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Abstract. We give a survey on the calculus of (pseudo-differential) boundary
value problems with the transmision property at the boundary, and ellipticity
in the Shapiro-Lopatinskij sense. Apart from the original results of the work
of Boutet de Monvel we present an approach based on the ideas of the edge
calculus. In a final section we introduce symbols with the anti-transmission
property.

1. Introduction

Boundary value problems (BVPs) for elliptic (pseudo-)differential operators have
attracted mathematicians and physicists during all periods of the modern analysis.
While the definition of ellipticity of an operator on an open (smooth) manifold is
very simple, such a notion in connection with a (smooth or non-smooth) bound-
ary is much less evident. During the past few years the interest in BVPs increased
again considerably, motivated by new applications and also by unsolved prob-
lems in the frame of the structural understanding of ellipticity in new situations.
Several classical periods of the development created deep and beautiful ideas, for
instance, in connection with function theory, potential theory, with boundary op-
erators satisfying the complementing condition, cf. Agmon, Douglis, Nirenberg
[1], or pseudo-differential theories from Vishik and Eskin [29], Eskin [7], Boutet
de Monvel [4]. Other branches of the development concern ellipticity with global
projection conditions (analogues of Atiyah, Patodi, Singer conditions, cf. [3]), or
elliptic theories on manifolds with geometric singularities, cf. the author’s papers
[25] or [26].

After all that it is not easy to imagine how many basic and interesting prob-
lems remained open. A part of the new developments is connected with the analysis
on configurations with singularities that includes boundary value problems. In that
context it seems to be desirable to see the pseudo-differential machinery of Boutet
de Monvel and also of Vishik and Eskin from an alternative viewpoint, using the
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achievements of the cone and edge pseudo-differential calculus as is pointed out in
[16], [20], and in the author’s joint paper with Seiler [22], see also the monographs
[18], or those jointly with Egorov [6], Kapanadze [12], Harutyunyan [10].

Our exposition just intends to emphasize such an approach, here mainly
focused on operators with the transmission property at the boundary from the
work of Boutet de Monvel. We also introduce symbols with the anti-transmission
property at the boundary. Together with those with the transmission property
they span the space of all (classical) symbols that are smooth up to the boundary.
A pseudo-differential calculus for such general symbols needs more tools from the
edge algebra than developed here.

The present paper is the elaborated version of introductory lectures, given
during an International Workshop on Pseudo-Differential Operators, Complex
Analysis and Partial Differential Equations at York University on August 4-8,
2008, in Toronto.

2. Interior and boundary symbols for differential operators

Let X be a C∞ manifold with boundary Y = ∂X. Moreover, let 2X be the double,
defined by gluing together two copiesX± ofX to a C∞ manifold along the common
boundary Y . Let us fix a Riemannian metric on 2X and consider Y in the induced
metric. There is then a tubular neighbourhood of Y in 2X that can be identified
with Y × [−1, 1], with a splitting of variables x = (y, t), where t is the variable
normal to the boundary and y ∈ Y . We assume that (y, t) belongs to X =: X+

for 0 ≤ t ≤ 1 and to X− for −1 ≤ t ≤ 0 .
IfM is a C∞ manifold (with or without boundary) by Diffµ(M) we denote the

set of all differential operators of order µ on M with smooth coefficients (smooth
up to the boundary when ∂M 6= ∅).

Local descriptions near Y will refer to charts

χ : U → Ω× R

for open U ⊆ 2X, U ∩ Y 6= ∅, and open Ω ⊆ Rn−1, and induced charts

χ : U ∩ Y → Ω

on Y and
χ± : U± := U ∩X± → Ω× R±

on X± near the boundary. Concerning the transition maps Ω×R→ Ω̃×R, (y, t)→
(ỹ, t̃), for simplicity we assume that the normal variable remains unchanged near
the boundary, i.e., t = t̃ for |t| sufficiently small. The map y → ỹ corresponds to a
diffeomorphism Ω→ Ω̃.

Let A ∈ Diffµ(X), Bj ∈ Diffµj (V+), V+ := V ∩ X, j = 1, . . . , N , for some
N ∈ N, and set

Tu := (Bju|Y )j=1,...N .
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Then the equations

(2.1) Au = f in intX, Tu = g on Y

represent a boundary value problem for A. Consider for the moment functions in
C∞(X); then (2.1) can be regarded as a continuous operator

(2.2) A =
(
A

T

)
: C∞(X)→

C∞(X)
⊕

C∞(Y,CN )
.

If X is compact, we have the standard Sobolev spaces Hs(2X) on 2X and

Hs(intX) := Hs(2X)|intX ,

s ∈ R. Then (2.2) extends to continuous operators

(2.3) A : Hs(intX)→
Hs−µ(intX)

⊕
⊕Nj=1H

s−µj− 1
2 (Y )

for all s > max{µj + 1
2 : j = 1, . . . , N}.

We will give a survey on elliptic boundary value problems (BVPs), starting
from (2.2), and we ask to what extent we may expect a pseudo-differential calculus
(an algebra) that contains the operators (2.2) together with the parametrices of
elliptic elements. First we have to explain what we understand by ellipticity of a
boundaray value problem.

In contrast to the notion of ellipticity of a differential operator (or a, say,
classical pseudo-differential operator) A on an open C∞ manifold M , in the case
of a manifold with boundary we have from the very beginning a variety of choices.

Let Lµcl(M) for an open C∞ manifold M denote the space of all classical
pseudo-differential operators of order µ ∈ R on M . An A ∈ Lµcl(M) is called
elliptic, if its homogeneous principal symbol σψ(A)(x, ξ) of order µ never vanishes
on T ∗M \ 0 (the cotangent bundle of M minus the zero section). The union of
spaces Lµcl(M) over µ ∈ R is closed under the construction of parametrices of
elliptic elements, to be more precise, every elliptic A ∈ Lµcl(M) has a (properly
supported) parametrix P ∈ L−µcl (M) such that 1− PA, 1− AP ∈ L−∞(M) (here
and in future by 1 we often denote identity operators). The space L−∞(M) can
be identified with C∞(M ×M) via a fixed Riemannian metric on M .

Let us recall the well-known fact that when M is compact and closed the
ellipticity of A ∈ Lµcl(M) is equivalent to the property that

(2.4) A : Hs(M)→ Hs−µ(M)

is a Fredholm operator for some s = s0 ∈ R. Moreover, from the Fredholm property
of (2.4) for s = s0 it follows that (2.4) is Fredholm for all s ∈ R. In addition it is
known that Lµcl(M) for every µ ∈ R contains so-called order reducing operators,
i.e., elliptic operators Rµ that induce isomorphisms,

(2.5) Rµ : Hs(M)→ Hs−µ(M)
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for all s ∈ R; then (Rµ)−1 ∈ L−µcl (M) is again order reducing (of opposite order).
Below we shall establish more tools on pseudo-differential operators.

Let us now return to BVPs of the form (2.3), where X is a compact manifold
with smooth boundary Y .

Writing our differential operator A in local coordinates x ∈ Ω×R+ near the
boundary as

A =
∑
|α|≤µ

aα(x)Dα
x ,

aα ∈ C∞(Ω× R+), we define

(2.6) σψ(A)(x, ξ) =
∑
|α|=µ

aα(x)ξα,

(x, ξ) ∈ T ∗(Ω× R+) \ 0, and observe the homogeneity

σψ(A)(x, λξ) = λµσψ(A)(x, ξ), λ ∈ R+.

Let x = (y, t), ξ = (η, τ), and set

(2.7) σ∂(A)(y, η) =
∑
|α|=µ

aα(y, 0)(η,Dt)α,

where (η,Dt)α = ηα
′
Dα
t
′′ for α = (α′, α′′) ∈ Nn, (y, η) ∈ T ∗Ω \ 0, or, equiva-

lently, σ∂(A)(y, η) = σψ(A)(y, 0, η,Dt). The expression (2.7) represents a family
of continuous operators

(2.8) σ∂(A) : Hs(R+)→ Hs−µ(R+), s ∈ R,
called the (homogeneous principal) boundary symbol of A.

Let Hs(R+) be endowed with the strongly continuous group κ = {κλ}λ∈R+

of isomorphisms

κλ : Hs(R+)→ Hs(R+), (κλu)(t) = λ1/2u(λt), λ ∈ R+.

Then we obtain the following kind of homogeneity of the boundary symbol

(2.9) σ∂(A)(y, λη) = λµκλσ∂(A)(y, η)κ−1
λ , λ ∈ R+.

Homogeneity in that sense will also referred to as twisted homogeneity (of order
µ).

It makes sense also to define the (homogeneous principal) boundary symbol
of the trace operator T = t(T1, . . . , TN ), by

(2.10) σ∂(Tj)(y, η)u := σψ(Bj)(y, 0, η,Dt)u|t=0,

u ∈ Hs(R+), s > max{µj + 1
2 : j = 1, . . . , N} where σψ(Bj)(x, ξ) is the homoge-

neous principal symbol of the operator Bj , and (2.10) is interpreted as a family of
operators

σ∂(Tj)(y, η) : Hs(R+)→ C,
(y, η) ∈ T ∗Ω \ 0. The boundary symbol (2.10) is homogeneous in the sense

(2.11) σ∂(Tj)(y, λη) = λµj+
1
2σ∂(Tj)(y, η)κ−1

λ , λ ∈ R+.
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It is often convenient to compose (2.2) from the left by an operator

(2.12) diag(1, R1, . . . , RN )

where Rj ∈ L
µ−(µj+

1
2 )

cl (Y ) is an order reducing operator on the boundary in the
above-mentioned sense and to pass to a modified operator(

A
t(R1T1, . . . , RNTN )

)
: Hs(intX)→

Hs−µ(intX)
⊕

Hs−µ(Y,CN )
,

related to the former one by a trivial pseudo-differential reduction of orders on the
boundary. This is formally a little easier (later on we admit such trace operators
anyway). Instead of (2.11) we then obtain

(2.13) σ∂(RjTj)(y, λη) = λµσ∂(RjTj)(y, η)κ−1
λ , λ ∈ R+,

where
σ∂(RjTj)(y, η) = σψ(Rj)(y, η)σ∂(Tj)(y, η)

with σ∂(Rj)(y, η) being the homogeneous principal symbol of Rj of order µ−(µj+
1
2 ) as a classical pseudo-differential operator on the boundary.

Let us now explain the role of the trace operators in connection with the
ellipticity of a boundary value problem. We call the pair

σ(A) = (σψ(A), σ∂(A))

the principal symbol of A, consisting of the (principal) interior symbol σψ(A) :=
σψ(A) and the (principal) boundary symbol σ∂(A) := t(σ∂(A), σ∂(T1), . . . , σ∂(TN ))
of A,

σ∂(A) : Hs(R+)→
Hs−µ(R+)
⊕

CN
.

Ellipticity of A requires the bijectivity of both components on T ∗X \0 and T ∗Y \0,
respectively, the latter as an operator function for s−µ > − 1

2 . Since the operators
σ∂(Tj)(y, η) are of finite rank, σ∂(A)(y, η) has to be a family of Fredholm operators.
The following lemma shows that this is an automatic consequence of the ellipticity
of A with respect to σψ.

Lemma 2.1. Let A be an elliptic differential operator; then

σ∂(A)(y, η) : Hs(R+)→ Hs−µ(R+)

is a surjective family of Fredholm operators for every real s > µ − 1
2 , and the

kernel kerσ∂(A)(y, η) is a finite-dimensional subspace of S(R+) = S(R)|R+
which

is independent of s. Moreover, dim kerσ∂(A)(y, η) = dim kerσ∂(A)(y, η/|η|) for
all (y, η) ∈ T ∗Y \ 0.
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Proof. Set for the moment a(τ) := σψ(A)(y, 0, η, τ) with frozen variables (y, η),
η 6= 0. Then σ∂(A) = a(Dt) can be written as op+(a) := r+opt(a)e+ for the
operator of extension e+ of functions by 0 to t < 0 and r+ the restriction to t > 0,
and opt(·) is the pseudo-differential operator on R with the symbol a(τ), i.e.,
opt(a)u(t) =

∫∫
ei(t−t

′)τa(τ)u(t′)dt′d̄τ , d̄τ = (2π)−1dτ . Then op+(a−1) is a right
inverse of op+(a), since op+(a)op+(a−1) = op+(aa−1) + r+op(a)e−op+(a−1) = 1,
because of r+op(a)e− = 0. This shows the surjectivity of op+(a). The fact that
solutions u of the homogeneous equation a(Dt)u = 0 form a finite-dimensional
subspace of S(R+) is standard. However, we will show those things below once
again independently, cf. Theorem 3.30 below. The last assertion follows from the
homogeneity (2.9).

Example. Let A = ∆ be the Laplacian, ∆ =
∑n
j=1

∂2

∂x2
j

in local variables. Then

σ∂(∆) = −|ξ|2, and

σ∂(∆)(η) = −|η|2 +D2
t : Hs(R+)→ Hs−2(R+).

We have
kerσ∂(∆)(η) = {ce−|η|t : c ∈ C},

i.e., dim kerσ∂(∆)(η) = 1 for all η 6= 0 and all s > 3/2.

Remark 2.2. The operators Tk : Hs(X) → Hs−k−1/2(Y ), locally near Y defined
by

Tku := Dk
t u|t=0, k ∈ N,

have the boundary symbols

σ∂(Tk)u = Dk
t u|t=0, σ∂(Tk)(η) : Hs(R+)→ C

and are (although they are independent of η) of homogeneity k + 1
2 , i.e.,

σ∂(Tk)(λη)u = λk+
1
2σ∂(Tk)(η)κ−1

λ u, λ ∈ R+.

Moreover, as we see from Lemma 2.1 together with Lemma 2.3 below, the
column matrix

(2.14)
(
σ∂(∆)(η)
σ∂(Tk)(η)

)
: Hs(R+)→

Hs−2(R+)
⊕
C

is an isomorphism for every η 6= 0, s > max{ 3
2 , k+ 1

2}; this is true of every k ∈ N.
Observe that T0 represents Dirichlet and T1 Neumann conditions.

In other words, the boundary symbol σ∂(Tk) fills up the Fredholm operators
σ∂(∆)(η) : Hs(R+)→ Hs−2(R+), s > 3/2, to a family of isomorphisms (2.14). In
this way we have examples of so-called elliptic BVPs, namely,

(2.15) Ak :=
(

∆
Tk

)
: Hs(X)→

Hs−2(X)
⊕

Hs−k− 1
2 (Y )
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for every k ∈ N. In connection with such constructions it is useful to recall the
following simple algebraic result.

Lemma 2.3. Let H, H̃, L̃ be Hilbert spaces and a : H → H̃, b : H → L̃ linear

continuous operators. Then the column matrix operator a :=
(
a
b

)
: H →

H̃
⊕
L̃

is an

isomorphism if and only if a : H → H̃ is surjective, and b : H → L̃ restricts to an
isomorphism b|ker a : ker a→ L̃.

Proof. Let a : H → H̃ be surjective, and b0 := b|ker a : ker a→ L̃ an isomorphism.
Then a is obviously surjective. Moreover, au = 0 implies u ∈ ker a and b0u = 0;
then, since b0 is an isomorphism it follows that u = 0. Thus a is injective and hence
an isomorphism. Conversely, assume that a is an isomorphism. The surjectivity
of a implies that a : H → H̃, b : H → L̃ are both surjective. In particular, if
H1 denotes the orthogonal complement of ker a1 in H we obtain an isomorphism
a1 := a|H1 : H1 → H̃, and a can be written as a block matrix

a =
(
a1 0
b1 b0

)
:
H1

⊕
ker a

→
H̃
⊕
L̃

for b1 := b|H1 . It remains to show that b0 : ker a → L̃ is an isomorphism. The

operator
(

a−1
1 0

−b1a−1
1 1

)
:
H̃
⊕
L̃

→
H1

⊕
L̃

is an isomorphism, and we have

(
a−1
1 0

−b1a−1
1 1

) (
a1 0
b1 b0

)
=

(
1 0
0 b0

)
:
H1

⊕
ker a

→
H1

⊕
L̃

.

Therefore, since both factors on the left hand side are isomorphisms, it follows
that also b0 : ker a→ ker a is an isomorphism.

This shows us the meaning of the above-mentioned N , the number of trace
operators which turns the boundary symbol

(2.16) σ∂(A)(y, η) : Hs(R+)→
Hs−µ(R+)
⊕

CN

to a family of isomorphisms. According to Lemmas 2.1 and 2.3 for an elliptic
differential operator A we have N = dim kerσ∂(A)(y, η); this number is required
to be independent of y and η 6= 0. As is well-known, if A is of order 2m and
admits boundary operators {B1, . . . , Bm} satisfying the so-called complementing
condition with respect to A, then (for m = N) that property holds (cf. Agmon,
Douglis, Nirenberg [1], Lions, Magenes [13]).
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Definition 2.4. The block matrix operator A = t(A T ) is said to be a (Shapiro-
Lopatinskij) elliptic boundary value problem for the elliptic differential operator
A if the boundary symbol (2.16) is a family of isomorphisms for any sufficiently
large s, for all (y, η) ∈ T ∗Y \ 0. We also talk about Shapiro-Lopatinskij trace (or
boundary) conditions for the operator A.

Remark 2.5. Observe that not every elliptic differential operator A admits Shapiro-
Lopatinskij elliptic trace conditions. The simplest example is the Cauchy-Riemann
operator ∂ in the complex plane. More general examples are Dirac operators in
even dimensions, and other important geometric operators. We will return later on
to this discussion in the context of the Atiyah-Bott obstruction for the existence
of Shapiro-Lopatinskij elliptic conditions.

If we ask an algebra of BVPs a first essential formal problem is that column
matrices cannot be composed with each other in a reasonable manner. However, we
extend the notion “algebra” and talk about block matrix operators where the al-
gebraic operations are carried out only under natural conditions, namely, addition
when the matrices have the same number of rows and columns and multiplication
when the number of rows and columns in the middle fit together. For instance, if
we consider the Dirichlet problem A0 for the Laplacian, cf. the formula (2.15) for
k = 0, we have invertibility of

A0 : C∞(X)→
C∞(X)
⊕

C∞(Y )
.

Denoting by P := (P0 K0) the inverse of A0 (which belongs to the pseudo-
differential operator calculus to be discussed here) then we have two kinds of
compositions, namely, for A = ∆

(2.17) A0P0 =
(
A

T0

)
(P0 K0) =

(
AP0 AK0

T0P0 T0K0

)
=

(
1 0
0 1

)
,

and

(2.18) (P0 K0)
(
A

T0

)
= P0A+K0T0 = 1.

It also makes sense to consider

(2.19) AkP0 =
(

1 0
TkP0 TkK0

)
for every k ∈ N. The lower right corner of the latter matrix has the meaning of
the reduction of the boundary condition Tk to the boundary (by means of the
Dirichlet problem). It turns out that TkK0 is a classical elliptic pseudo-differential
operator of order k on the boundary. Its symbol will be computed in the following
section, cf. the formula (3.26).
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3. Inverses of boundary symbols

Let us first recall that the construction of a parametrix of an elliptic operator A ∈
Lµcl(M) on an open C∞ manifold M can be started by inverting the homogeneous
principal symbol and forming a B ∈ L−µcl (M) such that σψ(B) = σ−1

ψ (A) (B is
obtained via an operator convention). In a second step we form

1−BA = C ∈ L−1
cl (M)

(everything in the frame of properly supported pseudo-differential operators), then
we pass to a D ∈ L−1

cl (M) such that (1 + D)(1 − C) = 1 mod L−∞(M). Such a
D can be found as an asymptotic sum

∑∞
j=1 C

j , and P = (1 + D)B is then a
left parametrix of A. (For future references we call the latter procedure a formal
Neumann series argument.) In an analogous manner we find a right parametrix,
and then a simple algebraic consideration shows that P is a two-sided parametrix.

These arguments are based on the following properties of (classical) pseudo-
differential operators:

1. every pseudo-differential operator has a properly supported representative
modulo a smoothing operator;

2. any sequence of operators of order µ − j, j ∈ N, has an asymptotic sum,
uniquely determined modulo a smoothing operator;

3. there is a symbolic map that assigns the unique principal symbol of an
operator; the algebraic operations between operators are compatible with
those for associated principal symbols (in particular, the principal symbol
of a composition is equal to the composition (product) of the principal
symbols);

4. every smooth homogeneous function of order µ on T ∗M \0 is the principal
symbol of an associated pseudo-differential operator of order µ (i.e., there
is an operator convention that is right inverse of the principal symbolic
map of 3.);

5. an operator of order µ with vanishing principal symbol is of order µ− 1.

It turns out that boundary value problems as in Section 2 can be completed
to a graded algebra of 2×2 block matrix operators with a two-component principal
symbolic hierarchy σ = (σψ, σ∂), where analogues of the properties 1. - 5. hold.
Such an algebra has been introduced by Boutet de Monvel [4], and we discuss here
(among other things) some elements of that calculus.

The first essential point is to analyse the nature of inverses of bijective bound-
ary symbols. Since such inverses are computed (y, η)-wise for (y, η) ∈ T ∗Y \ 0 we
first freeze those variables and look at operators on R+. Let us consider a classical
symbol a(τ) ∈ Sµcl(R), µ ∈ R. Examples of such symbols are

(3.1) lµ±(τ) := (1± iτ)µ.

Let us set

(3.2) op+(a)u(t) = r+op(a)(e+u)(t),
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for every u ∈ Hs(R+) (= Hs(R)|R+), s > − 1
2 , where e+u ∈ S ′(R) is the distribu-

tion obtained by extending u by zero to R−, i.e.,

e+u(t) = u(t) for t > 0, e+u(t) = 0 for t < 0.

Moreover r+ is the operator of restriction from R to R+, and

op(a)v(t) =
∫∫

ei(t−t
′)τa(τ)u(t′)dt′d̄τ,

d̄τ = (2π)−1dτ . In an analogous manner we define the extension e− by zero from
R− to R and the restriction r− from R to R−. The operator (3.2) defines a linear
map

op+(a) : Hs(R+)→ S ′(R+)
for every s > − 1

2 , S ′(R+) := S ′(R)|R+ . As is well-known (cf. [7]) in some cases
op+(·) induces a continuous operator

(3.3) op+(a) : Hs(R+)→ Hs−µ(R+)

for every s > −1/2, namely, when a(τ) is a so-called minus-symbol.
Let A(U), U ⊆ C open, denote the space of all holomorphic functions in

U , and set C± := {z = τ + iβ : β ≷ 0}. Then a(τ) ∈ Sµcl(R) is said to be a
minus-symbol if a(τ) has an extension to a function in A(C+) ∩ C∞(C+) such
that

(3.4) |a(z)| ≤ c(1 + |z|2)µ/2

for all z ∈ C+, for some constant c > 0. By a plus-symbol of order µ we understand
an element a(τ) ∈ Sµcl(R) that extends to a function in A(C−)∩C∞(C−) such that
the estimates (3.4) hold for all z ∈ C−. For s ∈ R we have a relation similar to (3.3)
when we replace e+ by a continuous extension operator e+

s : Hs(R+) → Hs(R)
with e+

s u|R+ = u; then in the minus-case the latter map is independent of the
choice of e+

s .
If a(τ) is a plus-symbol of order µ and Hs

0(R+) := {u ∈ Hs(R) : u = 0 on
R−}, then

(3.5) op+(a) : Hs
0(R+)→ Hs−µ

0 (R+)

is continuous for every s ∈ R. Concerning a proof of the continuity of (3.3) and
(3.5), see [7, Lemma 4.6 and Theorem 4.4], (cf. also [10, Section 4.1.2]).

Example. A polynomial in τ is both a minus- and a plus-symbol.

Remark 3.1. The function lµ−(τ) = (1 − iτ)µ is a minus-symbol of order µ ∈ R,
and

op+(lµ−) : Hs(R+)→ Hs−µ(R+)

is an isomorphism for every s ∈ R, s > max{− 1
2 , µ −

1
2}, where (op+(lµ−))−1 =

op+(l−µ− ). Moreover, lµ+(τ) = (1 + iτ)µ is a plus-symbol of order µ ∈ R, and

op+(lµ+) : Hs
0(R+)→ Hs−µ

0 (R+)
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is an isomorphism for every s ∈ R where (op+(lµ+))−1 = op+(l−µ+ ).

A classical symbol a(τ) ∈ Sµcl(R) has an asymptotic expansion

(3.6) a(τ) ∼
∞∑
j=0

a±j (iτ)µ−j for τ → ±∞

for unique coefficients a±j ∈ C (the imaginary unit i =
√
−1 is taken for conve-

nience; powers are defined as (iτ)ν = eν log(iτ) with the principal branch of the
logarithm).

If χ(τ) ∈ C∞(R) is an excision function in τ (i.e., χ(τ) = 0 for |τ | < c0,
χ(τ) = 1 for |τ | > c1, for some 0 < c0 < c1) then we have

(3.7) a(τ) ∼
∞∑
j=0

χ(τ)a(µ−j)(τ)

for

(3.8) a(µ−j)(τ) = {a+
j θ

+(τ) + a−j θ
−(τ)}(iτ)µ−j ,

with θ+ being the characteristic function of the ± half-axis in τ , where (3.7) has
the meaning of an asymptotic expansion of symbols, χ(τ)a(µ−j)(τ) ∈ Sµ−jcl (R).

Definition 3.2. A symbol a(τ) ∈ Sµcl(R) for µ ∈ Z has the transmission property if

(3.9) a+
j = a−j for all j ∈ N.

Let Sµtr(R) denote the space of all symbols in Sµcl(R) with the transmission property.

Remark 3.3. A symbol a(τ) ∈ Sµcl(R) has the transmission property exactly when

(3.10) a(µ−j)(τ) = (−1)µ−ja(µ−j)(−τ)
for all τ ∈ R \ {0} and all j ∈ N.

In fact, the transmission property means that a(µ−j)(τ) = cj(iτ)µ−j for cj :=
a+
j = a−j for all j ∈ N, and this shows the relation (3.10). Conversely from (3.10)

we deduce

{a+
j θ

+(τ) + a−j θ
−(τ)}(iτ)µ−j = (−1)µ−j{a+

j θ
+(−τ) + a−j θ

−(−τ)}(−iτ)µ−j

= {a+
j θ

+(−τ) + a−j θ
−(−τ)}(iτ)µ−j

for all τ 6= 0, which implies a+
j (θ+(τ)−θ+(−τ)) = a−j (θ−(−τ)−θ−(τ)). For τ > 0

we have θ+(−τ) = θ−(τ) = 0 and θ+(τ) = θ−(−τ) = 1 which yields a+
j = a−j .

Remark 3.4. The space Sµcl(R) is a nuclear Fréchet space in a natural way, and
Sµtr(R) is a closed subspace in the induced topology.

Example. 1. Every polynomial in τ has the transmission property;
2. the τ -wise product of two symbols with the transmission property has

again the transmission property;
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3. If a ∈ Sµtr(R) and a+
0 = a−0 6= 0 then it follows that χ(τ)a−1(τ) ∈ S−µtr (R)

for a suitable excision function χ(τ). If in addition a(τ) 6= 0 for all τ ∈ R
then a−1(τ) ∈ S−µtr (R).

In particular, the symbols (3.1) for µ ∈ Z have the transmission property.

Remark 3.5. The multiplication of symbols by l−µ+ (τ) (or l−µ− (τ)) induces an iso-
morphism

Sµtr(R)→ S0
tr(R).

Remark 3.6. Let a(τ) ∈ S0
cl(R), and form the bounded set L(a) := {a(τ) ∈ C :

τ ∈ R} which is a smooth curve (with admitted self-intersections) and end points
a±0 = a(±∞). Then we have a(τ) ∈ S0

tr(R) if and only if L(a) is a closed curve
which is smooth including a+

0 = a−0 .

Remark 3.7. Every symbol a(τ) ∈ Sµtr(R) can be written in the form

a(τ) = p(τ) + b(τ)

where p(τ) is a polynomial in τ of order µ (only relevant for µ ≥ 0) and b(τ) ∈
S−1

tr (R).

In fact, this is an evident consequence of Definition 3.2.

Proposition 3.8. Let a(τ) ∈ Sµtr(R); then for every N ∈ N there is a minus-symbol
mN (τ) ∈ Sµcl(R) and a plus-symbol pN (τ) ∈ Sµcl(R) such that a(τ) − mN (τ) ∈
S
−(N+1)
cl (R) and a(τ)− pN (τ) ∈ S−(N+1)

cl (R).

Proof. Since a polynomial in τ is a plus- and a minus-symbol it suffices to assume
µ = −1. By definition there are constants aj such that for any fixed excision
function χ(τ)

(3.11) a(τ) = χ(τ)
N∑
j=1

aj(iτ)−j + rN (τ)

where rN (τ) ∈ S−(N+1)
cl (R). The relation 1

iτ = − 1
1−iτ + 1

iτ
1

1−iτ can be iterated, and
we obtain 1

iτ = − 1
1−iτ + {− 1

1−iτ + 1
iτ

1
1−iτ }

1
1−iτ = − 1

1−iτ −
1

(1−iτ)2 + 1
iτ

1
(1−iτ)2 =

. . . = −
∑N
k=1

1
(1−iτ)k + 1

iτ
1

(1−iτ)N . This yields (iτ)−j =
(
−

∑N
k=1(1 − iτ)−k

)j +

rj,N (τ) for every j ∈ N \ {0} where χ(τ)rj,N (τ) ∈ S−(N+1)
cl (R) for every excision

function χ(τ). Thus, setting mj,N (τ) := aj

(
−

∑N
k=1(1− iτ)−k

)j
we obtain

(3.12) χ(τ)aj(iτ)−j = mj,N (τ) + χ(τ)ajrj,N (τ)

modulo a symbol in S−∞(R), where mj,N (τ) is a minus-symbol, cf. Remark 3.1.
Then from (3.11) we obtain the first assertion, for mN (τ) =

∑N
j=1mj,N (τ). More-

over, writing 1
iτ = 1

1+iτ + 1
iτ

1
1+iτ =

∑N
k=1

1
(1+iτ)k + 1

iτ
1

(1+iτ)N we obtain a plus-

symbol pN (τ) :=
∑N
j=1 pj,N (τ), pj,N (τ) := aj

(∑N
k=1(1 + iτ)−k

)j with the desired
property.
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Corollary 3.9. Let a(τ) ∈ Sµtr(R); then op+(a) induces a continuous operator

op+(a) : Hs(R+)→ Hs−µ(R+)

for every real s > −1/2.

Proof. Let us write op(a) = op(mN ) + op(cN ) where, according to Proposition
3.8, mN is a minus-symbol of order µ, and cN ∈ S−(N+1)

cl (R). Then we have

(3.13) op+(a) = op+(mN ) + op+(cN ).

We observed before that op+(mN ) has the desired mapping property. Thus it
remains to show that op+(cN ) : Hs(R+)→ Hs−µ(R+) is continuous for s > −1/2
and sufficiently large N. Because of e+u ∈ Hs0(R) for u ∈ Hs(R+), s0 = min{s, 0}
and the continuity of op(cN ) : Hs0(R) → Hs0+N+1(R) we obtain the assertion
when we choose N so large that s0 +N + 1 > s− µ.

Proposition 3.10. Every symbol a(τ) ∈ S−1
tr (R) can be written in the form

(3.14) a(τ) = a+(τ) + a−(τ)

for uniquely determined

a+(τ) ∈ Ft→τ
(
e+S(R+)

)
, a−(τ) ∈ Ft→τ

(
e−S(R−)

)
which are plus/minus symbols in S−1

tr (R).

Concerning a proof of Proposition 3.10, see [15, Section 2.1.1.1].

Corollary 3.11. Let a(τ) ∈ Sµtr(R); then op+(a) induces a continuous operator

op+(a) : S(R+)→ S(R+).

Proof. For µ ∈ N the symbol a(τ) is equal to a polynomial in τ of order µ, modulo
a symbol in S−1

tr (R). Thus without loss of generality we assume µ = −1. The
Fourier transform F = Ft→τ induces a continuous operator

(3.15) F : e+S(R+)→ S−1
tr (R).

Moreover, the multiplication between symbols with the transmission property
is bilinear continuous. In particular, the composition of (3.15) with the multipli-
cation by the symbol (3.14) gives us a continuous operator

a(τ)F : e+S(R+)→ S−1
tr (R).

Finally F−1 : S−1
tr (R) → e+S(R+) + e−S(R−) is a topological isomorphism (the

sum on the right hand side is direct) and

r+ : e+S(R+) + e−S(R−)→ S(R+)

is obviously continuous. Thus op+(a) = r+F−1a(τ)F e+ is a composition of con-
tinuous operators.
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Proposition 3.12. Let a(τ) ∈ S0
tr(R); then the adjoint of

op+(a) : L2(R+)→ L2(R+)

with respect to the L2(R+)-scalar product has the form op+(a) for the complex
conjugate a(τ) ∈ S0

tr(R).

Proof. The computation is completely elementary.

Proposition 3.13. Let a(τ) ∈ S0
cl(R) be a symbol with the transmission property,

let ε : R± → R∓ be defined by ε(t) = −t, and ε∗ : L2(R±) → L2(R∓) the
corresponding function pull back. Then

(3.16) r+op(a)e−ε∗, ε∗r−op(a)e+ : L2(R+)→ L2(R+)

induce continuous operators L2(R+)→ S(R+).

Proof. If a(τ) is a constant both operators are zero. Therefore, it suffices to assume
a(τ) ∈ S−1

cl (R). By virtue of the identity

r+op(a) = op+((lN− )(l−N− ))r+op(a) = op+(lN− )r+op(l−N− a)

for any N ∈ Z (taking into account that l±N− (τ) are minus-symbols) we may even
consider the symbol l−N− (τ)a(τ) ∈ S−(N+1)

cl (R) rather than a(τ), for any N > 1,
since op+(lN− ) : S(R+)→ S(R+) is continuous, cf. Corollary 3.11. In other words,
let a(τ) ∈ S−2

cl (R); then

r+op(a)e−ε∗v(t) = r+
∫

R

∫ ∞

0

ei(t+t
′)τa(τ)v(−t′)dt′d̄τ

= r+
∫ ∞

0

{∫
ei(t+t

′)τa(τ)d̄τ
}
v(−t′)dt′.

By virtue of Proposition 3.10 we have∫
eirτa(τ)d̄τ ∈ e+S(R+) + e−S(R−)

with r ∈ R being the variable on the right hand side. Since r has the meaning of
t+ t′ for t > 0, t′ > 0, we obtain

(3.17) r+op(a)e−ε∗v(t) = r+
∫ ∞

0

f(t+ t′)v(−t′)dt′

for some f(r) ∈ e+S(R+). It remains to observe that the right hand side of (3.17)
represents a continuous operator L2(R+)→ S(R+). The second operator in (3.16)
can be treated in an analogous manner.

Corollary 3.14. Let g denote one of the operators in (3.16), and let g∗ be its adjoint
in L2(R+). Then g and g∗ induce continuous operators

(3.18) g, g∗ : L2(R+)→ S(R+).
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Proof. The assertion for g is contained in Proposition 3.13. Moreover, because of
(r+op(a)e−ε∗)∗ = ε∗r−op(a)e+ by Proposition 3.13 we also obtain the result for
g∗.

Remark 3.15. It can be proved that an operator g ∈ L(L2(R+)) that defines
continuous operators (3.18) can be represented in the form

gu(t) =
∫ ∞

0

c(t, t′)u(t′)dt′

for some c(t, t′) ∈ S(R+ × R+) (= S(R× R)
∣∣
R+×R+

), see [10, Theorem 2.4.87].

Definition 3.16. 1. An operator g ∈ L(L2(R+)) which induces continuous
operators (3.18) is called a Green operator of type 0. Let Γ0(R+) denote
the space of those operators.

2. An operator of the form
∑d
j=0 gj∂

j
t for gj ∈ Γ0(R+), d ∈ N, is called a

Green operator of type d. Let Γd(R+) denote the space of those operators.

Remark 3.17. Any g ∈ Γd(R+) induces a compact operator

g : Hs(R+)→ Hs(R+)

for every s ∈ R, s > d− 1
2 . Moreover g induces a continuous operator

(3.19) g : Hs(R+)→ S(R+)

for those s.

In fact, ∂jt : Hs(R+) → Hs−j(R+) is continuous for every j ∈ N as well as
and g0 : Hs−j(R+)→ S(R+) when s− j > − 1

2 , g0 ∈ Γ0(R+).

Remark 3.18. It can easily be proved that for s > d− 1/2 the composition

Hs(R+)→ C→ S(R+),

defined by u → (∂jt u)|t=0 → (r+op(a0)δ0)(∂
j
t u)|t=0 for 0 ≤ j ≤ d − 1 and any

a0 ∈ S0
tr(R) defines an element of Γd(R+) where op(a0)δ0 is the pseudo-differential

action on the Dirac distribution at 0.

Lemma 3.19. Let g ∈ Γ0(R+), and let 1 + g : L2(R+) → L2(R+) be an invertible
operator. Then there is an h ∈ Γ0(R+) such that (1 + g)−1 = 1 + h.

Proof. Let b := (1 + g)−1 which belongs to L(L2(R+)). Writing b = 1 + h for
h := b−1 we obtain (1+g)(1+h) = 1, i.e., h+g+gh = 0. This yields h = −g(1+h),
and hence h : L2(R+) → S(R+) is continuous, cf. Definition 3.16 (i). Moreover
(1 + g∗)(1 + h∗) = 1 yields g∗ + h∗ + g∗h∗ = 0, i.e. h∗ = −g∗(1 + h∗) which shows
again the continuity h∗: L2(R+)→ S(R+). In other words, h ∈ Γ0(R+).

Corollary 3.20. Let a(τ) ∈ Sµtr(R), b(τ) ∈ Sνtr(R); then

(3.20) op+(a)op+(b) = op+(ab) + g

for some g ∈ Γν(R+).
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Proof. For µ = ν = 0 we have

op+(a)op+(b) = r+op(a)e+r+op(b)e+ = r+op(a)op(b)e+ + r+op(a)ϑ−op(b)e+

for the characteristic function ϑ− of R−. Since

r+op(a)ϑ−op(b)e+ = (r+op(a)e−ε∗)(ε∗r−op(b)e+) =: g

and the factors in the middle are Green operators of type zero, cf. Proposition
3.13, we obtain g ∈ Γ0(R+), since Γ0(R+) is closed under compositions.

It remains to consider µ ∈ N or ν ∈ N. In this case we write

a(τ) = a0(τ) + p(τ), b(τ) = b0(τ) + q(τ)

for a0, b0 ∈ S−1
tr (R) and polynomials p and q of degree µ and ν, respectively. We

have

op+(a)op+(b) = (op+(a0)+op+(p))(op+(b0)+op+(q)) = op+((a0 +p)(b0 +q))+g

for g = g0+g1+g2+g3 with g0 = op+(a0)op+(b0)−op+(a0b0), g1 = op+(a0)op+(q)−
op+(a0q), g2 = op+(p)op+(b0)− op+(pb0), g3 = op+(p)op+(q)− op+(pq). It is ev-
ident that g2 = g3 = 0; for instance, op+(p)op+(b0) = r+op(p)e+r+op(b0)e+ =
r+op(p)op(b0)e+ − r+op(p)ϑ−op(b0)e+, and r+op(p)ϑ− = 0. Moreover, from the
first part of the proof we have g0 ∈ Γ0(R+). Finally g1 = −r+op(a0)ϑ−op(q)e+ is
an operator as in Remark 3.18.

More generally we have the following composition property.

Theorem 3.21. Let a(τ) ∈ Sµtr(R), b(τ) ∈ Sνtr(R), and g ∈ Γd(R+), h ∈ Γe(R+).
Then

(op+(a) + g)(op+(b) + h) = op+(ab) + k

for a certain k ∈ Γmax{ν+d,e}(R+).

Proof. By virtue of Corollary 3.20 it remains to discuss the compositions

op+(a)h, gop+(b), and gh.

It is evident that op+(a)h ∈ Γe(R+) and gh ∈ Γe(R+). For the operator in the
middle we write

gop+(b) = g(op+(b0) + op+(p))
where b0 ∈ S−1

tr (R) and p is a polynomial in τ of order ν (which vanishes for
ν ≤ −1). It is clear that gop+(p) ∈ Γν+d(R+). What concerns gop+(b0) it suffices
to assume g = g0D

j
t for any 0 ≤ j ≤ d. Since τ j is a minus-symbol we have

gop+(b0) = g0op+(bj) for bj(τ) = τ jb0(τ) ∈ Sj−1
tr (R).

Thus, writing bj(τ) = cj(τ)+ qj−1(τ) for a polynomial qj−1(τ) in τ of degree j−1
(when j − 1 ≥ 0) and some cj ∈ S−1

tr (R) it follows that

gop+(b0) = g0op+(cj) + g0op+(qj−1).

The second summand on the right obviously belongs to Γj−1(R+) for j ≥ 1
while the first one belongs to Γ0(R+) which follows from the continuity op+(cj) :



Boundary value problems with the transmission property 17

L2(R+)→ L2(R+) and g0 : L2(R+)→ S(R+) and an analogous conclusion for the
adjoints.

Remark 3.22. As a special case of Theorem 3.21 for a(τ) ∈ Sµtr(R), g ∈ Γd(R+),
we obtain that (op+(a) + g)op+(l−N− ) = op+(al−N− ) + k for k ∈ Γ0(R+) when
−N + d ≤ 0.

Let us now turn to 2× 2 block matrices of operators with upper left corners
of the form

(3.21)
(

op+(a) + g11 g12
g21 g22

)
:
Hs(R+)
⊕
C

→
Hs−µ(R+)
⊕
C

for arbitrary a(τ) ∈ Sµtr(R), µ ∈ Z, g11 ∈ Γd(R+), d ∈ N, s > d− 1
2 , g22 ∈ C,

(3.22) g21u(t) =
d∑
l=0

g21,l∂
l
tu(t)u ∈ Hs(R+)

for g21,lv(t) :=
∫∞
0
f21,l(t)v(t)dt, f21,l ∈ S(R+), l = 0 . . . , d, and

(3.23) g12c := cf(t), c ∈ C,

for some f ∈ S(R+). An operator of the form (3.22) is called a trace operator
of type d, and (3.23) a potential operator (for the boundary symbolic calculus of
operators with the transmission property at the boundary).

In a similar manner we define analogues of (3.21) where C on the left is
replaced by Cj− and on the right by Cj+ for certain j−, j+ ∈ N (if one of the
dimensions is zero then we have row or column matrices which are admitted as
well). Let Bµ,d(R+; j−, j+) denote the space of such block matrices. Moreover, let
BdG(R+; j−, j+) be the subspace of operators (3.21) defined by a ≡ 0.

Thus BdG(R+; 0, 0) = Γd(R+); in future we also write BdG(R+) rather than
Γd(R+).

Remark 3.23. More generally we have Bµ,d(R+; v) for v = (k, l; j−, j+), defined
to be the space of 2 × 2 block matrices where the upper left corner itself is an
l×k matrix of operators as in the upper left corner of (3.21), while g12 is a j−×k
matrix of potential operators, etc. For every fixed µ ∈ Z, d ∈ N, the space of such
matrices is a (nuclear) Fréchet space in a natural way. The future homogeneous
boundary symbols of BVPs are symbols in (y, η) with values in such spaces.

Remark 3.24. It can easily be proved, cf. [18, Proposition 4.1.46], that every g ∈
Γd(R+) for d > 0 has a unique representation

g = g0 +
d−1∑
j=0

kj ◦ r′Dj
t
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for g0 ∈ Γ0(R+), potential operators kj , and r′u := u(0). Similarly, a trace operator
b of type d > 0 can uniquely be written as

b = b0 +
d−1∑
j=0

cj ◦ r′Dj
t

for a trace operator b0 of type 0 and constants cj .

Example. The operator

(3.24)
(

op+(−|η|2 − τ2)
r′Dk

t

)
: Hs(R+)→

Hs−2(R+)
⊕
C

,

r′v = v|t=0, belongs to B2,k+1(R+; 0, 1), k ∈ N, and (3.24) is an isomorphism for
every η ∈ Rn−1 \ {0}, s > max{ 3

2 , k + 1
2}. The operator family (3.24) for k = 0 is

just the boundary symbol of the Dirichlet problem for the Laplace equation and
for k = 1 of the Neumann problem.

The inverse of (3.24) for k = 0 is explicitly computed in [12, Section 3.3.4].
Setting a(η, τ) := −|η|2 − |τ |2 the result is(

op+(a)(η)
r′

)−1

= (−op+(l−1
+ )(η)op+(l−1

− )(η) d(η))

for l±(η) := |η| ± iτ and a potential operator d(η) defined by d(η) : c → ce−|η|t,
c ∈ C. By virtue of Corollary 3.20 we have

−op+(l−1
+ )(η)op+(l−1

− )(η) = op+(a−1)(η) + g(η)

for a Green operator family g(η) of type 0. Note that g(η) is just the homogeneous
boundary symbol of the well-known Green’s function of the Dirichlet problem for
the Laplacian (twisted homogeneous of order −2).

It is now easy also to compute the inverses of (3.24) for arbitrary k ∈ N,
especially, of the boundary symbol of the Neumann problem. In fact, similarly as
(2.19), now on the level of boundary symbols, we have

(3.25)
(

op+(a)(η)
r′Dk

t

)
(p(η) d(η)) =

(
1 0
b(η) qk(η)

)
for p(η) := op+(a−1)(η) + g(η), b(η) := r′Dk

t (op+(a−1)(η) + g(η)), gk(η) :=
r′Dk

t d(η). We have

(3.26) r′Dk
t d(η) = Dk

t e
−|η|t∣∣

t=0
= (i|η|)k

which is just the homogeneous principal symbol of the elliptic operator TkK0 ∈
Lkcl(Y ) occurring in the lower right corner of the operator (3.25). Thus(

op+(a)(η)
r′Dk

t

)−1

= (p(η) d(η))
(

1 0
b(η) qk(η)

)−1

= (p(η)− d(η)q−1
k (η)b(η) d(η)q−1(η)).
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General compositions of boundary symbols are studied in Theorem 3.27 be-
low.

Remark 3.25. It is interesting to consider elliptic boundary value problems for
the elliptic operator TkK0 on a smooth submanifold of Y with boundary Z. This
makes sense, for instance, when we reduce the Zaremba problem for ∆ (defined by
jumping conditions from Dirichlet to Neumann along Z) to Y . Then a basic diffi-
culty is that TkK0 fails to have the transmission property at Z, cf. Definition 4.11
below, unless k is even. Mixed problems (i.e., with jumping boundary conditions)
belong to the motivation to study BVPs for operators without the transmission
property. Another (possibly even stronger) motivation is the similarity between
mixed and (specific) edge problems.

Theorem 3.26. We have

a ∈ Bµ,d(R+; j0, j+), b ∈ Bν,e(R+; j−, j0)⇒ ab ∈ Bµ+ν,max{ν+d,e}(R+; j−, j+),

and (a, b)→ ab defines a bilinear continuous map

Bµ,d(R+; j0, j+)× Bν,e(R+; j−, j0)→ Bµ+ν,max{ν+d,e}(R+; j−, j+)

between the respective Fréchet spaces.

Proof. The result for the composition of upper left corners is contained in Theorem
3.21. The proof for the remaining entries is straightforward and left to the reader.

Theorem 3.27. Let a ∈ B0,0(R+; j−, j+), and define the adjoint a∗ by

(au, v)L2(R+)⊕Cj+ = (u,a∗v)L2(R+)⊕Cj−

for all u ∈ L2(R+)⊕Cj− , v ∈ L2(R+)⊕Cj+ . Then we have a∗ ∈ B0,0(R+; j+, j−),
and a→ a∗ defines an (antilinear), continuous map

B0,0(R+; j−, j+)→ B0,0(R+; j+, j−).

Proof. The result for the upper left corner follows from Proposition 3.12, together
with Corollary 3.14. The proof for the remaining entries is straightforward and left
to the reader.

Definition 3.28. A symbol a(τ) ∈ Sµtr(R) is called elliptic (of order µ) if a(τ) 6= 0
for all τ ∈ R, and if a0(= a−0 = a+

0 ) does not vanish (cf. the notation in (3.6)).
Moreover, we call an a ∈ Bµ,d(R+; j−, j+) elliptic if the symbol a(τ) ∈ Sµtr(R) in
the upper left corner of (3.21) is elliptic.

Theorem 3.29. Let a(τ) ∈ Sµtr(R) be elliptic, and g ∈ Γd(R+); then

(3.27) a := op+(a) + g : Hs(R+)→ Hs−µ(R+)

is a Fredholm operator for every s > max{µ, d} − 1
2 , and p := op+(a−1) is a

parametrix of a.
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Proof. Because of the assumption on s the operator

op+(a−1) : Hs−µ(R+)→ Hs(R+)

is continuous. From Corollary 3.20 and Theorem 3.21 we have

(3.28) op+(a−1){op+(a) + g} = op+(aa−1) + k = 1 + k

where k = h+op+(a−1)g for an h ∈ Γ0(R+) and op+(a−1)g ∈ Γd(R+). Thus since

k : Hs(R+)→ Hs(R+)

is compact for s > d − 1
2 , cf. Remark 3.17, the operator op+(a−1) is a left

parametrix. In a similar manner we obtain that op+(a−1) is a right parametrix.
In fact, we have

{op+(a) + g}op+(a−1) = op+(aa−1) + k = 1 + k

for k = h + gop+(a−1), h ∈ Γ0(R+), gop+(a−1) ∈ Γmax{−µ+d,0}(R+), i.e. k ∈
Γmax{−µ+d,0}(R+).

This can be applied to functions in Hs−µ(R+) when s satisfies the conditions
s− µ > − 1

2 and s− µ > max{−µ+ d, 0} − 1
2 . In the case max{−µ+ d, 0} = 0 the

latter is the same as the first condition while for max{−µ + d, 0} = −µ + d ≥ 0
the condition is s − µ > −µ + d − 1

2 , i.e., s > d − 1
2 . For s it follows altogether

s > max{µ, d} − 1
2 , and we can apply again Remark 3.17.

Theorem 3.30. Let a(τ) ∈ Sµtr(R) be elliptic, and g ∈ Γd(R+). Then V := ker(op+(a)+
g) is a finite-dimensional subspace of S(R+), and there is a finite-dimensional sub-
space W ⊂ S(R+) such that

(3.29) im(op+(a) + g) +W = Hs−µ(R+).

This is true for all real s > max{µ, d} − 1
2 with the same spaces V and W. It

follows that ind(op+(a) + g) is independent of s.

Proof. Let us set a := op+(a) + g and assume u ∈ Hs(R+), au = 0. Then from
the relation (3.28) it follows that (1 + k)u = 0, i.e., u = −ku, which implies
u ∈ S(R+), cf. the formula (3.19). In other words, V = ker a ⊆ ker(1 + k) is a
finite-dimensional subspace of S(R+), independent of s = max{µ, d} − 1

2 . In the
case d = 0, µ ≤ 0 we can do the same for the formal adjoint a∗, and we may set
W = ker a∗ which is a finite-dimensional subspace of S(R+) independent of s.

To find W in general we set a := op+(a) + g which we check as an operator
a : Hs(R+)→ Hs−µ(R+) for s > max{µ, d}− 1

2 . Let us set lN− := op+(lN− ) for any
N ∈ Z. In particular, for N := max{µ, d} we have

(3.30) a = alN− = a0l
N
− : Hs(R+)→ Hs−µ(R+)

where a0 = op+(al−N− ) + k for some k ∈ Γ0(R+), i.e., a0 ∈ Bν,0(R+) for ν =
µ−N ≤ 0. Then a can be regarded as a chain of operators

a : Hs(R+)→ Hs−N (R+)→ Hs−N−ν(R+) = Hs−µ(R+)
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where the first one, namely, lN− is an isomorphism where s − N ≥ − 1
2 , and the

second one a0 is elliptic of order ν. For the latter we apply the first part of the proof,
i.e., we find a finite-dimensional W ⊂ S(R+) such that ima0 +W = Hs−µ(R+).
This entails im a +W = Hs−µ(R+), since a = a0l

N
− .

Proposition 3.31. Let a = op+(a) + g ∈ Bµ,d(R+) where a(τ) ∈ Sµtr(R) is elliptic
of order µ. Moreover, let W ⊂ S(R+) be a finite-dimensional subspace, and k :
Cj →W a linear map. Then

(3.31)
(
u

c

)
∈
Hs(R+)
⊕
Cj

, au+ kc = 0

for any s > max{µ, d} − 1
2 implies u ∈ S(R+), and the space of all solutions of

(3.31) is a finite-dimensional subspace of Hs(R+)⊕ Cj, independent of s.

Proof. First observe that (a k) is a Fredholm operator

(3.32) (a k) :
Hs(R+)
⊕
Cj

→ Hs−µ(R+).

Then, analogously as in the proof of Theorem 3.30 we pass to the operator(
p

0

)
(a k) =

(
pa pk
0 0

)
:
Hs(R+)
⊕
Cj

→
Hs(R+)
⊕
Cj

for p := op+(a−1). The composition l := pk is a potential operator, and we have
pa = 1 + h for an operator h ∈ Γd(R+). The kernel of (3.32) is contained in
the kernel of (1 + h l). The kernel of (1 + h l) consists of all t(u c) such that
(1 + h)u+ lc = 0, i.e., u = −hu+ lc ∈ S(R+).

Proposition 3.32. Let op+(a) + g ∈ Bµ,d(R+) be elliptic of order µ. Then there
exists a 2× 2 block matrix operator

(3.33) a =
(

op+(a) + g k
b q

)
:
Hs(R+)
⊕

Cj−
→
Hs−µ(R+)
⊕

Cj+

for a trace operator b, a potential operator k and a j+ × j− matrix q, such that
(3.33) is an isomorphism for all s > max{µ, d} − 1

2 , and we have

(3.34) ind(op+(a) + g) = ind op+(a) = j+ − j−.
The operator (3.33) is an isomorphism if and only if

(3.35) a :
S(R+)
⊕

Cj−
→
S(R+)
⊕

Cj+

is an isomorphism.
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Proof. Applying Theorem 3.30 we find a finite-dimensional subspace W ⊂ S(R+)
such that (3.29) holds for all s > max{µ, d}− 1

2 . Choose any j− ∈ N, j− ≥ dimW,

and a linear surjective map k : Cj →W . Then

(op+(a) + g k) :
Hs(R+)
⊕

Cj−
→ Hs−µ(R+)

is obvisously surjective for all s. By virtue of Proposition 3.31 its kernel V is a
subspace of t(S(R+)⊕ Cj−) of finite dimension j+. Choosing an isomorphism

(b q) : V → Cj+

it suffices to extend b to a trace operator b : Hs(R+)→ Cj+ (for simplicity denoted
by the same letter). Then, according to Lemma 2.3 we obtain an isomorphism
(3.33).

Theorem 3.33. Let a ∈ Bµ,d(R+; j−, j+) be given as in (3.33), let the upper left
corner be elliptic in the sense of Definition 3.28, and assume that a defines an
isomorphism (3.35). Then we have a−1 ∈ B−µ,(d−µ)+(R+; j+, j−) where ν+ :=
max{ν, 0}.

Proof. By virtue of Theorem 3.29 the operator (3.27) is Fredholm where op+(a−1)
is a parametrix. According to Proposition 3.32 there is a 2 × 2 block matrix iso-
morphism of the form

p :=
(

op+(a−1) h
c r

)
:
S(R+)
⊕

Cg+
→
S(R+)
⊕

Cg−

for a suitable trace operator c of type 0 and a potential operator h. Since op+(a−1)
is a parametrix of op+(a), cf. Theorem 3.29, we have ind op+(a−1) = −ind op+(a) =
j− − j+ and from (3.34)

ind op+(a−1) = g− − g+ = j− − j+.
In the case N := g− − j− ∈ N which implies g+ − j+ = N we pass from a to
a ⊕ idCN which is again an isomorphism with (j−, j+) replaced by (g−, g+). On
the other hand when N := j− − g− ∈ N where j+ − g+ = N , from p we pass to
p⊕ idCN which is an isomorphism with (g−, g+) replaced by (j−, j+). In any case,
to find a−1 it suffices to assume that j− = g−, j+ = g+. Now the composition ap
is of the form

ap =
(

1 + g11 g12
g21 g22

)
:
S(R+)
⊕

Cj+
→
S(R+)
⊕

Cj+

for a g = (gij)i,j=1,2 ∈ B(d−µ)+

G (R+; j+, j+). By virtue of Lemma 3.34 below we
have

(3.36)
((

1 0
0 0

)
+ g

)−1

=
(

1 0
0 0

)
+ l
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for an l ∈ B(d−µ)+

G (R+; j+, j+). Then Theorem 3.26 gives us

a−1 = p

((
1 0
0 0

)
+ l

)
∈ B−µ,(d−µ)+(R+; j+, j−).

Lemma 3.34. Let g ∈ BdG(R+; j, j), and assume that

(3.37)
(

1 0
0 0

)
+ g :

Hs(R+)
⊕
Cj

→
Hs(R+)
⊕
Cj

is invertible for any s > d− 1
2 . Then the inverse of (3.37) has the form

(
1 0
0 0

)
+ l

for some l ∈ BdG(R+; j, j).

Proof. For convenience we set g =
(
G K
T Q

)
. Then, in particular, Q is a j × j

matrix. Since isomorphisms in a Hilbert space form an open set, a small pertur-

bation of Q allows us to pass to an invertible operator
(

1 +G K
T R

)
where R is

an invertible j× j matrix. Assume that we have computed
(

1 +G K
T R

)−1

. Then

we have
(

1 +G K
T R

)−1 (
1 +G K
T Q

)
=

(
1 0
D J

)
which is again invertible; this

entails the invertibility of J . We obtain

(3.38)
(

1 +G K
T Q

)−1

=
(

1 0
−J−1D J−1

) (
1 +G K
T R

)−1

.

Thus it remains to characterise the second factor on the right of (3.38). The
identity (

1 −KR−1

0 1

) (
1 +G K
T R

) (
1 0

−R−1T R−1

)
=

(
1 + C 0

0 1

)
for C := G −KR−1T shows that the operator 1 + C is invertible, and it follows
that (

1 +G K
T R

)−1

=
(

1 0
−R−1T R−1

) (
(1 + C)−1 0

0 1

) (
1 −KR−1

0 1

)
.

This reduces the task to the computation of (1 + C)−1.
The operator C ∈ BdG(R+) can be written in the form C = C0 +

∑d−1
j=0 KjTj

for a C0 ∈ B0
G(R+), potential operators Kj and trace operators Tj := r′Dj

t , cf.
Remark 3.24. Since C0 is compact in Sobolev spaces, we have ind(1 + C0) = 0.
Because of the nature of V := ker(1+C0) and W = coker(1+C0) (which are of the
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same dimension l) there is a trace operator B of type 0 and a potential operator
D which induces isomorphisms

B = t(B1, . . . , Bl) : V → Cl, D = (D1, . . . , Dl) : Cl →W

such that
1 + C0 +DB : Hs(R+)→ Hs(R+)

is an isomorphism. Note that C1 := C0 +DB ∈ B0
G(R+). We obtain

(3.39) 1 + C = 1 + C1 −
d+l∑
k=1

DkBk

for Dl+j+1 = −Kj , Bl+j+1 = Tj for j = 0, . . . , d − 1. Now we employ the fact
that there is a C2 ∈ B0

G(R+) such that 1 + C2 = (1 + C1)−1, say, as an operator
L2(R+)→ L2(R+), cf. Lemma 3.19. In order to characterise (1 + C)−1 we form

(1 + C2)(1 + C) = 1 + (1 + C2)
d+l∑
k=1

DkBk = 1 +
d+l∑
k=1

MkBk = 1 +MB

for Mk = (1 + C2)Dk, M := (M1, . . . ,Md+l), B := t(B1, . . . , Bd+l). This reduces
the task to invert the operator 1 + C to the inversion of

1 +MB : Hs(R+)→ Hs(R+).

With the operators M and B we can also associate the operator

1 + BM : Cl+d → Cl+d, 1 := idCl+d .

Now we verify that 1 +MB is invertible if and only if 1 + BM is invertible. In
fact, setting

M :=
(

1 M
0 1

)
,B :=

(
1 0
−B 1

)
,F :=

(
1 −M
B 1

)
,

it follows that

MFB =
(

1 +MB 0
0 1

)
,BFM =

(
1 0
0 1 + BM

)
which gives us the desired equivalence. At the same time we see that

(1 +MB)−1 = 1−M(1 + BM)−1B

which is of the form 1 +G1 for a G1 ∈ BdG(R+). Thus

(1 + C)−1 = (1 + C1)(1 +G1) = 1 + C1 +G1 + C1G1

where C1 +G1 + C1G1 ∈ BdG(R+).

Remark 3.35. Theorem 3.33 easily extends to Bµ,d(R+; (k, k; j−, j+)) for arbitrary
k, j−, j+ ∈ N (cf. Remark 3.23). The technique for the proof which mainly employs
compositions of some operators also shows that the inverse continuously depends
on the given operator a.
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4. Pseudo-differential boundary value problems

We develop basics on pseudo-differential BVPs with the transmission property at
the boundary. Other material may be found in the author’s joint monographs with
Rempel [15], with Kapanadze [12], or with Harutyunyan [10], and in the monograph
of Grubb [8]. The ideas here are related to the calculus on manifolds with edges.
Let us first consider operators in local coordinates x = (y, t) ∈ Rn−1 × R+. The
operator convention refers to the embedding of Rn+ into the ambient space Rn.
Therefore, we first look at operators

(4.1) Opx(p)u(x) =
∫∫

ei(x−x
′)ξp(x, ξ)u(x′)dx′d̄ξ.

Here p belongs to Hörmander’s symbol classes. Let Sµ(U × Rn) for µ ∈ R and
U ⊆ Rm open denote the set of all p ∈ C∞(U × Rn) such that

|Dα
xD

β
ξ p(x, ξ)| ≤ c〈ξ〉

µ−|β|

for all (x, ξ) ∈ K × Rn, K b U , and all α ∈ Nm, β ∈ Nn, for constants
c = c(α, β,K) > 0. We will freeley employ various standard properties such as
asymptotic expansions, etc., developed in textbooks on pseudo-differential oper-
ators. The subspace Sµcl(U × Rn) of classical symbols is defined by asymptotic
expansions

p(x, ξ) ∼
∞∑
j=0

χ(ξ)p(µ−j)(x, ξ)

where p(µ−j)(x, ξ) ∈ C∞(U × (Rn \ {0})), p(µ−j)(x, λξ) = λµ−jp(µ−j)(x, ξ) for
all λ ∈ R+, and χ is any excision function. If some assertion is valid for the
classical and the general case we also write Sµ(cl)(U × Rn). Recall that the spaces
Sµ(cl)(U × Rn) are Fréchet in a natural way. It is then obvious that Sµ(cl)(R

n) (the
space of x-independent elements) is closed in Sµ(cl)(U × Rn), and that

(4.2) Sµ(cl)(U × Rn) = C∞(U, Sµ(cl)(R
n)).

In order to illustrate some consequences of the presence of a boundary, here
t = 0, we rephrase (4.1) in anisotropic form, by carrying out the action first in
t and then in y. It will be not essential that y varies in Rn−1; we often assume
y ∈ Ω for an open set Ω ⊆ Rn−1. Moreover, for simplicity, we first consider a
t-independent symbol, i.e., p(y, η, τ) ∈ Sµ(Ω×Rn−1

η ×Rτ ). We form Opt(p)(y, η) :
Hs(R)→ Hs−µ(R) as an operator family parametrised by (y, η) ∈ Ω× Rn−1 and
then

Opx(p) = Opy(Opt(p))

where Opt(p)(y, η) is regarded as an operator-valued symbol in the variables and
covariables (y, η).

In order to formulate the latter aspect in a more precise manner we fix a group
{κλ}λ∈R+ of isomorphisms κλ : Hs(R)→ Hs(R) by setting (κλu)(t) = λ1/2u(λt),
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λ ∈ R+. Then a simple computation shows the identity

(4.3) κ−1
〈η〉Opt(p)(y, η)κ〈η〉 = Opt(pη)(y, η)

for

(4.4) pη(y, η, τ) = p(y, η, 〈η〉τ).

Using the symbolic estimates for p, especially, |p(y, η, τ)| ≤ c〈η, τ〉µ for all
(y, η, τ) ∈ K × Rn, K b Ω, and constants c(K) > 0, it follows that

(4.5) |p(y, η, 〈η〉τ)| ≤ c〈η〉µ〈τ〉µ,

taking into account the relation 〈η, 〈η〉τ〉 = 〈η〉〈τ〉.

Lemma 4.1. Under the above assumptions we have

(4.6) ‖κ−1
〈η〉{D

α
yD

β
ηOpt(p)(y, η)}κ〈η〉‖L(Hs(R),Hs−µ+|β|(R)) ≤ c〈η〉µ−|β|

for all (y, η) ∈ K × Rn−1, K b Ω, and all α, β ∈ Nn−1, and every s ∈ R, for
constants c = c(α, β,K, s) > 0.

Proof. Let first α = β = 0, and set a(y, η) := Opt(p)(y, η). Then the relation (4.3)
together with the estimate (4.5) yields

‖κ−1
〈η〉a(y, η)κ〈η〉u‖

2
Hs−µ(R) =

∫
〈τ〉2(s−µ)|p(y, η, 〈η〉τ)û(τ)|2dτ

≤ sup
τ∈R,y∈K

〈τ〉−2µ|p(y, η, 〈η〉τ)|2
∫
〈τ〉2s|û(τ)|2dτ ≤ c〈η〉2µ‖u‖2Hs(R).

This implies (4.6) for α = β = 0. The assertion for arbitrary α, β follows in
an analogous manner, using Dα

yD
β
η p(y, η, τ) ∈ Sµ−|β|(U × Rn).

Remark 4.2. Lemma 4.1 remains true in analogous form under the assumption
p(y, t, η, τ) ∈ Sµ(Ω × R × Rnη,τ ) when p is independent of t for |t| > const for a
constant > 0 (and also under certain weaker assumptions with respect to |t| → ∞).

Definition 4.3. 1. By a group action on a Hilbert space H we understand a
strongly continuous group κ = {κλ}λ∈R+ of isomorphisms κλ : H → H,
such that κλλ′ = κλκλ′ for all λ, λ′ ∈ R+ (strongly continuous means that
κλh ∈ C(R+, H) for every h ∈ H).

2. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respectively.
Then Sµ(Ω × Rq;H, H̃) for Ω ⊆ Rp open, µ ∈ R, is defined to be the set
of all a(y, η) ∈ C∞(Ω× Rq,L(H, H̃)) such that

‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H, eH) ≤ c〈η〉

µ−|β|

for all (y, η) ∈ K × Rq, K b Ω, and all α ∈ Np, β ∈ Nq, for constants
c = c(α, β,K) > 0.
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3. The space Sµcl(Ω×Rq;H, H̃) of classical elements is the set of all a(y, η) ∈
Sµ(Ω × Rq;H, H̃) such that there are functions a(µ−j)(y, η) ∈ C∞(Ω ×
(Rq \ {0}), L(H, H̃)), j ∈ N, with a(µ−j)(y, λη) = λµ−j κ̃λa(µ−j)(y, η)κ−1

λ

for all λ ∈ R+, (y, η) ∈ Ω× (Rq \ {0}), with

a(y, η)−
N∑
j=0

χ(η)a(µ−j)(y, η) ∈ Sµ−(N+1)(Ω× Rq;H, H̃)

for every N ∈ N and any excision function χ(η).

Example. 1. For p(y, η, τ) ∈ Sµ(Ω× Rn) and a(y, η) = Opt(p)(y, η) we have
a(y, η) ∈ Sµcl(Ω× Rn−1;Hs(R), Hs−µ(R)) for every s ∈ R.

2. For p(y, t, η, τ) ∈ Sµ(Ω×R×Rn) under the assumption of Remark 4.2 we
have a(y, η) ∈ Sµ(Ω× Rn−1;Hs(R), Hs−µ(R)) for every s ∈ R.

Remark 4.4. Observe that in the latter Example we did not exhaust the full
information of (4.6) with respect to s. In fact, differentiation in η gives us better
smoothness in the image spaces. For our purposes it suffices to fix the Hilbert
spaces H and H̃; in applications it will be clear anyway to what extent we can say
more when those spaces run over scales of spaces, parametrised by s.

Parallel to the spaces of operator-valued symbols we have vector-valued ana-
logues of Sobolev spaces.

Definition 4.5. Let H be a Hilbert space with group action κ = {κλ}λ∈R+ . Then
Ws(Rq, H) for s ∈ R is defined to be the completion of S(Rq, H) with respect to
the norm ‖〈η〉sκ−1

〈η〉û(η)‖L2(Rq,H).

The space Ws(Rq, H) is contained in S ′(Rq, H) = L(S(Rq), H). For every
open Ω ⊆ Rq we defineWs

comp(Ω, H) to be the set of all u ∈ Ws(Rq, H) with com-
pact support and Ws

loc(Ω, H) ⊂ D′(Ω, H) = L(C∞0 (Ω), H) by ϕu ∈ Ws
comp(Ω, H)

for every ϕ ∈ C∞0 (Ω).

Example. 1. Let H := Hs(Rm), (κλu)(x) := λm/2u(λx) for λ ∈ R+. Then
for every s ∈ R we have

Ws(Rq, Hs(Rm)) = Hs(Rq × Rm).

2. Let H := Hs(R+), (κλu)(t) = λ1/2u(λt), λ ∈ R+. Then for every s ∈ R
we have

Ws(Rq, Hs(R+)) = Hs(Rq × R+).

Remark 4.6. The notion of group actions also makes sense for Fréchet spaces that
are written as projective limits of Hilbert spaces. An example is the Schwartz space

S(Rm) = lim←−
j∈N
〈x〉−jHj(Rm)

with κλ being defined as in the above Example. There are then natural extensions
of Definitions 4.3 and 4.5 as well as comp/loc spaces to the case of Fréchet spaces
with group action (for more details cf. also [17], [18]).
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Theorem 4.7. Let H and H̃ be Hilbert (Fréchet) spaces with group action and
a(y, η) ∈ Sµ(Ω × Rq;H, H̃). Then Opy(a) : C∞0 (Ω, H) → C∞(Ω, H̃) extends to a
continuous operator

(4.7) Opy(a) :Ws
comp(Ω, H)→Ws−µ

loc (Ω, H̃)

for every s ∈ R. If a(y, η) ∈ Sµ(Rq × Rq;H, H̃) is independent of y for |y| ≥
const > 0 then we obtain a continuous operator

(4.8) Opy(a) :Ws(Rq, H)→Ws−µ(Rq, H̃)

for every s ∈ R.

Remark 4.8. The continuity of (4.8) can be proved under much more general
assumptions on a(y, η) than in Theorem 4.7, see, for instance, [17] or [28].

Let us now turn to what we did at the beginning of this section. For p(y, t, η, τ) ∈
Sµ(Rn−1 × R× Rn) we have

Opt(p)(y, η) ∈ Sµ(Rn−1 × Rn−1;Hs(R), Hs−µ(R))

when p satisfies the assumption of Remark 4.2. For our purposes it suffices to
assume that p is a classical symbol of order µ ∈ Z, and independent of (y, t) for
|y, t| ≥ const for some constant > 0.

In a theory of elliptic boundary value problems that relies on standard
Sobolev spaces Hs(Rn+) = Hs(Rn)|Rn

+
we should possess the continuity of

(4.9) Op+(p) = r+Op(p)e+ : Hs(Rn+)→ Hs−µ(Rn+)

for s > −1/2, similarly as in Corollary 3.9; here e+ is the operator of extension
by zero from Rn+ to Rn, and r+ the restriction to Rn+ (analogously we have the
extension and restriction operators e− and r−, respectively). It turns out that the
continuity of (4.9) requires certain very restrictive assumptions on the symbol p.
For instance, for p(x, ξ) = χ(ξ)|ξ| where χ is some excision function the operator
(4.9) will not be continuous for all s > − 1

2 .
According to Theorem 4.7 for the continuity in Sobolev spaces it suffices to

know that

(4.10) op+(p)(y, η) ∈ Sµ(Rn−1 × Rn−1;Hs(R+), Hs−µ(R+))

for s > − 1
2 , i.e.,

(4.11) ‖κ−1
〈η〉{D

α
yD

β
η op+(p)(y, η)}κ〈η〉‖L(Hs(R+),Hs−µ(R+)) ≤ c〈η〉µ−|β|

for all (y, η) ∈ Rn−1 × Rn−1, and all α, β, for c = c(α, β,K, s) > 0.
Moreover, it is desirable to have

(4.12) op+(p)(y, η) ∈ Sµ(Rn−1 × Rn−1;S(R+),S(R+)).

In order to illustrate the effect for the moment we consider the case that that p is
independent of y and t. To obtain (4.11) we assume

(4.13) p̃(η, τ) := p(η, 〈η〉τ) ∈ Sµ(Rq, Sµtr(R)).
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The notation Sµ(Rq, E) for a Fréchet space E with the semi-norm system
(πk)k∈N means the set of all a(η) ∈ C∞(Rq, E) such that

πk(Dβ
ηa(η)) ≤ c〈η〉µ−|β|

for all η ∈ Rq, β ∈ Nq, k ∈ N, for constants c = c(β, k) > 0.

Lemma 4.9. Let E and F be Fréchet spaces with the semi-norm systems (πj)j∈N
and (σj)j∈N, respectively, and let B : E → F be a continuous operator. Then

(4.14) TB : C∞(Rq, E)→ C∞(Rq, F )

defined by the composition a : Rq → E and B : E → F induces a continuous
operator

(4.15) TB : Sµ(Rq, E)→ Sµ(Rq, F )

for every µ ∈ R.

Proof. Without loss of generality we assume σj+1(·) ≥ σj(·) and πj+1(·) ≥ πj(·)
for all j. Then continuity of B means that for every k ∈ N there is a j ∈ N such
that σk(Bu) ≤ cπj(u) for all u ∈ E, for some c > 0. Analogously, the continuity
of (4.15) means that for every k ∈ N, β ∈ Nq, there are j,N ∈ N such that

(4.16) sup
η∈Rq

〈η〉µ+|β|σk(Dβ
ηTBa(η)) ≤ c sup

η∈Rq

|α|≤N

〈η〉−µ+|α|πj(Dα
η a(η))

for a c > 0. Since TBa(η) = (Ba)(η) with pointwise composition and Dα
η (Ba)(η) =

B(Dα
η a)(η) it follows that

sup
η∈Rq

〈η〉−µ+|β|σk(Dβ
ηTBa(η)) ≤ c sup

η∈Rq

〈η〉−µ+|β|πj(Dα
η a(η))

which implies (4.16).

Lemma 4.10. Let p(y, η, τ) ∈ C∞(Rn−1, Sµcl(Rn)) and

p̃(y, η, τ) ∈ C∞(Rn−1, Sµ(Rn−1, Sµtr(R))).

Then we have the relations (4.10) for s > − 1
2 , and (4.12).

Proof. For (4.10) we have to verify the estimates (4.11). Let first α = β = 0. For
simplicity let p be independent of y. An analogue of the relations (4.4) gives us

(4.17) κ−1
〈η〉op+(p)(η)κ〈η〉 = op+(p̃)(η).

The operation op+(·) induces a continuous operator

op+(·) : Sµtr(R)→ L(Hs(R+), Hs−µ(R+))

for every s > − 1
2 . That means for every s there is a semi-norm πj from the Fréchet

topology of Sµtr(R) such that

‖op+(a)‖L(Hs(R+),Hs−µ(R+)) ≤ cπj(a)
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for every a ∈ Sµtr(R). Thus, for E = Sµtr(R), F̃ = L(Hs(R+), Hs−µ(R+)) from
Lemma 4.9 it follows that

sup〈η〉−µ‖op+(p̃)(η)‖L(Hs(R+),Hs−µ(R+)) ≤ c sup〈η〉−µπj(p̃(η, ·)) <∞,

i.e., using (4.17) that

‖κ−1
〈η〉op+(p)(η)κ〈η〉‖L(Hs(R+),Hs−µ(R+)) ≤ c〈η〉µ.

In a similar manner we can proceed with the derivatives Dβ
η p(η, τ) for every β ∈

Nn−1.
The proof (4.12) is straightforward as well and left to the reader.

Definition 4.11. A symbol p(y, t, η, τ) ∈ Sµcl(Ωy × R × Rnη,τ ) for µ ∈ Z is said to
have the transmission property at t = 0 if the homogeneous components p(µ−j) of
p satisfy the conditions

(4.18) Dα
y,tD

β
η,τ{p(µ−j)(y, t, η, τ)− (−1)µ−jp(µ−j)(y, t,−η,−τ)} = 0

on the set {(y, t, η, τ) ∈ Ω × R × Rn : y ∈ Ω, t = 0, η = 0, τ ∈ R \ {0}} of
non-vanishing conormal vectors over the boundary, for all α, β ∈ Nn, j ∈ N. Let
Sµtr(Ω× R× Rn) denote the space of all symbols of that kind. Moreover, set

Sµtr(Ω× R± × Rn) := {p|Ω×R±×Rn : p ∈ Sµtr(Ω× R× Rn)}.

Since the transmission property is a local condition near t = 0 it can eas-
ily be extended to symbols in an arbitrary open set U ⊆ Rn intersecting {t =
0}. (It is clear that it suffices to ask (4.18) only for all α = (0, . . . , αn), β =
(β1, . . . , βn−1, 0)).

Operators with symbols with the transmission property in connection with
boundary value problems (and also transmission problems) have been studied by
many outhors, first of all Boutet de Monvel [5], [4], Eskin [7], and later on Myshkis
[14], Rempel and Schulze [15], Grubb [8], [9], and many others. One of the main mo-
tivations was to find a framework to express parametrices of elliptic boundary value
problems for differential operators and to prove an analogue of the Atiyah-Singer
index theorem. In this connection it appeared not too perturbing that generically
symbols (that are smooth up to the boundary) have not the transmission property
at the boundary. We will return to more general symbols below.

The first important aspect is that a pseudo-differential theory of boundary
value problems concerns continuous operators (4.9) (and analogously on manifolds
with smooth boundary). Another essential point is to understand the behaviour
of such operators under compositions.

Proposition 4.12. For every p(y, t, η, τ) ∈ Sµtr(Ω× R+ × Rn) we have

p̃(y, t, η, τ) := p(y, t, η〈τ〉, τ) ∈ C∞(Ω× R+, S
µ(Rn−1, Sµtr(R))).

The simple proof is left to the reader.
In the local analysis of BVPs it suffices to assume that the involved symbols

are independent of t for large t.
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Proposition 4.13. For every p(y, t, η, τ) ∈ Sµtr(Ω×R+ ×Rn) which is independent
of t for large t we have

(4.19) op+(p)(y, η) ∈ Sµ(Ω× Rq;Hs(R+), Hs−µ(R+))

for every s > − 1
2 , and

(4.20) op+(p)(y, η) ∈ Sµ(Ω× Rq;S(R+),S(R+)).

The t-independent case is contained in Lemma 4.10. After that the proof in
general is straightforward.

Theorem 4.7 together with (4.19) entails the continuity of

(4.21) Op+(p) = Opy(op+(p)) : Hs
[comp)(Ω× R+)→ Hs−µ

[loc)(Ω× R+);

here Hs
[comp)/[loc)(Ω×R+) =Ws

comp/loc(Ω, H
s(R+)), cf. also Example 4 (ii). Let us

now give a motivation of the conditions (4.18) in Definition 4.11. First it is evident
that when p is a polynomial in ξ, the homogeneous components p(µ−j) of order
µ− j, j = 0, . . . , µ, satisfy the relations (4.18). For instance, we have in this case

(4.22) p(µ)(y, t, λη, λτ) = λµp(µ)(y, t, η, τ)

for every λ ∈ R, not only for λ ∈ R+, and hence,

p(µ)(y, t, η, τ) = (−1)µp(µ)(y, t,−η,−τ),

even for all (y, t, η, τ).
If p(x, ξ) is elliptic of order µ then the Leibniz inverse which belongs to

S−µcl (Ω× R× Rnξ ) satisfies those conditions as well with respect to the order −µ.
The behaviour of operators under compositions locally near the boundary

can be reduced to the composition of operators with operator-valued symbols,

modulo smoothing operators. In general, if H, H̃, and ˜̃
H are Hilbert spaces with

group actions κ = {κλ}λ∈R+ , κ̃ = {κ̃λ}λ∈R+ , and ˜̃κ = {˜̃κλ}λ∈R+ , respectively, and

a(y, η) ∈ Sµ(Ω× Rq, H̃, ˜̃
H), ã(y, η) ∈ Sµ̃(Ω× Rq;H, H̃),

for simplicity, with compact support with respect to y, then we can form

Opy(a)Opy(ã) = Op(a#ã)

with the Leibniz product a#ã(y, η) ∈ Sµ+µ̃(Ω× Rq;H, ˜̃
H) that can be computed

by an operator-valued analogue of the respective oscillatory integral expression in
Kumano-go’s formalism.This entails an asymptotic expansion

a#ã(y, η) ∼
∑
α∈Nq

1
α!

(∂αη a(y, η))D
α
y ã(y, η),

∂αη := ∂α1/∂yα1
1 . . . ∂αq/∂y

αq
q .

If we apply this to the case

a(y, η) = op+(p)(y, η), ã(y, η) = op+(p̃)(y, η)
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for symbols p(x, ξ) ∈ Sµtr(Ω× R× Rn), p̃(x, ξ) ∈ Sµ̃tr(Ω× R× Rn), (say, under the
simplifying condition of compact support in (y, t)) then we have to understand the
compositions

(∂αη op+(p)(y, η))Dα
y op+(p̃)(y, η) = op+(∂αη p)(y, η)op+(Dα

y p̃)(y, η).

Since µ, µ̃ ∈ Z are arbitrary, and ∂αη p ∈ S
µ−|α|
tr , Dα

y p̃ ∈ S
µ̃
tr, we may consider, for

instance, the case α = 0. From the information of Section 3 we know that

op+(p)(y, η)op+(p̃)(y, η) = op+(p#tp̃)(y, η) + g(y, η)

where p#tp̃ is the Leibniz product between p and p̃ with respect to the t-variable,
and g(y, η) is a family of operators in Γ0(R+).

More precisely, the operator families g(y, η) are Green symbols in the follow-
ing sense.

Definition 4.14. 1. An operator-valued symbol g(y, η) belongs to Rµ,0G (Ω ×
Rn−1) if

g(y, η), g∗(y, η) ∈ Sµcl(Ω× Rn−1;L2(R+),S(R+)).

Here g∗(y, η) is the (y, η)-wise L2(R+)-adjoint. Elements ofRµ,0G (Ω×Rn−1)
are called Green symbols of type 0.

2. An operator family g(y, η) belongs to Rµ,dG (Ω×Rn−1), then called a Green
symbol of type d ∈ N, if

g(y, η) =
d∑
j=0

gj(y, η)∂
j
t

for gj(y, η) ∈ Rµ−j,0G (Ω× Rn−1), j = 0, . . . , d.

Similarly as (3.21) we also define 2× 2 block matrices

(4.23) a(y, η) :=
(

op+(p)(y, η) + g11(y, η) g12(y, η)
g21(y, η) g22(y, η)

)
:
Hs(R+)
⊕

Cj−
→
Hs−µ(R+)
⊕

Cj+

for arbitrary p(y, t, η, τ) ∈ Sµtr(Ω×R×Rnη,τ ) (independent of t for |t| > const), and
g11(y, η) ∈ Rµ,dG (Ω× Rq), s > d− 1

2 , while (say, for the case j− = j+ = 1)

g12(y, η) ∈ Sµcl(Ω× Rn−1; C,S(R+))

(with C being endowed with the trivial group action),

g21(y, η)u(t) =
d∑
l=0

g21,l(y, η)∂ltu(t)

for g∗21,l(y, η) ∈ S
µ−l
cl (Ω×Rn−1; C,S(R+)) with the (y, η)-wise adjoint in the sense

(g21,l(y, η)v, c)C = (v, g∗21,l(y, η)c)L2(R+),

for arbitrary v ∈ L2(R+), c ∈ C, and g22(y, η) ∈ Sµcl(Ω× Rn−1).
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The definition for arbitrary j± is analogous. We call g21(y, η) a trace symbol
of order d ∈ N and g12(y, η) a potential symbol.

From the definition it follows altogether that

(4.24) a(y, η) ∈ Sµ(Ω× Rn−1;Hs(R+)⊕ Cj− , Hs−µ(R+)⊕ Cj+)

for all s > d− 1
2 . For g(y, η) := (gij(y, η))i,j=1,2 we have

(4.25) g(y, η) ∈ Sµcl(Ω× Rn−1;Hs(R+)⊕ Cj− ,S(R+)⊕ Cj+)

for s > d − 1
2 . Let Rµ,dG (Ω × Rn−1; j−, j+) denote the set of all such g(y, η).

Moreover, let Rµ,d(Ω × Rn−1; j−, j+) denote the set of all symbols a(y, η) of the
form (4.23).

Now letX be a C∞ manifold with boundary Y . Let us define B−∞,d(X; j−, j+)
to be the space of smoothing operators of type d. For simplicity let again j− =
j+ = 1 (the general case is analogous).

Based on the Riemannian metrics on X and Y = ∂X we identify the spaces
C∞(X × X), C∞(X × Y ), etc., with corresponding integral operators with such
kernels, for instance, u →

∫
X
c(x, x′)u(x′)dx′ and v →

∫
Y
k(x, y′)v(y′)dy′ for

c(x, x′) ∈ C∞(X×X) and k(x, y′) ∈ C∞(X×Y ), respectively. Let B−∞,0(X; 1, 1)
denote the space of all operators

C = (Cij)i,j=1,2 :
C∞0 (X)
⊕

C∞0 (Y )
→
C∞(X)
⊕

C∞(Y )

such that C11 has a kernel in C∞(X×X), C12 a kernel in C∞(X×Y ), C21 a kernel
in C∞(Y ×X) and C22 a kernel in C∞(Y × Y ). Moreover, by B−∞,d(X; 1, 1) for
d ∈ N we denote the space of all 2 × 2 block matrix operators C where C12 and
C22 are as before but

C11 =
d∑
l=0

C11,lD
l, C21 =

d∑
l=0

C21,lD
l

for C11,l and C21,l as in the case d = 0 and a first order differential operator D
on X that is close to Y equal to ∂t, the differentiation in normal direction. In an
analogous manner we define B−∞,d(X; j−, j+) for arbitrary j± ∈ N.

Let us fix a collar neighbourhood V of Y in X, and let (Uι)ι∈I be a locally
finite open covering of V , and let χι : Uι → Rn+ be charts, ι ∈ I. Those induce
charts χ′ι : Uι ∩ Y → Rn−1 on Y . For every aι(y, η) ∈ Rµ,d(Rn−1 × Rn−1; j−, j+)
we have an operator Opy(aι), and we form the pull back diag(χ−1

∗ , χ′−1
∗ )Opy(aι)

which is a 2 × 2 block matrix operator over Uι. Let us fix a system of functions
ϕι ∈ C∞0 (Uι) such that

∑
ι∈I ϕι ≡ 1 near Y , set ϕι := ϕι|Y , moreover, choose

ψι ∈ C∞0 (Uι) that are equal to 1 on suppϕι, set ψ′ι = ψι|Y , and form

(4.26) Aι := diag(ϕι, ϕ′ι)diag(χ−1
∗ , χ′−1

∗ )Opy(aι)diag(ψι, ψ′ι).

Moreover, choose functions σ, σ̃, ˜̃σ ∈ C∞0 (V ), that are equal to 1 close to Y , such
that σ̃ = 1 on suppσ, and σ ≡ 1 on supp ˜̃σ.
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Definition 4.15. Let Bµ,d(X; j−, j+) for µ ∈ Z, d ∈ N , denote the space of all
operators

A = (Aij)i,j=1,2 :
C∞0 (X)
⊕

C∞(Y,Cj−)
→

C∞(X)
⊕

C∞(Y,Cj+)
of the form

(4.27) A = diag(σ, 1)
∑
ι∈I
Aιdiag(σ̃, 1) + diag((1− σ)A(1− ˜̃σ), 0) + C

for arbitrary operators Aι as in (4.26), A ∈ Lµcl(intX), and C ∈ B−∞,d(X; j−, j+).

The definition applies, in particular to X = Rn+ with the variables x = (y, t).
In this case the shape of the operators is easier, since the sum on the right hand
side of (4.27) can be replaced by

(4.28) diag(σ, 1)Op(a)diag(σ̃, 1)

for an a(y, η) ∈ Rµ,d(Rn−1 × Rn−1; j−, j+).
Let us define the principal symbolic structure

σ(A) = (σψ(A), σ∂(A))

consisting of the interior and the boundary symbol σψ(A) and σ∂(A), respectively.
The upper left corner A11 of an operator A ∈ Bµ,d(X; j−, j+) belongs to

Lµcl(intX), and we simply define σψ(A) for (x, ξ) ∈ T ∗X \ 0 as the homogeneous
principal symbol of A of order µ in the standard sense (here we take into account
that the symbols are smooth up to the boundary). What concerns the boundary
symbol we first look at the situation of the half-space, cf. (4.28). In this case we
define

σ∂(A)(y, η) := σ∂(a)(y, η)

for (y, η) ∈ T ∗Rn−1 \ 0 by

(4.29) σ∂(a)(y, η) := diag(op+(p(µ)|t=0)(y, η), 0) + σ∂(g)(y, η)

where p(µ)(y, t, η, τ) is the homogeneous principal symbol of p(y, t, η, τ), and
σ∂(g)(y, η) is the homogeneous principal symbol of (4.25) as a classical operator-
valued symbol. Together with

op+(p(µ)|t=0)(y, λη) = κλop+(p(µ)|t=0)(y, η)κ−1
λ

for λ ∈ R+ we obtain

σ∂(A)(y, λη) = λµdiag(κλ, 1)σ∂(A)(y, η)diag(κ−1
λ , 1)

for all λ ∈ R+.
The construction of the operator spaces Bµ,d(X; j−, j+) in terms of local

representations and subsequent pull backs to the manifold is possible because of
natural invariance properties under coordinate changes. The same is true of the
principal symbols, and then we obtain, in particular, also an invariantly defined
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principal boundary symbol on a manifold with boundary, using the local descrip-
tions (4.29). In other words we have
(4.30)
σψ(A) ∈ C∞(T ∗X \0), σ∂(A) ∈ C∞(T ∗Y \0,L(Hs(R+)⊕Cj− , Hs−µ(R+)⊕Cj+)).

In many contexts it is adequate to admit operators between sections of
smooth complex vector bundles E,F on X and J−, J+ on Y , respectively,

(4.31) A :
C∞0 (X,E)
⊕

C∞0 (Y, J−)
→

C∞(X,F )
⊕

C∞(Y, J−)
.

The generalisation of the scalar case in the upper left corner to systems and then
to the case of bundles, and E,F of the other entries from trivial to general vector
bundles J−, J+ is straightforward and left to the reader.

If M is a C∞ manifold by Vect(M) we denote the set of all smooth complex
vector bundles over M . If M is C∞ with boundary then we assume that every
E ∈ Vect(M) is the restriction of some Ẽ ∈ Vect(2M) to M . Then there is a
standard definition of Sobolev spaces of distributional sections in E ∈ Vect(M) in
comp/loc-version denoted by

Hs
comp/loc(M,E), s ∈ R,

when M is an open manifold. If M is compact then we simply write Hs(M,E).
Moreover, if M is C∞ with boundary we define

Hs
[comp/[loc)(intM,E) := Hs

comp/loc(2M, Ẽ)
∣∣
intM

.

For the vector bundles E,F ∈ Vect(X), J−, J+ ∈ Vect(Y ), in (4.31) we write
v := (E,F ; J−, J+) and denote by Bµ,d(X; v) the set of all operators (4.31).

From the vector-valued analogue of (4.24) together with Theorem 4.7 and
corresponding invariance properties we obtain that every A ∈ Bµ,d(X; ,v) induces
continuous operators

A :
Hs

[comp)(intX,E)
⊕

Hs
comp(Y, J−)

→
Hs−µ

[loc)(intX,F )
⊕

Hs−µ
loc (Y, J+)

for all real s > d− 1
2 . In particular, if X is compact we have

(4.32) A :
Hs(intX,E)

⊕
Hs(Y, J−)

→
Hs−µ(intX,F )

⊕
Hs−µ(Y, J+)

.

The pair of principal symbols σ = (σψ, σ∂) in this case consists of

σψ(A)(x, ξ) : π∗XE → π∗XF
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with the pull back π∗X of bundles under the canonical projection πX : T ∗X\0→ X,
and

σ∂(A)(y, η) : π∗Y

Hs(R+)⊗ E′
⊕
J−

→ π∗Y

Hs−µ(R+)⊗ F ′
⊕
J+


for E′ := E|Y , F ′ := F |Y and the canonical projection πY : T ∗Y \ 0 → Y , for
s > d− 1

2 . Alternatively we may consider

σ∂(A)(y, η) : π∗Y

S(R+)⊗ E′
⊕
J−

→ π∗Y

S(R+)⊗ F ′
⊕
J+

 .

In the following we often discuss operators in the set-up of Bµ,d(X; v), though
the reader who is mainly interested in the analytical details may consider the case
Bµ,d(X; j−, j+) which corresponds to the trivial bundles E = X × C, F = X × C
and J± = Y × Cj± , respectively.

Remark 4.16. Let X be compact. Then σ(A) = 0 implies that (4.32) is a compact
operator for every s > d− 1

2 .

5. Ellipticity of boundary value problems

We now turn to the ellipticity of BVPs, more precisely, to the Shapiro-Lepatinskij
ellipticity. For elliptic operators there is also another kind of ellipticity of bound-
ary conditions, known in special cases, as conditions of Atiyah-Patodi-Singer type
(“APS-conditions”), and in general as global projection conditions. While not
every elliptic operator on a C∞ manifold X with boundary admits Shapiro-
Lopatinskij elliptic boundary conditions, there are always global projection con-
ditions (when X is compact), see [21] where both concepts are unified to an op-
erator algebra, containing also Boutet de Monvel’s calculus. Let Lµtr(X;E,F ) for
E,F ∈ Vect(X) denote the set of all operators A = r+Ãe+, Ã ∈ Lµtr(2X; Ẽ, F̃ ),
with Lµtr(2X; Ẽ, F̃ ) being the space of classical pseudo-differential operators on the
double 2X, referring to Ẽ, F̃ ∈ Vect(2X) with E = Ẽ|X , F = F̃ |X , and with the
transmission property at Y = ∂X.

For convenience we assume that Y is compact. The nature of elliptic boundary
conditions for an elliptic operator A + G ∈ Bµ,d(X;E,F ) (i.e., for elliptic A ∈
Lµtr(X;E,F ), µ ∈ Z, and a Green operator G on X of order µ and type d) depends
on the principal boundary symbol of A

(5.1) σ∂(A)(y, η) : π∗YH
s(R+)⊗ E′ → π∗YH

s−µ(R+)⊗ F ′

for any fixed s > max{µ, d− 1
2}, but not so much on

(5.2) σ∂(G)(y, η) : π∗YH
s(R+)⊗ E′ → π∗YH

s−µ(R+)⊗ F ′.
(5.2) is a family of compact operators that cannot affect the possibility to pose
Shapiro-Lopatinskij elliptic conditions for the operator A.
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Definition 5.1. An operator A ∈ Bµ,d(X; v) for v = (E,F ; J−, J+) is called elliptic
if both the principal interior symbol

(5.3) σψ(A) : π∗XE → π∗XF,

πX : T ∗X \ 0→ X, and the principal boundary symbol

(5.4) σ∂(A) : π∗Y

Hs(R+)⊗ E′
⊕
J−

→ π∗Y

Hs−µ(R+)⊗ F ′
⊕
J+

 ,

πY : T ∗Y \ 0→ Y , define isomorphisms.

The second condition is just what we call Shapiro-Lopatinskij ellipticity. The
smoothness s > max{µ, d}− 1

2 is fixed, but the choice is unessential. The bijectivity
of σ∂(A) holds if and only if its restriction to Schwartz functions in the upper left
corner induces an isomorphism

σ∂(A) : π∗Y

S(R+)⊗ E′
⊕
J−

→ π∗Y

S(R+)⊗ F ′
⊕
J+

 .

If A ∈ Bµ,d(X; v), v = (E,F ; J−, J+), is elliptic in the sense of Definition 5.1,
then for the pair of inverses σ−1

ψ (A) and σ−1
∂ (A) we find an operator A(−1) ∈

B−µ,(d−µ)+(X; v−1), v−1 = (F,E; J+, J−), (d − µ)+ = max{d − µ, 0}, such that
σψ(A(−1)) = σ−1

ψ (A), σ∂(A(−1)) = σ−1
∂ (A). This is a consequence of a more

general operator convention to find operators to a prescribed pair of principal
symbols (those can be described independently of the operator level, similarly as
in the case of classical pseudo-differential operators on an open manifold).

In that case we have compact remainders

G := 1−A(−1)A ∈ B−1,max{µ,d}(X; (E,E; J−, J−)),(5.5)

D := 1−AA(−1) ∈ B−1,(d−µ)+(X; (F, F ; J+, J+))(5.6)

in the respective Sobolev spaces, since σ(G) = 0, σ(D) = 0, (with σ referring to
order 0). This shows the first part of the following theorem.

Theorem 5.2. Let A ∈ Bµ,d(X; v) be elliptic; then

(5.7) A :
Hs(intX,E)

⊕
Hs(Y, J−)

→
Hs−µ(intX,F )

⊕
Hs−µ(Y, J+)

is a Fredholm operator for every s > max{µ, d} − 1
2 . Conversely, if (5.7) is Fred-

holm for some s = s0 > max{µ, d}− 1
2 , then A is elliptic which entails the Fredholm

property for all s > max{µ, d} − 1
2 .

The second part of the latter theorem requires arguments that are omitted
here; details may be found in [15].
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Remark 5.3. 1. IfA ∈ Bµ,d(X,v) is elliptic then there is a parametrixA(−1) ∈
B−µ,(d−µ)+(X; v−1) which means that the above-mentioned remainders G
and D belong to B−∞,max{µ,d} and B−∞,(d−µ)+ , respectively.

2. Let A ∈ Bµ,d(X; v) be an operator such that (5.7) is an isomorphism
for some s = s0 > max{µ, d} − 1

2 . Then (5.7) is an isomorphism for all
s > max{µ, d} − 1

2 , and for the inverse (which is a special parametrix of
A) we have A−1 ∈ B−µ,(d−µ)+(X; v−1).

In fact, 1. can be obtained by improving A(−1) of (5.5), (5.6) by applying a
formal Neumann series argument. The property 2. is a consequence of the second
assertion of Theorem 5.2 (more details may be found in [24]).

Example. Let A = ∆, the Laplacian on X (with respect to a Riemannian metric),
moreover, let T0u := u|Y . Then, for every order reducing isomorphism R ∈ L3/2

cl (Y )
on the boundary we have(

∆
T

)
:=

(
1 0
0 R

) (
∆
T0

)
∈ B2,0(X; 1, 1; 0, 1)

where 1 on the right hand side stands for trivial bundles of fibre dimension 1 over
X and Y , respectively, and we have(

∆
T

)−1

∈ B−2,0(X; 1, 1; 1, 0).

Let us now discuss the nature of Shapiro-Lopatinskij ellipticity in more detail.
A closer look at (5.1) reveals some interesting structures that are useful also to un-
derstand the difference to ellipticity with global projection conditions, mentioned
at the beginning of this section.

Consider an operator A ∈ Bµ,0(X;E,F ) (i.e., A is of the type of an upper
left corner in the 2 × 2 block matrix set-up) satisfying the ellipticity condition
(5.3). Then (5.1) is a family of Fredholm operators, where dim kerσ∂(A)(y, η) and
dim cokerσ∂(A)(y, η) are independent of s > max{µ, d} − 1

2 . The same is true of

(5.8) σ∂(A)(y, η)1,1 = σ∂(A)(y, η) + σ∂(G)(y, η).

For a family of isomorphisms (5.4) the role of the additional entries (σ∂(A)(y, η))i,j
for i+j > 2 is to fill up (5.8) to a family of isomorphisms. However, many operators
A ∈ Bµ,0(X;E,F ) that are elliptic with respect to σψ(·) do not admit such families
of block matrix isomorphisms.

As noted before an example is the Cauchy-Riemann operator in a smooth
bounded domain in C which is elliptic of order 1. Other examples are Dirac oper-
ators in even dimensions.

In order to illustrate the phenomenon in general we recall a few notions from
K-theory which are connected with the index of families of Fredholm operators
parametrised by a compact topological space. In the present case we consider (5.8)
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for (y, η) ∈ S∗Y , the unit cosphere bundle induced, by T ∗Y \ 0. Observe that by
virtue of the homogeneity

(σ∂(A)(y, λη))1,1 = λµκλ(σ∂(A)(y, η)1,1)κ−1
λ

the values of σ∂(A)(y, η)1,1 for all (y, η) ∈ T ∗Y \ 0 are determined by those for
(y, η) ∈ S∗Y . The compact topological spaces that we have in mind here are S∗Y
and Y , respectively (we discuss the case that X is a smooth manifold with compact
boundary Y ).

First, on a compact topological space M (for simplicity connected) we have
the set Vect(M) of (locally trivial) continuous complex vector bundles onM . In the
case of a C∞ manifold M we may (and will) take smooth complex vector bundles.
Roughly speaking, continuous vector bundles over M are topological spaces which
are disjoint unions E =

⋃
x∈M Ex of fibres Ex that are vector spaces isomorphic

to Ck for some k ∈ N , and every point x0 ∈M has a neighbourhood U such that
E|U =

⋃
x∈U Ex is homeomorphic to U×Ck where this homorphism is fibrewise an

isomorphism and commutes with the canonical projections p : E →M , ex → x for
ex ∈ Ex, and q : U × Ck → U , (x, v)→ x for v ∈ Ck. An example is E = M × Ck
which is a so-called trivial vector bundle. Thus a part of the general definition
requires E|U to be isomorphic to a trivial bundle which is just the meaning of
“locally trivial”. We do not repeat here everything on vector bundles such as what
is a vector bundle isomorphism ∼=, but the notion directly comes from vector space
isomorphisms, now parametrised by x ∈M . More generally, we have vector bundle
morphisms which are fibrewise vector space homomorphisms. Moreover, we have
a natural notion of a direct sum E ⊕ F for E,F ∈ Vect(M), fibrewise defined by
Ex ⊕ Fx, x ∈M .

Similarly we can form tensor products E ⊗ F by taking fibrewise tensor
products Ex ⊗ Fx, x ∈M .

The K-group K(M) over M is defined as the set of equivalence classes of
pairs (E,F ) ∈ Vect(M)×Vect(M) where

(E,F ) ∼ (Ẽ, F̃ )

means that there is a G ∈ Vect(M) such that E ⊕ F̃ ⊕ G ∼= F ⊕ Ẽ ⊕ G. The
equivalence class represented by (E,F ) is denoted by [E] − [F ]. The structure of
K(M) of a commutative group comes from the direct sum, namely,

([E1]− [F1]) + ([E2]− [F2]) := [E1 ⊕ E2]− [F1 ⊕ F2].

Note that the tensor product between bundles turns K(M) even to a commutative
ring.

Moreover, recall that when f : M → N is a continuous map we have the
bundle pull back E → f∗E for E ∈ Vect(N) and a resulting f∗E ∈ Vect(M). This
gives rise to a homomorphism

f∗ : K(N)→ K(M)

defined by f∗([E]− [F ]) = [f∗E]− [f∗F ].
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An example is M := S∗Y , N = Y , with the canonical projection,

(5.9) π1 : S∗Y → Y, π1(y, η) = y.

(Non-trivial) vector bundles may appear in connection with elliptic boundary value
problems, or, more generally, with families of Fredholm operators. The latter ones
give rise to an equivalent definition of K(M). The construction is closely related
to the task to find entries σ∂(A)(y, η)i,j for i, j = 1, 2, i + j > 2, for a given
σ∂(A)(y, η)1,1 that complete the latter Fredholm family to a family of isomor-
phisms, cf. (5.4). The general construction is as follows.

By F(H, H̃) for Hilbert spaces H, H̃ we denote the set of all Fredholm op-
erators H → H̃. Recall that F(H, H̃) is open in L(H, H̃), the space of all linear
continuous operators in the operator norm topology.

Lemma 5.4. Let a ∈ C(M,F(H, H̃)), and assume that a(x) : H → H̃ is surjective
for every x ∈M . Then the family of kernels

kerM a := {ker a(x) : x ∈M}
has the structure of a (continuous) vector bundle over M .

Proof. Let π : H → ker a(x1) be the orthogonal projection to ker a(x1) for any
fixed x1 ∈M . Then the family of continuous operators

(5.10)
(
a(x)
π(x1)

)
: H →

H̃
⊕

ker a(x1)

is an isomorphism at x = x1 and hence for all x in an open neighbourhood U of
x1. Therefore, by virtue of Lemma 2.3 the operator π(x1) induces isomorphisms
π(x1) : ker a(x) → ker a(x1) for all x ∈ U . This gives us a continuous family of
maps

{ker a(x) : x ∈ U} → U × ker a(x1).
which is just the desired trivialisation when we identify ker a(x1) with Ck for
k = dimker a(x1).

Lemma 5.5. For every a ∈ C(M,F(H, H̃)) there exists a j− ∈ N and a linear
operator ker : Cj− → H̃ such that

(5.11) (a(x) k) :
H
⊕

Cj−
→ H̃

is surjective for every x ∈M .

Proof. For every x1 ∈ M there exists a finite-dimensional subspace W1 ⊂ H̃ and
an isomorphism k1 : Cj1 →W1 for j1 = dimW1 such that

(5.12) (a(x) k1) :
H
⊕

Cj1
→ H̃
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is surjective for x = x1. Then (5.12) is surjective for all x ∈ U1 for some open neigh-
bourhood U1 of x1. Those neighbourhoods, parametrised by x1 ∈M , form an open
covering of M . Since M is compact, there are finitely many points x1, . . . , xN ∈M
such that M =

⋃N
l=1 Ul for the respective Ul. Choosing operators kl analogously

as in (5.12) for every 1 ≤ l ≤ 1, with dimensions jl rather than j1, we obtain the
assertion for k := (k1, . . . , kN ), and j− :=

∑N
l=1.

Proposition 5.6. For every a ∈ C(M,F(H, H̃)) there exist vector bundles J−, J+ ∈
Vect(M) and a continuous family of isomorphisms

(5.13) a :=
(
a(x) k(x)
t(x) q(x)

)
:
H
⊕
J−,x

→
H̃
⊕
J+,x

, x ∈M.

Proof. Choose k = k(x) as in Lemma 5.5 for the trivial bundle J− = M × Cj− .
Then applying Lemma 5.4 to the Fredholm family (5.11) we obtain that

kerM (a(x) k)

is a finite-dimensional subbundle of t(H ⊕ Cj−), isomorphic to J+ for some J+ ∈
Vect(M). Choosing a bundle isomorphism

b0 : kerM (a(x) k)→ J+

and setting b := b0 ◦ π(x) for the family of orthogonal projections π(x) : t(H ⊕
Cj−)→ ker(a(x) k) we obtain our result when we set

t(x) := b(x)|M , q(x) := b(x)|Cj− .

Definition 5.7. For a ∈ C(M,F(H, H̃)) and any choice of (5.13) we set

(5.14) indMa := [J+]− [J−],

called the K-theoretic index of the Fredholm family a.

It can be proved, cf. [10], that indMa only depends on a but not on the
specific choice of the family of isomorphisms (5.13).

In particular, we obtain the same indMa when we replace (5.13) by isomor-
phisms of the kind (

a(x) h(x)
b(x) d(x)

)
:
H ⊕ J−,x
⊕
L−,x

→
H̃ ⊕ J+,x

⊕
L+,x

for some L−, L+ ∈ Vect(M). Moreover, if c ∈ C(M,L(H, H̃)) is a family of com-
pact operators, then

indM (a+ c) = indMa.

The map indM : C(M,F(H, H̃)) → K(M) is surjective and induces a map only
depending on the homotopy classes of Fredholm families. This gives rise to an
equivalent definition of K(M), cf. Jänich [11].
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Let X be compact, E,F ∈ Vect(X), and let A ∈ Bµ,d(X; (E,F ; 0, 0)) be
elliptic with respect to σψ (cf. the first condition of Definition 5.1). Then the
restriction of σ∂(A)(y, η) to S∗Y (for brevity denoted again by σ∂(A)(y, η)) gives
us a family of Fredholm operators

(5.15) σ∂(A)(y, η) : Hs(R+)⊗ E′ → Hs−µ(R+)⊗ F ′,
s > max{µ, d} − 1

2 , parametrised by (y, η) ∈ S∗Y . Therefore, we obtain an index
element

indS∗Y σ∂(A) ∈ K(S∗Y )
(which is independent of s). The following theorem was first formulated in the
case of differential operators in the paper [2] by Atiyah and Bott, and then for
pseudo-differential operators with the transmission property at the boundary in [4]
by Boutet de Monvel, cf. also [21]. An analogue for edge operators may be found
in [17], cf. also the author’s joint papers [23], [27], with Seiler, and the references
there.

Theorem 5.8. A σψ-elliptic operator A ∈ Bµ,d(X; (E,F ; 0, 0)) can be completed by
additional entries to a (σψ, σ∂)-elliptic 2× 2 block matrix operator

A ∈ Bµ,d(X; (E,F ; J−, J+))

for suitable J−, J+ ∈ Vect(Y ) with A in the upper left corner if and only if

(5.16) indS∗Y σ∂(A) ∈ π∗1K(Y )

(cf. the notation (5.9)).

Proof. The condition (5.16) is necessary, since the Shapiro-Lopatinskij ellipticity
means that (5.4) is a family of isomorphisms and hence, by virtue of (5.14),

indS∗Y σ∂(A) = [π∗1J+]− [π∗1J−].

Conversely, the condition (5.16) allows us to construct a block matrix family of
isomorphisms of the kind (5.13) with σ∂(A) in the upper left corner and vector
bundles over S∗Y that are pull backs of vector bundles over Y . The construction for
every (y, η) ∈ S∗Y is practically the same at that in the proof of Proposition 5.6.
In addition we guarantee that the resulting block matrix operators locally belong
to Bµ,d(R+; k, k; j−, j+) and smoothly depend on (y, η), for k = dimEy = dimFy,
j± = dim J±,y. The corresponding operator functions k(y, η), t(y, η) and q(y, η)
can be extended from S∗Y to T ∗Y \ 0 by κλ-homogeneity of order µ. This can be
done in terms of principal parts of symbols belonging to (4.25). Then applying an
operator convention which assigns to such principal symbols associated operators
gives us the additional entries.

Remark 5.9. The proof of Theorem 5.8 shows how we can find (in principle
all) Shapiro-Lopatinskij elliptic boundary value problems A ∈ Bµ,d(X; v), v =
(E,F ; J−, J+), for any given σψ-elliptic operator A ∈ Bµ,d(X; (E,F ; 0, 0)) pro-
vided that the topological condition (5.16) is satisfied. It turns out that, from the
point of view of the associated Fredholm indices, for every two such A1,A2 with
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the same upper left corner we can construct an elliptic operator R on the boundary
such that

indA1 − indA2 = indR.
The latter relation is known as the Agranovich-Dynin formula (see also [4] and
[15]). The proof is close to what we did in (2.19) modified for general 2×2 matrices
rather than column matrices, cf. [15, Section 3.2.1.3.].

It may happen that σ∂(A)(y, η) is a family of isomorphisms (5.15), i.e., that
for the ellipticity of A with respect to σψ and σ∂ no additional entries are necessary.
For instance, consider the symbol

rµ−(η, τ) :=
(
ϕ(

τ

C〈η〉
)〈η〉 − iτ

)µ
for some fixed ϕ(t) ∈ S(R) such that ϕ(0) = 1 and suppF−1ϕ ⊂ R−, for instance,
ϕ(τ) := c−1

∫ 0

−∞ e−itτψ(t)dt for some ψ ∈ C∞0 (R−) where c :=
∫ 0

−∞ ψ(t)dt 6= 0.
Then, if C > 0 is a sufficiently large constant we have rµ−(η, τ) ∈ Sµtr(Rn), and
rµ−(η, τ) is elliptic of order µ. This symbol can be smootly connected with 〈η, τ〉µ

far from t = 0 by forming rµω(t)
− (η, τ)〈η, τ〉µ(1−ω(t)) for a real-valued ω ∈ C∞0 (R)

such that ω ≡ 1 in a neighbourhood of t = 0. Then, if we interpret t ∈ R+ as the
inner normal of a collar neighbourhood of Y in X there is obviously a σψ-elliptic
operator Rµ− on X with such amplitude functions near the boundary, and σ∂(R

µ
−)

has the desired property, indeed. A similar construction is possible in the vector
bundle set-up, which gives us such an operator Rµ−,E ∈ Bµ,d(X; (E,E; 0, 0)),

(5.17) Rµ−,E : Hs(intX,E)→ Hs−µ(intX,E).

In addition the operator convention can be chosen in such a way that (5.17) is an
isomorphism for every s > max{µ, d}− 1

2 . More details on such constructions may
be found in the paper [9] of Grubb, see also the author’s joint monograph with
Harutyuyan [10, Section 4.1].

Using the fact that there are also order reducing operators of any order on
the boundary (which is a compact C∞ manifold, cf. the formulas (2.5), (2.12)) we
can compose any (σψ, σ∂)-elliptic operator A ∈ Bµ,d(X; (E,F ; J−, J+)) by diago-
nal matrices of order reductions to a (σψ, σ∂)-elliptic operator A0 ∈ B0,0(X; (E,F ;
J−, J+)). For many purposes it is convenient to deal with operators of order and
type zero, and we will assume that for a while, in order to illustrate other inter-
esting aspects of elliptic pseudo-differential boundary value problems.

Let us set

(5.18) Ξ∗ := S∗X|Y ∪N∗

with S∗X|Y denoting the restriction of the unit cosphere bundle to the boundary,
and

N∗ = {(y, 0, 0, τ) ∈ T ∗X|Y : −1 ≤ τ ≤ 1}
which refers to the splitting of variables x = (y, t) near the boundary. The interval
bundle N∗ is trivial and its fibres N∗

y = {(y, 0, 0, τ) : −1 ≤ τ ≤ 1} connect the
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south poles (τ = −1) with the north poles (τ = +1) of S∗X|y, y ∈ Y . In other
words, Ξ∗ is a kind of cage with bars N∗

y , called the conormal cage. Let

πc : Ξ∗ → Y

denote the canonical projection.

Remark 5.10. Let A ∈ B0,0(X; (E,F ; 0, 0)) be σψ-elliptic; then σψ(A)X|Y extends
to an isomorphism

(5.19) σ′ψ(A) : π∗cE
′ → π∗cF

′.

In fact, σψ(A)(y, 0, η, τ) : Ey → Fy is a family of isomorphisms for all
(y, 0, η, τ) ∈ S∗X|Y . By virtue of the transmission property we have

(5.20) σψ(A)(y, 0, 0− 1) = σψ(A)(y, 0, 0,+1).

The principal symbol σψ(A)(x, ξ) is altogether (positively) homogeneous of
order zero in ξ 6= 0; in particular, we have

σψ(A)(y, 0, 0, τ) = σψ(A)(y, 0, 0,−1) for all τ < 0,

σψ(A)(y, 0, 0, τ) = σψ(A)(y, 0, 0,+1) for all τ > 0.

Now the relation (5.20) shows that σψ(A)(y, 0, 0, τ) does not depend on τ 6= 0,
and hence it extends to N∗

y when we define

σ′′ψ(A)(y) := σψ(A)(y, 0, 0, 0) := σψ(A)(y, 0, 0, 1).

We obtain an isomorphism

(5.21) σ′′ψ(A) : E′ → F ′.

Let us now return to operators on the half-axis

op+(σψ(A)|t=0)(y, η) : L2(R+)⊗ E′y → L2(R+)⊗ F ′y
parametrised by (y, η) ∈ S∗Y . By virtue of (5.21) we may replace F ′ by E′. As
usual we interpret

⋃
y∈Y L

2(R+) ⊗ E′y as L2(R+) ⊗ E′ which is a Hilbert space
bundle over Y (by Kuiper’s theorem it is trivial). Set a(y, η, τ) := σψ(A)(y, 0, η, τ)
which is a family of isomorphisms

a(y, η, τ) : E′y → E′y,

(y, η, τ) ∈ S∗X|Y . By virtue of the homogeneity we have a(y, λη, λτ) = a(y, η, τ)
for all λ ∈ R+, in particular,

a(y,
η

|τ |
,
τ

|τ |
) = a(y, η, τ)

for all τ 6= 0. Thus (5.20) gives us

lim
τ→−∞

a(y, η, τ) = a(y, 0,−1) = a(y, 0,+1) = lim
τ→+∞

a(y, η, τ).

This fits to the picture of symbols with the transmission property in τ described
in Section 3. In other words, we have

a(y, η, τ) ∈ S0
tr(R)⊗ Iso(Ey, Ey)
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for every fixed (y, η) ∈ S∗Y (here Iso(·, ·) means the space of isomorphisms between
the vector spaces in parenthesis). The operators

op+(a)(y, η) : L2(R+)⊗ Ey → L2(R+)⊗ Ey
are Fredholm and their pointwise index is equal to the winding number of the
curve

L(a) := {det a(y, η, τ) : τ ∈ R} ⊂ C.
This is a useful information for the construction of extra trace and potential

conditions in an elliptic BVP. It would be optimal to know the dimensions of kernel
and cokernel; of course, those are not necessarily constant in y.

6. The anti-transmission property

In this section we return to scalar symbols (for simplicity). Recall that the trans-
mission property of a symbol a(τ) ∈ Sµcl(R) means the condition (3.9). In general,
the curve

(6.1) L(a) = {a(τ) ∈ C : τ ∈ R}

is not closed. Let a(y, t, η, τ) ∈ S0
cl(Ω × R+ × Rnη,τ ) be an elliptic symbol, a(0) its

homogeneous principal part, and a(τ) := a(0)(y, 0, η, τ) for fixed (y, η) ∈ T ∗Ω \ 0.
Then, similarly as in elliptic BVPs with the transmission property, a task is to
find a bijective 2× 2 block matrix

a =
(

op+(a) k
b q

)
:
L2(R+)
⊕

Cj−
→
L2(R+)
⊕

Cj+

for suitable j± ∈ N. This is possible if and only if

(6.2) op+(a) : L2(R+)→ L2(R+)

is a Fredholm operator. Set

(6.3) M(a) := {z ∈ C : z = (1− λ)a+
0 + λa−0 , 0 ≤ λ ≤ 1}.

The following result is well-known.

Theorem 6.1. The operator (6.2) is Fredholm if and only if

(6.4) L(a) ∪M(a) ⊂ C \ {0}.

A proof of the Fredholm property of (6.2) under the condition (6.4) is given
in Eskin’s book [7]; it is also noted there that (6.1) is necessary. Details of that
part of the proof may be found in [16].

Corollary 6.2. Let a(τ) ∈ S0
cl(R) be elliptic in the sense L(a) ⊂ C\{0}. Then (6.2)

is a Fredholm operator if and only if

(6.5) 0 6∈M(a).
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The union
C(a) := L(a) ∪M(a)

is a continuous and piecewise smooth curve which can be represented as the image
under a continuous map γ : [0, 1] → C. If (6.4) holds we have a winding number
wind C(a), and there is the well-known relation

ind op+(a) = wind C(a).

Observe that
a−0 = −a+

0 ⇒ 0 ∈M(a),
i.e., the operator (6.2) cannot be Fredholm in this case.

Definition 6.3. A symbol a(τ) ∈ Sµcl(R) for µ ∈ Z is said to have the anti-
transmission property if the coefficients a±j in the asymptotic expansion (3.6)
satisfy the condition

(6.6) a+
j = −a−j for all j ∈ N.

Let Sµ−tr(R) denote the space of all symbols with the anti-transmission property.

Note that (6.6) is just the opposite of (3.9).

Proposition 6.4. Every a(τ) ∈ Sµcl(R) can be written in the form

(6.7) a(τ) =
1
2
(atr(τ) + a−tr(τ)) + c(τ)

for suitable atr(τ) ∈ Sµtr(R), a−tr(τ) ∈ Sµ−tr(R), c(τ) ∈ S(R).

Proof. Similarly as (??), (3.6) we form a symbol

b(τ) ∼
∞∑
j=0

χ(τ)(a−j θ
+(τ) + a+

j θ
−(τ))(iτ)µ−j

belonging to Sµcl(R), where χ(τ) is some excision function. Then we obviously have
atr(τ) := a(τ) + b(τ) ∈ Sµtr(R), a−tr(τ) := a(τ) − b(τ) ∈ Sµ−tr(R), and we obtain
the relation (6.7).

Remark 6.5. A symbol a(τ) ∈ Sµcl(R) has the anti-transmission property exactly
when

(6.8) a(µ−j)(τ) = (−1)µ−j+1a(µ−j)(−τ)
for all τ ∈ R \ {0} and all j ∈ N.

In fact, the anti-transmission property means that

a(µ−j)(τ) = (cjθ+(τ)− cjθ−(τ))(iτ)µ−j

for constants cj := a+
j ∈ C. This yields the relation

a(µ−j)(−τ) = (cjθ+(−τ)− cjθ−(−τ))(−iτ)µ−j

= (−1)µ−j(cjθ−(τ)− cjθ+(τ)) = (−1)µ−j+1a(µ−j)(τ),
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using θ+(−τ) = θ−(τ), θ−(−τ) = θ+(τ).
Conversely, from (6.8) we obtain

{a+
j θ

+(τ) + a−j θ
−(τ)}(iτ)µ−j = (−1)µ−j+1{a+

j θ
+(−τ) + a−j θ

−(−τ)}(−iτ)µ−j

= {θ−a+
j θ

−(τ) + a−j θ
+(τ)}(iτ)µ−j .

This gives us a+
j = −a−j which are the conditions of Definition 6.3.

Observe that there is also a higher-dimensional analogue of Definition 4.11
for symbols p(y, t, η, τ) ∈ Sµcl(Ω× R+ × Ry,τ ) where instead of (4.18) we ask

Dα
y,tD

β
η,τ{p(µ−j)(y, t, η, τ)− (−1)µ−j+1p(µ−j)(y, t,−η,−τ)} = 0

on {(y, t, η, τ) : y ∈ Ω, t = 0, η = 0, τ ∈ R \ {0}} for all α, β, j. This gives us the
symbol class Sµ−tr(Ω× R+ × Rn). There is then a higher-dimensional analogue of
Proposition 6.4.

In fact, let a(y, t, η, τ) ∈ Sµcl(Ω × R+ × Rn) be arbitrary, and define the
homogeneous components

atr,(µ−j)(y, t, η, τ) := a(µ−j)(y, t, η, τ) + (−1)µ−ja(µ−j)(y, t,−η,−τ)

and

a−tr,(µ−j)(y, t, η, τ) := a(µ−j)(y, t, η, τ)− (−1)µ−ja(µ−j)(y, t,−η,−τ)

for all j and (y, t, η, τ) ∈ Ω× R+ × Rn \ {0}. Then we have

atr,(µ−j)(y, t, η, τ)− (−1)µ−jatr,(µ−j)(y, t,−η,−τ)
= a(µ−j)(y, t, η, τ) + (−1)µ−ja(µ−j)(y, t,−η,−τ)
− (−1)µ−j{a(µ−j)(y, t,−η − τ) + (−1)µ−ja(µ−j)(y, t, η, τ)} = 0,

and

a−tr,(µ−j)(y, t, η, τ) + (−1)µ−ja−tr,(µ−j)(y, t,−η,−τ)
= a(µ−j)(y, t, η, τ)− (−1)µ−ja(µ−j)(y, t,−η,−τ)

+ (−1)µ−j{a(µ−j)(y, t,−η,−τ)− (−1)µ−ja(µ−j)(y, t, η, τ)} = 0

for all j and (y, t, η, τ) ∈ Ω× R+ × (Rn \ {0}). In other words, if we define

atr(y, t, η, τ) ∼
∞∑
j=0

χ(η, τ)atr,(µ−j)(y, t, η, τ),

a−tr(y, t, η, τ) ∼
∞∑
j=0

χ(η, τ)a−tr,(µ−j)(y, t, η, τ),

then atr has the transmission property, a−tr the anti-transmission property; here
χ(η, τ) is any excision function. Thus we have proved the following result.
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Proposition 6.6. Every symbol a(y, t, η, τ) ∈ Sµcl(Ω × R+ × Rn) can be written in
the form

a(y, t, η, τ) =
1
2
{atr(y, t, η, τ) + a−tr(y, t, η, τ)}+ c(y, t, η, τ)

for symbols atr(y, t, η, τ) ∈ Sµtr(Ω×R+×Rn), a−tr(y, t, η, τ) ∈ Sµ−tr(Ω×R+×Rn)
(uniquely determined modS−∞(Ω×R+×Rn)), c(y, t, η, τ) ∈ S−∞(Ω×R+×Rn).

The role of those considerations here is not to really carry out a calculus
of BVPs having the anti-transmission property. As noted at the beginning such
a calculus is possible indeed, however, based on tools from the cone and edge
calculus that go beyond the scope of this exposition. Let us only mention that
for such a program we need to reorganise both the symbolic structure and the
operator conventions of our operators as well as the spaces that substitute the
standard Sobolev spaces. Details on the new boundary symbolic calculus for zero
order operators on the half-axis may be found in [7], and in [20]. Concerning the
cone and edge calculus in general, cf. [17], [18], [19].
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