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Abstract

We consider a mixed problem for a degenerate differentialoperator
equation of higher order. We establish some embedding theorems in
weighted Sobolev spaces and show existence and uniqueness of the
generalized solution of this problem. We also give a description of the
spectrum for the corresponding operator.

1 Introduction

In this article we consider the mixed problem for the operator equation

Pu ≡ (−1)mDm
t (tαDm

t )u + tαAu = f, (1)

where t ∈ (0, b), α ≥ 0, Dt ≡ d/dt, f ∈ L2,−α((0, b),H), and A : H → H is
a linear operator in a separable Hilbert space H.
Our approach, similar to that used in [3], [15] for the case m = 1 and in [12]
for m = 2, is based on the consideration of the one-dimensional equation
(1), i.e., when A is the operator of multiplication by a number a (see [8]).
Note that in [3], [12] and [13] have been considered Dirichlet problem for the
equation (1). It has been proved in [14] that the spectrum of the operator
Lu ≡ (−1)mt2m−αDm

t (tαDm
t )u, L : Lα−2m → Lα−2m, α 6= 1, 3, . . . , 2m − 1

is purely continuous and coincides with the ray [4−m(1− α)2(3− α)2 · · ·
(2m− 1− α)2; +∞).
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In Section 2 we define the weighted Sobolev spaces Ẇm
α , Wm

α (b), Wm
α (0),

Wm
α , describe the behaviour of the functions from these spaces close to

t = 0 and prove some embedding and compactness theorems. Furthermore
we define the generalized solution for the one-dimensional equation (1) and
give a sufficient condition on the number a which guarantees existence and
uniqueness of the generalized solution for every f ∈ L2,−α.
In Section 3 under some conditions on the spectrum of the operator A we
prove unique solvability of the operator equation (1) for every
f ∈ L2,−α((0, b),H) and give the description of the spectrum for the corre-
sponding operator P = t−αP .
Note that the operator A in the equation (1) in general is unbounded in H.

2 The One-dimensional Case

2.1 Spaces Ẇm
α , Wm

α (b), Wm
α (0) and Wm

α

Let Ċm[0, b] be the set of m–times continuously differentiable functions u(t)
defined on [0, b] and satisfying the conditions

u(k)(t)
∣∣∣
t=0

= u(k)(t)
∣∣∣
t=b

= 0, k = 0, 1, . . . , m− 1. (2)

Let Ẇm
α , α ≥ 0, be the completion of Ċm[0, b] in the norm

|u,Wm
α |2 =

∫ b

0
tα |u(m)(t)|2 dt. (3)

Denote L2,β = {f, |f, L2,β|2 =
∫ b
0 tβ|f(t)|2 dt < ∞}.

Proposition 2.1 For every u ∈ Ẇm
α close to t = 0 we have

|u(j)(t)|2 ≤ Cjt
2m−2j−1−α|u, Ẇm

α |2 (4)

where α 6= 1, 3, . . . , 2m−1, j = 0, 1, . . . , m−1 and in the case α = 2n+1, n =
0, 1, . . . , m − 1, t2m−2j−2n−2| ln t| instead of t2m−2j−1−α in the expression
(4), j = 0, 1, . . . ,m− n− 1 (see [13]).

Proposition 2.2 For every α 6= 1, 3, . . . , 2m − 1 we have a continuous
embedding

Ẇm
α ⊂ L2,α−2m (5)

which is not compact. Moreover for every β > α − 2m the embedding
Ẇm

α ⊂ L2,β is compact.
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For the proof of these propositions see [5], [9] and [13]. Note also that here
for α 6= 1, 3, . . . , 2m− 1 we have used Hardy’s inequality (see [7])

∫ b

0
tβ−2|u(t)|2 dt ≤ 4

(β − 1)2

∫ b

0
tβ|u′(t)|2 dt, β 6= 1 (6)

where the number 4(β − 1)−2 is the best possible constant. Note that for
α = 1, 3, . . . , 2m− 1 the embedding (5) fails.

Remark 2.3 In the space Ẇm
α for α 6= 1, 3, . . . , 2m − 1 we can define

an equivalent norm

||u||2α ≡
∫ b

0

∣∣∣∣
(
tα/2u

)(m)
∣∣∣∣
2

dt. (7)

Indeed, to estimate the norm (7) by the norm (3) we first apply the Leib-
niz rule for differentiation of the expression (tα/2u)(m), then use Hardy’s
inequality (6) for the derivatives u(k)(t), k = 0, 1, . . . , m − 1, and estimate
all terms by

∫ b
0 tα|u(m)(t)|2 dt. To estimate (3) by the norm (7) we first set

u(t) = t−α/2v(t) and after differentiation again use Hardy’s inequality for the
derivatives v(k)(t), k = 0, 1, . . . , m− 1, estimate all terms by

∫ b
0 |v(m)(t)|2 dt

and then return to the function u(t).
Note that Remark 2.3 for the case α < 1 was proved in [6].
Remark 2.3 allows us to write

Ẇm
α = t−α/2Ẇm(0, b).

Denote by Wm
α the completion of Cm[0, b] in the norm

|u,Wm
α |2 =

∫ b

0

(
tα |u(m)(t)|2 + tα|u(t)|2

)
dt. (8)

Proposition 2.4 For every u ∈ Wm
α close to t = 0 we have

|u(j)(t)|2 ≤ (Bj + Cjt
2m−2j−1−α)|u,Wm

α |2, (9)

where α 6= 1, 3, . . . , 2m−1, j = 0, 1, . . . , m−1 and in the case α = 2n+1, n =
0, 1, . . . , m − 1, t2m−2j−2n−2| ln t| instead of t2m−2j−1−α in the expression
(9), j = 0, 1, . . . ,m− n− 1.

Proof. Let 0 < h < b/2m. Then there are constants ajk and bjk, j = 1, 2,
. . . ,m − 1, k = 0, 1, . . . , m − 1, such that for every t ∈ (0, b/2) we have the
following equalities (see [9])

u(j)(t) =
m−1∑

k=0

[
ajku(t + kh) + bjk

∫ t+kh

t
(t + kh− x)m−1u(m)(x) dx

]
. (10)
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For x ∈ [t, t + kh] we have 0 ≤ t + kh− x ≤ (m− 1)h and, therefore,
∣∣∣∣
∫ t+kh

t
(t + kh− x)m−1u(m)(x) dx

∣∣∣∣ ≤ c

∫ b

t
|u(m)(x)| dx. (11)

From (10) together with the inequality (11) we have

|u(j)(t)|2 ≤ c

(
m−1∑

k=0

|u(t + kh)|2 +
(∫ b

t
|u(m)(x)| dx

)2
)

. (12)

Multiplying both sides of (12) by tα and integrating over (0, b/2) for
j = 1, 2, . . . , m− 1 we get

|u(j), L2,α(0, b/2)|2 ≤ c

(
|u, L2,α|2 +

∫ b/2

0
tα

(∫ b

t
|u(m)(x)| dx

)2

dt

)
. (13)

Now for α 6= 1 we can write

∫ b/2

0
tα

(∫ b

t
|u(m)(x)| dx

)2

dt ≤

≤ c

∫ b/2

0
tα(b1−α − t1−α)

(∫ b

t
xα|u(m)(x)|2 dx

)
dt.

In the case α = 1 we proceed in the same way. Therefore, from the inequality
(13) we get the following estimate for the intermediate derivatives u(j)(t),
j = 1, 2, . . . , m− 1 for every α ≥ 0

|u(j), L2,α(0, b/2)| ≤ c|u, Wm
α |. (14)

Inequality (14) is true also for the case t ∈ (b/2, b), because then we indeed
do not have a weight (see [2]).
Let α 6= 1, 3, . . . , 2m− 1 and t0 ∈ (0, b]. Then we can write

u(m−1)(t)− u(m−1)(t0) =
∫ t

t0

u(m)(x) dx. (15)

Therefore, we get

|u(m−1)(t)− u(m−1)(t0)|2 ≤
∣∣∣∣
∫ t

t0

x−α dx

∫ t

t0

xα|u(m)(x)|2 dx

∣∣∣∣ ≤

≤ c|t1−α − t1−α
0 ||u,Wm

α |2.
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From the equality (15) it follows that

∣∣∣u(m−1)(t)
∣∣∣
2
≤ 2

(∣∣∣u(m−1)(t0)
∣∣∣
2
+

∣∣∣∣
∫ t

t0

u(m)(τ) dτ

∣∣∣∣
2
)

. (16)

The second term of the right-hand side of (16) is already estimated. Now
we estimate |u(m−1)(t0)|2. Multiplying both sides of (16) by tα (after inter-
changing t and t0) and integrating over (0, b) we get

∣∣∣u(m−1)(t0)
∣∣∣
2
∫ b

0
tα dt ≤ 2

∣∣∣u(m−1), L2,α

∣∣∣
2
+ 2

∫ b

0
tα

∣∣∣∣
∫ t

t0

u(m)(τ) dτ

∣∣∣∣
2

dt,

which together with (14) proves that |u(m−1)(t0)|2 ≤ c|u,Wm
α |2. From (16)

now we conclude that |u(m−1)(t)|2 ≤ (c1 + c2t
1−α)|u,Wm

α |2, i.e., the inequal-
ity (9) for j = m − 1 is proved. To show (9) for j = m − 2 we employ
the inequality (16) (for m − 1 instead of m), then using (14) we estimate
|u(m−2)(t0)|2 through |u,Wm

α |. Then, using (9) for j = m− 1 we can write

∣∣∣u(m−2)(t)
∣∣∣
2
≤ 2

(
c|u,Wm

α ‖2 + |t− t0||u,Wm
α |2

∣∣∣∣
∫ t

t0

(c1 + c2t
1−α) dt

∣∣∣∣
)

,

i.e., we get (9) for j = m − 2. In similar way we prove the inequality for
1 ≤ j ≤ m−3. If α = 2n+1 for some n = 0, 1, . . . , m−1 then by succesively
estimating of |u(j)(t)|, j = 0, 1, . . . ,m− 1, starting with |u(m−n−1)(t)| up to
|u(t)| instead of t1−α we get | ln t| and then continue the proof in the same
way. Note also that the numbers Bj and Cj for j = 0, 1, . . . ,m − 1 do not
depend on u ∈ Wm

α .
The proof is complete.
Denote by sα (the number of the “maintained conditions”) sα = m− [α+1

2 ]
for 0 ≤ α < 2m − 1 and sα = 0 for α ≥ 2m − 1, where [a] is the integer
part of the number a. From Proposition 2.2 it follows that in the case α < 1
(weak degeneracy) u(j)(0) exist for all j = 0, 1, . . . , m − 1, while for α ≥ 1
(strong degeneracy) not all u(j)(0) exist. More precisely, for 0 ≤ α < 2m−1
the derivatives at zero u(j)(0) exist only for j = 0, 1, . . . , sα − 1, while for
α ≥ 2m− 1 all u(j)(0), j = 0, 1, . . . , m− 1 in general may be infinite.

Proposition 2.5 The embedding

Wm
α ⊂ L2,α (17)

is compact for every α ≥ 0.
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Proof.To show the compactness of the embedding (17) we first observe that
this embedding is compact for every interval (1/n, b), where n ∈ N, n ≥ n0,
1/n0 < b (see [2]). Let now {uk}∞k=1 be some bounded sequence in Wm

α and
|uk, W

m
α | ≤ M . We have to prove that there is some convergent in L2,α

subsequence. For every n ≥ n0 from {uk}∞k=1 we can choose a subsequence
{unk}∞k=1 which is convergent in L2,α(1/n, b). Let us prove that the diagonal–
sequence {unn}∞n=n0

is convergent in L2,α. We only need to verify that
|unn − umm, L2,α(0, ε)| → 0 as ε → +0 for every m,n ≥ n0. Indeed, using
the inequality (9) for j = 0 we have (for α 6= 1, 3, . . . , 2m− 1)

|unn − umm, L2,α(0, ε)|2 ≤ 2M2

∫ ε

0
tα

(
B0 + C0t

2m−1−α
)

dt ≤ Cε.

For the case α = 2n + 1, n = 0, 1, . . . , m− 1 we use the inequality
|u(t)|2 ≤ (B0 + C0t

2m−2n−2| ln t|)|u,Wm
α |2 .

The proof is complete.

Remark 2.6 The embedding

Wm
α ⊂ L2,β (18)

is compact for every α > 2m− 1 and β > α− 2m.

Indeed, the embedding (18) follows from the inequality (9) for j = 0. To
prove the compactness of the embedding (18) it is enough to show (see the
proof of Proposition 2.5) that

|unn − umm, L2,β(0, ε)|2 ≤ 2M2

∫ ε

0
tβ

(
B0 + C0t

2m−1−α
)

dt ≤ Cεβ+2m−α,

because β + 1 > α− 2m + 1 > 2m− 1− 2m + 1 = 0, β + 2m− 1− α + 1 >
α− 2m + 2m− α = 0 and β > β + 2m− 1− α.

Observe that in the case β = α− 2m and α ≤ 2m− 1 in contrast to the
embedding (5) the embedding (18) fails (see [9]). In this case we only have
Wm

α ⊂ L2,β, β > −1. However, for α > 2m − 1 we have the embedding
Wm

α ⊂ L2,α−2m (not compact) which can be proved by using of Hardy’s
inequality (6) (see [5] and [9]).
Note also that with the help of the diagonal sequence we obtain the com-
pactness of the embedding

Hs,δ(Rn) ⊂ Hs1,δ1(Rn), s > s1, δ > δ1, s, δ ∈ R,
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where Hs,δ(Rn) = (1 + |x|2)−δ/2Hs(Rn) and Hs(Rn) is the Sobolev space,
because this embedding is compact on Br = {x ∈ Rn, |x| ≤ r} for every
r > 0. Another proof is given in [10].

Denote by Wm
α (0) the completion of {u ∈ Cm[0, b], u(k)(t)

∣∣
t=0

= 0,
k = 0, 1, . . . , m − 1} in the norm (8). The definition of the space Wm

α (0)
implies that the functions u ∈ Wm

α (0) near to t = 0 have the same estimate
as the functions u ∈ Ẇm

α , while in contrast to the space Ẇm
α for the functions

u ∈ Wm
α (0) the conditions u(k)(t)

∣∣
t=b

= 0, k = 0, 1, . . . , m− 1 in general fail.
Note also that the codimension of the space Wm

α (0) in Wm
α is equal to

codimWm
α (0) = dim(Wm

α /Wm
α (0)) = sα, where Wm

α /Wm
α (0) is the quotient

space. Therefore, using the definition of the numbers sα it follows that for
α ≥ 2m− 1 the spaces Wm

α (0) and Wm
α coincide.

Denote by Wm
α (b) the completion of {u ∈ Cm[0, b], u(k)(t)

∣∣
t=b

= 0,
k = 0, 1, . . . , m−1} in the norm (3). Now for the functions u ∈ Wm

α (b) near
to t = 0 we have the inequalities (9) and u(k)(t)

∣∣
t=b

= 0, k = 0, 1, . . . ,m− 1.
The codimension of the space Ẇm

α in Wm
α (b) is equal to codimẆm

α =
dim(Wm

α (b)/Ẇm
α ) = sα, therefore, for α ≥ 2m− 1 we have Ẇm

α = Wm
α (b).

From the definition of the space Wm
α (0) immediately follows that we have

a continuous embedding Wm
α (0) ⊂ L2,α−2m, α 6= 1, 3, . . . , 2m − 1, which is

not compact. As a consequence of Proposition 2.5 we have the compact
embeddings Wm

α (0),Wm
α (b) ⊂ L2,α for every α ≥ 0.

2.2 Mixed Problem of First Type

Now we consider the mixed problem of first type for the following special
case of the one-dimensional equation (1)

Bu ≡ (−1)m(tαu(m))(m) + tαu = f, f ∈ L2,−α . (19)

Definition 2.7 A function u ∈ Wm
α (0) is called a generalized solution of

the mixed problem of first type for the equation (19) if for every v ∈ Wm
α (0)

we have
(tαu(m), v(m)) + (tαu, v) = (f, v) (20)

where (· , ·) is the scalar product in L2(0, b) (see [11]).

Proposition 2.8 The generalized solution of the mixed problem of first
type for the equation (19) exists and is unique for every f ∈ L2,−α .

The uniqueness of the generalized solution immediately follows from Defi-
nition 2.7. To prove the existence first we note that the linear functional
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lf (v) ≡ (f, v) is continuous in Wm
α (0) because

|lf (v)| ≤ |f, L2,−α||v, L2,α| ≤ |f, L2,−α||v, Wm
α (0)|.

Using Riesz’s lemma on the representation of linear continuous functionals
we can write it in the form

lf (v) ≡ (f, v) = {u, v}α, v ∈ Wm
α (0),

where {u, v}α is the scalar product in Wm
α (0). The element u ∈ Wm

α (0)
realizing the linear functional lf (v) gives us the generalized solution.

If the generalized solution u(t) is classical then from (20) we conclude
that for α = 0 the function u(t) fulfills the following conditions (see [11])

u(k)(t)
∣∣∣
t=0

= u(2m−k−1)(t)
∣∣∣
t=b

= 0, k = 0, 1, . . . , m− 1, (21)

i.e., we have Dirichlet conditions at the left endpoint of the segment [0, b]
and Neumann conditions at the right endpoint. Note that the conditions
(21) are of Sturm type and, therefore, regular (see [4]).

Definition 2.9 We say that u ∈ Wm
α (0) belongs to D(B), if the equality

(20) is satisfied for some f ∈ L2,−α . In this case we will write Bu = f .

According to Definition 2.9 we have an operator

B : D(B) ⊂ Wm
α (0) ⊂ L2,α → L2,−α .

To get an operator in the same space we set g(t) = t−αf(t). It is evident
that g(t) belongs to L2,α and |f, L2,−α| = |g, L2,α|. Therefore, we get an
operator B ≡ t−αB : D(B) = D(B) ⊂ Wm

α ⊂ L2,α → L2,α with Bu = g in
L2,α.

Proposition 2.10 The operator B : L2,α → L2,α is selfadjoint and pos-
itive. Moreover, the inverse operator B−1 : L2,α → L2,α is compact.

Proof. Symmetry and positivity of the operator B follow from Definition
2.9. Let v ∈ D(B∗) and B∗v = 0. Then for every u ∈ D(B) we have
(Bu, v) = (u,B∗v). From Proposition 2.8 it follows that v = 0, i.e., the
operator B∗ is invertible. Now using (8) and the equality (20) with v = u
we get

|u,Wm
α |2 = (f, u) ≤ |f, L2,−α||u, L2,α| ≤ |g, L2,α||u,Wm

α |.
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Therefore, we have
|u, L2,α| ≤ |Bu, L2,α|, (22)

i.e., the operator B−1 is bounded. Thus the operator (B∗)−1 is defined on
L2,α (see [4]). Now the self–adjointness of the operator B is a consequence
of its symmetry. The compactness of the operator B−1 : L2,α → L2,α fol-
lows from the inequality (22) and from the compactness of the embedding
Wm

α (0) ⊂ Wm
α (see Proposition 2.5).

The proof is complete.

Corollary 2.11 The operator B has a discrete spectrum, and the system
of the corresponding eigenfunctions is dense in L2,α.

This follows from the connection of the spectra of the operators B and B−1

and from the properties of compact selfadjoint operators (see [4]).
Note that if λ is an eigenvalue and u(t) a corresponding eigenfunction of

the operator B then we have

(−1)m(tαu(m))(m) + tαu = λtαu. (23)

From the inequality (22) and Definition 2.7 it follows that λ ≥ 1. For 0 ≤
α < 1 the number λ = 1 /∈ σB (σB is the spectrum of the operator B) and
for α ≥ 1 it is an eigenvalue for the operator B with the multiplicity m− sα

(for the definition of the number sα see Subsection 2.1), since tsαPm−sα−1(t)
for every polynomial Pm−sα−1(t) of order m−sα−1 is an eigenfunction (see
Proposition 2.1). Therefore, for the solvability of the equation

(−1)m(tαu(m))(m) = f, f ∈ L2,−α , (24)

we get the following result:

Proposition 2.12 The generalized solution of the mixed problem of first
type for the equation (24) for α ≥ 1 exists if and only if (f, Pm−sα−1(t)) = 0
for any polynomial Pm−sα−1(t) of order m− sα − 1.

Here we have used both (g, Pm−sα−1(t))α = (f, Pm−sα−1(t)) since tαg(t) =
f(t) ((·, ·)α is the scalar product in L2,α) and the definition of the operator
B. Note that the generalized solution of the mixed problem of first type for
the equation (24) for α ≥ 1 is unique up to an arbitrary additive polynomial
of order m− sα − 1.
Now we can consider the general case of the one-dimensional equation (1)

Pu ≡ (−1)m(tαu(m))(m) + atαu = f, f ∈ L2,−α , (25)

because the number 1 − a can be regarded as a spectral parameter for the
operator B. Therefore, if 1 − a 6∈ σB then the equation (25) is uniquely
solvable for every f ∈ L2,−α .
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2.3 Mixed Problem of Second Type

Now we consider the mixed problem of second type for the another special
case of the one-dimensional equation (1)

Su ≡ (−1)m(tαu(m))(m) = f, f ∈ L2,−α . (26)

Definition 2.13 A function u ∈ Wm
α (b) is called a generalized solu-

tion of the mixed problem of second type for the equation (26) if for every
v ∈ Wm

α (b) we have

(tαu(m), v(m)) + (tαu, v) = (f, v). (27)

In the same way as in Subsection 2.2 we prove the existence and uniqueness
of the generalized solution for every f ∈ L2,−α and define a corresponding
operator

S : D(S) ⊂ Wm
α (b) ⊂ L2,α → L2,−α .

For the classical solution u(t) in the case α = 0 from (27) we get the condi-
tions (see [11])

u(2m−k−1)(t)
∣∣∣
t=0

= u(k)(t)
∣∣∣
t=b

= 0, k = 0, 1, . . . , m− 1, (28)

i.e., we have Neumann conditions at the left endpoint of the segment [0, b]
and Dirichlet conditions at the right endpoint.
Define S ≡ t−αS, S : L2,α → L2,α . In similar way we prove that the
operator S : L2,α → L2,α is selfadjoint, positive and the inverse operator
S−1 is compact. Therefore, the operator S has a discrete spectrum.
Now we can consider the general equation (25) because the number −a can
be regarded as a spectral parameter for the operator S. Hence, if −a 6∈ σS
then the mixed problem of second type for the equation (25) is uniquely
solvable for every f ∈ L2,−α .

3 The Operator Equation

In this section we consider the operator version of the equation (1)

Pu ≡ (−1)mDm
t (tαDm

t )u+tαAu = f, f ∈ L2,−α((0, b),H), α ≥ 0. (29)

Suppose that the operator A : H → H commutes with Dt and has a complete
system of eigenfunctions {ϕk}∞k=1, forming a Riesz basis (see [4]) inH. Hence
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Aϕk = akϕk, k ∈ N, for every x ∈ H we have x =
∑∞

k=1 xkϕk, and there are
some positive constants c1 and c2 such that

c1

∞∑

k=1

|xk|2 ≤ ||x||2 ≤ c2

∞∑

k=1

|xk|2. (30)

Hence for every u ∈ L2,α((0, b),H), f ∈ L2,−α((0, b),H) we have

u =
∞∑

k=1

uk(t)ϕk, f =
∞∑

k=1

fk(t)ϕk, k ∈ N. (31)

Therefore, the operator equation (29) can be decomposed into an infinite
chain of ordinary differential equations

Pkuk ≡ (−1)m(tαu
(m)
k )(m) + akt

αuk = fk, fk ∈ L2,−α, k ∈ N. (32)

For the equations (32) we can define the generalized solutions uk(t), k ∈ N,
of the mixed problem of first or second type (see Section 2).

Definition 3.1 A function u ∈ L2,α((0, b),H) is called a generalized so-
lution of the mixed problem of first or second type for the equation (29) if the
functions uk(t), k ∈ N, in the representation (31) are generalized solutions
of the mixed problem of first or second type for the equations (32).

Proposition 3.2 The operator equation (29) is uniquely solvable for ev-
ery f ∈ L2,−α((0, b),H) if and only if the equations (32) are uniquely solvable
for every fk ∈ L2,−α, k ∈ N, and the inequalities

|uk, L2,α| ≤ c|fk, L2,−α| (33)

are satisfied uniformly with respect to k ∈ N.

For the proof of Proposition 3.2 see [4].
Let the numbers {λk}∞k=1 and {µk}∞k=1 are the eigenvalues of the operators
B and S (see Section 2). Suppose that

ρ(1− ak, λm) > ε, k,m ∈ N, (34)

ρ(−ak, µm) > ε, k, m ∈ N, (35)

where ε > 0 and ρ is the distance in the complex plane.
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Theorem 3.3 Under the condition (34) ((35)) the generalized solution
of the mixed problem of first type (second type) for the operator equation
(29) exists and is unique for every f ∈ L2,−α((0, b),H).

First note that under the condition (34) ((35)) the equations (32) are uniquely
solvable for every fk ∈ L2,−α, k ∈ N and the inequalities (33) are satisfied.
Now the proof of Theorem 3.3 follows from Proposition 3.2.

Let g = t−αf, f ∈ L2,−α((0, b),H). Then g ∈ L2,α((0, b),H) and we
define an operator

P ≡ t−αP : D(P) = D(P ) ⊂ L2,α((0, b),H) → L2,α((0, b),H),

with Pu = g in L2,α((0, b),H). It follows from the condition (34) ((35)) that
for the generalized solution u ∈ Wm

α (0) (u ∈ Wm
α (b)) of the mixed problem

of first type (second type) we have

|u, L2,α((0, b),H)| ≤ c|g, L2,α((0, b),H)|. (36)

The operator P−1 : L2,α((0, b),H) → L2,α((0, b),H) in general is not com-
pact in contrast to Proposition 2.10 (it will be compact only in the case when
the space H is finite-dimensional). If the operator A : H → H is selfadjoint
we can describe the spectrum of the operator P.

Proposition 3.4 The spectrum of the operator P for the mixed problem
of first type (of second type) is the subset of the direct sum of the spectra σB
and σ(A− I) (σS and σA), i.e.,

σP ⊂ σB+ σ(A− I) ≡ {λ1 + λ2 − 1 : λ1 ∈ σB, λ2 ∈ σA}, (σP ⊂ σS+ σA).

The proof of Proposition 3.4 immediately follows from the equality
P = B⊗ IH + IL2,α ⊗ (A− I) (P = S⊗ IH + IL2,α ⊗A) (see [1]).
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