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Introduction

Manifolds with higher corners or edges of order k ∈ N are (in our notation) special stratified
spaces, where k = 0 corresponds to smoothness, k = 1 to conical or edge singularities. Manifolds
with singularities of order k form a category Mk. Ellipticity of operators will be expressed by a
principal symbolic hierarchy

σ = (σj)0≤j≤k

with σ0 being the standard homogeneous principal symbol on the main stratum intM , while the
components σj , j > 0, live on the other strata and are operator-valued.

Example 0.1. (i)The half-axis R+ can be regarded as a manifold with conical singularity 0.

(ii)The half-space R+ × Ω for an open set Ω ⊆ Rq is an example of a manifold with edge Ω and
model cone R+.
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(iii)Let X be a closed compact C∞ manifold, then the quotient space X∆ := (R+×X)/({0}×X)
which is an infinite cone with vertex v, represented by {0} × X, is a manifold with conical
singularity v and base X.

(iv)The wedge X∆ × Ω with X and Ω as before is a manifold with edge Ω and model cone X∆.

Remark 0.2. Consider a Riemannian metric of the form dr2 + r2gX on the open stretched cone
X∧ := R+×X where gX is a Riemannian metric on X. Then for the associated Laplace-Beltrami
operator we obtain (for m = 2)

A = r−m
m∑

j=0

aj(r)
(
−r

∂

∂r

)j

, (0.1)

with coefficients aj ∈ C∞(R+, Diffm−j(X)). More generally, if we consider a Riemannian metric
dr2+r2gX +dy2 on the open stretched wedge X∧×Ω, then the associated Laplace-Beltrami operator
has the form (for m = 2)

A = r−m
∑

j+|α|≤m

ajα(r, y)
(
−r

∂

∂r

)j

(rDy)α. (0.2)

with coefficients ajα ∈ C∞(R+ × Ω, Diffm−(j+|α|)(X)).

The principal symbolic hierarchies are are as follows. In the conical case we have σ0(A) ∈
C∞(T ∗X \ {0}), the usual homogeneous principal symbol of A (degenerate at r = 0), and

σ1(A)(z) =
m∑

j=0

aj(0)zj : Hs(X) → Hs−m(X), (0.3)

the principal conormal symbol. In the edge case we have σ0(A) ∈ C∞(T ∗(X ×Ω) \ {0}), the usual
homogeneous principal symbol of A (here edge-degenerate at r = 0), and

σ1(A)(y, η) = r−m
∑

j+|α|≤m

ajα(0, y)
(
−r

∂

∂r

)j

(rη)α : Ks,γ(X∧) → Ks−m,γ−m(X∧), (0.4)

the homogeneous principal edge symbol (the meaning of Ks,γ(X∧) will be explained below; the
notation K comes from “Kegel”). Note that there is a similarity between edge symbols and bound-
ary symbols of differential operators on a manifold with smooth boundary. Consider, for instance,
a differential operator A =

∑
k+β≤m bkβ(r, y)Dk

r Dα
y on the half-space, R+ × Ω with coefficients

bkβ ∈ C∞(R+ × Ω). Apart from

σ0(A)(r, y, %, η) =
∑

k+|β|=m

bkβ(r, y)%kηβ (0.5)

we have the principal boundary symbol

σ1(A)(y, η) =
∑

k+|β|=m

bkβ(0, y)Dk
r ηβ : Hs(R+) → Hs−m(R+), s ∈ R. (0.6)

Boundary symbols are homogeneous in the sense

σ1(A)(y, λη) = λµκλσ1(A)(y, η)κ−1
λ for all λ ∈ R+.

Here κλ : Hs(R+) → Hs−m(R+) is a strongly continuous group of isomorphisms, defined by
(κλu)(r) := λ1/2u(λr), λ ∈ R+. A similar relation holds for edge symbols, based on

κλ : Ks,γ(X∧) → Ks−m,γ−m(X∧), s, γ ∈ R,

where (κλu)(r, x) := λ(n+1)/2u(λr, x), λ ∈ R+.
In this presentation we give an idea on how to formulate algebras of (pseudo-differential) operators
on intM that contain the (for the nature of singularities typical) differential operators, together
with the parametrices of elliptic elements. More details may be found in [45], [46], and in a new
monograph in preparation [47], see also the references below.
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1 The category Mk

Stratified spaces of different kind occur in numerous fields of mathematics and also in the applied
sciences. Here we single out specific categories of such spaces where certain elements of the analysis
of PDE can be formulated in an iterative manner. General references on stratified spaces are Fulton
and MacPherson [14], or Weinberger [57].

Definition 1.1. A topological space M (under some natural conditions on the topology in general)
is said to be a manifold with singularities of order k ∈ N, k ≥ 1, if

(i) M contains a subspace Y ∈ M0 such that M \ Y ∈ Mk−1;

(ii) Y has a neighbourhood V ⊆ M which is a (locally trivial) cone bundle over Y with fibre X∆

for some X ∈ Mk−1.

Transition maps X∆ → X∆ are induced by restrictions of Mk−1 -isomorphisms R×X → R×X
to R+×X. This gives rise to corresponding transition maps X∆×Ω → X∆× Ω̃ for the respective
X∆ -bundles over Y .

Remark 1.2. Mk is a category with a natural notion of morphisms and isomorphisms.

Remark 1.3. Y =: Y k is called the minimal stratum of M . The space M \ Y k ∈ Mk−1 contains
a space Y k−1 ∈ M0, such that (M \ Y k) \ Y k−1 ∈ Mk−2, etc. This yields a representation

M = Y 0 ∪ Y 1 ∪ Y 2 ∪ ... ∪ Y k

as a disjoint union of strata Y j ∈ M0. We set intM := Y 0, called the maximal stratum of M, and
dim M := dim(int M). Moreover, M is locally near Y j modelled on an X∆

j−1-bundle over Y j, for
X∆

j−1 ∈ Mj−1 with trivialisations X∆
j−1 × Ωj , Ωj ⊆ RdimY j

open.

Remark 1.4. The same topological space M can be stratified in different ways. For instance, we
have M = Rn ∈ M0 but also M ∈ M1 when we set Y 1 = {0}, Y 0 = Rn \ {0}.
Remark 1.5. M ∈ Mk, L ∈ Ml implies M × L ∈ Mk+l.

There are many other interesting properties of the categories Mk that we do not discuss in
detail here. It would be desirable to develop the connection of our analysis on singular spaces with
the work from topological side. For instance, D. Trotman informed me in Berkeley on his works
with coauthors, cf. [3] jointly with Bekka, and [23] with King.

2 Corner-degenerate operators

Let Diffm
deg(M) for M ∈ Mk, k ≥ 1, denote the set of all A ∈ Diffm

deg(M \ Y ), (Diffm
deg(·) = Diffm(·)

in the smooth case) such that close to Y in the local variables

(r, x) ∈ R+ ×X for dim Y = 0, and (r, x, y) ∈ R+ ×X × Ω for dim Y > 0,

we have

A = r−m
m∑

j=0

aj(r)
(
−r

∂

∂r

)j

for dim Y = 0,

with coefficients aj ∈ C∞(R+, Diffm−j
deg (X)), and

A = r−m
∑

j+|α|≤m

ajα(r, y)
(
−r

∂

∂r

)j

(rDy)α for dim Y > 0,
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with coefficients ajα ∈ C∞(R+ × Ω, Diffm−(j+|α|)
deg (X)), respectively. The principal symbolic hier-

archies are iteratively defined by

σ(A) := (σ(A|M\Y ), σk(A)) (2.1)

where σ(A|M\Y ) is known by the steps before, while

σk(A)(z) =
m∑

j=0

aj(0)zj for dim Y = 0, z ∈ C, (2.2)

and

σk(A)(y, η) = r−m
∑

j+|α|≤m

ajα(0, y)
(
−r

∂

∂r

)j

(rη)α for dim Y > 0, (y, η) ∈ T ∗Ω \ 0. (2.3)

σk(A)(z) takes values in Diffm
deg(X) for dim Y = 0, and σk(A)(y, η) takes values in Diffm

deg(X∧) for
dim Y > 0.

Remark 2.1. If we dissolve the information in (2.1) with respect to the other strata of M we
obtain k + 1 components of σ(A), namely,

σ(A) = (σ0(A), σ1(A), . . . , σk(A)),

with σ0(A) ∈ C∞(T ∗(intM) \ {0}) being the standard homogeneous principal symbol of A on the
main stratum of M , while the other components σj(A) are operator-valued and associated with Y j,
where σj(A) is of analogous form as (2.2) for dim Y = 0, and (2.3) for dim Y > 0 (in the latter
case parametrised by T ∗Y j \ 0). The symbol σj(A) for dim Y = 0 acts between weighted spaces
Hs,γ(j−1)(Xj−1) where M is locally near Y jmodelled on X∆

j−1. Moreover, σj(A) for dim Y > 0 is
analogous to (2.3), now parametrised by points in T ∗Y j \ 0 and acting between spaces of the form
Ks,γ(j)(X∧

(j−1)) where M is modelled on X∧
j−1 ×Ωj locally near Y j , and γ(j − 1) is a (j − 1)-tuple

of weights.

3 Problems and results

The analysis of operators of the spaces Diffm
deg(M) on stratified spaces M ∈ Mk, k ∈ N, gives rise

to a number of natural problems that are solved by works of several authors in this field or are
open and still represent challenges for the future development. Let us give a list of such problems,
and then some key words concerning results and references:

• What is ellipticity of A ∈ Diffm
deg(M) in connection with the principal symbolic hierarchies

explained in the preceding section?

• Construct a pseudo-differential calculus containing Diffm
deg(M) together with the parametrices of

elliptic elements.

• Establish the Fredholm property and study the index of elliptic operators in weighted distri-
bution spaces when M is compact.

• Understand ellipticity, parametrices, and Fredholm property in suitable weighted spaces when
M has conical exits to infinity.

• Study parameter-dependent theories on M .
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• Characterise asymptotics of solutions to elliptic equations (discrete, continuous, variable/branching,
or iterated), in simplest cases of the form

u(r, ·) ∼
∑

j

mj∑

k=0

cjk(·)r−pj logkr as r → 0, (3.1)

with pj ∈ C, Re pj → −∞ as r →∞ (if the expansion is infinite).

• Compute the points pj for interesting examples; those points appear as “non-linear eigenval-
ues” of conormal symbols.

• Study various quantisations of corner-degenerate symbols, in particular, in terms of holomor-
phic/meromorphic operator functions with values in algebras of lower singularity order.

• Understand the hierarchy of topological obstructions appearing in the construction of elliptic
operators with prescribed elliptic symbols σ0.

• Study index theories, homotopy classifications, Künneth formulas, etc., for the higher corner
operator algebras.

Models from diverse applications with singular geometry:

• Mixed problems, operators with/without the transmission property at the boundary (Zaremba
problem, etc.).

• Boundary value problems in polyhedral domains with the induced metric from an ambient space,
occurring in elasticity, mechanics (beams, shells, plates, . . . ).

• Crack problems with crack boundaries that are smooth or have singularities.

• Operators with singular potentials

∆ + V, V =
N∑

i,j=0

cij |x(i) − x(j)|−1,

for the Laplacian ∆ in R3N , and x(j) = (x(j)
1 , x

(j)
2 , x

(j)
3 ) indicating the position of three-dimensional

particles; the question is to describe the behaviour of solutions to (∆ + V )u = f, close to the sin-
gularities of the potential V, say, for smooth f.

The operator algebras that we discuss here contain many special cases and substruc-
tures:

• Singular integral operators with piecewise smooth coefficients (cf. Gohberg and Krupnik [18]).

• Mellin operators on the half-axis (cf. Eskin [12]).

• Operators on manifolds with conical exits to infinity (cf. Shubin [55], Parenti [33], Cordes [7])

• Parameter-dependent operators (cf. Agranovich and Vishik [2]).

• Boundary value problems without/with the transmission property at the boundary (cf. Vishik
and Eskin [56], Eskin [12], Boutet de Monvel [4]).
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• Totally characteristic operators (cf. Melrose [31], Melrose and Mendoza [32]).

• Edge-degenerate, and corner-degenerate operators (cf. Rempel and Schulze [36], Schulze [37],
Mazzeo [30], Schulze [39]).

• Boundary value problems in the frame of the edge calculus (cf. Rempel and Schulze [34], Schulze
[40], Schulze and Seiler [48]).

Other authors of the research group of the University of Potsdam and guests during the past
years contributed improvements and important new aspects, cf. Witt [58], Gil [15], Gil and Men-
doza [16], Seiler [53], [54], Krainer [25], [26], or the author’s joint papers with Coriasco [8], Dines
and Liu [10], Flad and Schneider [13], Wei [52]; other references are given below.

There also appeared (ore are in preparation) some monographs on these topics, in particular,
[38], [40], [43], or, jointly with Egorov [11], Kapanadze [22], Harutyunyan [21], Volpato [51]. More
details on the higher corner calculus will also be given in the author’s new monograph [47].

4 Some typical tools of the higher corner calculus

Let us first consider k = 0 which is the smooth case. On a C∞ manifold M we have Lm
cl (M), the

space of classical pseudo-differential operators of order m ∈ R (“classical” is here not essential, but
for k > 0 we employ this assumption). For an A ∈ Lm

cl (M) we have the standard homogeneous
principal symbol σ0(A) ∈ C∞(T ∗M \ {0}). Clearly everything works for vector bundles as well.
Let Hs

comp(M),Hs
loc(M), s ∈ R, denote the standard Sobolev spaces, and write Hs(M) when M

is compact or an Euclidean space. The spaces Hs(Rn ×Rq) admit anisotropic reformulations that
are useful for the singular cases, namely,

Hs(Rn × Rq) = Ws(Rq,Hs(Rn)).

Here Ws(Rq,H) for some Hilbert space H which is endowed with a strongly continuous group
{κλ}λ∈R+ of isomorphisms κλ : H → H means the completion of S(Rq,H) with respect to the
norm {∫ 〈η〉2s‖κ−1

〈η〉û(η)‖2Hdη}1/2, 〈η〉 = (1 + |η|2)1/2. In the case H = Hs(Rn) we set (κλu)(x) =
λn/2u(λx).

Let Lm
cl (M,Rl) denote the space of parameter-dependent pseudo-differential operators with

parameter λ ∈ Rl, l ∈ N, on an open C∞ manifold M , with local amplitude functions a(x, ξ, λ)
that are classical symbols in (ξ, λ) ∈ Rn+l, n = dim M , and L−∞(M,Rl) = S(Rl, L−∞(M)), where
L−∞(M) is identified with C∞(M × M) via a fixed Riemannian metric. We employ the fact that
for compact M there exist parameter-dependent elliptic order reducing isomorphisms

Rm(λ) : Hs(M) → Hs−m(M)

for every m and s. Let us now give an idea on how the respective parameter-dependent operator
spaces Am(M,g;Rl),m ∈ R, are constructed in the case M ∈ M1 which corresponds to conical or
edge singularities (and also contains the case of a manifold with smooth boundary). Here λ ∈ Rl

is the parameter, and g = (γ, γ −m,Θ) are weight data for a weight γ ∈ R and a weight interval
Θ = (θ, 0] for a −∞ ≤ θ < 0, where we control asymptotics.
Let us forget about Rl for a while, and define weighted spaces, first for conical singularities. By
Hs,γ(X∧) on the open stretched cone X∧ = R+ ×X we denote the completion of C∞0 (X∧) with
respect to the norm {

(2πi)−1

∫

Γ n+1
2 −γ

‖Rs(Imz)Mu(z)‖2L2(X)dz
}1/2
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where Rs(λ) ∈ Ls
cl(X;R) is a parameter-dependent elliptic family, n = dim X, Γβ = {z ∈ C :

Im z = β}, and Mu(z) =
∫∞
0

rz−1u(r)dr is the Mellin transform on R+. The space Hs,γ(X∧) takes
part in the definition of the space Ks,γ(X∧), namely, close to r = 0. Another ingredient close to
r = ∞ is the space Hs

cone(X
∧). Let us first define a version on R×X rather than X∧. The space

Hs
cone(R×X) is defined to be the completion of C∞(R×X) with respect to the norm

{ ∫
‖〈r〉−sOpr(p)(η1)u‖2L2(X)dr

}1/2

,

〈r〉 = (1 + r2)1/2, p(r, ρ, η) = p̃(〈r〉ρ, 〈r〉η), where p̃(ρ̃, η̃) ∈ Ls
cl(X;R1+q

ρ̃,η̃ ) is a parameter-dependent
elliptic family on X, and |η1| is sufficiently large and fixed. Moreover,

Opr(p)u(r) =
∫∫

ei(r−r′)ρp(r, ρ)u(r′)dr′d̄ρ,

d̄ρ := (2π)−1dρ. We set Hs
cone(X

∧) := Hs
cone(R×X)|X∧ . For any cut-off function ω(r) we define

Ks,γ(X∧) = ωHs,γ(X∧) + (1− ω)Hs
cone(X

∧),

and Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧), s, γ, g ∈ R. Observe that we have

Hs
comp(Rn × Rq) ⊆ Ws(Rq,Ks,γ(X∧)) ⊆ Hs

loc(Rn × Rq)

for all s, g ∈ R. The pseudo-differential background of cone and edge operator algebras are de-
generate operators of the form r−mOpr,y(p), based on the Fourier transform, for p(r, y, ρ, η) =
p̃(r, y, rρ, rη), where p̃(r, y, ρ̃, η̃) ∈ C∞(R+×Ω, Lm

cl (X;R1+q
ρ̃,η̃ )). It is useful to pass to Mellin quanti-

sations, i.e., to operator-valued symbols referring to the Mellin transform. Let us explain here the
edge case, i.e., q > 0 (the conical case is simpler). To this end we define the space

Mm
O (X;Rq

η),

consisting of all h(z, η) ∈ A(Cz, L
m
cl (X;Rq

η)) such that h(β + iρ, η) ∈ Lµ
cl(X;R1+q

ρ,η ) for every β ∈ R,
uniformly in finite β-intervals. Here A(U,E) for an open set U ⊆ C and a Fréchet space E is the
space of all holomorphic functions in U with values in E, in the topology of uniform convergence
on compact subsets.
An inversion process in the construction of parametrices of elliptic operators gives rise to symbols
of the kind

f(y, z) ∈ C∞(Ω,M−∞
R (X)).

Here R is an asymptotic type, in the most precise version y-wise discrete, otherwise a continuous
asymptotic type. Let us give an idea of the discrete case. Then R is a sequence {(rj , nj)}j∈Z ⊂
C × N with |Re rj | → ∞ as |j| → ∞. The space M−∞

R (X) is defined to be the set of all f ∈
A(C \ πCR, L−∞(X)), πCR := {rj}j∈Z, such that f is meromorphic with poles at the points rj

of mutliplicity nj + 1. Moreover, f(z) is stongly decreasing as |Im z| → ∞, i.e., if χ(z) is any
πCR-excision function (= 0 close to πCR, and = 1 when dist (z, πCR) > c for some c > 0) then
χ(z)f(z)|Γβ

∈ S(Γβ , L−∞(X)) for every β ∈ R, uniformly in compact β-intervals; here

Γβ := {z ∈ C : Re (z) = β}.
More generally we also employ so-called continuous asymptotic types R, representd by sets V ⊂ C
such that V ∩ {c ≤ Re (z) ≤ c′} is compact for every c ≤ c′, cf. [38], [43]; V := πCR.

Theorem 4.1. For every p(r, y, ρ, η) = p̃(r, y, rρ, rη), p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω, Lm(X;R1+q
ρ̃,η̃ ))

there exists an h(r, y, z, η) = h̃(r, y, z, rη) of the form h̃(r, y, z, η̃) ∈ C∞(R+×Ω, Mm
O (X;Rq

η̃)) such
that

Opr,y(p) = opγ−n/2
M Opy(h) modL−∞(X∧ × Ω) (4.1)

for every γ ∈ R.
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The operator-valued amplitude functions

a(y, η) = ω(r)r−mopγ−n/2
Mr

(h)(y, η)ω̃(r) + smoothing Mellin plus Green symbols(y, η) (4.2)

with cut-off functions ω(r), ω̃(r) furnish the symbols of the edge pseudo-differential calculus near
r = 0. Those are symbols as follows. Let H and H̃ be Hilbert spaces with group actions {κλ}λ∈R+

and {κ̃λ}λ∈R+ , respectively. Then
Sm(Ω× Rq;H, H̃)

for m ∈ R and Ω ⊆ Rp open is defined to be the set of all a(y, η) ∈ C∞(Ω × Rq,L(H, H̃)) such
that

‖κ̃−1
〈η〉{Dα

y Dβ
η a(y, η)}κ〈η〉‖L(H,H̃) ≤ c〈η〉m−|β|,

uniformly on compact subsets of Ω, for all η ∈ Rq and all multi-indices α, β. The subspace Sm
cl (Ω×

Rq; H, H̃) of classical symbols is defined in terms of asymptotic expansions
∑∞

j=0 χ(η)a(µ−j)(y, η),
where χ(η) is an excision function, and a(m−j)(y, η) ∈ C∞(Ω× (Rq \ {0}),L(H, H̃)) are of twisted
homogeneity µ− j, i.e.,

a(m−j)(y, λη) = λµ−j κ̃λa(m−j)(y, η)κ−1
λ , λ ∈ R+.

Parallel to such operator-valued symbols we have vector-valued spaces Ws(Rq,H) for a Hilbert
space H with group action {κλ}λ∈R+ , defined as the completion of S(Rq, H) with respect to the

norm
{ ∫ 〈η〉2s‖κ−1

〈η〉û(η)‖1/2
H dη

}1/2
. There is also a straightforward generalisation to spaces of the

kind Ws
comp(Ω,H) and Ws

loc(Ω,H), respectively, over an open set Ω ⊆ Rq.

Theorem 4.2. The above-mentioned operator functions a(y, η) of the form (4.2) belong to

Sm(Ω× Rq;Ks,γ(X∧),Ks−m,γ−m(X∧))

based on {κλ}λ∈R+ , defined by (κλu)(r, x) = λ(n+1)/2u(λr, x) for u ∈ Ks,γ(X∧) and induce contin-
uous operators

Opy(a) : Ws
comp(Ω,Ks,γ(X∧)) →Ws−m

loc (Ω,Ks−m,γ−m(X∧)) (4.3)

for all s ∈ R.

Remark 4.3. Observe that Theorem 4.1 and the continuity (4.3) show that

r−mp(r, y, ρ, η) → a(y, η) → Opy(a)

represents an operator convention (quantisation) for edge-degenerate symbols r−mp. In the author’s
joint paper [17] with Gil and Seiler it has been proved that the first non-smoothing term in (4.2) is
equivalent (mod Green operators) to another earlier quantisation of [37].

Let us now define smoothing Mellin plus Green symbols, already occurring in (4.2).

Definition 4.4. (i) A smoothing Mellin symbol is an element gM in
⋂

s∈R
Sm

cl (Ω× Rq;Ks,γ(X∧),K∞,γ−m(X∧))

which has an asymptotic expansion mod
⋂

s∈R S∞(Ω×Rq;Ks,γ(X∧),K∞,∞(X∧)) into sym-
bols of the form

r−m+jω(r[η])opγjα−n/2
M (fjα)(y)ηαω̃(r[η]);

here η → [η] is a strictly positive function in C∞(Rq) such that [η] = |η| for |η| > c for some
c > 0, moreover,

fjα(y, z) ∈ C∞(Ω, M−∞
Rjα

(X)),

for some asymptotic types Rjα, and |α| ≤ j, πCRjα ∩ Γn+1
2 −γjα

= ∅, γjα ≤ γ ≤ γjα + j.
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(ii) A Green symbol g(y, η) is defined by

g(y, η) ∈
⋂

s,g∈R
Sm

cl (Ω× Rq;Ks,γ;g(X∧),SP (X∧)),

and
g∗(y, η) ∈

⋂

s,g∈R
Sm

cl (Ω× Rq;Ks,−m+γ;g(X∧),SQ(X∧)),

for continuous asymptotic types P, and Q, respectively. (Concerning details on continuous
asymptotic types, see, for instance, [38], or [43].)

For a smoothing Mellin symbol gM (y, η) we set

σ1(gM )(y, η) := r−mω(r|η|)opγ00−n/2
M (f00)(y)ω̃(r|η|)

which is the homogeneous principal part of order m of the respective classical operator-valued
symbol. Analogously, if g(y, η) is a Green symbol we set

σ1(g)(y, η) = g(m)(y, η)

with g(m) being the homogeneous principal part of g of order m.

Remark 4.5. Edge symbols a(y, η) are an analogue of boundary symbols from boundary value
problems for operators with/without the transmission property at the boundary.

Let M be a manifold with edge Y of dimension q > 0. Then the space of all edge pseudo-
differential operators on M , referring to the weight data g = (γ, γ −m, Θ) for a weight γ ∈ R and
a weight interval Θ = (ϑ, 0],−∞ ≤ ϑ < 0 (which indicates an interval on the left of γ, and γ −m,
respectively, where we control asymptotics) is defined to be the subset

Am(M,g) ⊂ Lm
cl (M \ Y )

of all operators A that are locally near Y of the form A = Opy(a)mod A−∞(M,g) where a(y, η)
is an edge amplitude function (4.2) while A−∞(M,g) is defined by mapping properties to smooth
functions with asymptotics. In order not to overload the explanations we omit some details on
asymptotics; let us only note that control of asymptotics in terms of Θ, for instance, in the discrete
case (3.1) means that we observe exponents such that Re pj belong to the interval ((n+1)/2−γ−
ϑ, (n+1)/2− γ) for functions in the preimage and to ((n+1)/2− γ−m−ϑ, (n+1)/2− γ−m) in
the image. For a first understanding it suffices to imagine Θ = (−∞, 0]; then we may forget about
Θ and write g = (γ, γ −m).
The principal symbolic structure of operators A ∈ Am(M,g), m ∈ R, g = (γ, γ −m,Θ) is defined
by σ(A) = (σ0(A), σ1(A)) with σ0(A) being the homogeneous principal symbol in the sense of
Am(M,g) ⊂ Lm

cl (M \Y ), which is locally near r = 0 of the form σ0(A) = r−mp̃(m)(r, x, y, rρ, ξ, rη)
where p̃(m)(r, x, y, ρ̃, ξ, η̃) is the homogeneous principal symbol of the above family in C∞(R+ ×
Ω, Lm

cl (X;R1+q
ρ̃,η̃ )). Moreover, for the case q > 0 we have

σ1(A)(y, η) = r−mopγ−n/2
M (h0)(y, η)+σ1(gM+g)(y, η), (y, η) ∈ T ∗Ω\0, h0(r, y, z, η) = h̃(0, y, z, rη),

which is a family of linear continuous operators

σ1(A)(y, η) : Ks,γ(X∧) → Ks−m,γ−m(X∧) (4.4)

of homogeneity
σ1(A)(y, λη) = λmκλσ1(A)(y, η)κ−1

λ , λ ∈ R+.
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Theorem 4.6. Every A ∈ Am(M, g), g = (γ, γ−m,Θ), M compact, induces continuous operators

A : Ws,γ(M) →Ws−m,γ−m(M) (4.5)

for all s ∈ R. The operator (4.5) is compact when σ(A) = 0.

Definition 4.7. An operator A ∈ Am(M, g), g = (γ, γ −m,Θ), is said to be elliptic if

(i) A is elliptic as an operator in Lm
cl (intM), and if in addition locally near r = 0 the function

p̃(m)(r, x, y, ρ̃, ξ, η̃) does not vanish for all (ρ̃, ξ, η̃) 6= 0 up to r = 0;

(ii) the operators (4.4) are bijective for all (y, η) ∈ T ∗Ω \ 0.

Remark 4.8. The second condition of ellipticity concerning σ1 is stronger than necessary. It
suffices to impose the Fredholm property together with a 2×2 block matrix extension of σ1 by extra
trace and potential symbols to a family of isomorphisms. The extra symbols represent additional
operators satisfying an analogue of the Shapiro-Lopatinskij condition, known from boundary value
problems. Similarly as in the latter case this requires vanishing of a topological obstruction for σ0(A)
(concerning more details on that point, including the calculus when this topological obstruction does
not vanish, see [50]).

Theorem 4.9. An operator A ∈ Am(M, g), g = (γ, γ −m,Θ), M compact, is elliptic with respect
to (σ0, σ1) if and only if (4.5) is Fredholm for some fixed s ∈ R. In general the ellipticity of A
entails the existence of a parametrix in A−m(M, g−1) belonging to (σ−1

0 , σ−1
1 ).

Remark 4.10. Parameter-dependent operators of the class Am(M, g;Rl) are defined in an analo-
gous manner as for l = 0. There is then a notion of parameter-dependent ellipticity. If Am(M, g;Rl)
is parameter-dependent elliptic, M compact, then

A(λ) : Ws,γ(M) →Ws−m,γ−m(M) (4.6)

are isomorphisms for all λ ∈ Rl, |λ| sufficiently large, s ∈ R.

Let Am−1(M,g;Rl) :=
{
A ∈ Am(M,g;Rl) : σ(A) = 0

}
, and successively define Am−j(M,g;Rl)

for every j ∈ N, g = (γ, γ −m,Θ).

Theorem 4.11. For every s′, s′′ ∈ R and N ∈ N there exists a j ∈ N such that for A(λ) ∈
Am−j(M, g;Rl) we have

‖A(λ)‖L(Ws′,γ(M),Ws′′,γ−m(M)) ≤ c〈λ〉−N (4.7)

for all λ ∈ R and some c > 0.

5 Higher corner operators

We sketch a number of structures of the pseudo-differential operator calculus on a manifold with
higher corners. For convenience we focus the consideration on the case k = 2. It will be fairly
obvious that the concept is iterative and can be applied for higher corners as well, cf. [45]. This
aspect is one of the main motivations of our approach. Another motivation is, of course, to express
parametrices of elliptic elements within the calculus which belongs to one of our results; special
cases have been treated before, cf., [39], [46]. Other contributions to the higher corner calculus are
[45], and the author’s joint papers with Maniccia [29], Krainer [27], Calvo and Martin [5], Calvo
[6], Harutyunyan [19], [20], [21]. Let B ∈ M1; then a starting point are corner-degenerate families

p(t, z, τ, ζ) = p̃(t, z, tτ, tζ) (5.1)

where
p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Σ, Am(B,g;R1+d

τ̃ ,ζ̃
)), g = (γ, γ −m,Θ). (5.2)
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Define
Mm
O (B,g;Rd

ζ) ⊂ A(C, Am(B,g;Rd
ζ)) 3 h(v, ζ) (5.3)

such that
h(δ + iτ, ζ) ∈ Am(B,g;R1+d

τ,ζ ) (5.4)

for every δ ∈ R, uniformly in compact δ-intervals.

Theorem 5.1. For p(t, z, τ, ζ) as in (5.1) there exists a h(t, z, v, ζ) = h̃(t, z, v, tζ) for some
h̃(t, z, v, ζ̃) ∈ C∞(R+ × Σ,Mm

O (B, g;Rd
ζ̃
)) such that

Opt,z(p) = opδ−b/2
M Opz(h)mod A−∞(R+ × Σ×B, g), (5.5)

for b := dim B, for all δ ∈ R.

Let us now define weighted spaces, first on B∧ = R+ × B for compact B ∈ M1. The space
H(s,γ,δ)(B∧) defined to be to be the completion of C∞(R+ × intB) with respect to the norm

{
(2πi)−1

∫

Γ n+1
2 −δ

‖Rs(Im v)Mu(z)‖2W0,γ−s(B)dv
}1/2

(5.6)

where Rs(λ) ∈ As(B,g;R) is an order reducing family of edge operators, b = dim B, g = (γ, γ −
s, Θ). Moreover, we have the cone spaces Hs,γ

cone(R×B) obtained as the completion of C∞(R×intB)
with respect to the norm

{ ∫
‖〈t〉−sOpt(p)(ζ1)u‖2W0,γ−s(B)dt

}1/2

for a parameter-dependent elliptic family p(t, z, τ, ζ) = p̃(z, 〈t〉τ, 〈t〉ζ), p̃(τ̃ , ζ̃) ∈ As(M,g;Rd
ζ̃
),

g = (γ, γ− s, Θ), and |ζ1| sufficiently large and fixed. Then we set Hs,γ
cone(B∧) := Hs,γ

cone(R×B)|B∧ .
Finally for any cut-off function ω(t) we set

Ks,(γ,δ)(B∧) = ωHs,(γ,δ)(B∧) + (1− ω)Hs,γ
cone(B

∧),

and Ks,(γ,δ);g(B∧) := 〈t〉−gKs,(γ,δ)(B∧). Similarly as (4.2) we form operator-valued amplitude
functions

a(z, ζ) = ω(t)t−mopδ−n/2
Mt

(h)(z, ζ)ω̃(t) + smoothing Mellin plus Green symbols(z, ζ) (5.7)

belonging to Sm(Σ × Rd;Ks,(γ,δ)(B∧),Ks−m,(γ−m,δ−m)(B∧)). For M ∈ M2 with the minimal
stratum Z ⊂ M, say, of dimension d > 0, we have the space of corner pseudo-differential operators

Am(M,g) forg = (g1,g2), g1 = (γ, γ −m,Θ1), g2 = (δ, δ −m,Θ2), (5.8)

consisting of all A ∈ Am(M \ Z) that are locally near Z of the form A = Opz(a)mod A−∞(M,g)
where A−∞(M,g) is defined by mapping properties to smooth functions with asymptotics. On Z
we have weighted spaces

Ws,(γ,δ)(M) ⊂ Ws,γ
loc (M \ Z),

locally near Z modelled onWs(Rd,Ks,γ(B∧)). The principal symbolic structure of an A ∈ Am(M,g)
is given by (σ(A|M\Z), σ2(A)) where σ(A|M\Z) is known from the case k = 1, and

σ2(A)(z, ζ) = t−mopδ−n/2
Mt

(h0)(z, ζ)

for h0(t, z, v, ζ) = h̃(0, z, v, tζ), which is a family of operators

σ2(A)(z, ζ) : Ks,(γ,δ)(B∧) → Ks−m,(γ−m,δ−m)(B∧)
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for (z, ζ) ∈ T ∗Z \ 0, homogeneous in the sense

σ2(A)(z, λζ) = λmκλσ2(A)(z, ζ)κ−1
λ , λ > 0.

If A or B is properly supported (such a property is defined in an analogous manner as in the
smooth case) the AB belongs to the corner calculus again, and we have σ(AB) = σ(A)σ(B) with
componentwise composition.
An operator A ∈ Am(M,g) is said to be elliptic if A|M\Z is elliptic in the calculus over M \ Z ∈
M1, and if close to Z the symbolic components σ0(·, ζ̃), σ1(·, ζ̃) with parameter ζ̃ ∈ RZ \ {0}
(substituting tζ) are parameter-dependent elliptic up to t = 0. The latter condition concerns an
evident generalisation of Definition 4.7 to the case when we have an extra covariable ζ̃ which is
also involved in edge-degenerate form and where the symbols (apart from a weight factor t−m)
also depend on t, smoothly up to t = 0.

Theorem 5.2. Every A ∈ Am(M, g), M compact, induces continuous operators

A : Ws,(γ,δ)(M) →Ws−m,(γ−m,δ−m)(M) (5.9)

for all s ∈ R. The operator (5.9) is compact when σ(A) = 0.

Theorem 5.3. Let A ∈ Am(M, g), M compact; then A is elliptic exactly when (5.9) is a Fredholm
operator for some s = s0 ∈ R. The ellipticity of A entails the Fredholm property of (5.9) for
all s. Moreover, if A is elliptic, M not necessarily compact, the operator A has a parametrix in
A−m(M, g−1) belonging to σ−1(A) (with componentwise inverses).

Remark 5.4. The above-mentioned results on parameter-dependent operators in the case k =
1 have natural analogues for k = 2. They imply, in particular, the existence of order reducing
operators in the calculus.

Example 5.5. Let X,Y, and Z be Riemannian manifolds with Riemannian metrics gX , gY , and
gZ , respectively, and form the degenerate metric

dt2 + t2(dr2 + r2gX + gY ) + gZ

on the stretched corner R+ × (R+ × X × Y ) × Z. Then the associated Laplace-Beltrami operator
belongs to the corner calculus for k = 2 on (X∆ × Y )∆ × Z ∈ M2. More generally, considering,
for instance,

M := (. . . ((X∆ × Y1)∆ × Y2)∆ × . . . Yk−1)∆ × Yk

for Riemannian manifolds X, Y1, . . . , Yk, the corner metric

dr2
k + r2

k(dr2
k−1 + . . . + (dr2

2 + r2
2(dr2

1 + r2
1gX + gY1) + gY2) + . . .) + gYk

,

on
R+ × (. . . (R+ × (R+ ×X × Y1)× Y2)× . . . Yk−1)× Yk

gives rise to a Laplace-Beltrami operator belonging to Diff2
deg(M).

6 Concluding remarks

The higher corner calculus that we presented here contains many technicalities that are derived
from the program to cover all the substructures sketched in Section 3. A dominating aspect of our
theory is to guarantee that the calculus is closed under the construction of parametrices of elliptic
elements and that it reflects asymptotics of solutions and elliptic regularity in weighted spaces.
What concerns the history of our approach, the above-mentioned information has been integrated
from the very beginning, for instance, classical elliptic boundary value problems (BVPs) in the
sense of Agmon, Douglis, and Nirenberg [1], the theory of pseudo-differential BVPs of Vishik and
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Eskin [56], [12], the calculus of Boutet de Monvel [4], details on singular integral operators and
operators based on the Mellin transform on the half-axis [18], [12]. The symbolic structures have
been invented in such a way that vanishing of principal symbols gives rise to compact operators
(when the configuration is compact, otherwise after localisation). Clearly the Fredholm index of
elliptic operators has been realised as something invariant under stable homotopies of elliptic
principal symbols (through elliptic symbols). At some point the author together with Rempel [35]
became aware of the similarity between the boundary symbolic calculus for BVPs without the
transmission property, cf. [12], [34], and the theory of Kondratiev [24] where R+ is replaced by a
cone with a non-trivial base X. The inclusion of edge problems was the next logical step in the
development, and, after a preliminary work with Rempel [36], the paper [37] gave a first systematic
edge pseudo-differential calculus. Another step of the development was the paper [39] where the
theory has been extended to the case of manifolds with corners (locally modelled on a cone where
the base has conical singularities). After that it took some time to develop more technical tools to
make the approach really iterative, cf. [45], [46] (the paper [46] studies singularities modelled on
cones where the base has edges).
There are many aspects to be deepened and continued in future, for instance, on operator algebras
where the symbols do not satisfy an analogue of the Atiyah-Bott condition for the existence of
Shapiro-Lopatinskij elliptic edge conditions (for k ≥ 2; concerning the case of boundary value
problems and edge problems, cf. [44], and the author’s joint papers with Seiler [49], and [50]),
moreover, on the nature of iterated and variable branching asymptotics of solutions, cf. [41], [42]
for the case of boundary value problems, and the joint work with Volpato [51] for the case of edge
problems, or the explicit computation of admissible weights or asymptotic data, cf. the author’s
joint papers with Dines and Liu [10], [9], [28] for the case of corner or boundary value problems.
Different schools on singular analysis apparently emphasise different classes of degenerate operators
(in stretched coordinates), and, although there are considerable intersections between the various
attempts, it seems that there is no standard terminology on what is a corner-degenerate operator or
a corner manifold. Therefore, we point out once again that our calculus is made for corner manifolds
that include cones, wedges, cubes, higher polyhedra, etc., embedded in a smooth ambient space,
and equipped with the induced (incomplete) corner metrics. Differential operators in the respective
stretched coordinates are polynomials in degenerate vector fields of the form

(∂/∂xj)j=1,...,n, r1∂/∂r1, (r1∂/∂y1,l)l=1,...,q1 , r1r2∂/∂r2, (r1r2∂/∂y2,l)l=1,...,q2 , . . . ,

r1r2 . . . rk∂/∂rk, (r1r2 . . . rk∂/∂yk,l)l=1,...,qk
,

combined with weight factors (r1 . . . rk)−m for operators of order m, and with coefficients that
are smooth in all variables up to rj = 0, j = 1, . . . , k. Here rj ∈ R+, and (yj,l)l=1,...,qj is the
variable on a qj-dimensional edge. This is exactly what we obtain as local descriptions of operators
Diffm

deg(M), M ∈ Mk, cf. Section 2, or Example 5.5. Moreover, if we are in the situation that an
operator is given in a domain with polyhedral boundary, and the respective operator is expressed
in Euclidean coordinates in Rn with smooth coefficients across the boundary (for instance, the
standard Laplacian in Rn, then by repeatedly substituting polar coordinates (according to the order
of singularity) we obtain also operators in our class. In such a case it is convenient to formulate
everything in the variant of (pseudo-differential) boundary value problems, i.e., to replace the
parameter-dependent operators, say, on a closed manifold X (as in Section 4) by the algebra of
boundary value problems on X, (now for an X with boundary) with the transmission property
at the smooth faces of the boundary. This aspect is systematically applied in [22], [21], and in
numerous other papers mentioned before, jointly with Dines, Liu, Wei, and others.
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