3.7)

The condition for d = 0 is

G : Ks,γ(X∧)⊕Ks−1/2,γ−1/2(∂X∧) → Sγ−m+ε(X∧)⊕ Sγ−m+ε(∂X∧), (3.8)

for some ε > 0 (depending on G) and all s ∈ R, s > 1/2 and an analogous condition for the
formal adjoint. In the case d ∈ N, d > 0 the definition of Green operators is similar as before, with
differentiations up to order d, transversal to the boundary.

Theorem 3.2. Let A be an operator in the cone algebra of BVPs on the compact manifold with
conical singularity M with boundary, and fix a weight γ ∈ R. Then the following conditions are
equivalent:

(i) A is (σ0, σ
′
0, σ1)-elliptic with respect to γ (the latter referring to σ1);

(ii) the operator (3.6) is a Fredholm operator for some s = s0 ∈ R.

Moreover, let A be an operator in the cone algebra Bm,d(X∧) on an infinite stretched cone X∧ for a
smooth compact manifold X with boundary, and fix γ. Then the following conditions are equivalent:

(iii) A is (σ0, σ
′
0, σ1, σE)-elliptic with respect to γ (the latter referring to σ1);

(iv) the operator

A : Ks,γ(X∧)⊕Ks,γ(∂X∧) → Ks−m,γ−m(X∧)⊕Ks−m,γ−m(∂X∧) (3.9)

is a Fredholm operator for some s = s0 ∈ R, s0 > max {m, d} − 1/2.

The Fredholm property then always holds for all s > max {m, d}− 1/2. The tools for the proof
of Theorem 3.2 are of a completely analogous structure as those for Theorem 1.3. Let us now turn
to an analogue of the kernel cut-off theorem. Let us again give the formulation for parameter-
dependent operator families with parameter λ ∈ Rl; for conical singularities the case l = 0 is
sufficient. Let Mm,d

O (X; Rl) defined to be the set of all h(z, λ) ∈ A(C,Bm,d(X; Rl)) such that
h|Γβ×Rl ∈ Bm,d(X; Γβ × Rl) for every β ∈ R, uniformly in finite β-intervals.
Consider an element a(z, λ) ∈ Bm,d(X; Γ0 × Rl), and let ϕ ∈ C∞0 (R+). Then the kernel cut-off
operator V (ϕ), applied to a Mellin amplitude function a is defined by the expression

V (ϕ)a(iρ, λ) :=
∫ ∞

0

θiρϕ(θ)k(a)(θ, λ)θ−1dθ (3.10)

where k(a)(θ, λ) :=
∫∞
−∞ θ−iρa(iρ, λ)d̄ρ.

Theorem 3.3. (i) For every ϕ ∈ C∞0 (R+) and f(w, λ) ∈ Bm,d(X; Γ0 × Rl) we have V (ϕ)f ∈
Mm,d

O (X; Rl).

(ii) Let ψ ∈ C∞0 (R) be a function that is equal to 1 in a neighbourhood of the origin; then
V (ψ)f |Γ0×Rl = f |Γ0×Rl modB−∞,d(X; Γ0 × Rl). Setting ψε(θ) := ψ(ε log θ), ε > 0, for every
f(w, λ) ∈ Bm,d(X; Γ0 × Rl) we have

limε→0V (ψε)f(w, λ) = f(w, λ).
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Theorem 3.4. Let h ∈ Mm,d
O (X) such that h|Γβ

∈ Bm,d(X,Γβ) is parameter-dependent elliptic
for some real β. Then for every fixed γ ∈ R there exists an f ∈M−∞,d

O (X) such that

(h− f)(z) : Hs(X)⊕Hs−1/2(∂X) → Hs−m(X)⊕Hs−m−1/2(∂X) (3.11)

is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and every s ∈ R.

Proof. An inspection of the proof of Theorem 2.1 shows that the tools are available in analogous
form in the case of BVPs. This mainly concerns Theorem 3.1 and Theorem 3.3 . So we can proceed
in an analogous manner as in the case of closed manifolds.

Corollary 3.5. Let h ∈Mm,d
R (X) be elliptic. Then for every γ ∈ R there exists an f ∈M−∞,d

R (X)
such that (3.11) is a family of isomorphisms for all z ∈ Γ(n+1)/2−γ and every s ∈ R.

Proof. The arguments are analogous to those for Corollary 2.2.

4 Some Consequences for Edge Symbols

Let us draw some conclusions of Theorems 2.1 and 3.4 to symbols of the edge calculus. First,
a manifold M with edge Y := s1(M) is characterised by the conditons that M \ Y is smooth,
and M is locally near Y modelled on wedges X∆ × Ω, for a (here) compact smooth manifold
X (without/with boundary) and open Ω ⊆ Rq corresponding to a chart on Y, q = dimY. The
typical differential operators of the edge calculus have locally near Y in the splitting of variables
(r, x, y) ∈ R+ ×X × Ω the form

A = r−m
∑

j+|α|≤m

ajα(r, y)(−r∂r)j(rDy)α (4.1)

for coefficients ajα(r, y) ∈ C∞(R+ × Ω,Diffm−j−|α|(X)). In the following discussion we first con-
sider the case ∂X = ∅. Then the principal symbolic structure of A consists of a pair σ(A) :=
(σ0(A), σ1(A)) with σ0(A) being the standard homogeneous principal symbol as a function on
T ∗(M \ Y ) \ 0, accompanied by the reduced symbol σ̃0(A) defined in the variables (r, x, y) ∈
R+ × X × Ω by the relation σ̃0(A)(r, x, y, ρ, ξ, η) = rmσ0(A)(r, x, y, r−1ρ, ξ, r−1η). Moreover, the
homogeneous principal edge symbol of A

σ1(A)(y, η) = r−m
∑

j+|α|≤m

ajα(0, y)(−r∂r)j(rη)α, (4.2)

is interpreted as a family of operators

σ1(A)(y, η) = Ks,γ(X∧) → Ks−m,γ−m(X∧), (4.3)

on the open stretched cone X∧, parametrised by (y, η) ∈ Ω× (Rq \ {0}). Pseudo-differential edge
symbols in general are associated with operator-valued amplitude functions of the form

a(y, η) = r−mεopγ−n/2M (h)(y, η)ε′ + (m+ g)(y, η) (4.4)

for cut-off functions ε, ε′, functions h(r, y, z, η) = h̃(r, y, z, rη), h̃(r, y, z, η̃) ∈ C∞(R+×Ω,Mm
O (X; Rq)),

cf. the notation in connection with Theorem 1.4 (i), and so-called smoothing Mellin plus Green
symbols of order m. Those are specific classical operator-valued symbols. The general definition is
as follows.
We say that a Hilbert space H is equipped with a group action κ = {κλ}λ∈R+ if κλ : H → H
is an isomorphism for every λ ∈ R+, κλκλ′ = κλλ′ for every λ, λ′ ∈ R+, and if the group is
strongly continuous. For two Hilbert spaces H and H̃ with group action κ and κ̃, respectively,
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the symbol space Sm(U × Rq;H, H̃) for U ⊆ Rd open, m ∈ R, is defined as the set of all
a(y, η) ∈ C∞(U × Rq,L(H, H̃)) such that

‖ κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉 ‖L(H,H̃)≤ c〈η〉m−|β|

for all (y, η) ∈ K × Rq, K ⊂⊂ U, and α ∈ Nd, β ∈ Nq, for constants c = c(α, β,K) > 0. More-
over, the subspace of classical symbols Smcl (U × Rq;H, H̃) is defined by asymptotic expansions of
terms χ(η)a(m−j)(y, η) for any excision function χ and homogeneous components a(m−j)(y, η), j ∈
N, (y, η) ∈ U × (Rq \ {0}); homogeneity means a(m−j)(y, λη) = λm−j κ̃λa(m−j)(y, η)κ−1

λ , λ ∈
R+. A straightforward extension of the definition gives us symbols also in the case of Fréchet
spaces with group action. A Green symbol of order ν associated with the weight data (γ, γ −
m) is a g(y, η) ∈

⋂
s∈R S

ν
cl(U × Rq;Ks,γ(X∧),Sγ−m+ε(X∧)) such that g∗(y, η) ∈

⋂
s∈R S

ν
cl(U ×

Rq;Ks,−γ+m(X∧),S−γ+ε(X∧)) for some ε > 0 where g∗ means the pointwise formal adjoint of g
with respect to the K0,0-scalar product. The group action κ = κ̃ in this case is defined by

(κλu)(r, x) = λ(n+1)/2u(λr, x), λ ∈ R+. (4.5)

We apply this here to an open set Ω ⊆ Rq. Moreover, a smoothing Mellin symbol is an operator
function of the form

m(y, η) = r−mω(r[η])opγ−n/2M (f)(y)ω′(r[η]) ∈ Smcl (Ω× Rq;Ks,γ(X∧),Ks−m,γ−m(X∧)

for cut-off functions ω, ω′ and an f(y, z) ∈ C∞(Ω,M−∞
R (X)) for R

⋂
Γ(n+1)/2−γ = ∅.

We do not carry out the details of the edge pseudo-differential operators. Let us only recall that
those are (up to global smoothing operators and contributions far from the edge Y ) locally close
to Y of the form A = Opy(a) for symbols of the form (4.4). Then, apart from the corresponding
symbol σ0(A) and its reduced variant σ̃0(A), we have the principal edge symbol

σ1(A)(y, η) = r−mopγ−n/2M (h0)(y, η) + σ1(m+ g)(y, η) : Ks,γ(X∧) → Ks−m,γ−m(X∧), (4.6)

(y, η) ∈ Ω× (Rq \ {0}) for h0(r, y, z, η) := h̃(0, y, z, rη) and σ1(m+ g)(y, η) defined as the homoge-
neous principal components of the respective classical symbols m(y, η) and g(y, η), namely,

σ1(m)(y, η) = r−mω(r|η|)opγ−n/2M (f)(y)ω′(r|η|) and σ1(g)(y, η) = g(m)(y, η).

The operators (4.6) belong to the cone algebra on the open stretched cone X∧ for every (y, η) ∈
Ω× (Rq \ {0}). As such they also have the principal symbolic structure of the cone calculus

σ0(σ1(A))(r, x, y, ρ, ξ), σ̃0(σ1(A))(r, x, y, ρ, ξ), σ1(σ1(A))(y, z) (4.7)

for every fixed y, also referred to as subordinate symbols (here the dependence on η diappears).
Ellipticity of an operator A in the edge calculus means ellipicity both with respect to σ0 and σ1.
What concerns σ0 the condition consists of the standard ellipticity together with non-vanishing of
σ̃0 up to r = 0. This has the consequence that the first two components of (4.7) are non-vanishing
in the sense of the cone calculus and that (4.6) is also exit-elliptic on X for every η 6= 0. Then,
according to Theorem 1.3 (iii), (iv), the only remaining condition for the Fredholm property of
(4.3) for the given weight γ is the ellipticity of σ1(A)(y, η) with respect to σ1(σ1(A)), cf. the third
item in formula (4.7), namely,

σ1(σ1(A))(y, z) = h0(0, y, z, 0) + f(y, z) ∈ C∞(Ω,Mm
R (X)).

This function is automatically elliptic in the sense of the assumption in Corollary 2.2, for every
fixed y. Now Corollary 2.2 tells us that we may pass to another f̃(y, z) ∈ C∞(Ω,M−∞

R̃
(X)) such

that when we form
ã(y, η) = r−mεopγ−n/2M (h)(y, η)ε′ + (m̃+ g̃)(y, η)
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for m̃(y, η) = r−mω(r[η])opγ−n/2M (f̃)(y)ω′(r[η]), (and, if desired, another Green symbol g̃(y, η)) the
edge symbol of Ã = Opy(ã)

σ1(Ã)(y, η) = r−mopγ−n/2M (h0)(y, η) + σ1(m̃+ g̃)(y, η) : Ks,γ(X∧) → Ks−m,γ−m(X∧) (4.8)

is Fredholm for the fixed y, and by construction we have A = Ã modulo such a Mellin (plus Green)
operator.

Remark 4.1. (i) The homogeneity of σ1(Ã)(y, η) in the sense

σ1(Ã)(y, λη) = λmκλσ1(Ã)(y, η)κ−1
λ , λ ∈ R+, (4.9)

allows us to reduce the mappings to η ∈ S∗Ω, the unit cosphere bundle of Ω. Then, if we
restrict the consideration to S∗Ω0 for an open set Ω0 ⊂ Ω containing the point y, Ω0 ⊂ Ω
compact, such that (4.8) are Fredolm for all y ∈ Ω0, we obtain an index element

indS∗Ω0
σ1(Ã) ∈ K(S∗Ω0), (4.10)

the K-group of S∗Ω0. An analogue of a well-known topological obstruction of Atiyah, Bott,
cf. [1] concerning the existence of Shapiro-Lopatinskij elliptic boundary conditions (that may
be non-vanishing also in edge problems, here concerning edge conditions) is the relation

indS∗Ω0
σ1(Ã) ∈ π∗K(Ω0) (4.11)

where π∗ is induced by the bundle pull-back under the canonical projection π : S∗Ω0 → Ω0.

(ii) It can be proved that the condition (4.11) is independent of the choice of f̃ involved in m̃(y, η)
which makes (4.8) to a family of Fredholm operators, y ∈ Ω0. Moreover, in this case we find
f̃ and g̃ in such a way that (4.8) is a family of isomorphisms for all y ∈ Ω0. In other words,
the ellipticity condition on σ1(·) in the edge calculus which requires isomorphisms without
additional Shapiro-Lopatinskij elliptic edge conditions is natural in a discussion of the edge
algebra as the whole.

Remark 4.2. Remark 4.1 has an immediate analogue for BVPs on a manifold with edge for
operators with the transmission property at the smooth part of the boundary.
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