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Abstract

We establish a parameter-dependent pseudo-differential calculus on
an infinite cylinder, regarded as a manifold with conical exits to infinity.
The parameters are involved in edge-degenerate form, and we formulate
the operators in terms of operator-valued amplitude functions.
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Introduction

The analysis of (pseudo-) differential operators on a manifold (stratified space)
with higher polyhedral singularities employs to a large extent parameter-
dependent families of operators on a (in general singular) base X of a cone,
where the parameters (ρ, η) have the meaning of covariables in cone axis and
edge direction, respectively. These covariables appear in edge-degenerate form,
i.e., in the combination (rρ, rη) where r ∈ R+ is the axial variable of the cone
X∆ = (R+×X)/({0}×X) with base X. For operators on a wedge X∆×Ω 3 (·, y)
it is essential to understand the structure of what we call edge symbols, together
with associated weighted distributions on the cone. It is natural to split up the
investigation into a part for r → 0, i.e., close to the tip of the cone and a part
for r →∞, the conical exit to infinity. For higher corner theories it is desirable
to do that in an axiomatic manner, i.e.

, to point out those structures which make the calculus iterative. For the case
r → 0 the authors developed in [1] such an axiomatic approach. What concerns
r → ∞ it seems to be advisable first to concentrate on the case when the base
X is smooth and compact. It turns out that the edge-degeneration of symbols
in a calculus on R up to infinity causes a highly non-standard behaviour with
respect to symbolic rules for operator-valued symbols (to be invented in the
right manner). This has to be analysed first, where the approach should rely on
the principles and key properties that are essential for the iteration. The goal
of our paper is just to develop some crucial steps in that sense.

To be more precise, we show (here for a smooth compact manifold as the
base of a cone) how very simple and general phenomena on the norm-growth
of parameter-dependent pseudo-differential operators in the sense of Theorem
1.1.1 are sufficient to induce the essential properties of a calculus on the man-
ifold X³ ∼= R × X with conical exits r → ±∞. In other words, knowing a
suitable variant of Theorem 1.1.1 for a singular (compact) manifold, we can
expect essentially the same things on the respective singular cylinder. Details
in that case go beyond the scope of the present paper; let us only note that the
article [1] just contains an analogue of Theorem 1.1.1 for a base manifold with
edge. We introduce here a pseudo-differential calculus in spaces Hs,g

cone(X
³) in

a self-contained manner, including those spaces themselves. In the smooth case
there is, of course, also a completely in dependent approach, usually organised
without parameter η, well-known under the key-words operators on manifolds
with conical exit to infinity, here realised on such a manifold X³ modelled on an
infinite cylinder. Concerning the generalities we refer to Shubin [13], Parenti [9],
Cordes [5], or to the corresponding sections in [10]. There are also several papers
for singular X, cf., for instance, [11], or [3], [4], but those are based on more
direct information from corner-degenerate symbols. We think that the present
idea admits to manage the iterative process for higher singularities in a more
transparent way.
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1 A new class of operator-valued symbols

1.1 Edge-degenerate families on a smooth compact man-
ifold

Edge-degenerate families of pseudo-differential operators occur in connection
with the edge symbols of operators of the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y) (−r∂r)
j (rDy)α (1.1)

with coefficients ajα ∈ C∞
(
R+ × Ω, Diffµ−(j+|α|)(X)

)
for an open set Ω ⊆

Rq
y; here X is a smooth compact manifold, and Diffν(X) is the space of all

differential operators of order ν on X with smooth coefficients. The analysis of
such edge-degenerate operators is crucial for understanding the solvability of
elliptic equations on spaces with polyhedral singularities, (cf. [12],[2], or [8]).
Apart from the standard homogeneous principal symbol of (1.1) which is a C∞

function on T ∗(R+ ×X × Ω) \ 0, we have the so-called principal edge symbol

σ∧(A) := r−µ
∑

j+|α|≤µ

ajα(0, y) (−r∂r)
j (rη)α (1.2)

parametrised by (y, η) ∈ T ∗Ω \ 0 and with values in Fuchs type differential
operators on the open infinite stretched cone X∧ := R+×X with base X. For the
construction of parametrices of A (in the elliptic case) we need to understand, in
particular, the nature of parameter-dependent parametrices of operator families

r−µ
∑

j+|α|≤µ

ajα(0, y)(−irρ)j(rη)α (1.3)

on R+ × X for r → ∞. We often set ρ̃ = rρ, η̃ = rη. If A is edge-degenerate
elliptic (cf. [10],[6]) it turns out that

∑
j+|α|≤µ ajα(0, y)(−iρ̃)j(η̃)α is parameter-

dependent elliptic on X with parameters (ρ̃, η̃) ∈ R1+q, for every fixed y ∈ Ω. Let
Lµ

cl(X;Rl) denote the set of all parameter-dependent classical pseudo-differential
operators of order µ ∈ R on the manifold X, with parameters λ ∈ Rl, l ∈ N.
That means, the amplitude functions a(x, ξ, λ) in local coordinates x ∈ Rn on X
are classical symbols of order µ in (ξ, λ). The space L−∞(X;Rl) of parameter-
dependent smoothing operators is defined via kernels in S(

Rl, C∞(X ×X)
)

(a
fixed Riemannian metric on X admits to identify C∞(X×X) with corresponding
integral operators).
For future references we state and prove a standard property of parameter-
dependent operators.

Theorem 1.1.1. Let M be a closed compact C∞ manifold and A(λ) ∈
Lµ

cl(M ;Rl) a parameter-dependent family of order µ, and let ν ≥ µ. Then there
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is a constant c = c(s, µ, ν) > 0 such that

‖A(λ)‖L(Hs(M),Hs−ν(M)) ≤ c〈λ〉max{µ,µ−ν}. (1.4)

In particular, for µ ≤ 0, ν = 0 we have

‖A‖L(Hs(M),Hs(M)) ≤ c〈λ〉µ. (1.5)

Moreover, for every s′, s′′ ∈ R and every N ∈ N there exists a µ(N) ∈ R such
that for every µ ≤ µ(N), k := µ(N)− µ, and A(λ) ∈ Lµ

cl(M ;Rl) we have

‖A‖L(Hs′ (M),Hs′′ (M)) ≤ c〈λ〉−N−k. (1.6)

for all λ ∈ Rl, and a constant c = c(s′, s′′, µ,N, k) > 0.

Proof. In this proof we write ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′ (M),Hs′′ (M)). The estimates
(1.4) and (1.5) are standard. Concerning (1.6) we first observe that we have to
choose µ so small that A(λ) : Hs′(M) → Hs′′(M) is continuous. This is the case
when s′′ ≤ s′ − µ, i.e., µ ≤ s′ − s′′. Let Rs′′−s′(λ) ∈ Ls′′−s′

cl (M,Rl) be an order
reducing family with the inverse Rs′−s′′(λ) ∈ Ls′−s′′

cl (M,Rl). Then we have

Rs′′−s′(λ) : Hs′′(M) → Hs′(M),

i.e., Rs′′−s′(λ)A(λ) : Hs′(M) → Hs′(M). The estimate (1.5) gives us

‖Rs′′−s′(λ)A(λ)‖s′,s′ ≤ c〈λ〉µ+(s′′−s′)

for µ ≤ s′ − s′′. Moreover, (1.4) yields ‖Rs′−s′′(λ)‖s′,s′′ ≤ c〈λ〉s′−s′′ . Thus

‖A(λ)‖s′,s′′ = ‖Rs′−s′′(λ)Rs′′−s′(λ)A(λ)‖s′,s′′

≤ ‖Rs′−s′′(λ)‖s′,s′′‖Rs′′−s′(λ)A(λ)‖s′,s′ ≤ c〈λ〉(s′−s′′)+µ+(s′′−s′) = c〈λ〉µ.

In other words, when we choose µ(N) in such a way that µ ≤ s′ − s′′, and
µ(N) ≤ −N , then (1.6) is satisfied. In addition, if we take µ = µ(N) − k for
some k ≥ 0 then (1.6) follows in general.

Corollary 1.1.2. Let A(λ) ∈ Lµ
cl(M ;Rl), and assume that the estimate

‖A(λ)‖s′,s′′ ≤ c〈λ〉−N

is true for given s′, s′′ ∈ N and some N . Then we have

‖Dα
λA(λ)‖s′,s′′ ≤ c〈λ〉−N−α

for every α ∈ Nl.
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Since we are interested in families for r →∞ it will be convenient to ignore
the specific edge-degenerate behaviour for r → 0 and to consider the cylinder
R × X rather than R+ × X. Far from r = ±∞ our calculus will be as usual;
therefore, for convenience, we fix a strictly positive function r → [r] in C∞(R)
such that [r] = |r| for |r| > R for some R > 0. The operator-valued amplitude
functions in our calculus on R×X are operator families of the form

a(r, ρ, η) = ã(r, [r]ρ, [r]η)

where ã(r, ρ̃, η̃) ∈ C∞
(
R, Lµ

cl(X;R1+q
ρ̃,η̃ )

)
. In addition it will be important to

specify the dependence of the latter function for large |r|. In other words, the
crucial definition is as follows.

Definition 1.1.3. (i) Let E be a Fréchet space with the (countable) system
of semi-norms (πj)j∈N; then Sν(R, E), ν ∈ R, is defined to be the set of
all a(r) ∈ C∞(R, E) such that

πj

(
Dk

r a(r)
) ≤ c[r]ν−k

for all r ∈ R, k ∈ N, with constants c = c(k, j) > 0,

(ii) Sµ,ν for µ, ν ∈ R denotes be the set of all operator families

a(r, ρ, η) = ã(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµ

cl(X;R1+q
ρ̃,η̃ )

)
(referring to the natural nuclear

Fréchet topology of the space Lµ
cl(X;R1+q

ρ̃,η̃ )).

We first establish some properties of Sµ,ν that play a role in our calculus.

Proposition 1.1.4. (i) ϕ(r) ∈ Sσ(R), a(r, ρ, η) ∈ Sµ,ν implies ϕ(r)a(r, ρ, η)
∈ Sµ,σ+ν .

(ii) For every k, l ∈ N we have

a ∈ Sµ,ν ⇒ ∂l
ra ∈ Sµ,ν−l, ∂k

ρa ∈ Sµ−k,ν+k, ∂k
ηa ∈ Sµ−k,ν+k.

(iii) a(r, ρ, η) ∈ Sµ,ν , b(r, ρ, η) ∈ Sµ̃,ν̃ implies a(r, ρ, η)b(r, ρ, η) ∈ Sµ+µ̃,ν+ν̃ .

Proof. (i) is evident. (ii) For simplicity we assume q = 1 and compute

∂rã(r, [r]ρ, [r]η) =
(
(∂r + [r]′ρ∂ρ̃ + [r]′η∂η̃)ã

)
(r, [r]ρ, [r]η)

where [r]′ := ∂r[r]. Since ρ̃ã(r, ρ̃, η̃), η̃ã(r, ρ̃, η̃) ∈ Sν(R, Lµ+1
cl (X;R1+q

ρ̃,η̃ )), and
∂ρ̃ã, ∂η̃ã ∈ Sν(R, Lµ−1

cl (X;R1+q)), we obtain

∂rã(r, [r]ρ, [r]η) =
(
(∂r+([r]′/[r])[r]ρ∂ρ̃+([r]′/[r])[r]η∂η̃)ã

)
(r, [r]ρ, [r]η) ∈ Sµ,ν−1.
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It follows that ∂l
ra ∈ Sµ,ν−l for all l ∈ N. Moreover, we have

∂ρã(r, [r]ρ, [r]η) = [r](∂ρ̃ã)(r, [r]ρ, [r]η)

which gives us ∂ρa ∈ Sµ−1,ν+1, and, by iteration, ∂k
ρa ∈ Sµ−k,ν+k. In a similar

manner we can argue for the η-derivatives.
(iii) By definition we have

a(r, ρ, η) = ã(r, [r]ρ, [r]η), b(r, ρ, η) = b̃(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµ

cl(X,R1+q
ρ̃,η̃ )

)
, b̃(r, ρ̃, η̃) ∈ Sν̃

(
R, Lµ̃

cl(X,R1+q
ρ̃,η̃ )

)
. Then the

assertion is a consequence of the relation

(ãb̃)(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lµ+µ̃

cl (X,R1+q
ρ̃,η̃ )

)
.

Corollary 1.1.5. For a(r, ρ, η) ∈ Sµ,ν , b(r, ρ, η) ∈ Sµ̃,ν̃ for every k ∈ N we
have

∂k
ρa(r, ρ, η)Dk

r b(r, ρ, η) ∈ Sµ+µ̃−k,ν+ν̃

Proof. In fact, we have ∂k
ρa(r, ρ, η) ∈ Sµ−k,ν+k, ∂k

r b(r, ρ, η) ∈ Sµ̃,ν̃−k.

Proposition 1.1.6. Let ãj(r, ρ̃, η̃) ∈ Sν(R, Lµ−j
cl (X;R1+q)), j ∈ N, be an arbi-

trary sequence, µ, ν ∈ R fixed. Then there is an ã(r, ρ̃, η̃) ∈ Sν(R, Lµ
cl(X;R1+q))

such that

a−
N∑

j=0

aj ∈ Sν(R, L
µ−(N+1)
cl (X;R1+q))

for every N ∈ N, and a is unique mod Sν
(
R, L−∞cl (X;R1+q)

)
.

Proof. The proof is similar to the standard one on asymptotic summation of
symbols. We can find an asymptotic sum as a convergent series ã(r, ρ̃, η̃) =∑∞

j=0 χ ((ρ̃, η̃)/cj) ãj(r, ρ̃, η̃) for some excision function χ in R1+q, with a se-
quence cj > 0, cj → ∞ as j → ∞ so fast, that

∑∞
j=N+1 χ ((ρ̃, η̃)/cj) ã(r, ρ̃, η̃)

converges in Sν(R, L
µ−(N+1)
cl ) for every N .

1.2 Continuity in Schwartz spaces

Theorem 1.2.1. Let p(r, ρ, η) = p̃(r, [r]ρ, [r]η), p̃(r, ρ̃, η̃) ∈ Sν
(
R, Lµ

cl(X;
R1+q

ρ̃,η̃ )
)
, i.e., p(r, ρ, η) ∈ Sµ,ν . Then Opr(p)(η) induces a family of continuous

operators
Opr(p)(η) : S(

R, C∞(X)
) → S(

R, C∞(X)
)

for every η 6= 0.
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Proof. We have

Opr(p)(η)u(r) =
∫

eirρp(r, ρ, η)û(ρ)d̄ρ,

first for u ∈ C∞0
(
R, C∞(X)

)
. In the space S(

R, C∞(X)
)

we have the semi-norm
system

πm,s(u) = max
α+β≤m

sup
r∈R

‖[r]α∂β
r u(r)‖Hs(X)

for m ∈ N, s ∈ Z, which defines the Fréchet topology of S(
R, C∞(X)

)
.

If necessary we indicate the variable r, i.e., write πm,s;r rather than πm,s.
The Fourier transform Fr→ρ induces an isomorphism

F : S(
Rr,H

s(X)
) → S(

Rρ,H
s(X)

)

for every s. For every m ∈ N there exists a C > 0 such that

πm,s;ρ(Fu) ≤ Cπm+2,s;r(u) (1.7)

for all u ∈ S(R,Hs(X)) (see [7, Chapter 1] for scalar functions; the case of
functions with values in a Hilbert space is completely analogous). We have to
show that for every m̃ ∈ N, s̃ ∈ Z there exist m ∈ N, s ∈ Z, such that

πm̃,s̃

(
(Op(p)u)(r)

) ≤ cπm,s(u) (1.8)

for all u ∈ S(
R, C∞(X)

)
, for some c = c(m̃, s̃) > 0. According to Proposition

1.3.3 below we write the operator Op(p)(η) in the form

Opr(p)(η) ◦ 〈r〉−M ◦ 〈r〉M = 〈r〉−MOpr(bMN )(η) ◦ 〈r〉M + Opr(dMN )(η) ◦ 〈r〉M
(1.9)

for a symbol bMN (r, ρ, η) ∈ Sµ,ν and a remainder dMN (r, ρ, η) satisfying esti-
mates analogously as (1.17).

We have

‖Opr(p)(η)u(r)‖H s̃(X) = ‖
∫

eirρp(r, ρ, η)û(ρ)d̄ρ‖H s̃(X)

≤ ‖
∫

eirρ〈r〉−MbMN (r, ρ, η)
(〈r〉Mu

)∧(ρ)d̄ρ‖H s̃(X)

+ ‖Opr(dMN )(η)(〈r〉Mu(r))‖H s̃(X). (1.10)

For the first term on the right of (1.10) we obtain for s := s̃ + µ and arbitrary
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M̃ ∈ N

‖
∫

eirρ〈ρ〉−fM 〈r〉−MbMN (r, ρ, η)〈ρ〉fM(〈r〉Mu
)∧(ρ)d̄ρ‖H s̃(X)

≤
∫
‖〈ρ〉−fM 〈r〉−MbMN (r, ρ, η)〈ρ〉fM(〈r〉Mu

)∧(ρ)‖H s̃(X)d̄ρ

≤ c sup
(r,ρ)∈R2

〈ρ〉−fM 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X))

∫
〈ρ〉fM‖(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ.

Moreover, we have
∫
〈ρ〉fM‖(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ ≤ sup
ρ∈R

〈ρ〉fM+2‖(〈r〉Mu
)∧(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ

≤ cπfM+2,s;ρ

((〈r〉Mu
)∧(ρ)

) ≤ πfM+4,s;r
(〈r〉Mu)) ≤ cπ

M+fM+4,s;r
(u)

Here we employed the estimate (1.7). Thus (1.10) yields

π0,s̃(Op(p)(η)u) ≤ c sup
(r,ρ)∈R2

〈ρ〉−fM 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X))

π
M+fM+4,s;r

(u) + π0,s̃(Opr(dMN )(η)(〈r〉Mu)). (1.11)

The factor c sup(r,ρ)∈R2〈ρ〉−fM 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) in front of
π

M+fM+4
(u) is finite when we choose M so large that ν − M ≤ 0 and M̃ so

large that
sup
ρ∈R

〈ρ〉−fM‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) < ∞.

Next we consider the second term on the right hand side of (1.11). We have

‖Opr(dMN )(η)〈r〉Mu(r)‖H s̃(X)

=
∥∥∥∥
∫

eirρ〈ρ〉−MdMN (r, ρ, η)〈ρ〉M (〈r〉Mu)∧(ρ)d̄ρ

∥∥∥∥
H s̃(X)

≤
∫
‖〈ρ〉−MdMN (r, ρ, η)〈ρ〉M(〈r〉Mu

)∧(ρ)‖H s̃(X)d̄ρ

≤
∫

sup
(r,ρ)∈R2

‖〈ρ〉−MdMN (r, ρ, η)‖L(H s̃(X),Hs(X))‖〈ρ〉M
(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ.

From the analogue of the estimate (1.17) for dMN (r, ρ, η) we see that for N
sufficiently large it follows that the right hand side of the latter expression can
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be estimated by

c

∫
‖〈ρ〉M(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ

≤ sup
ρ∈R

〈ρ〉M+2‖(〈r〉Mu
)∧(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ.

≤ cπ2M+2,s;ρ(û(ρ)) ≤ cπ2M+4,s;r(u).

In other words we proved

π0,s̃(Op(p)(η)) ≤ c{π
M+fM+4,s

(u) + π2M+4,s(u)} ≤ cπL,s(u) (1.12)

for s = s̃ + µ, L := max{M + M̃ + 4, 2M + 4}. Now we write

∂rOp(p)(η)u(r) =
∫

eirρ{i∂ρ + ∂r}p(r, ρ, η)û(ρ)d̄ρ,

rOp(p)(η)u(r) =
∫

eirρ(i∂ρp(r, ρ, η))û(ρ)d̄ρ +
∫

eirρip(r, ρ, η)∂ρû(ρ)d̄ρ.

From Proposition 1.1.4 we have

{i∂ρ + ∂r}p(r, ρ, η) ∈ Sµ−1,ν+1 + Sµ,ν−1 ⊆ Sµ,ν+1, i∂ρp(r, ρ, η) ∈ Sµ−1,ν+1.

Since the estimate (1.12) is true for elements in the respective symbol classes of
arbitrary order, it follows altogether the estimate (1.8) for every m̃ ∈ N, s̃ ∈ Z
and suitable m, s.

1.3 Leibniz products and remainder estimates

Let ã(r, ρ̃, η̃) ∈ Sν(R, Lµ
cl), b̃(r, ρ̃, η̃) ∈ Sν̃(R, Lµ̃

cl) where Lµ
cl = Lµ

cl(X;R1+q
ρ̃,η̃ ). The

operator functions

a(r, ρ, η) := ã(r, [r]ρ, [r]η), b(r, ρ, η) := b̃(r, [r]ρ, [r]η)

will be interpreted as amplitude functions of a pseudo-differential calculus on R
containing η as a parameter (below we assume η 6= 0). We intend to apply an
analogue of Kumano-go’s technique [7] and form the oscillatory integral

a#b(r, ρ, η) =
∫∫

e−itτa(r, ρ + τ, η)b(r + t, ρ, η)dtd̄τ (1.13)

which has the meaning of a Leibniz product, associated with the composition
of operators. The rule

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) (1.14)
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for η 6= 0 will be justified afterwards. Similarly as in [7], applying Taylor’s
formula, the function a#b can be decomposed in the form

a#b(r, ρ, η) =
N∑

k=0

1
k!

∂k
ρa(r, ρ, η)Dk

r b(r, ρ, η) + rN (r, ρ, η) (1.15)

for

rN (r, ρ, η) =
1

N !

∫∫
e−itτ{

∫ 1

0

(1− θ)N (∂N+1
ρ a)(r, ρ + θτ, η)dθ} (1.16)

(DN+1
r b)(r + t, ρ, η)dtd̄τ.

By virtue of Corollary 1.1.5 we have 1
k!∂

k
ρa(r, ρ, η)Dk

r b(r, ρ, η) =: ck(r, ρ, η) for
ck(r, ρ, η) = c̃k(r, [r]ρ, [r]η), c̃k(r, ρ̃, η̃) ∈ Sν+ν̃(R, Lµ+µ̃−k

cl ). Let us now charac-
terise the remainder.

Lemma 1.3.1. For every s′, s′′ ∈ R, l, m, k ∈ N, there is an N ∈ N such that

‖Di
rD

j
ρrN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (1.17)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0, i, j ∈ N, for some constant c =
c(s′, s′′, k, l,m, N, ε) > 0, here ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′ (X),Hs′′ (X)).

Proof. Let us write Sµ,ν := {ã(r, [r]ρ, [r]η) : ã(r, ρ̃, η̃) ∈ Sν(R, Lµ
cl)}. By virtue

of Proposition 1.1.4 we have

∂k
ρ ã(r, [r]ρ, [r]η) ∈ Sµ−k,ν+k, ∂k

r b̃(r, [r]ρ, [r]η) ∈ Sµ̃,ν̃−k

for every k. Let us set

ãN+1(r, [r]ρ + [r]θτ, [r]η) := (∂N+1
ρ a)(r, ρ + θτ, η),

b̃N+1(r + t, [r + t]ρ, [r + t]η) := (DN+1
r b)(r + t, ρ, η).

By virtue of Theorem 1.1.1 for every s0, s
′′ ∈ R and every M there exists a

µ(M) such that for every p(ρ̃, η̃) ∈ Lµ
cl(X;R1+q

ρ̃,η̃ ), µ ≤ µ(M), we have

‖p(ρ̃, η̃)‖s0,s′′ ≤ c〈ρ̃, η̃〉−M (1.18)

for all (ρ̃, η̃) ∈ R1+q, c = c(s0, s
′′, µ, M) > 0. Moreover, for every s′, s0 ∈ R

there exists a B ∈ R such that ‖p(ρ̃, η̃)‖s′,s0 ≤ c〈ρ̃, η̃〉B for all (ρ̃, η̃) ∈ R1+q,
c = c(s′, s0, µ) > 0. We apply this for ãN+1(r, ρ̃, η̃) and b̃N+1(r, ρ̃, η̃), combined
with the dependence on r ∈ R as a symbol in this variable. In other words, we
have the estimates
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‖ãN+1(r, ρ̃, η̃)‖s0,s′′ ≤ c 〈r〉ν+(N+1)〈ρ̃, η̃〉−M , (1.19)

‖b̃N+1(r, ρ̃, η̃)‖s′,s0 ≤ c〈r〉ν̃−(N+1)〈ρ̃, η̃〉B ; (1.20)

here we applied the above-mentioned result to ãN+1 for the pair (s0, s
′′) for

N sufficiently large, and for b̃N+1 the second estimate for (s′, s0) with some
exponent B. Let us take s0 := s′ − µ̃; then we can set B = max{µ̃, 0}. The
remainder (1.16) is regularised as an oscillatory integral in (t, τ), i.e., we may
write

rN (r, ρ, η) =
1

N !

∫∫
e−itτ 〈t〉−2L(1− ∂2

τ )L〈τ〉−2K(1− ∂2
t )K (1.21)

{ ∫ 1

0

(1− θ)N ãN+1(r, [r]ρ + [r]θτ, [r]η)dθ
}

b̃N+1(r + t, [r + t]ρ, [r + t]η)dtd̄τ

for sufficiently large L,K. For simplicity from now on we assume q = 1; the
considerations for the general case are completely analogous. Then we have for
every l ≤ L

∂2l
τ ãN+1(r, [r]ρ + [r]θτ, [r]η) =

(
∂2l

ρ̃ ãN+1

)
(r, [r]ρ + [r]θτ, [r]η)([r]θ)2l,

and for every k ≤ K

∂2k
t b̃N+1(r + t, [r + t]ρ, [r + t]η) =

(
∂2k

t b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)

+
(
∂2k

ρ̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(ρ∂t[r + t])2k

+
(
∂2k

η̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(η∂t[r + t])2k + R,

where R denotes several mixed derivatives. From (1.19) we have

‖∂2l
τ ãN+1(r, [r]%+r[θ]τ, [r]η)‖s0,s′′ ≤ c〈r〉ν+(N+1)〈[r]%+[r]θτ, [r]η〉−M−2l([r]θ)2l,

(1.22)
see Corollary 1.1.2, and (1.20) gives us

‖(∂2k
t b̃N+1)(r+t, [r+t]%, [r+t]η)‖s′,s0 ≤ c〈r+t〉ν̃−(N+1)〈[r+t]%, [r+t]η〉B (1.23)

(where we take N so large that ν̃ − (N + 1) ≤ 0), and

‖(∂2k
%̃ b̃N+1

)
(r + t, [r + t]%, [r + t]η)(%∂t[r + t])2k‖s′,s0 (1.24)

≤ c〈r + t〉ν̃−(N+1)〈[r + t]%, [r + t]η〉B−2k|%∂t[r + t]|2k,

‖(∂2k
η̃ b̃N+1

)
(r + t, [r + t]%, [r + t]η)(η∂t[r + t])2k‖s′,s0 (1.25)

≤ c〈r + t〉ν̃−(N+1)〈[r + t]%, [r + t]η〉B−2k|η∂t[r + t]|2k.



1 A NEW CLASS OF OPERATOR-VALUED SYMBOLS 12

The above-mentioned mixed derivatives admit similar estimates (in fact, better
ones; so we concentrate on those contributed by (1.22), (1.23), (1.24), (1.25)).

We now derive an estimate for ‖rN (r, %, η)‖s′,s′′ . Using the relation (1.21) we
have

‖rN (r, %, η)‖s′,s′′ ≤
∫∫ ∫ 1

0

‖〈t〉−2L(1− ∂2
τ )L〈τ〉−2K(1− ∂2

t )K

(1− θ)N ãN+1(r, [r]% + [r]θτ, [r]η)b̃N+1(r + t, [r + t]%, [r + t]η)‖s′,s′′dθdtd̄τ.

The operator norm under the integral can be estimated by expressions of the
kind

I := c〈r〉ν+(N+1)〈r + t〉ν̃−(N+1)〈t〉−2L〈τ〉−2K〈[r]ρ + [r]θτ, [r]η〉−M−2l([r]θ)2l

〈[r + t]ρ, [r + t]η〉B{
1 + 〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|}

l ≤ L, k ≤ K, plus terms from R of a similar character. We have, using Peetre’s
inequality,

〈r〉ν+(N+1)〈r + t〉ν̃−(N+1) ≤ 〈r〉ν+ν̃〈t〉|ν̃−(N+1)|.

Moreover, we have 〈[r]ρ + [r]θτ, [r]η〉−2l([r]θ)2l ≤ c〈[r]η〉−2l[r]2l ≤ c for |η| ≥
ε > 0 (as always, c denotes different constants), and

〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|
≤ c

{〈[r + t]ρ〉−2k([r + t]|ρ|)2k + 〈[r + t]η〉−2k([r + t]|η|)2k
}
[r + t]−2k ≤ c,

using |(∂t[r + t])2k| ≤ c, [r + t]−2k ≤ c for all r, t ∈ R and |ζ| ≤ c〈ζ〉 for every ζ
in Rd. This yields

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|〈t〉−2L〈τ〉−2K〈[r]ρ + [r]θτ, [r]η〉−M 〈[r + t]ρ, [r + t]η〉B .

Writing M = M ′ + M ′′ for suitable M ′,M ′′ ≥ 0 to be fixed later on, we have

〈[r]ρ + [r]θτ, [r]η〉−M = 〈[r]ρ + [r]θτ, [r]η〉−M ′〈[r]ρ + [r]θτ, [r]η〉−M ′′

≤c〈[r]η〉−M ′〈[r]ρ, [r]η〉−M ′′〈[r]θτ〉M ′′ ≤ c〈[r]η〉−M ′〈[r]ρ〉−M ′′〈[r]θτ〉M ′′
.

We applied once again Peetre’s inequality which gives us also

〈[r + t]ρ, [r + t]η〉B ≤ c〈[r + t]ρ〉B〈[r + t]η〉B

since B ≥ 0. Thus

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|−2L〈τ〉−2K〈[r]θτ〉M ′′

〈[r + t]ρ〉B〈[r]ρ〉−M ′′〈[r + t]η〉B〈[r]η〉−M ′
.
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Let us show
〈t〉−B〈[r + t]ρ〉B〈[r]ρ〉−B ≤ c.

In fact, this is evident in the regions |r| ≤ C, |t| ≤ C or |r| ≥ C, |t| ≤ C
for some C > 0. For |r| ≤ C, |t| ≥ C the estimate essentially follows from
1 + t2ρ2 ≤ (1 + t2)(1 + ρ2). For |r| ≥ C, |t| ≥ C, [r + t] ≤ C the estimate is
evident as well. It remains the case |r| ≥ C, |t| ≥ C, [r + t] ≥ C, where the
estimate follows (for C ≥ 1 so large that [r + t] = |r + t|, [r] = |r|) from

〈t〉−2〈[r + t]ρ〉2〈[r]ρ〉−2 =
1 + |r + t|2|ρ|2

(1 + |t|2)(1 + |rρ|2) ≤
1 + |rρ|2 + 2|rtρ|2|tρ|2
1 + |t|2 + |rρ|2 + |rtρ|2

≤ c
1 + |rρ|2 + |tρ|2 + 2|rtρ|2

1 + |rρ|2 + |tρ|2 ≤ c
(
1 +

2|rtρ|2
1 + |rρ|2 + |tρ|2

)
≤ const.

Here we employed |rtρ|2 ≥ |tρ|2 for |r| ≥ C ≥ 1 and

|rtρ|2
1 + |rρ|2 + |tρ|2 ≤

r2t2

r2 + t2
=

r2

r2 + t2
t2

r2 + t2
≤ const.

Analogously we have 〈t〉−B〈[r + t]η〉B〈[r]η〉−B ≤ c. This gives us the estimate

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K〈[r]θτ〉M ′′〈[r]ρ〉B−M ′′〈[r]η〉B−M ′
.

Finally, using 〈τ〉−M ′′〈r〉−M ′′〈[r]θτ〉M ′′ ≤ c for all 0 ≤ θ ≤ 1 and all r, τ , we
obtain

I ≤ c〈r〉ν+ν̃+M ′′〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K+M ′′〈[r]ρ〉B−M ′′〈[r]η〉B−M ′

for all r, t ∈ R, ρ, τ ∈ R, 0 ≤ θ ≤ 1. Choosing K and L so large that

−2K + M ′′ < −1, |ν̃ − (N + 1)|+ 2B − 2L < −1,

it follows that ‖rN (r, ρ, η)‖s′,s′′ ≤ c〈r〉ν+ν̃+M ′′〈[r]η〉B−M ′〈ρ〉B−M ′′
for η 6= 0

using that 〈[r]ρ〉B−M ′′ ≤ c〈ρ〉B−M ′′
for B −M ′′ ≤ 0. Let us now show that for

B −M ′ ≤ 0
〈[r]η〉B−M ′ ≤ c[r]B−M ′〈η〉B−M ′

(1.26)

for all |η| ≥ ε > 0 and some c = c(ε) > 0. In fact, we have

[r]2〈η〉2
1 + |[r]η|2 =

[r]2

1 + |[r]η|2
〈η〉2

1 + |[r]η|2 ≤ c
1

[r]−2 + |η|2
1

|η|−2 + [r]−2
≤ c,

i.e., (1 + |[r]η|2)−1 ≤ c[r]−2〈η〉−2 which entails the estimate (1.26). It follows

‖rN (r, ρ, η)‖s′,s′ ≤ c〈r〉ν+ν̃+M ′′+B−M ′〈ρ〉B−M ′′〈η〉B−M ′

Now B is fixed, and M, M ′′ can be chosen independently so large that

B −M ′′ ≤ −k, B −M ′ ≤ −m, ν + ν̃ + M ′′ + B −M ′ ≤ −l.
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Therefore, we proved that for every s′, s′′ ∈ R and k, l, m ∈ N there is an N ∈ N
such that

‖rN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (1.27)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0. In an analogous manner we can show the
estimates (1.17) for all i, j.

Remark 1.3.2. For future references we call an operator Opr(rN )(η) for an
operator function rN (r, ρ, η) satisfying the estimate (1.27) smoothing of degree
(k, l) (with respect to given fixed s′, s′′). A similar notation makes sense and will
be used below when we ignore η and replace 〈η〉−m by some fixed constant > 0.

Proposition 1.3.3. For every a(r, ρ, η) ∈ Sµ,ν and ϕ(r) = [r]ν̃ (which be-
longs to S0,ν̃) for every η 6= 0 we have (as operators Opr

(
ã(r, [r]ρ, [r]η)

)
:

C∞0
(
R, C∞(X)

) → C∞
(
R, C∞(X)

)
)

Opr(a)(η) ◦ ϕ = ϕ ◦Opr(b)(η) + d(η) (1.28)

for some b(r, ρ, η) ∈ Sµ,ν and a remainder d(η) = Opr(rN )(η) which is an
operator function rN (r, ρ, η) ∈ C∞

(
R×R×Rq

η, L
(
Hs′(X),Hs′′(X)

))
for every

given s′, s′′ and sufficiently large N = N(s′, s′′) ∈ N, satisfying the estimates
(1.17) for all (r, ρ) ∈ R2 and all |η| ≥ ε > 0.

Proof. We apply the relation (1.15) to the case b(r, ρ, η) = ϕ(r) and obtain

Op(a) ◦ ϕ = Op(a#ϕ) =
N∑

k=0

Op
( 1
k!

∂k
ρa(r, ρ, η)Dk

r ϕ(r)
)

+ Op(rN ).

According to Corollary 1.1.5 we can form
(
∂k

ρaDk
r ϕ

)
(r, [r]ρ, [r]η) with(

∂k
ρaDrϕ

)
(r, ρ̃, η̃) ∈ Sν+ν̃(R, Lµ−k

cl (X;R1+q)). There is then a c̃N (r, ρ̃, η̃) ∈
Sν+ν̃(R, L

µ−(N+1)
cl (X;R1+q)) which is the asymptotic sum of the symbols

1
k!

(
∂k

ρaDk
r ϕ

)
(r, ρ̃, η̃) over k ≥ N + 1. Writing cN (r, ρ, η) = c̃N (r, [r]ρ, [r]η) we

obtain
a#b(r, ρ, η) = pN (r, ρ, η) + dN (r, ρ, η)

for pN (r, ρ, η) = p̃N (r, [r]ρ, [r]η),

pN (r, ρ, η) =
N∑

k=0

1
k!

∂k
ρa(r, ρ, η)Dk

r ϕ(r) + cN (r, ρ, η) ∈ Sµ,ν+ν̃

and dN (r, ρ, η) = rN (r, ρ, η) − cN (r, ρ, η). Now rN (r, ρ, η) satisfies the desired
estimates. Similarly as in connection with (1.18) for every s′, s′′ ∈ R and M ∈ N
we find an N ∈ N sufficiently large such that

‖cN (r, ρ̃, η̃)‖s′,s′′ ≤ c〈r〉ν+ν̃〈ρ̃, η̃〉−4M .
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This entails.

‖cN (r, [r]ρ, [r]η)‖s′,s′′ ≤ c〈r〉ν+ν̃〈[r]ρ, r[η]〉−4M

for all r, ρ, η. Now

〈[r]ρ, r[η]〉−4 = [r]−4

(
1

1+[r]2ρ2+[r]2η2

[r]2

)2

= [r]−4 1
[r]−2 + ρ2 + η2

1
[r]−2 + ρ2 + η2

≤ c[r]−4〈ρ〉−2〈η〉−2

for |η| ≥ ε > 0, for a constant c = c(ε) > 0. We thus obtain

‖cN (r, [r]ρ, [r]η)‖s′,s′′ ≤ c〈r〉ν+ν̃−4M 〈ρ〉−2M 〈η〉−2M .

This completes the proof since M is arbitrary.
Let us now return to the interpretation of (1.13) as the left symbol of a

composition of operators. From Theorem 1.2.1 we know that

Opr(a)(η), Opr(b)(η) : S(
R, C∞(X)

) → S(
R, C∞(X)

)

are continuous operators. Thus also Opr(a)(η)Opr(b)(η) is continuous between
the Schwartz spaces. This shows, in particular, that the oscillatory integral tech-
niques of [7] also apply for our (here operator-valued) amplitude functions, and
we obtain the relation (1.14).

Let A(η) = Opr(a)(η) for

a(r, ρ, η) := ã(r, [r]ρ, [r]η), ã(r, ρ̃, η̃) ∈ Sµ,ν .

Then we form the formal adjoint A∗(η) with respect to the L2(R × X)-scalar
product, according to

(
A(η)u, v

)
L2(R×X)

=
(
u,A∗(η)v

)
L2(R×X)

for all u, v ∈ S(
R, C∞(X)

)
. As usual we obtain

A∗(η)v(r′) = Opr′(a
∗)(η)v(r′)

for the right symbol a∗(r′, ρ, η) = ā(r′, ρ, η) = ˜̄a(r′, [r′]ρ, [r′]η). Similarly as
before we can prove that

Opr′(a
∗)(η) : S(

R, C∞(X)
) → S(

R, C∞(X)
)

is continuous for every η 6= 0. Thus by duality it follows that

Opr(a)(η) : S ′(R, E ′(X)
) → S ′(R, E ′(X)

)
(1.29)

is continuous for every η 6= 0. Note here that f ∈ E ′(X) ⇔ f ∈ Hs(X) for
some real s ∈ R; then S ′(R, E ′(X)

)
means the inductive limit of the spaces

L(S(R),Hs(X)
)

over s ∈ R.
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Lemma 1.3.4. For every s′, s′′ ∈ R and l, m, k ∈ N there exists a real
µ(s′, s′′, k, l,m) such that for every a(r, ρ, η) ∈ Sµ,0 we have

‖a(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

whenever µ ≤ µ(s′, s′′, k, l,m), |η| ≥ ε > 0.

Proof. The proof is straightforward, using Theorem 1.1.1, more precisely, writ-
ing a(r, ρ, η) = ã(r, [r]ρ, [r]η), we have the estimate

‖ã(r, ρ̃, η̃)‖s′,s′′ ≤ c〈ρ̃, η̃〉−N

for every fixed N ∈ N when µ is chosen sufficiently negative (depending on
N), uniformly in r ∈ R. Then, similarly as in the proof of Lemma 1.3.1, we
obtain for suitable N and given k, l, m that 〈[r]ρ, [r]η〉−N ≤ c〈ρ〉−k〈r〉−l〈η〉−m

for |η| ≥ ε > 0.

Theorem 1.3.5. For every p̃(r, ρ̃, η̃) ∈ S0
(
R, Ls

cl(X;R1+q
ρ̃,η̃ )

)
, s ≤ 0, and

p(r, ρ, η) = p̃(r, [r]ρ, [r]η), the operator

Opr(p)(η) : L2(R×X) → L2(R×X) (1.30)

is continuous for every η ∈ Rq \ {0}, and we have

‖Opr(p)(η)‖L(L2(R×X)) ≤ c〈η〉s (1.31)

for all |η| ≥ ε, ε > 0 and a constant c = c(ε) > 0.

Proof. For the continuity (1.30) and the estimate (1.31) we apply a version of
the Calderón-Vaillancourt theorem which states that if H is a Hilbert space and
a(r, ρ) ∈ C∞

(
R× R,L(H)

)
a symbol satisfying the estimate

π(a) := sup
k,l=0,1
(r,ρ)∈R2

‖Dl
rD

k
ρa(r, ρ)‖L(H) < ∞ (1.32)

the operator
Opr(a) : L2(R,H) → L2(R,H)

is continuous, where
‖Opr(a)‖L(L2(R,H)) ≤ cπ(a)

for a constant c > 0. In the present case we have

a(r, ρ) = p(r, [r]ρ, [r]η) (1.33)

where η 6= 0 appears as an extra parameter. It is evident that the right hand
side of (1.33) belongs to C∞

(
R×R×Rq,L(L2(X))

)
. From the assumption on

p̃(r, ρ̃, η̃) we have
sup
r∈R

‖p̃(r, ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s (1.34)



1 A NEW CLASS OF OPERATOR-VALUED SYMBOLS 17

for all (ρ̃, η̃) ∈ R1+q and some c > 0. In fact, when p̃ is independent of r the
latter estimate corresponds to (1.4) for s = ν = 0 and µ = s ≤ 0. In the
r-dependent case the operator norms that play a role in Theorem 1.1.1 are
uniformly bounded in r ∈ R, since p̃(r, ρ̃, η̃) is a symbol of order 0 in r with
values in Ls

cl(X;R1+q
ρ̃,η̃ ). For (1.32) we first check the case l = k = 0. We have

sup
(r,ρ)∈R2

〈[r]ρ, [r]η〉s ≤ c〈η〉s (1.35)

for all |η| ≥ ε > 0 and some c = c(ε) > 0. Thus (1.34) gives us

sup
(r,ρ)∈R2

‖p̃(r, [r]ρ, [r]η)‖L(L2(X)) ≤ c〈η〉s

for such a c(ε) > 0. Assume now for simplicity q = 1 (The general case is
analogue). For the first order derivatives of p̃(r, [r]ρ, [r]η) in r we have

∂rp̃(r, [r]ρ, [r]η) = (∂rp̃)(r, [r]ρ, [r]η) + [r]′(ρ∂ρ̃ + η∂η̃)p̃(r, [r]ρ, [r]η) (1.36)

for [r]′ = d
dr [r]. For the derivatives of p̃ with respect to ρ̃, η̃ we employ that

∂ρ̃p̃(r, ρ̃, η̃), ∂η̃p̃(r, ρ̃, η̃) ∈ S0
(
R, Ls−1(X;R1+q

ρ̃,η̃ )
)
. Thus, similarly as before we

obtain
‖∂α

ρ̃,η̃p̃(r, ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s−1

for any α ∈ N2, |α| = 1. This gives us for the summand on the right of (1.36)

sup
(r,ρ)∈R2

‖[r]−1[r]′([r]ρ∂ρ̃ + [r]η∂η̃)p(r, [r]ρ, [r]η)‖L(L2(X))

≤ sup[r]−1|[r]ρ + [r]η|〈rρ, rη〉s−1

≤ c〈η〉s sup[r]−1|[r]ρ, [r]η|〈rρ, rη〉−1 ≤ c〈η〉s.

Here we employed (1.35). For the derivative of p(r, [r]ρ, [r]η) in ρ we have

sup ‖∂ρp̃(r, [r]ρ, [r]η)‖L(L2(X)) = sup ‖[r](∂ρ̃p̃)(r, [r]ρ, [r]η)‖L(L2(X))

≤ c sup[r]〈[r]ρ, [r]η〉s−1 ≤ c〈η〉s

for all |η| ≥ ε > 0. This gives altogether the estimate (1.31).

Theorem 1.3.6. Let p̃(ρ̃, η̃) ∈ Ls
cl(X;R1+q) be parameter-dependent elliptic of

order s ∈ R, and set p(r, ρ, η) = p̃([r]ρ, [r]η). Then there exists a C > 0 such
that for every |η| ≥ C the operator

[r]−sOpr(p)(η) : S(
R, C∞(X)

) → S(
R, C∞(X)

)
(1.37)

extends to an injective operator

[r]−sOpr(p)(η) : L2(R×X) → S ′(R, E ′(X)
)
. (1.38)



1 A NEW CLASS OF OPERATOR-VALUED SYMBOLS 18

More precisely, considering [r]−sOpr(p)(η) as an operator

[r]−sOpr(p)(η) : L2(R×X) → L(〈r〉−gH l(R),Ht(X)
)

(1.39)

which is continuous for some t ∈ R and all g, l ∈ R, then it is injective.

Proof. First, according to (1.29) there is a t such that (1.39) is continuous for
all g, l ∈ R. For the injectivity we show that the operator hast a left inverse.
This will be approximated by Opr(a) for

a(r, ρ, η) := [r]sp̃(−1)([r]ρ, [r]η) (1.40)

where p̃(−1)(ρ̃, η̃) ∈ L−s
cl (X;R1+q) is a parameter-dependent parametrix of

p̃(ρ̃, η̃). Setting
b(r, ρ, η) := [r]−sp̃([r]ρ, [r]η) (1.41)

we can write the composition of the associated pseudo-differential operators in
r for every N ∈ N we have in the form

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) = Opr(1+ cN (r, ρ, η)+ rN (r, ρ, η)) (1.42)

for cN (r, ρ, η) =
∑N

k=1
1
k!∂

k
ρa(r, ρ, η)Dk

r b(r, ρ, η) which has the form cN (r, ρ, η) =
c̃N (r, [r]ρ, [r]η) for some c̃N (r, ρ̃, η̃) ∈ S0

(
R, L−1

cl (X;R1+q)
)
. Moreover, the re-

mainder rN is as in (1.16). From Theorem 1.3.5 for s = −1 we know that

‖Opr(cN )(η)‖L(L2(R×X)) ≤ c〈η〉−1

for |η| > ε. Moreover, Lemma 1.3.1, applied to s′ = s′′ = 0 together with an
operator-valued version of the Calderón-Vaillancourt theorem, gives us

‖Opr(rN )(η)‖L(L2(R×X)) ≤ c〈η〉−1

for sufficiently large N . Thus for every |η| sufficiently large the operator on the
right of (1.42) is invertible in L2(R×X), i.e., Opr(b)(η) has a left inverse which
implies the injectivity.

Remark 1.3.7. Theorem 1.3.6 can easily be generalised to p̃(r, ρ̃, η̃) ∈ S0
(
R,

Ls
cl(X;R1+q)

)
, parameter-dependent elliptic for every fixed r ∈ R, such that

there exists a p̃(−1)(r, ρ̃, η̃) ∈ S0
(
R, L−s

cl (X;R1+q)
)

which is a parameter-
dependent parametrix for every fixed r ∈ R. In other words, for p(r, ρ, η) =
p̃(r, [r]ρ, [r]η) there is a C > 0 such that (1.37) extends to an injective operator
(1.38) for every |η| ≥ C.

In fact, if we form (1.40) and (1.41) in an analogous manner including the
extra r-dependence, we may apply the relation (1.42). The remaining conclusions
in the proof of Theorem (1.3.6) do not depend on the assumption that p̃ is
independent of r.
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2 Parameter-dependent operators on an infinite
cylinder

2.1 Weighted cylindrical spaces

Definition 2.1.1. Let p̃(ρ̃, η̃) ∈ Ls
cl(X;R1+q

ρ̃,η̃ ) be as in Theorem 1.3.6. Then
Hs,g

cone(X³) for s, g ∈ R is defined to be the completion of S(R×X) with respect
to the norm

‖[r]−s+gOpr(p)(η1)u‖L(L2(R×X))

for any fixed η1 ∈ Rq, |η1| ≥ C for some C > 0 sufficiently large.

Setting ps,g(r, ρ, η) := [r]−s+g p̃([r]ρ, [r]η), from Definition 2.1.1 it follows
that

Op(ps,g)(η1) : S(R×X) → S(R×X)

extends to a continuous operator

Op(ps,g)(η1) : Hs,g
cone(X

³) → L2(R×X). (2.1)

Theorem 2.1.2. The operator (2.1) is an isomorphism for every fixed s, g ∈ R
and |η1| sufficiently large.

Proof. We show the invertibility by verifying that there is a right and a left
inverse. By notation we have ps,g(r, ρ, η) = [r]−s+gp̃([r]ρ, [r]η) ∈ Ss,−s+g. The
operator family p̃(ρ̃, η̃) ∈ Ls

cl(X;R1+q
ρ̃,η̃ ) is invertible for large |ρ̃, η̃| ≥ C for

some C > 0. There exists a parameter-dependent parametrix p̃(−1)(ρ̃, η̃) ∈
L−s

cl (X;R1+q
ρ̃,η̃ ) such that p̃(−1)(ρ̃, η̃) = p̃−1(ρ̃, η̃) for |ρ̃, η̃| ≥ C. Let us set

p−s,−g(r, ρ, η) := [r]s−g p̃(−1)([r]ρ, [r]η) ∈ S−s,s−g,

and P s,g(η) := Op(ps,g)(η), P−s,−g(η) := Op(p−s,−g)(η). Then we have

P s,g(η)P−s,−g(η) = 1 + Op(cN )(η) + RN (η) (2.2)

for some cN (r, ρ, η) ∈ S−1,0 and a remainder RN (η) = Op(rN )(η) where rN is
as in Lemma 1.3.1. We have Op(cN )(η) → 0 and RN (η) → 0 in L(L2(R ×X))
as |η| → ∞; the first property is a consequence of Theorem 1.3.5, the second
one of the estimate (1.17). Thus (2.2) shows that P s,g(η) has a right inverse for
|η| sufficiently large. Such considerations remain true when we interchange the
role of s, g and −s,−g. In other words, we also have

P−s,−g(η)P s,g(η) = 1 + Op(c̃N )(η) + R̃N (η)

where Op(c̃N )(η) and R̃N (η) are of analogous behaviour as before. This shows
that P s,g(η) has a left inverse for large |η|, and we obtain altogether that (2.1)
is an isomorphism for η = η1, |η1| sufficiently large.
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2.2 Elements of the calculus

The results of Section 1.3 show the behaviour of compositions of parameter-
dependent families Op(a)(η) for a(r, ρ, η) ∈ Sµ,ν and η 6= 0, first on
S(R × X). In particular, Lemma 1.3.1 suggests the nature of smoothing sym-
bols in such a calculus, namely, to be functions in η 6= 0 with values in
S(
Rr × Rρ,L

(
Hs′(X),Hs′′(X)

))
. Another interpretation of the results is that

we can open an operator algebra on X³ either as an algebra of η-dependent
families or where the value of η 6= 0 is fixed in different ways depending on the
operator. In the latter case Lemma 1.3.1 gives us remainders K where ‖ · ‖s′,s′′

is only estimated by c〈ρ〉−k〈r〉−l without an explicit presence of η. It can be
proved that, when we concentrate, for instance, on the case s′ = s′′ = 0, invert-
ible operators of the form 1 + K : L2(RmesX) → L2(R × X) can be written
in the form 1 + L where L is again an operator of such a behaviour. Moreover,
the composition of such a (smoothing) operator with an operator Op(a)(η),
a ∈ Sµ,ν , η 6= 0 fixed, gives us again an operator, smoothing in that sense.
This can easily be deduced from the estimate (1.4) of Theorem 1.1.1. Moreover,
there are other (more or less standard) constructions that are immediate by the
results of Section 1. For instance, if we look at c(r, ρ, η) ∈ S−1,0 in the relation
(2.2), by a formal Neumann series argument we find a d(r, ρ, η) ∈ S−1,0 such
that (

1 + Op(c)
)(

1 + Op(d)
)

= 1 + Op(rN )

for every N ∈ N with a remainder rN which is again as in Lemma 1.3.1.

Theorem 2.2.1. Let a(r, ρ, η) ∈ Sµ,ν and |η| 6= 0. Then

Op(a)(η) : S(R×X) → S(R×X)

extends to a continuous operator

Op(a)(η) : Hs,g
cone(X

³) → Hs−µ,g−ν
cone (X³) (2.3)

for every s, g ∈ R.

Proof. Let u ∈ S(R×X), and set ‖·‖s,g := ‖·‖Hs,g
cone(X³), in particular, ‖·‖0,0 =

‖ · ‖L2(R×X). By definition we have ‖u‖s,g = ‖Op(ps,g)(η1)‖0,0. Thus

‖Op(a)(η)u‖s−µ,g−ν = ‖Op(ps−µ,g−ν)(η1)Op(a)(η)u‖0,0

= ‖Op(ps−µ,g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)Op(ps,g)(η1)‖0,0 ≤ c‖u‖s,g

for c := ‖Op(ps−µ,g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)‖L(L2(R×X)). It remains to
prove that c is a finite constant. This is completely straightforward when we



REFERENCES 21

replace Op(ps,g)−1(η1) by Op(p−s,−g)(η1); in that case the remarks at the be-
ginning of this section apply immediately, more precisely, we have

Op(ps−µ,g−ν)(η1)Op(a)(η)Op(p−s,−g)(η1) =

Op
(
ps−µ,g−ν(·, η1)a(·, η)p−s,−g(·, η1)

)

(where · stands for r, ρ) modulo a remainder of the form Op(c)+RN and Op(c)
is bounded in L2(R×X) for similar reasons as in Theorem 1.3.5 and the bound-
edness of RN in L2(R × X) is clear anyway. In general, Op(ps,g)−1(η1) has
the form Op(p−s,−g)(η1) + CN (η1) + RN (η1) for CN (η1) = Op(cN (·, η1)) and a
remainder RN (η1) of smoothing behaviour while cN (·, η) belongs to S−s−1,−g.
Then, compared with the first step of the proof, we obtain extra terms, namely,

Op(ps−µ,g−ν)(η1)Op(a)(η)Op(cN )(η1), (2.4)

Op(ps−µ,g−ν)(η1)Op(a)(η)RN (η1) (2.5)

which have to be bounded in L2(R×X). The arguments for (2.4) are of the same
structure as those at the beginning of the proof (the order of cN is even better
than before), while for the composition (2.5) we apply another remark from the
preceding section, namely, that operators that are smoothing up to some degree
(cf. Remark 1.3.2) when composed by other operators of the calculus give rise
again to operators of sufficiently negative degree.
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