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Abstract

We prove a local in time existence and uniqueness theorem of classical solutions of
the coupled Einstein–Euler system, and therefore establish the well posedness of this
system. We use the condition that the energy density might vanish or tends to zero
at infinity and that the pressure is a certain function of the energy density, conditions
which are used to describe simplified stellar models. In order to achieve our goals
we are enforced, by the complexity of the problem, to deal with these equations in a
new type of weighted Sobolev spaces of fractional order. Beside their construction,
we develop tools for PDEs and techniques for hyperbolic and elliptic equations in
these spaces. The well posedness is obtained in these spaces.

1 Introduction

This paper deals with the Cauchy problem for the Einstein-Euler system describing a
relativistic self-gravitating perfect fluid, whose density either has compact support or falls
off at infinity in an appropriate manner, that is the density belongs to a certain weighted
Sobolev space.

The evolution of the gravitational field is described by the Einstein equations:

Gαβ = 8πTαβ, (1.1)

where Gαβ is the Einstein tensor of a spacetime metric gαβ and Tαβ is the energy momentum
tensor. In the case of a perfect fluid the later takes the form Tαβ = (ε + p)uαuβ + pgαβ,
here ε is energy density, p is the pressure and uα is a four velocity unit timelike vector.
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Since Gαβ is a divergence free tensor, the energy momentum tensor must satisfy the Euler
equations

∇αT
αβ = 0. (1.2)

However, equations (1.1) and (1.2) are not sufficient to determinate the structure uniquely,
a functional relation between the pressure p and the energy density ε (equation of state)
is also necessary. We choose an equation of state which has been used in astrophysical
problems. It is the analogue of the well known polytropic equation of state in the non-
relativistic theory, given by

p = Kεγ, 0 < K, 1 < γ. (1.3)

So the present Einstein-Euler system consists of the coupled equations (1.1) and (1.2) with
the equation of state (1.3). The unknowns are the gravitational field gαβ, the velocity
vector uα and the energy density ε.

The common method to solve the Cauchy problem for the Einstein equations consists
usually of two steps. Unlike ordinary initial value problems, initial data must satisfy
constraint equations intrinsic to the initial hypersurface. Therefore, the first step is to
construct solutions of these constraints. The second step is to solve the evolution equations
with these initial data, in the present case these are first order symmetric hyperbolic
systems. As we describe later in detail, the complexity of our problems forces us to consider
an additional third step, that is, after solving the constraint equations, we have to construct
the initial data for the fluid equations.

The nature of this Einstein-Euler system (1.1), (1.2) and (1.3) forces us to treat both the
constraint and the evolution equations in the same type of functional spaces. Under the
above consideration, we have established the well posedness of this Einstein-Euler system in
a weighted Sobolev spaces of fractional order. Oliynyk has recently studied the Newtonian
limit of this system in weighted Sobolev spaces of integer order [33].

We will briefly resume the situation in the mathematical theory of self gravitation perfect
fluids describing compact bodies, such as stars: For the Euler-Poisson system Makino
proved a local existence theorem in the case the density has compact support and it vanishes
at the boundary, [28]. Since the Euler equations are singular when the density ρ is zero,
Makino had to regularize the system by introducing a new matter variable (w = M(ρ)).
His solution however, has some disadvantages such as the fact they do not contain static
solutions and moreover, the connection between the physical density and the new matter
density remains obscure.

Rendall generalized Makino’s result to the relativistic case of the Einstein–Euler equations,
[34]. His result however suffers from the same disadvantages as Makino’s result and more-
over it has two essential restrictions: 1. Rendall assumed time symmetry, that means that
the extrinsic curvature of the initial manifold is zero and therefore the Einstein’s constraint
equations are reduced to a single scalar equation; 2. Both the data and solutions are C∞0
functions. This regularity condition implies a severe restriction on the equation of state
p = Kεγ, namely γ ∈ N.
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Similarly to Makino and Rendall, we have also used the Makino variable

w = M(ε) = ε
γ−1

2 . (1.4)

Our approach is motivated by the following observation: As it turns out, the system of
evolution equations have the following form

A0∂tU + Ak∂kU = Q(ε, ..), (1.5)

where the unknown U consists of the gravitational field gαβ the velocity of the fluid uα and
the Makino variable w, and the lower order term Q contains the energy density ε. Thus,
we need to estimate ε by w in the corresponding norm of the function spaces. Combining
this estimation with the Makino variable (1.4), it results in an algebraic relation between
the order of the functional space k and the coefficient γ of the equation of state (1.3) of
the form

1 < γ ≤ 2 + k

k
. (1.6)

This relation can be easily derived by considering ‖Dαw‖L2 , |α| ≤ k. Moreover, it can be
interpreted either as a restriction on γ or on k. Thus, unlike typical hyperbolic systems
where often the regularity parameter is bounded from below, here we have both lower and
upper bounds for differentiability conditions of the sort 5

2
< k ≤ 2

γ−1
. Similar phenomena

for Euler-Poisson equations was noticed by Gamblin [17].

We want to interpret (1.6) as an restriction on k rather than on γ. Therefore, instead
of imposing conditions on the equation of state and in order to sharpen the regularity
conditions for existence theorems, we are lead to the conclusion of considering function
spaces of fractional order, and in addition, the Einstein equations consist of quasi linear
hyperbolic and elliptic equations. The only function spaces which are known to be useful
for existence theorems of the constraint equations in the asymptotically flat case, are the
weighted Sobolev spaces Hk,δ, k ∈ N, δ ∈ R, which were introduced by Nirenberg and
Walker, [32] and Cantor [6], and they are the completion of C∞0 (R3) under the norm

(‖u‖k,δ)2 =
∑
|α|≤k

∫ (
(1 + |x|)δ+|α||∂αu|

)2
dx. (1.7)

Hence we are forced to consider new function spaces Hs,δ, s ∈ R which generalize Hk,δ

to fractional order. The well posedness of the Einstein-Euler system is obtained in these
space and to achieve this, we have to solve both the constraint and the evolution equations
in the Hs,δ spaces.

Another difficulty which arises from the non-linear equation of state (1.3) is the compati-
bility problem of the initial data for the fluid and the gravitational fields. There are three
types of initial data for the Einstein-Euler system:
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• The gravitational data is a triple (M,h,K), where M is space-like manifold, h = hab
is a proper Riemannian metric on M and K = Kab is a second fundamental form on
M (extrinsic curvature). The pair (h,K) must satisfy the constrain equations{

R(h)−KabK
ab + (habKab)

2 = 16πz,
(3)∇bK

ab − (3)∇b(hbcKbc) = −8πja,
(1.8)

where R(h) = habRab is the scalar curvature with respect to the metric h.

• The matter variables, consisting of the energy density z and the momentum density
ja, appear in the right hand side of the constraints (1.8).

• The initial data for Makino’s variable w and the velocity vector uα of the perfect
fluid.

The projection of the velocity vector uα, ūα, on the tangent space of the initial manifold
M leads to the following relations{

z = ε+ (ε+ p)habū
aūb

jα = (ε+ p)ūa
√

1 + habūaūb
(1.9)

between the matters variable (z, ja) and (w, ūa). We cannot give ε, p, ūb and solve for z
and jα, since this is incompatible with the conformal scaling, see section 4.1. Therefore
we have to give z, jα and solve for ε p, ūb. Relations (1.9) are by no means trivial, and
they enforce us to modify the conformal method for solving the constraint equations (see
e. g. [13], [2]). Therefore the free initial data for the Einstein-Euler system will be partially
invariant under conformal transformations.

The paper is organized as follows: In the next section we formulate Einstein-Euler system
and introduce the Makino’s variable. Dealing with these systems requires to transform
them into a hyperbolic type of PDEs. Choquet-Bruhat showed that the choice of harmonic
coordinates converts the fields equations (1.1) into wave equations and which then can
be written as a first order symmetric hyperbolic system [10], [13]. Reducing the Euler
equations (1.2) to a first order symmetric hyperbolic system is not a trivial matter. We
use a fluid decomposition and present a new reduction of the Euler equations. Beside
having a very clear geometric interpretation, we are giving a complete description of the
structure of the characteristics conformal cone of the system, namely, it is a union of a
three-dimensional hyperplane tangent to the initial manifold and the sound cone.

In Section 3 we define the weighted Sobolev spaces of fractional order Hs,δ and present our
main results. These include a solution of the compatibility problem, the construction of
initial data and a solution to the evolution equations in the Hs,δ spaces. The announcement
of the main results has been published in [5].

Section 4 deals with the constructions of the initial data. The common Lichnerowicz-York
[13], [7], [42] scaling method for solving the constraint equations cannot be applied here
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directly, since it violates the relations (1.9). We need to invert of (1.9) in order construct
the initial data and there are two conditions which guarantee it: the dominate energy

condition habj
ajb ≤ z2, which is invariant under scaling; since

√
∂p
∂ε

is the speed of sound,

we have the causality condition ∂p
∂ε

= ∂
∂ε

(Kεγ) < c2. Unfortunately the last condition is
not invariant under scaling. It is also necessary to restrict the matter variables (z, ja) to
a certain region. We show the inversion of (1.9) exists provided that (z, ja) belong to a
certain region. This fact enables us to construct initial data for evolution equations.

The local existence for first order symmetric hyperbolic systems in Hs,δ is discussed in
Section 5. The known existence results in the Hs space [16], [23], [20], [38], [37], [27]
cannot be applied to the Hs,δ spaces. The main difficulty here is the establishment of
energy estimates for linear hyperbolic systems. In order to achieve it we have defined a
specific inner-product in Hs,δ and in addition the Kato-Ponce commutator estimate [24],
[38], [37] has an essential role in our approach. Once the energy estimates and other tools
have been established in the Hs,δ space, we follow Majda’s [27] iteration procedure and
show existence, uniqueness and continuity in that norm.

In Section 6 we study elliptic theory in Hs,δ which is essential for the solution of the
constraint equations. We will extend earlier results in weighted Sobolev spaces of inte-
ger order which were obtained by Cantor [7], Choquet-Bruhat and Christodoulou [11],
Choquet-Bruhat, Isenberg and York [12], and Christodoulou and O’Murchadha [14] to the
fractional ordered spaces. The central tool is a priori estimate for elliptic systems in the
Hs,δ spaces (6.21). Its proof requires first the establishment of analogous a priori estimate
in Bessel potential spaces Hs. Our approach is based on the techniques of pseudodiffer-
ential operators which have symbols with limited regularity and in order to achieve that
we are adopting ideas being presented in Taylor’s books [38]and [39]. A different method
was derived recently by Maxwell [29] who also showed existence of solutions to Einstein
constraint equations in vacuum in Hs,δ with the best possible regularity condition, namely
s > 3

2
. The semi-linear elliptic equation is solved by following Cantor’s homotopy argument

[7] and generalize it in Hs,δ spaces.

Finally, in the appendix we deal with of the construction, properties and tools for PDEs
in the weighted Sobolev spaces of fractional order Hs,δ. Triebel extended the Hk,δ spaces
given by the norm (1.7) to a fractional order [40], [41]. We present three equivalent norms,
one of which is a combination of the norm (1.7) and the norm of Lipschitz-Sobolevskij
spaces [35]. This definition is essential for the understanding of the relations between the
integer and the fractional order spaces (see (A.3)). However the double integral makes it
almost impossible to establish any property needed for PDEs. Throughout the effort to
solve this problem, we were looking for an equivalent definition of the norm: we let {ψj}∞j=0

be a dyadic resolution of unity in R3 and set

(
‖u‖Hs,δ

)2
=
∞∑
j=0

2( 3
2

+δ)2j‖(ψju)2j‖2
Hs , (1.10)
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where (f)ε(x) = f(εx). When s is an integer, then the norms (1.7) and (1.10) are equivalent.
Our guiding philosophy is to apply the known properties of the Bessel potential spaces Hs

term-wise to each of the norms in the infinite sum (1.10) and in that way to extend them
to the Hs,δ spaces. Of course, this requires a careful treatment and a sound consideration
of the additional parameter δ. Among the properties which we have extended to the Hs,δ

are algebra, Moser type estimates, fractional power, embedding to the continuous and
intermediate estimates.

2 The Initial Value Problem for the Euler-Einstein

System

We consider the Einstein-Euler system describing a relativistic self-gravitating perfect fluid.
The unknowns in the equations are functions of t and xa where xa (a = 1, 2, 3) are Cartesian
coordinates on R3. The alternative notation x0 = t will also be used and Greek indices
will take the values 0, 1, 2, 3 in the following. The evolution of the gravitational field is
described by the Einstein equations

Rαβ −
1

2
gαβR = 8πTαβ (2.1)

where gαβ is a semi Riemannian metric having a signature (−,+,+,+), Rαβ is the Ricci
curvature tensor, these are functions of gαβ and its first and second order partial derivatives
and R is the scalar curvature. The right hand side of (2.1) consists of the energy-momentum
tensor of the matter, Tαβ and in the case of a perfect fluid the latter takes the form

Tαβ = µuαuβ + pgαβ, µ = ε+ p (2.2)

where ε is the energy density, p is the pressure and uα is the four-velocity vector. The vector
uα is a unit timelike vector, which means that it is required to satisfy the normalization
condition

gαβu
αuβ = −1. (2.3)

The Euler equations describing the evolution of the fluid take the form

∇αT
αβ = 0, (2.4)

where ∇ denotes the covariant derivative associated to the metric gαβ. In order to close
the system of equations it is necessary to specify a relation between ε and p (equation of
state). The choice we make here is one which has been used for astrophysical problems. It
is an analogue of the well known polytropic equation of state of the non-relativistic theory
given by:

p = f(ε) = Kεγ, K, γ ∈ R+, 1 < γ. (2.5)
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The sound velocity is denoted by

σ2 =
∂p

∂ε
. (2.6)

The new matter variable w = M(ε) which regularize the Euler equations even for ε = 0 is
given by the expression

w = M(ε) = ε
γ−1

2 . (2.7)

2.1 The Euler equations written as a symmetric hyperbolic sys-
tem

It is not obvious that the Euler equations written in the conservative form ∇αT
αβ = 0

are symmetric hyperbolic. In fact these equations have to be transformed in order to be
expressed in a symmetric hyperbolic form. Rendall presented such a transformation of
the equations [34], however it’s geometrical meaning is not entirely clear and it might be
difficult to generalize it to the non time symmetric case. Hence we will present a different
hyperbolic reduction of the Euler equations and discuss it in some details, for we have
not seen it anywhere in the literature. The basic idea is to perform the standard fluid
decomposition and then to modify the equation by adding, in an appropriate manner, the
normalization condition (2.3) which will be considered as a constraint equation.

The fluid decomposition method consists of:

1. The equation ∇νT
νβ = 0 is once projected orthogonal onto uα which leads to

uβ∇νT
νβ = 0. (2.8)

2. The equation ∇νT
νβ = 0 is projected into the rest pace O orthogonal to uα of a fluid

particle gives us:

Pαβ∇νT
νβ = 0 with Pαβ = gαβ + uαuβ, Pαβu

β = 0. (2.9)

The resulting system is of the form:

uν∇νε+ µ∇νu
ν = 0; (2.10a)

µPαβu
ν∇νu

β + P ν
α∇νp = 0. (2.10b)

Note that we have beside the evolution equations (2.10a) and (2.10b) the following con-
straint equation: gαβu

αuβ = −1. We will show later, in subsection 2.1.1 that this constraint
equation is conserved under the evolution equation, that is, if it holds initially at t = t0,
then it will hold for t > t0. Note that in most textbooks, the equation (2.10b) is presented
as µgαβu

ν∇νu
β +P ν

α∇νp = 0, which is an equivalent form, since due to the normalization
condition (2.3) we have uβ∇νu

β = 0.
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In order to obtain a symmetric hyperbolic system that we have to modify the system in
the following way. The normalization condition (2.3) gives that uβu

ν∇νu
β = 0, so we add

µuβu
ν∇νu

β = 0 to equation (2.10a) and uαuβu
ν∇νu

β = 0 to (2.10b), which together with
(2.6) results in,

uν∇νε+ µP ν
β∇νu

β = 0 (2.11a)

Γαβu
ν∇νu

β +
σ2

µ
P ν

α∇νε = 0, (2.11b)

where Γαβ = Pαβ + uαuβ = gαβ + 2uαuβ. As mentioned above we will introduce a new
nonlinear matter variable which is given by (2.7). The idea which is behind this is the
following: The system (2.11a) and (2.11b) is almost of symmetric hyperbolic form, it
would be symmetric if we multiply the system by appropriate factors, for example, (2.11a)
by ∂p

∂ε
and (2.11b) by µ. However, doing so we will be faced with a system in which the

coefficients will either tend to zero or to infinity, as ε → 0. Hence, it is impossible to
represent this system in a non-degenerate form using these multiplications.

The central point is now to introduce a new variable w = M(ε) which will regularize the
equations even for ε = 0. We do this by multiplying equation (2.11a) by κ2M ′ = κ2 ∂M

∂ε
.

This results in the following system which we have written in matrix form:
κ2uν κ2µM ′P ν

β

σ2

µM ′
P ν

α Γαβu
ν

∇ν

(
w
uβ

)
=

(
0
0

)
. (2.12)

In order to obtain symmetry we have to demand

M ′ =
σ

µκ
, (2.13)

where κ � 0 has been introduced in order to simplify the expression for w. We choose κ
so that √

f ′(ε)

µκ
=

2

γ − 1

ε
γ−1

2

ε
, (2.14)

which gives the Makino variable (2.7). Taking into account the equation of state (2.5), we
see that

κ =
γ − 1

2

√
Kγ

1 +Kεγ−1
� 0. (2.15)

Finally we have obtained the following system
κ2uν σκP ν

β

κσP ν
α Γαβu

ν

∇ν

(
w
uβ

)
=

(
0
0

)
, (2.16)
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which is both symmetric and non-degenerated. The covariant derivative ∇ν takes in local
coordinates the form ∇ν = ∂ν + Γ(gγδ, ∂gαβ) which expresses the fact that the fluid uα is
coupled to equations (2.1) for the gravitational field gαβ. In addition, from the Makino
Variable (2.7) we see that εγ−1 = w2, so from the expression (2.6), σ =

√
γKw and therefore

κ which is given by (2.15) is a C∞ function of w. Thus the fractional power of the equation
of state (2.5) does not appear in the coefficients of the system (2.16), and these coefficients
are C∞ functions of the scalar w, the four vector uα and the gravitational fields gαβ.

Let us now recall a general definition of symmetric hyperbolic systems.

Definition 2.1 (First order symmetric hyperbolic systems) A quasilinear, sym-
metric hyperbolic system is a system of differential equations of the form

L[U ] =
4∑

α=0

Aα(U ;x)∂αU +B(U ;x) = 0 (2.17)

where the matrices Aα are symmetric and for every arbitrary U ∈ G there exists a covector
ξ such that

ξαA
α(U ;x) (2.18)

is positive definite. The covectors ξα for which (2.18) is positive definite, are spacelike with
respect to the equation (2.17). Both matrices Aα, B satisfy certain regularity conditions,
which are going to be formulated later.

Usually ξ is chosen to be the vector (1, 0, 0, 0) which implies via the condition (2.18) that
the matrix A0 has to be is positive definite.

Now we want to show that A0 of our system (2.16) is indeed positive definite. We do this
in several steps.

1. Explicit computation of the principle symbol (2.16);

2. We show that −uα is a space like covector with respect to the equations;

3. Then we apply a deformation argument and show that the covector tα := (1, 0, 0, 0)
is a space like covector with respect to the equation.

For each ξα ∈ T ∗xV the principle symbol is a linear map from R×Ex to R× Fx, where Ex
is a fiber in TxV and Fx is a fiber in the cotangent space T ∗xV . Since in local coordinates
∇ν = ∂ν + Γ(gγδ, ∂gαβ), the principle symbol of system (2.16) is

ξνA
ν =


κ2(uνξν) σκP ν

βξν

σκP ν
αξν (uνξν)Γαβ

 (2.19)
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and the characteristics are the set of covectors for which (ξνA
ν) is not an isomorphism.

Hence the characteristics are the zeros of Q(ξ) := det(ξνA
ν).

The geometric advantages of the fluid decomposition are the following. The operators in
the blocks of the matrix (2.19) are P ν

α, the projection on the rest hyperplane O and Γαβ,
the reflection with respect to the same hyperplane. Therefore, the following relations hold:

ΓαγΓγβ = δβ
α, ΓαγPγ

ν = Pαν and Pβ
αPα

ν = P ν
β,

which yields 
1 0

0 Γαγ

 (ξνA
ν) =


κ2(uνξν) σκP ν

βξν

σκPανξν (uνξν)
(
δαβ
)

 . (2.20)

It is now fairly easy to calculate the determinate of the right hand side of (2.20) and we
have

det


κ2(uνξν) σκP ν

βξν

σκPανξν (uνξν)
(
δαβ
)

 = κ2(uνξν)
3
(
(uνξν)

2 − σ2PανξνP
ν
αξν
)
.

Since Pα
β is a projection,

PανξνP
ν
αξν = gνβξνP

α
β P

ν
αξν = gνβξνP

ν
βξν = P ν

βξνξ
β (2.21)

and since Γγβ : R4 → R4 is a reflection with respect to a hyperplane,

det

(
1 0
0 Γαγ

)
= det

(
gαβΓγβ

)
= det

(
gαβ
)

det
(
Γγβ
)

= − (det (gαβ))−1 . (2.22)

Consequently,

Q(ξ) := det(ξνA
ν) = −κ2 det(gαβ)(uνξν)

3
{

(uνξν)
2 − σ2Pα

βξαξ
β
}

(2.23)

and therefore the characteristic covectors are given by two simple equations:

ξνu
ν = 0; (2.24)

(ξνu
ν)2 − σ2Pα

βξαξ
β = 0. (2.25)

10



Remark 2.2 (The structure of the characteristics conormal cone of ) The
characteristics conormal cone is therefore a union of two hypersurfaces in T ∗xV . One of
these hypersurfaces is given by the condition (2.24) and it is a three dimensional hyperplane
O with the normal uα. The other hypersurface is given by the condition (2.25) and forms
a three dimensional cone the so called sound cone.

Remark 2.3 Equation (2.25) plays an essential role in determining whether the equations
form a symmetric hyperbolic system.

Let us now consider the timelike vector uν and the linear combination −uνAν , with Aν

from equation (2.16), we then obtain that

− uνAν =


κ2 0

0 Γαβ

 (2.26)

is positive definite. Indeed, Γαβ is a reflection with respect to a hyperplane which its normal
is a timelike vector. Hence, −uν is for the hydrodynamical equations a spacelike covector
in the sense of partial differential equations. Herewith one has showed relatively elegant
and elementary that the relativistic hydrodynamical equations are symmetric–hyperbolic.

Now we want however to show that the covector tα = (1, 0, 0, 0) is spacelike with respect
to the system (2.16). Since Pα

βuα = 0, the covector −uν belongs to the sound cone

(ξνu
ν)2 − σ2Pα

βξαξ
β > 0. (2.27)

Inserting tν = (1, 0, 0, 0) the right hand side of (2.27) yields

(u0)2(1− σ2)− σ2g00. (2.28)

Since the sound velocity is always less than the light speed, that is σ2 = ∂p
∂ε
< c2 = 1, we

conclude from (2.28) that tν also belongs to the sound cone (2.27). Hence, the vector −uν
can be continuously deformed to tν while condition (2.27) holds along the deformation
path. Consequently, the determinant of (2.23) remains positive under this process and
hence tνA

ν = A0 is also positive definite.

2.1.1 Conservation of the constraint equation gαβu
αuβ = −1

Now it will be shown that the condition gαβu
αuβ = −1, which acts as a constraint equation

for the evolution equation, is conserved along stream lines uα. Because, if for t = t0 the
condition gαβu

αuβ = −1 holds and if it is conserved a long stream lines, then gαβu
αuβ = −1

holds also for t > t0. So let c(t) be a curve such that c′(t) = uα and set Z(t) = (u◦c)β(u◦c)β,
then we need to establish

d

dt
Z(t) = 2uβ∇c′(t)u

β = 2uνuβ∇νu
β = 0. (2.29)
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Multiplying the last four last rows of the Euler system (2.16) by uα and recalling that P ν
α

is the projection on the rest space O orthogonal to uα, we have

0 = uα
(
Γαβu

ν∇νu
β + κσP ν

α∇νw
)

= uαPαβu
ν∇νu

β − uνuβ∇νu
β + κσuαP ν

α∇νw

= −uνuβ∇νu
β.

2.2 The reduced Einstein field equations

In this paper we study the fields equations (2.1) with the choice of the harmonic coordinates.
This condition take the form

gαβgγδ(∂γgβδ −
1

2
∂δgβγ) = 0 (2.30)

and when it is imposed, then it well known that the Einstein equations (2.1) convert to

gµν∂µ∂νgαβ = Hαβ(g, ∂g)− 16πTαβ + 8πgµνTµνgαβ, (2.31)

see for example [10]. Since (2.31) are quasi linear wave equations, the introducing auxiliary
variables

hαβγ = ∂γgαβ, (2.32)

reduce them into a first order symmetric hyperbolic system:

∂tgαβ = hαβ0

gab∂thγδa = gab∂ahγδ0
−g00∂thγδ0 = 2g0a∂ahγδ0 + gab∂ahγδb

+Cεζηκλµ
γδαβρσhεζηhκλµg

αβgρσ − 16πTγδ + 8πgρσTρσgγδ

(2.33)

The object Cεζηκλµ
γδαβρσ is a combination of Kronecker deltas with integer coefficients. We

therefore conclude:

Conclusion 2.4 (The evolution equations in a first order symmetric hyper-
bolic form) The equations for Einstein gravitational fields (2.1) coupled with the Euler
equations (2.4) with the normalization conditions (2.3) and the equation of state (2.5), are
equivalent to the system (2.33) and (2.16). The coupled systems (2.33) and (2.16) take the
form of a first order symmetric hyperbolic system in accordance with Definition 2.1 and
where A0 is a positive definite matrix.

3 New Function Spaces and the Principle Results

The principle results concern the solution to Einstein constraint equations (1.8), which
lead to elliptic systems and the coupled evolution equations (2.1) and (2.4), which we have
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showed are equivalent to the hyperbolic system (2.16) and (2.33). The Bessel potential
spaces Hs which are the natural choice for the hyperbolic systems are inappropriate for the
solutions of the constraint equations in asymptotically flat manifolds. Roughly speaking,
because the Laplacian is not invertible in these spaces.

As we explained in the introduction, the Nirenberg-Walker-Cantor weighted Sobolev spaces
of integer order Hm,δ [6], [32] are suitable for for the solutions of the constraints in asymp-
totically flat manifolds. Their norm is given by (1.7).

Our aim is solving the Einstein-Euler systems and therefore it is essential to solve both
the evolution equations (2.16) and (2.33), and the constraint equations (1.8) in one type
of functions spaces. In addition, since we want also to improve the regularity conditions
for the solutions of the Einstein-Euler system, we are lead to consider weighted Sobolev
spaces of fractional order.

Triebel [40] presented two equivalent extensions of the integer order norm (1.7) to a frac-
tional order. The first one is analogous to Lipschitz-Sobolevskij norm and it is given by
(A.3) in the Appendix. The double integral in (A.3) causes many difficulties which makes
it useless as one turns to prove certain properties which are needed for PDEs in these
spaces.

The second one is based upon a dyadic resolution of the unity in R3: Let Kj = {x : 2j−3 ≤
|x| ≤ 2j+2}, (j = 1, 2, ...) and K0 = {x : |x| ≤ 4}. Let {ψj}∞j=0 be a sequence of C∞0 (R3)

such that ψj(x) = 1 on Kj, supp(ψj) ⊂ ∪j+3
l=j−4Kl, for j ≥ 1 and supp(ψ0) ⊂ K0 ∪K1.

We denote by Hs the Bessel potential spaces with the norm (p = 2)

‖u‖2
Hs = c

∫
(1 + |ξ|2)s|û(ξ)|2dξ,

where û is the Fourier transform of u. Also, for a function f , fε(x) = f(εx).

Definition 3.1 (Weighted fractional Sobolev spaces: infinite sum of semi
norms) For s ≥ 0 and −∞ < δ <∞,(

‖u‖Hs,δ
)2

=
∑
j

2( 3
2

+δ)2j‖(ψju)(2j)‖2
Hs . (3.1)

The space Hs,δ is the set of all temperate distributions with a finite norm given by (3.1).

3.1 The principle results

Our principle results are the compatibility of the initial data for the fluid and the gravita-
tional field, the solution of the constraints equations and the well-posedness of the evolution
equations in the Hs,δ spaces.
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3.1.1 The compatibility of the initial data for the fluid and the gravitational
field

The matter data (non-gravitational) (z, j) which are given by (4.2) and (4.3) arise from
external sources and appear in the right hand side of the fields equations (2.1). They are
coupled with the initial data for the hyperbolic system (2.16) via the relations{

z = w
2

γ−1
(
1 + (1 +Kw2)habū

aūb
)

ja = w
2

γ−1 (1 +Kw2)ua
√

1 + habūaūb
, (3.2)

here hab is the given Riemannian metric on the initial manifold and ūα is the projection of
the velocity vector on the initial manifold. Thus, an indispensable condition for obtaining a
solution of the Einstein-Euler system is the inversion of (3.2). This system is not invertible
for all (z, ja) ∈ R+ × R3, but the inverse does exist in a certain region.

Theorem 3.2 (Reconstruction theorem for the initial data) There is a real func-
tion S : [0, 1)→ R such that if

0 ≤ z < S(
√
habjajb/z), (3.3)

then system (3.2) has a unique inverse. Moreover, the inverse mapping is continuous in
Hs,δ norm.

Remark 3.3 The matter initial data (z, ja) for the Einstein-Euler system with the the
equation of state (2.5) cannot be given freely. They must satisfy condition (3.3). This
condition includes the inequality

z2 ≥ habj
ajb, (3.4)

which is known as the dominate energy condition.

3.1.2 Solution to the constraint equations

The gravitational data is a triple (M,h,K), where M is a space-like asymptotically flat
manifold, h = hab is a proper Riemannian metric on M , and K = Kab is the second
fundamental form on M (extrinsic curvature). The metric hab and the extrinsic curvature
K must satisfy Einstein’s constraint equations (4.8) and (4.9). The free initial data is a set
(h̄ab, Āab, ẑ, ĵ

a), where hab is a Riemannian metric, Āab is divergence and trace free form, ẑ
is a scalar function and ĵa is a vector.

Theorem 3.4 (Solution of the constraint equations)

(i) Given the free data (h̄ab, Āab, ẑ, ĵ
a) such that (h̄ab−I) ∈ Hs,δ, Āab ∈ Hs−1,δ+1, (ẑ, ĵa) ∈

Hs−1,δ+2, 5
2
< s < 2

γ−1
+ 3

2
and −3

2
< δ < −1

2
. Then there exists two positive functions
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α and φ such that (α − 1), (φ − 1) ∈ Hs,δ, a vector field W ∈ Hs,δ such that the
gravitational data

and Kab = (φα)−2Āab + φ−2L̂(W )

satisfy the constraint equations (4.8) and (4.9) with z = φ−8ẑ and jb = φ−10ĵb

as the right hand side, here L̂ is the Killing vector field operator. In ad-
dition, the Hs,δ, Hs−1,δ+1 norms of (hab − I,Kab) depend continuously on the
Hs,δ, Hs−1,δ+1, Hs−1,δ+2 norms of (h̄ab − I, Āab, ŷ, ĵa).

(ii) Given the free data (h̄ab, Āab, ẑ, ĵ
a) such that (h̄ab−I) ∈ Hs,δ, Āab ∈ Hs−1,δ+1, (ẑ, ĵa) ∈

Hs−1,δ+2, 5
2
< s < 2

γ−1
+ 3

2
, −3

2
< δ < −1

2
and ((α4h̄ab), ẑ, ĵ

a) satisfies (3.3). Let Ω−1

denote the inverse of relations (3.2). Then the data for the four velocity vector and
Makino variable are given by: z = φ−8ẑ, ja = φ−10ĵa,

(w, ūa) := Ω−1(z, ja) and ū0 = 1 + habū
aūb

and they satisfy the compatibility conditions (3.2). In addition, the Hs−1,δ+2 norms
of (w, ūa, u0 − 1) depend continuously on the Hs,δ, Hs−1,δ+2 norms of (h̄ab − I, ŷ, ĵa).

3.1.3 Solution to the evolution equations

The unkowns of the evolution equations are the gravitaional field gαβ and its first order
partial derivatives ∂αgγδ, the Makino variable w and the velocity vector uα. We repre-
sent them by the vector U = (gαβ − ηαβ, ∂agγδ, ∂0gγδ, w, u

a, u0 − 1), here ηαβ denotes the
Minkowski metric. The solutions of the constraint equations serve as initial data for the
hyperbolic systems (2.33) of the Einstein gravitational fields and (2.16) of the perfect fluid.
Applying Theorem 5.18 to the vector U we obtain:

Theorem 3.5 (Solutions of the evolution equations (2.33) and (2.16)) Let
7
2
< s < 2

γ−1
+ 3

2
and −3

2
< δ < −1

2
. Given the solutions of the constraint equations as

describe in Theorem 3.4, then there exists a T > 0, a unique semi-Riemannian metric gαβ
solution to (2.33) and a unique pair (w, uα) solution to (2.16) such that

(gα,β − ηα,β) ∈ C ([0, T ], Hs,δ) ∩ C1 ([0, T ], Hs−1,δ+1) (3.5)

(w, ua, u0 − 1) ∈ C ([0, T ], Hs−1,δ+2) ∩ C1 ([0, T ], Hs−2,δ+3) . (3.6)

4 The Initial Data

The Cauchy problem for Einstein fields equations (2.1) coupled with the Euler system (2.4)
consists of solving the coupled hyperbolic systems (2.33) and (2.16) with given initial data.
There are two types of data, gravitational and matter data.
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The gravitational data is a triple (M,h,K), where M is a space-like manifold, h = hab
is a proper Riemannian metric on M and K = Kab is the second fundamental form on
M (extrinsic curvature). On the space-like manifold M the semi-metric g satisfies the
following relations: {

gab|M = hab, ga0|M = 0, g00|M = −1
−1

2
∂0gab|M = Kab.

. (4.1)

Let n be the unit normal to the hypersurface M , δαβ + nαnβ be the projection on M and
define

z = Tαβn
αnβ, (4.2)

jα = (δαγ + nαnγ)T
γβnβ. (4.3)

The scalar z is the energy density and the vecor jα is the momentum density. These
quantities are called matter variables and they appear as sources in the constraint equations
(4.8) and (4.9) below.

In conjunction with these we must supply initial data for the velocity vector uα. So we
apply the projection to uα and set ūα = (δαβ + nαnβ)uβ. Then from the relation of the
perfect fluid (2.2) , (4.2), and (4.3) we see that

z = (ε+ p)(nβu
β)2 − p, (4.4)

jα = (ε+ p)ūα(nβu
β). (4.5)

The vectors jα and ūα are tangent to the initial surface and so they can be identified with
vectors ja and ūa intrinsic to this surface. Recalling the normalisation condition (2.3) we
have −1 = −(nβu

β)2 + habū
aūb. Thus the matter data (z, ja) can be identify with the

initial data for the velocity vector as follow:

z = ε+ (ε+ p)habū
aūb, (4.6)

jα = (ε+ p)ūa
√

1 + habūaūb. (4.7)

These two types of data cannot be given freely, because the hypersurface (M,h) is a sub-
manifold of (V, g) so the Gauss Codazzi equations lead to Einstein constraint equations

R(h)−KabK
ab + (habKab)

2 = 16πz, (4.8)
(3)∇bK

ab − (3)∇b(hbcKbc) = −8πja, (4.9)

where R(h) = habRab is the scalar curvature with respect to the metric h.

We turn now to the conformal method which allows us to construct the solutions of the
constraint equations (4.8) and (4.9). Before entering into details we have to discuss the
relations between the initial data for the system of Einstein gravitational fields (2.33) and
the system of the fluid (2.16) which are given by (4.6) and (4.7). As it turns out this
relations is by no means trivial, and indeed they will force us to modify the conformal
method.
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4.1 The compatibility problem of the initial data for the fluid
and the gravitational fields

On the one hand, the initial data for the Euler equations (2.16) are w(ε) and uα. On
the other hand z = F (w(ε), ūa) and ja = H(w(ε), ūa), which are given by (4.6) and (4.7)
respectively, appear as sources in the constraint equations (4.8) and (4.9). There we have
the possibility of either to consider w and uα as the fundamental quantities and construct
then z and ja or, vice verse, to consider z and ja as the fundamental quantities and
construct then w and uα.

The first possibility does not work because the geometric quantities which occur on the
left hand side of the constraint equations are supposed to scale with some power of a scalar
function φ. So z and ja, which are the sources in the constraint equations, must also scale
with a definite power of φ. If ε is scaled with a certain power of φ, then p would be scaled,
according to the equation of state (2.5), to a different power. Hence, by (4.6) z is a sum of
different powers. Thus, the power which ε and p are scaled would have to be zero and they
would be left unchanged by the rescaling. Similarly it can be seen that ūa would remain
unchanged. So in fact z would be unchanged and this is inconsistent with the scalding
used in the conformal method.

Instead of constructing (w, ūa) from (z, ja) it is more useful to introduce some auxiliary

quantities. Beside the Makino variable w = ε
γ−1

2 , we set

y = z
γ−1

2 and va =
ja

z
. (4.10)

Now we consider the following map

Φ

(
w
ūa

)
=

(
w[1 + (1 +Kw2)habū

aūb)]
γ−1

2

(1+Kw2)ūa
√

1+hbcūbūc

1+(1+Kw2)hbcūbūc

)
=

(
y
va

)
, (4.11)

which is equivalent to equations (4.6) and (4.7). The initial data (w, ūa) for the fluid are
reconstructed through the inversion of Φ above.

Theorem 4.1 (Reconstruction theorem for the initial data) There is a func-
tion s : [0, 1) → R such that the map Φ defined by (4.11) is a diffeormophism from

[0, (
√
γK)−

1
2 )× R3 to Ω, where

Ω = {(y, va) : 0 ≤ y < s
(√

habvavb
)
, habv

avb < 1}. (4.12)

Proof (of theorem 4.1) Let ρ =
√
habūaūb, ū0 be a unit vector and Rūa be the rotation

with respect to the metric hab such that ūa = ρRūaū0. Then

Φ

(
w
ūa

)
= Φ

(
w

ρRūaū0

)
=

(
w[1 + (1 +Kw2)ρ2]

γ−1
2

(1+Kw2)Rūa ū0ρ
√

1+ρ2

1+(1+Kw2)ρ2

)
. (4.13)
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Therefore, we can first invert the two dimensional map

Θ

(
w
ρ

)
:=

(
w[1 + (1 +Kw2)ρ2]

γ−1
2

(1+Kw2)ρ
√

1+ρ2

1+(1+Kw2)ρ2

)
(4.14)

for ρ ≥ 0 and then apply again the rotation. For w > 0, we decompose Θ of (4.14) as
follows:(

w
ρ

)
7→
(
ε
ρ

)
7→
(

ε+ (ε+ p(ε))ρ2

(ε+ p(ε))ρ
√

1 + ρ2

)
=:

(
z
r

)
7→
(
z
γ−1

2

r
z

)
. (4.15)

In order to show that this is a one to one map, we need to show that the Jacobian of
G(ε, ρ) := (ε+ (ε+ p(ε))ρ2, (ε+ p(ε))ρ

√
1 + ρ2) does not vanish. This computation results

with

det

(
1 + (1 + p′)ρ2 (1 + p′)ρ

√
1 + ρ2

(ε+ p)2ρ (ε+ p) 1+2ρ2√
1+ρ2

)
=

(ε+ p)√
1 + ρ2

(
1 + ρ2(1− p′)

)
. (4.16)

Recall that p′ = ∂p
∂ε

= σ2 is the speed of sound, therefore the causality condition σ2 < c2 = 1
imposes the below restriction of the domain of definition of the map Θ:

σ2 = p′ =
∂p

∂ε
=

∂

∂ε
(Kεγ) = γKεγ−1 = γKw2 < 1. (4.17)

Let S be the strip {0 ≤ w < (
√
γK)−

1
2 , 0 ≤ ρ < ∞}. We now want to show that

Θ : S → Θ(S) is a bijection. Clearly, Θ(0, ρ) = (0, ρ√
1+ρ2

) maps {0}× [0,∞) to {0}× [0, 1)

in a one to one manner, and Θ(w, 0) = (w, 0) is of course a bijection. The line (
√
γK)−

1
2 , ρ)

is mapped to the curve

(
y(ρ)
x(ρ)

)
=

 (
√
γK)−

1
2 (1 + 2ρ2)

γ−1
2

2ρ
√

1+ρ2

1+2ρ2

 . (4.18)

Since dx
dρ
> 0, there exists a function s : [0, 1) → R such that the curve (4.18) is given by

the graph of s and the image of Θ is the set below the graph, that is,

Θ(S) = {(y, x) : y < s(x), 0 ≤ x < 1}. (4.19)

By (4.15), (4.16) and (4.17) we conclude that the Jacobian of the map Θ, does not vanish
in the interior of S, hence Θ : S → Θ(S) is locally one to one map. It is well known that
a locally one to one map between two simply connected sets is a bijective map.
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4.2 Cantor’s conformal method for solving the constraint equa-
tions

In principle there are two possibilities for solving the constraint equation for an asymptot-
ically flat manifold:

• Either to adapt directly the method of York et all, but then one is forced to im-
pose certain relations between R(h̄) and the second fundamental form (see Choquet-
Bruhat and York [13] for details).

• These undesirable conditions can be substituted by a method developed by Cantor
which we will describe in the following. (This method has been discussed in detail
in the literature, see for example [2], [13], [7] [14] and reference therein.)

In this method parts of the data are chosen (the so-called free data), and the remaining
parts are determined by the constraint equations (4.8) and (4.9). The free initial data
are

(
h̄ab, Āab, z̄, j̄

)
, where Aab is a divergence and trace free 2-tensor. The main idea is to

consider two conformal scaling functions, α and φ.

1. We start with ĥab = α4h̄ab. If α is a positive solution to (4.25), then R(ĥ) = 0. The
Brill-Cantor condition (see Definition 4.5) is necessary and sufficient for the existence
of positive solutions. Having solved equation (4.25), we now adjust the given data
to the new metric: Âab = α−10Āab, ẑ = α−8z̄ and ĵa = α−10j̄a.

2. The second step here is solve the Lichnerowicz Laplacian (4.29) and set

K̂ab = (L(W ))ab + α−10Aab, (4.20)

where (L(W ))ab is the Killing operator giving by (4.27).

3. The third step is: If φ is a solution to the Lichnerowicz equation (4.30), then it follows
from (4.32) that the data hab = φ4ĥab, K

ab = φ−10K̂ab, z = φ−8ẑ and ja = φ−10ĵa

satisfy the constraint equations (4.8) and (4.9).

For the Einstein-Euler system with the equation of state (2.5) it is essential that the initial
data will satisfy condition (4.12) of Theorem 4.1. Therefore it is necessary to adjust this
method in this case.

Here the free initial data are: (
h̄ab, Āab, ŷ, v̂

b
)
. (4.21)

where Āab is trace and divergence free, that is, D̄aĀ
ab = h̄abĀ

ab = 0, where D̄a is the
covariant derivative with respect to the metric h̄ab. We require that the matter data
(ŷ, v̂a), will satisfy the condition

0 ≤ ŷ < s

(√
ĥabv̂av̂b

)
, (4.22)
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where s(·) is given by (4.19). The remaining initial data are determined by the constraint
equations (4.8) and (4.9), relations (4.10) and Theorem 4.1.

Remark 4.2 The distinction between the gravitational data (h̄ab, Āab) and the matter data
(ẑ, ĵb) is caused by condition (4.12). For if we make the scaling ĥab = φ4h̄ab, ẑ = φ−8z̄,
and ĵb = φ−10j̄b, then v̂b = φ−2v̄b, ŷ = φ−4(γ−1)ȳ and ĥabv̂

av̂b = h̄abv̄
av̄b. Thus, under

this conformal transformation, the argument of s in (4.12) is invariant, while the left hand
side will be effected. Therefore the free initial data are partially invariant under conformal
transformations.

Now, if we perform the conformal transformation

ĥab = α4h̄ab, (4.23)

then the scalar curvature with respect to the metric ĥab, R(ĥ), satisfies

− 8∆h̄α +R(h̄)α = R(ĥ)α5. (4.24)

Therefore, if there exists a nonnegative solution to the equation

−∆h̄α +
1

8
R(h̄)α = 0, (4.25)

then the metric ĥab given by (4.23) will have zero scalar curvature. We proceed the con-
struction as follow. Let Âab = α−10Āab, D̂a denotes the covariant derivative with respect
to the metric ĥab, since D̂aÂ

ab = α−10D̄aĀ
ab, Âab is a divergence and trace free 2 tensor.

Assume K̂ is a symmetric covariant 2-tensor which satisfies the maximal slice condition,
that is ĥabK̂

ab = 0. Then we split K̂ by writing it for some vector W :

K̂ = Â+ L̂(W ), (4.26)

where L̂ is the Killing field operator(
L̂(W )

)ab
=
(

£̂W ĥ
)ab
− 1

3
ĥabTr£̂W ĥ = D̂aW

b + D̂bW
a − 1

3
ĥabTr£̂W ĥ, (4.27)

and £̂W ĥ is the Lie derivative. The vector W must be chosen so that

D̂aK̂
ab = D̂a

(
L̂(W )

)ab
= ĵb, (4.28)

that is, W is a solution to the Lichnerowicz Laplacian system(
∆Lĥ

W
)b

:= D̂a

(
L̂(W )

)ab
= ∆ĥW +

1

3
D̂b
(
D̂aW

a
)

+ R̂b
aW

a = ĵb, (4.29)

here R̂b
a is the Ricci curvature tensor with respect to the metric ĥab.
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Having solved the Lichnerowicz Laplacian (4.29) we consider the Lichnerowicz equation

−∆ĥφ = 2πẑφ−3 +
1

8
K̂b
aK̂

a
b φ
−7. (4.30)

Now we put hab = φ4ĥab, Kab = φ−2K̂ab, z = φ−8ẑ and jb = φ−10ĵb. Since

DaK
ab = φ−10D̂aK̂

ab = φ−10ĵb = jb (4.31)

and

−∆ĥφ = φ5 1

8
R(h) = φ5

(
2πz +

1

8
Kb
aK

a
b

)
= φ5

(
2πẑφ−8 +

1

8
K̂b
aK̂

a
b φ
−12

)
, (4.32)

we see that (hab, Kab, z, j
b) satisfy the constraint equations (4.8) and (4.9). In order that

the matter variables and (z, j) satisfy the compatibility conditions (4.6) and (4.7) it is

necessary to check that y = z
γ−1

2 = (φ−8ẑ)
γ−1

2 = φ−4(γ−1)ŷ and vb = jb

z
= φ−2v̂b satisfy

condition (4.12). Indeed,

0 ≤ y < s
(√

habvavb
)
⇔ 0 ≤ φ−4(γ−1)ŷ < s

(√
ĥabv̂av̂b

)
, (4.33)

but since φ ≥ 1, φ−4(γ−1)ŷ ≤ ŷ and thus assumption (4.22) assures condition (4.12).

Theorem 4.3 (Construction of the gravitational data) Given the free data
(h̄ab, Āab, ŷ, v̂

b) such that (h̄ab − I) ∈ Hs,δ, Āab ∈ Hs−1,δ+1, (ŷ, v̂b) ∈ Hs−1,δ+2, 5
2
< s <

2
γ−1

+ 3
2

and −3
2
< δ < −1

2
. Then the gravitational data:

hab = (φα)4h̄ab and Kab = (φα)−2Āab + φ−2L̂(W )

satisfy the constraint equations (4.8) and (4.9) with z = φ−8ẑ and jb = φ−10ĵb as the right
hand side. In addition, (hab−I) ∈ Hs,δ and Kab ∈ Hs−1,δ+1 and therefore if 7

2
< s < 2

γ−1
+ 3

2
,

then these data have the needed regularity so they can serve as initial data for hyperbolic
system (2.33) of Einstein gravitation fields.

Proof (of Theorem 4.3)

• The free data are (h̄ab, Āab, ŷ, v̂
b), where (h̄ab− I) ∈ Hs,δ, Āab ∈ Hs−1,δ+1 a divergence

a trace free 2-tensor and (ŷ, v̂b) ∈ Hs−1,δ+2.

• The function α satisfies equation (4.25), so by Theorem 4.6 α > 0 and (α− 1) ∈ Hs,δ

provided that s ≥ 2 and δ > −3
2
. Since α is continuous and lim|x|→∞ α(x) − 1 = 0,

there is a compact set D of R3 such that α(x) ≥ 1
2

for x 6∈ D and minD α(x) ≥ t0 > 0.

• The function F (t) := 1−t
t

has bounded derivatives in [min{t0, 1
2
},∞), so by Moser

type estimate Theorem B.7 α−1 − 1 = 1−α
α
∈ Hs,δ.
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• Now, by algebra (Proposition B.5), (ĥab − I) = (α4h̄ab − I) ∈ Hs,δ and Âab =
α−10Aab ∈ Hs−1,δ+1.

• The matter variables (ẑ, ĵb) are given by ẑ = ŷ
2

γ−1 , ĵb = ẑv̂b. So by Proposition B.6,
ẑ ∈ Hs−1,δ+2 provided that 3

2
< s− 1 < 2

γ−1
+ 1

2
and also jb ∈ Hs−1,δ+2 by the algebra

property .

• The vector W is a solution of the Lichnerowicz Laplacian (4.29), thus according to
Theorem 4.8 below, W ∈ Hs,δ if s ≥ 2. Hence K̂ab given in (4.26) belongs to Hs−1,δ+1.

Again, by Proposition B.5, K̂b
aK̂

a
b ∈ Hs−2,δ+2 if s ≥ 2 and δ ≥ −3

2
.

• Setting u = φ− 1, then Lichnerowicz equation (4.32) becomes

−∆ĥu = 2πẑ(u+ 1)−3 +
1

8
K̂b
aK̂

a
b (u+ 1)−7. (4.34)

• So applying Theorem 6.12 with s′ = s and δ′ = δ results that (φ− 1) = u ∈ Hs,δ and
(φ− 1) = u ≥ 0.

Combining our results of Section 4.1 with theorem 4.3 we obtain the following corollary:

Corollary 4.4 (Construction of the data for the fluid) Given the free data
(h̄ab, Āab, ŷ, v̂

b) such that (h̄ab − I) ∈ Hs,δ, Āab ∈ Hs−1,δ+1, (ŷ, v̂b) ∈ Hs−1,δ+2, 5
2
< s <

2
γ−1

+ 3
2
, −3

2
< δ < −1

2
and (ŷ, v̂a) ∈ Ω, where Ω is given by (4.12). Then the data of the

four velocity vector uα and the Makino variable w are: y = φ−4(γ−1)ŷ, vb = φ−2v̂b,

(w, ūa) := Φ−1(y, va) and ū0 = 1 + habū
aūb

and the data for the energy and momentum densities are: z = y
2

γ−1 , ja = zva. These data
satisfy the compatibility conditions (4.6) and (4.7). In addition, by Moser type estimate
Theorem B.7 and Proposition B.5 (w, ūa) ∈ Hs−1,δ+2 and ū0 − 1 ∈ Hs−1,δ+2 and therefore
if 7

2
< s < 2

γ−1
+ 3

2
, then these data have the needed regularity so they can serve as initial

data for the hyperbolic system (2.16) for the perfect fluid.

4.3 Solutions to the elliptic systems

This section is devoted to the solutions the linear elliptic systems (4.25) and (4.29). The
assumption on the given metric h̄ab is that (h̄ab − I) ∈ Hs,δ. So according to Theorem
6.7 of Section 6, the operator ∆h̄ : Hs,δ → Hs−2,δ+2 is semi Fredholm. In fact, it is an
isomorphism, this can be shown in a similar manner to Step 1 of Section 6.3. We now
consider the operator

L := −∆h̄ +
1

8
R(h̄) : Hs,δ → Hs−2,δ+2, (4.35)
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which is also semi Fredholm. If R(h̄) ≥ 0, then L is injective. A weaker condition is that L
does not have non-positive eigenvalues, this known as the Brill-Cantor condition [8]. The
variational formulation of this property is:

Definition 4.5 (Brill-Cantor condition) A metric h̄ab satisfies the Brill-Cantor
condition if

inf
u6=0

∫ (
|Du|2

h̄
+ 1

8
R(h̄)u2

)
dµh̄

‖u‖2
h̄

> 0, (4.36)

where the infimum is taken over all u ∈ C1
0(R3), |Du|2

h̄
= h̄ab∂au∂bu, ‖u‖2

h̄
=
∫
u2dµh̄ and

µh̄ is the volume element with respect to the metric h̄ab.

This condition is invariant under conformal transformations, a fact which has been proved
for example in [12]

Theorem 4.6 (Construction of a metric having zero scalar curvature) As-
sume the given metric h̄ab satisfies (h̄ab − δab) ∈ Hs,δ, s ≥ 2, δ > −3

2
and h̄ab satisfies the

Brill-Cantor condition (4.36). Then there exists a scalar function α such that α−1 ∈ Hs,δ,

α(x) > 0 and the metric ĥab = α4h̄ab has a scalar curvature zero.

Proof The desired α is a solution to the elliptic equation (4.25). By setting u = α + 1
this equation goes to

Lu = −∆h̄u+
1

8
R(h̄)u = −1

8
R(h̄). (4.37)

We define for τ ∈ [0, 1], Lτu = −∆h̄u+ τ
8
R(h̄)u. If Lτu = 0, then by Lemma 6.9, u ∈ Hs,−1

so

0 = (u, Lτu) =

∫ (
|Du|2h̄ +

τ

8
R(h̄)u2

)
dµh̄. (4.38)

Now, if
∫
R(h̄)u2dµh̄ ≥ 0, then obviously (4.38) implies that u ≡ 0. Otherwise∫

R(h̄)u2dµh̄ < 0, then there is sequence {un} ⊂ C∞0 such that un → u in Hs,−1 - norm
and ∫ (

|Du|2h̄ +
1

8
R(h̄)u2

)
dµh̄ = lim

n

∫ (
|Dun|2h̄ +

1

8
R(h̄)u2

n

)
dµh̄ > 0 (4.39)

by the Brill-Cantor condition (4.36). Substituta (4.39) in (4.38) yields

0 =

∫ (
|Du|2h̄ +

1

8
R(h̄)u2

)
dµĥ +

(τ − 1)

8

∫
R(h̄)u2dµh̄, (4.40)

which is certainly a contradiction. Thus Lτ is injective for each τ ∈ [0, 1], L0 = −∆h̄ is
isomorphism, hence L1 = −∆h̄ + 1

8
R(h̄) is isomorphism by Theorem 6.8.

Having proved the existence, we now show that α = u + 1 is nonnegative. The set {x :
α(x) < 0} has compact support since limx→∞ u(x) = 0 by the embedding Theorem B.13.
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So letting w = −min(α, 0), we have w ∈ H1
0 (R3) and if the set {x : α(x) < 0} is not

empty, then w 6≡ 0 and then the Brill-Cantor condition gives∫
{α<0}

(
|Dw|2h̄ +

1

8
R(h̄)w2

)
dµh̄ > 0. (4.41)

On the other hand, according to Definition 6.10 of weak solutions,

0 =

∫ (
(Dα,Dw)h̄ +

1

8
R(h̄)αw

)
dµh̄ = −

∫
{α<0}

(
|Dw|2h̄ +

1

8
R(h̄)w2

)
dµh̄. (4.42)

So we conclude that α ≥ 0. Since α ≥ 0, we have by Harnack’s inequality

sup
Br

α ≤ C inf
Br
α

provided that Br is sufficiently small ball. Hence, the set {α(x) = 0} is both open and
closed, which is impossible. Thus α(x) > 0.

Remark 4.7 The conditions for applying Harnack’s inequality to a second order elliptic
operator

Lu = ∂a (Aab(x)∂bu) + C(x)u

are boundedness of the coefficients (see e. g. [18]; Section 8) However, following carefully
the proofs we found it can be applied also when the zero order coefficient belongs to Lqloc(R3)
with q > 3

2
. In local coordinates equation (4.25) takes the form

Lα = ∂a

(√
|h̄|h̄ab∂bα

)
+
√
|h̄|R(h̄)α = 0.

For s ≥ 2,
√
|h̄|h̄ab are bounded and non-degenerate, while

√
|h̄|R(h̄) ∈ L2

loc(R3).

We turn now the Lichnerowicz Laplacian system (4.29) for which we present:

Theorem 4.8 (Solution of Lichnerowicz Laplacian) Let ĥab be a Riemannian
metric in R3 so that (ĥ − I) ∈ Hs,δ. Let vector ĵb ∈ Hs−2,δ+2, s ≥ 2 and δ > −3

2
. Then

equation (4.29) has a unique solution W ∈ Hs,δ.

Proof (of theorem 4.8) In order to verify condition (H1) of Section 6.2 we compute
the principle symbol of L∆ĥ

in (4.29). For each ξa ∈ T ∗xM , the principle symbol is a
linear map from Ex to Fx, where Ex and Fx are a fibers in TxM . In local coordinates
∆ĥ = ĥab∂a∂b + lower terms and Da = ∂a + Γ(ĥab, ∂ĥab), hence(

∆Lĥ
(ξ)
)b
a

= |ξ|2
ĥ
δba +

1

3
ξbξa. (4.43)

So ((
∆Lĥ

(ξ)
)
η, η
)
ĥ

= ĥbc
(
L∆ĥ

(ξ)
)b
a
ηaηc = |ξ|2

ĥ
|η|2

ĥ
+

1

3
(ξaη

a)2 ≥ |ξ|2
ĥ
|η|2

ĥ
. (4.44)
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Thus
(
∆Lĥ

(ξ)
)b
a

has positive eigenvalue and therefore L∆ĥ
is strongly elliptic. Furthermore,

by Proposition B.5 and (B.23) we have that if (ĥab − I) ∈ Hs,δ, s ≥ 2 and δ > −3
2
, then

∆Lĥ
: Hs,δ → Hs−2,δ+2.

Hence, we may apply Theorem 6.8 in order to obtain existence of the elliptic system (4.29).
For the given metric ĥab we define one parameter family of metrics ht = (1 − t)I + tĥ,
0 ≤ t ≤ 1, and the following associated operators with respect to these metrics: (Da)t the
covariant derivative, Lt the Killing operator and Lt = ∆Lht

= (D)t · Lt the Lichnerowicz
Laplacian. We want to show that Lt is injective. We recall that −2Lt is the formal adjoint
of Dt (see e. g. [3]), in addition, if Lt(W ) = 0, then by Lemma 6.9 implies W ∈ Hs,−1.
Thus we may use integration by parts and get

0 = (W,LtW )ht =

∫
(ht)abW

aLt(W )bdµht =

∫
(ht)abW

a(Dc)t · (LtW )cb dµht

= −2

∫
(ht)ab (ht)dc (LtW )ad(LtW )cbµht = −2

∫
|LtW )|2htµht

(4.45)

Now, if let h̃ = |ht|−
1
3ht, then

£W h̃ = |ht|−
1
3

(
£Wht − ht

2

3
(Da)tW

a

)
= |ht|−

1
3Lt(W ). (4.46)

Thus Lt(W ) = ∆Lht
(W ) = 0 implies W ≡ 0 if and only if there are no non-trivial Killing

vector fields W in Hs,−1. This fact has been proved by G. Choquet and Y.Choquet-Bruhat
[9] for s > 7

2
, D. Christodoulou and N. O’Murchadha for s > 3 + 3

2
[14], and Bartnik for

s ≥ 2 [1] (See also Maxwell [29], where he obtained the minimum regularity s > 3
2

). Now
L0 = ∆LI is an operator with constant coefficients, so by Lemma 6.5 is an isomorphism.

5 Local Existence for Hyperbolic Equations

In this section we prove an existence theorem (locally in time) for quasi linear symmetric
hyperbolic system in the Hs,δ spaces. The known existence results in the Hs space of
Fisher and Marsden [16] and Kato [23] (see also [38], [37]), cannot be applied to the
Hs,δ spaces. The main difficulty here is the establishment of energy estimates for linear
hyperbolic systems. In order to achieve it we have defined a specific inner-product in Hs,δ

(see Definition 5.3) and in addition the Kato-Ponce commutator estimate [24], [38], has
an essential role in our approach. Once the energy estimates have been established in the
Hs,δ space, we follow Majda’s [27] iteration procedure and show existence, uniqueness and
continuity in that norm.

We consider the the Cauchy problem for a quasi linear (uniform) symmetric hyperbolic
system of the form
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A0(u; t, x)∂tu+
3∑

a=1

Aa(u; t, x)∂au+B(u; t, x)u+ F (u; t, x) = 0,

u(x, 0) = u0(x).

(5.1)

under the following assumptions:

(H1) Aα are symmetric matrices for α = 0, 1, 2, 3;

(H2) Aα(u; t, x), B(u; t, x), F (u; t, x) ∈ C∞ in each variable;

(H3) (A0(0; t, ·)− I) , Aa(0; t, ·), B(0; t, ·), F (0; t, ·) ∈ Hs,δ;

(H4) ∂tA
0 ∈ L∞.

The main result of this section is the well posedness of the system (5.1) in Hs,δ spaces:

Theorem 5.1 (Well posedness of first order hyperbolic symmetric systems in
Hs,δ) Let s > 5

2
, δ ≥ −3

2
and assume hypotheses (H1)-(H4) hold. If the initial condition

u0 belongs to Hs,δ and satisfies

1

µ
δαβu

α
0u

β
0 ≤ A0

αβu
α
0u

β
0 ≤ µδαβu

α
0u

β
0 , µ ∈ R+ (5.2)

then there exits a positive T which depends on the Hs,δ-norm of the initial data and there
exists a unique u(t, x) a solution to (5.1) which in addition satisfies

u ∈ C([0, T ], Hs,δ) ∩ C1([0, T ], Hs−1,δ+1). (5.3)

Remark 5.2 Condition (H3) is sometime too restrictive for applications. We may replace
it by

(H3’) (A0(U0; t, ·)− I) , Aa(U0; t, ·), B(U0; t, ·), F (U0; t, ·) ∈ Hs,δ,

where U0 is a constant vector. Setting u = U0 + v, then v satisfies Ã0(v; t, x)∂tv =
3∑

a=1

Ãa(u; t, x)∂av + B̃(v; t, x)v + F̃ (v; t, x)

v(x, 0) = u0(x)− U0

, (5.4)

where Ãα(v; t, x) = Aα(U0 + v; t, x), B̃(v; t, x) = B(U0 + v; t, x) and F̃ (v; t, x) = F (U0 +
v; t, x) + B̃(U0 + v; t, x). The Moser type estimates are valid under assumptions (H3’) (see
Remark B.10).
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5.1 Strategy

We will proceed with the following strategy:

1. The establishment of energy estimates for linear systems in the fractional weighted
spaces Hs,δ.

2. We approximate the initial data by a C∞0 sequence and then construct an iteration
process which consists of solutions to a linear system having a C∞0 initial data.

3. We show that the sequence which is constructed by the iteration process is bounded
in Hs,δ-norm and weakly converges to a solution.

4. At the final stage we prove uniqueness and continuity in Hs,δ-norm.

5.2 Energy estimates in the fractional weighted spaces

The energy estimates are indispensable means for the proof of well posedness of hyperbolic
systems. In order to achieve it we introduce an inner product which depends on a matrix
A. We assume A = A(t, x) is m×m symmetric matrix which satisfies

1

µ
UTU ≤ UTAU ≤ µUTU (5.5)

for some positive µ. Here BT denotes the transpose matrix. We recall that fε(x) = f(εx),
the sequence {ψj} is a dyadic resolution of the unity in R3 which is defined the Appendix
A and that Λsu = F−1

(
(1 + |ξ|2)

s
2Fu

)
, where F denotes the Fourier transform. In this

section the expression (5.6) below will serve as a norm of the space Hs,δ:

‖u‖2
Hs,δ

:=
∞∑
j=0

2( 3
2

+δ)2j‖(ψ2
ju)(2j)‖2

Hs . (5.6)

Corollary A.5 implies that (5.6) is equivalent to the norm of Definition 3.1.

Definition 5.3 (Inner Product) For a symmetric matrix A = A(t, x) which satisfies
(5.5) we let

〈u, v〉s,δ,A :=
∞∑
j=0

2( 3
2

+δ)2j
〈
Λs
(
(ψ2

ju)(2j)

)
, (A)2j Λs

(
(ψ2

j v)(2j)

)〉
L2

=
∞∑
j=0

2( 3
2

+δ)2j

∫ [
Λs
(
(ψ2

ju)(2j)

)]T
(A)2j

[
Λs
(
(ψ2

j v)(2j)

)]
dx (5.7)

and its associated norm ‖u‖2
Hs,δ,A

= 〈u, u〉s,δ,A.
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Obviously 〈u, v〉s,δ,A = 〈v, u〉s,δ,A and from (5.5) we obtain the equivalence,

1

µ
‖u‖2

Hs,δ
≤ ‖u‖2

Hs,δ,A
≤ µ‖u‖2

Hs,δ
. (5.8)

We come now to the crucial estimate of this section.

Lemma 5.4 (An energy estimate) Let s > 5
2
, δ ≥ −3

2
, Aα = Aα(t, x) be m × m

symmetric matrices such that (A0(t, ·)− I), Aa(t, ·) ∈ Hs,δ and A0 satisfies (5.5). If u(t) =
u(t, ·) is a C∞0 solution of the linear hyperbolic system

A0(t, x)∂tu =
3∑

a=1

Aa(t, x)∂au, (5.9)

then
d

dt
‖u(t)‖2

Hs,δ,A0
≤ C

(
µ‖u(t)‖2

Hs,δ,A0
+ 1
)
, (5.10)

where C = C(‖A0 − I‖Hs,δ , ‖A
a‖Hs,δ , ‖∂tu‖Hs−1,δ

, ‖∂tA0‖L∞).

An essential tool for deriving these estimates is the Kato & Ponce Commutator Estimate
[24], [38].

Theorem 5.5 (Kato and Ponce) For s > 0, f ∈ Hs ∩ C1, g ∈ Hs−1 ∩ L∞ we have

‖Λs(fg)− fΛsg‖L2 ≤ C {‖∇f‖L∞‖g‖Hs−1 + ‖f‖Hs‖g‖L∞} . (5.11)

This estimate will be used term wise in the inner product (5.7).

Proof (of lemma 5.4) Since u is C∞0 we may interchange the derivation with respect to
t with the inner-product (5.7) and get

d

dt
〈u, u〉s,δ,A0 = 2 〈u, ∂tu〉s,δ,A0

+
∞∑
j=0

2( 3
2

+δ)2j

∫ [
Λs
(
(ψ2

ju)(2j)

)]T (
∂tA

0
)

2j

[
Λs
(
(ψ2

ju)(2j)

)]
dx

≤ 2 〈u, ∂tu〉s,δ,A0 + ‖∂tA0‖L∞
(
∞∑
j=0

2( 3
2

+δ)2j‖(ψ2
ju)(2j)‖2

Hs

)
= 2 〈u, ∂tu〉s,δ,A0 + ‖∂tA0‖L∞‖u‖2

Hs,δ
(5.12)

We turn now to the hard task of the proof, namely, the estimation of 〈u, ∂tu〉s,δ,A0 . Put

E(j) =
〈

Λs
((
ψ2
ju
)

2j

)
,
(
(A0)2j

)
Λs
((
ψ2
j∂tu

)
2j

)〉
L2

(5.13)
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and let {Ψk} be the sequence of functions which is defined in the proof of Theorem B.8
(Ψk(x) = 1P

ψj(x)
ψk(x)). It follows from the definition of the sequence {ψj} (see Appendix

A) that

Ψkψ
2
j 6= 0 only when k = j − 3, ..., j + 4. (5.14)

Hence,

E(j) =

〈
Λs
((
ψ2
ju
)

2j

)
,
(
(A0)2j

)
Λs

((
∞∑
k=0

Ψk

)
2j

(
ψ2
j∂tu

)
2j

)〉
L2

=

j+4∑
k=j−3

〈
Λs
((
ψ2
ju
)

2j

)
,
(
(A0)2j

)
Λs
(

(Ψk)2j

(
ψ2
j∂tu

)
2j

)〉
L2

=

j+4∑
k=j−3

〈
Λs
((
ψ2
ju
)

2j

)
, (A0)2j

[
Λs
(

(Ψk)2j

(
ψ2
j∂tu

)
2j

)
− (Ψk)2j Λs

(
ψ2
j∂tu

)
2j

]〉
L2

+

j+4∑
k=j−3

〈
Λs
((
ψ2
ju
)

2j

)
, (ΨkA

0)2jΛ
s
(
ψ2
j∂tu

)
2j

〉
L2

= E1(j, k) + E2(j, k).

This splitting will enable us to estimate E2(j, k) in terms of the Hs,δ norm of A0− I while
by Theorem 5.5,

|E1(j, k)|

≤
∥∥∥Λs

((
ψ2
ju
)

2j

)∥∥∥
L2

∥∥A0
∥∥
L∞

∥∥∥Λs
(

(Ψk)2j

(
ψ2
j∂tu

)
2j

)
− (Ψk)2j Λs

(
ψ2
j∂tu

)
2j

∥∥∥
L2

≤
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

∥∥A0
∥∥
L∞

{
‖∇ (Ψk)2j‖L∞

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

+ ‖(Ψk)2j‖Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
L∞

}
≤ C

∥∥A0
∥∥
L∞

(∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

)
. (5.15)

In the last step above we have used the below useful estimates. First, by (A.4) and (5.14),

‖∇ (Ψk)2j‖L∞ = 2j ‖∇Ψk‖L∞ ≤ C2j2−k ≤ 8C. (5.16)

Secondly, from (A.12) we see that

‖fε‖2
Hs .

{
ε−3‖f‖2

Hs , ε ≤ 1
ε2s−3‖f‖2

Hs , ε ≥ 1
. (5.17)

Recalling that ψk(x) = ψ1(2−kx) and (ψk(x))2j = (ψ1(x))2j−k , applying the above and
combing this with (5.14) and Proposition B.1, we have
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‖(Ψk)2j‖Hs =

∥∥∥∥∥∥
(∑

j

ψj

)−1

2j

(ψk)2j

∥∥∥∥∥∥
Hs

≤ C ‖(ψk)2j‖Hs

= C
∥∥∥(ψ1)2(j−k)

∥∥∥
Hs
≤ C2(s− 3

2
)3 ‖ψ1‖Hs . (5.18)

Finally, by the Sobolev embedding

‖v‖L∞ ≤ C ‖v‖Hs , (5.19)

we obtain
∥∥∥(ψ2

j∂tu
)

2j

∥∥∥
L∞
≤ C

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

.

In order to use equation (5.9) we split E2(j, k) as follows:

E2(j, k) =
〈

Λs
((
ψ2
ju
)

2j

)
,
(
(ΨkA

0)2j
)

Λs
((
ψ2
j∂tu

)
2j

)〉
L2

=
〈

Λs
((
ψ2
ju
)

2j

)
,
[(

ΨkA
0
)

2j
Λs
((
ψ2
j∂tu

)
2j

)
− Λs

((
ΨkA

0
)

2j

(
ψ2
j∂tu

)
2j

)]〉
L2

+
〈

Λs
((
ψ2
ju
)

2j

)
,Λs

((
ΨkA

0
)

2j

(
ψ2
j∂tu

)
2j

)〉
L2

= E3(j, k) + E4(j, k).

In the estimation of the first term E3(j, k), the Kato-Ponce commutator estimate (5.11) is
being used again:

|E3(j, k)|

≤ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

{∥∥∇ (ΨkA
0
)

2j

∥∥
L∞

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

+
∥∥(ΨkA

0
)

2j

∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
L∞

}
.

From (5.16) and the embedding (5.19), we have∥∥∇ (ΨkA
0
)

2j

∥∥
L∞

= 2j
∥∥(∇ (ΨkA

0 − I
))

2j

∥∥
L∞

+ 2j ‖∇(Ψk)2j‖L∞

≤ C
{

2j
∥∥(∇Ψk

(
A0 − I

))
2j

∥∥
Hs−1 + 1

}
and from (5.18)∥∥(ΨkA

0
)

2j

∥∥
Hs ≤

∥∥(Ψk

(
A0 − I

))
2j

∥∥
Hs + ‖∇ (Ψk)2j‖Hs ≤

∥∥(Ψk

(
A0 − I

))
2j

∥∥
Hs + C.
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Thus

|E3(j, k)|

≤ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

{
2j
∥∥(∇Ψk

(
A0 − I

))
2j

∥∥
Hs−1 + 1

}
+ C

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
L∞

{∥∥(Ψk

(
A0 − I

))
2j

∥∥
Hs + 1

}
≤ C

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

{
2j
∥∥(∇Ψk

(
A0 − I

))
2j

∥∥
Hs−1 + 1

}
(5.20)

+ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

∥∥(Ψk

(
A0 − I

))
2j

∥∥
Hs ‖∂tu‖L∞

+ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

∥∥∥(ψ2
j∂tu

)
2j

∥∥∥
Hs−1

.

Now equation (5.9) is being utilized and

E4(j, k) =
〈

Λs
((
ψ2
ju
)

2j

)
,Λs

((
Ψkψ

2
j

)
2j

(
A0∂tu

))
2j

〉
L2

=

〈
Λs
((
ψ2
ju
)

2j

)
,Λs

((
Ψkψ

2
j

)
2j

(
3∑

a=1

Aa∂au

)
2j

)〉
L2

=
3∑

a=1

〈
Λs
((
ψ2
ju
)

2j

)
,Λs

(
(ΨkA

a)2j

(
ψ2
j∂au

)
2j

)〉
L2

(5.21)

=
3∑

a=1

〈
Λs
((
ψ2
ju
)

2j

)
,
[
Λs
(

(ΨkA
a)2j

(
ψ2
j∂au

)
2j

)
− (ΨkA

a)2j Λs
((
ψ2
j∂au

)
2j

)]〉
L2

+
3∑

a=1

〈
Λs
((
ψ2
ju
)

2j

)
,
[
(ΨkA

a)2j Λs
((
ψ2
j∂au

)
2j

)]〉
L2

= E5(j, k, a) + E6(j, k, a).

Again, by Kato-Ponce commutator estimate (5.11),

|E5(j, k, a)|

≤ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

{
‖∇ (ΨkA

a)2j‖L∞
∥∥∥(ψ2

j∂au
)

2j

∥∥∥
Hs−1

+ ‖(ΨkA
a)2j‖Hs

∥∥∥(ψ2
j∂au

)
2j

∥∥∥
L∞

}
≤ C

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs
{‖∇Aa‖L∞ + ‖Aa‖L∞} 2j

∥∥∥(ψ2
j∂au

)
2j

∥∥∥
Hs−1

(5.22)

+ C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs
‖(ΨkA

a)2j‖Hs ‖∂au‖L∞ .

Using the commutation ∂aΛ
s = Λs∂a, the symmetry of Aa and the fact that Λs

(
ψ2
ju
)

is
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rapidly decreasing, we calculate E6(j, k, a) as follows:

0 =

∫
∂a

{[
Λs
((
ψ2
ju
)

2j

)]T
(ΨkA

a)2j

[
Λs
((
ψ2
ju
)

2j

)]}
dx

= 2j
∫ {[

Λs
((
ψ2
j∂au

)
2j

)]T
(ΨkA

a)2j

[
Λs
((
ψ2
ju
)

2j

)]}
dx

+ 2j
∫ {[

Λs
((
ψ2
ju
)

2j

)]T
(ΨkA

a)2j

[
Λs
((
ψ2
j∂au

)
2j

)]}
dx

+ 2j2

∫ {[
Λs
(
((∂aψj)ψju)2j

)]T
(ΨkA

a)2j

[
Λs
((
ψ2
ju
)

2j

)]}
dx

+ 2j2

∫ {[
Λs
((
ψ2
ju
)

2j

)]T
(ΨkA

a)2j

[
Λs
(
((∂aψj)ψju)2j

)]}
dx

+ 2j
∫ {[

Λs
((
ψ2
ju
)

2j

)]T
(∂a (ΨkA

a))2j

[
Λs
((
ψ2
ju
)

2j

)]}
dx.

Since Aa is a symmetric matrix, the first and the second terms are equal to E6(j, k, l),
and the third is equal to the forth one. Hence by Proposition B.1 and Cauchy Schwarz
inequality,

|2E6(j, k, a)| ≤ 2 ‖(ΨkA
a)2j‖L∞

∥∥(∂aψjψju)2j

∥∥
Hs

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs

+ ‖(∂a (ΨkA
a))2j‖L∞

∥∥∥(ψ2
ju
)

2j

∥∥∥2

Hs

≤ C ‖Aa‖L∞
∥∥(ψju)2j

∥∥
Hs

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs

+ {‖∂aAa‖L∞ + C ‖Aa‖L∞}
∥∥∥(ψ2

ju
)

2j

∥∥∥2

Hs
.

Taking the sum
∑

2( 3
2

+δ)2jE(j) we are coming across three types of summations:

1. Given v ∈ Hs1,δ, w ∈ Hs2,δ and γi equals 1 or 2, then

∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψγ1

j v)2j

∥∥
Hs1

∥∥(ψγ2

j w)2j

∥∥
Hs2

≤ 1

2

(
∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψγ1

j v)2j

∥∥2

Hs1
+ 2( 3

2
+δ)2j

∥∥(ψγ2

j w)2j

∥∥2

Hs2

)
≤ C

(
‖v‖2

Hs1,δ
+ ‖w‖2

Hs2,δ

)
,

where in the last inequality the equivalence of the norms (A.18) was involved.
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2. Given v ∈ Hs,δ and w ∈ Hs,δ, then from the scaling property (5.17) and Proposition
B.1 we have

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j
∥∥(ψ2

j v)2j

∥∥
Hs ‖(Ψkw)2j‖Hs

≤ 1

2

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j
∥∥(ψ2

j v)2j

∥∥2

Hs +
1

2

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j ‖(Ψkw)2j‖2
Hs

≤ 7

2
‖v‖2

Hs,δ
+ C

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j ‖(Ψkw)2k‖2
Hs

≤ 7

2
‖v‖2

Hs,δ
+ C

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2k ‖(ψkw)2k‖2
Hs

≤ C
(

7‖v‖2
Hs,δ

+ 7‖w‖2
Hs,δ

)
.

3. Given v ∈ Hs1,δ, w ∈ Hs2,δ, z ∈ Hs3,δ and γi equals 1 or 2, then by Hölder inequality
and the same arguments as in type 2, we get
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∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j
∥∥(ψγ1

j v)2j

∥∥
Hs1

∥∥(ψγ2

j w)2j

∥∥
Hs2

2j ‖(∇ (Ψkz))2j‖Hs3−1

≤
∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)j
∥∥(ψγ1

j v)2j

∥∥
Hs1

2( 3
2

+δ)j
∥∥(ψγ2

j w)2j

∥∥
Hs2

2( 3
2

+δ+1)j ‖(∇ (Ψkz))2j‖Hs3−1

≤

( ∞∑
j=0

j+4∑
k=j−3

(
2( 3

2
+δ)2j

∥∥∥(ψγ1

j v
)

2j

∥∥∥2

Hs1

)2
) 1

2


1
2

×

( ∞∑
j=0

j+4∑
k=j−3

(
2( 3

2
+δ)2j

∥∥∥(ψγ2

j w
)

2j

∥∥∥2

Hs2

)2
) 1

2


1
2

× C

(
∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ+1)2j ‖(∇(ψkz))2k‖
2
Hs3−1

) 1
2

≤

(
∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j
∥∥∥(ψγ1

j v
)

2j

∥∥∥2

Hs1

) 1
2

×

(
∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j
∥∥∥(ψγ2

j w
)

2j

∥∥∥2

Hs2

) 1
2

× C

(
∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ+1)2k ‖(∇(ψkz))2k‖
2
Hs3−1

) 1
2

≤ C‖v‖Hs1,δ ‖w‖Hs2,δ ‖∇z‖Hs3−1,δ+1

≤ C‖v‖Hs1,δ ‖w‖Hs2,δ ‖z‖Hs3,δ

≤ C

(
‖v‖2

Hs1,δ
+
(
‖w‖Hs2,δ‖z‖Hs3,δ

)2
)
.

Applying these three types of inequalities we have,

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j|2E6(j, k, a)| ≤ C (‖Aa‖L∞ + ‖∂aAa‖L∞) ‖u‖2
Hs,δ

, (5.23)
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∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j|E5(j, k, a)| ≤ C (‖∇Aa‖L∞ + ‖Aa‖L∞)
{
‖u‖2

Hs,δ
+ ‖∂au‖2

Hs−1,δ+1

}
+ C

{
‖u‖2

Hs,δ
+ ‖Aa‖2

Hs,δ
‖∂au‖2

L∞

}
≤ C (‖∇Aa‖L∞ + ‖Aa‖L∞)

{
‖u‖2

Hs,δ
+ ‖u‖2

Hs,δ

}
+ C

{
‖u‖2

Hs,δ
+ ‖Aa‖2

Hs,δ
‖∂au‖2

Hs−1,δ+1

}
(5.24)

≤ C
{

2 ‖∇Aa‖L∞ + 2 ‖Aa‖L∞ + ‖Aa‖2
Hs,δ

+ 1
}
‖u‖2

Hs,δ
,

here we have applied the embedding (B.30) to ‖∂au‖L∞ . Applying the same to ‖∂tu‖L∞
we have

∞∑
j=0

j+4∑
k=j−3

2( 3
2

+δ)2j|E3(j, k)|

≤ C
{
‖u‖2

Hs,δ
+ ‖∂tu‖2

Hs−1,δ

∥∥∇ (A0 − I
)∥∥2

Hs−1,δ+1

}
+ 2C

{
‖u‖2

Hs,δ
+ ‖∂tu‖2

Hs−1,δ

}
+ C

{
‖u‖2

Hs,δ
+
∥∥(A0 − I

)∥∥2

Hs,δ
‖∂tu‖2

L∞

}
(5.25)

≤ 2C
{
‖u‖2

Hs,δ
+ ‖∂tu‖2

Hs−1,δ

(
1 +

∥∥A0 − I
∥∥2

Hs,δ

)}
and finally

∞∑
j=0

2( 3
2

+δ)2j|E1(j)| ≤ C
∥∥A0

∥∥
L∞

{
‖u‖2

Hs,δ
+ ‖∂tu‖2

Hs−1,δ

}
. (5.26)

Recalling that

〈u, ∂tu〉s,δ,A0 =
∞∑
j=0

2( 3
2

+δ)2jE(j) =
∞∑
j=0

2( 3
2

+δ)2j
〈

Λs
((
ψ2
ju
)

2j

)
,
(
(A0)2j

)
Λs
((
ψ2
j∂tu

)
2j

)〉
L2
,

then inequalities (5.23), (5.24), (5.26) and (5.26) imply that

〈u, ∂tu〉s,δ,A0 ≤ C
(
‖Aα‖L∞ , ‖∇Aa‖L∞ , ‖Aa‖Hs,δ , ‖A0 − I‖Hs,δ , ‖∂tu‖Hs−1,δ

){
‖u‖2

Hs,δ
+ 1
}
.

Since s > 5
2

and δ ≥ −3
2

we can use Theorem B.13 (of the Appendix B) and bound the
norms ‖Aα‖L∞ and ‖∇Aα‖L∞ by by the norms ‖A0−I‖Hs,δ and ‖Aa‖Hs,δ . Thus, combining
these bounds with above inequality and inequality (5.12), we have obtained

d

dt
〈u(t), u(t)〉s,δ,A0 ≤ C

(
‖u(t)‖2

Hs,δ
+ 1
)
, (5.27)

where C = C(‖Aa‖Hs,δ , ‖A0 − I‖Hs,δ , ‖∂tu‖Hs−1,δ
, ‖∂tA0‖L∞). Inserting the equivalence of

norms ‖u‖2
Hs,δ
≤ µ ‖u‖2

Hs,δ,A0
in (5.27), we obtain (5.10) which completes the proof of

Lemma 5.4.
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We may extend the energy estimate (5.10) to a non-homogeneous symmetric hyperbolic
systems.

Lemma 5.6 (An energy estimate) Let s > 5
2
, δ ≥ −3

2
, Aα = Aα(t, x) be m × m

symmetric matrices such that (A0(t, ·) − I), Aa(t, ·) ∈ Hs,δ and A0 satisfies (5.5). Let
B(t, ·), F (t, ·) ∈ Hs,δ. If u(t, ·) is a C∞0 solution of the linear hyperbolic system

A0(t, x)∂tu =
3∑

a=1

Aa(t, x)∂au+B(t, x)u+ F (t, x), (5.28)

then
d

dt
‖u(t)‖2

Hs,δ,A0
≤ C

(
µ‖u(t)‖2

Hs,δ,A0
+ 1
)
, (5.29)

where the constant C depends on ‖Aa‖Hs,δ , ‖A0 − I‖Hs,δ , ‖∂tu‖Hs−1,δ
, ‖∂tA0‖L∞, ‖B‖Hs,δ

and ‖F‖Hs,δ .

Proof (of Lemma 5.6) This proof is precisely as the previous one expect the two terms〈
Λs
((
ψ2
ju
)

2j

)
,Λs

(
(ΨkB)2j

(
ψ2
ju
)

2j

)〉
L2

(5.30)

and 〈
Λs
((
ψ2
ju
)

2j

)
,Λs

((
Ψkψ

2
jF
)

2j

)〉
L2

(5.31)

which are added to (5.21). Using the álgebra properties of Hs spaces, we see that (5.30) is
less than

C
∥∥∥(ψ2

ju
)

2j

∥∥∥2

Hs
‖(ΨkB)2j‖Hs ≤ C

∥∥∥(ψ2
ju
)

2j

∥∥∥2

Hs
‖B‖Hs,δ ;

and by Cauchy Schwarz inequality (5.31) is less than

C
∥∥∥(ψ2

ju
)

2j

∥∥∥
Hs

∥∥∥(Ψkψ
2
jF
)

2j

∥∥∥
Hs
≤ C

1

2

{∥∥∥(ψ2
ju
)

2j

∥∥∥2

Hs
+
∥∥∥(ψ2

jF
)

2j

∥∥∥2

Hs

}
.

Multiplying (5.30) and (5.31) by 2( 3
2

+δ)2j and taking the sum, it results with two quantities

less than ‖u‖2
Hs,δ
‖B‖Hs,δ and

(
‖u‖2

Hs,δ
+ ‖F‖2

Hs,δ

)
respectively.

5.3 Construction of the iteration

We assume u0(x), the initial value of (5.1), is contained in G1, where the origin belongs to
G1 and G1 is a compact subset of an open set G of Rm. In addition we assume,

1

µ
UTU ≤ UTA0U ≤ µUTU for all U ∈ G2, (5.32)

where G2 is a compact set of G such that G1 b G2 and µ > 0.
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Remark 5.7 Since the matrix A0 is continuous, the initial condition (5.2) guarantees the
existence of a domain G2.

The initial data u0 will be approximated by a sequence {uk0} of smooth functions with
compact support, which converges to u0 in Hs,δ(R3). It follows from the embedding
‖v‖L∞ ≤ C‖v‖Hs,δ and the density Theorem B.14 that there is a positive R, u0

0 ∈ C∞0 (R3)
and {uk0}∞k=1 ⊂ C∞0 (R3) such that

‖u0
0‖Hs+1,δ

≤ C‖u0‖Hs,δ , (5.33)

‖u0
0 − u0‖Hs,δ ≤

R

µ8
, (5.34)

‖u− u0
0‖Hs,δ ≤ R⇒ u ∈ G2 (5.35)

and

‖uk0 − u0‖Hs,δ ≤ 2−k
R

µ8
. (5.36)

The iteration procedure is defined as follows: u0(t, x) = u0
0(x) and uk+1(t, x) is a solution

to the linear initial value problemA0(uk; t, x)∂tu
k+1 =

3∑
a=1

Aa(uk; t, x)∂au
k+1 +B(uk; t, x)uk+1 + F (uk; t, x),

uk+1(x, 0) = uk+1
0 (x).

(5.37)

The existence of {uk(t, x)} ⊂ C∞0 (R3) follows from:

Theorem 5.8 (Existence of classical solutions of a linear symmetric hyper-
bolic system) Let Aα, B and F be C∞ functions and v0 ∈ C∞0 (R3) be an initial datum.
Then the linear systemA0(t, x)∂tv =

3∑
a=1

Aa(t, x)∂av +B(t, x)v + F (t, x)

v(x, 0) = v0(x)

(5.38)

has a unique solution v(t, x) such that v(t, x) ∈ C∞ and it has compact support in R3 for
each fixed t.

For the proof we refer to John [21]. It is evident from these facts, inequalities (5.32) and
(5.35) that for each k, uk(t, x) is well defined, uk(t, x) ∈ C∞, uk(t, x) has compact support
in R3 and uk(t, x) ∈ G2 for some positive T . We put

Tk = sup{T : sup
0<t<T

‖uk(t)− u0
0‖Hs,δ ≤ R}. (5.39)

Our next issue is to show the existence of T ∗ > 0 such that Tk ≥ T ∗ for k = 1, 2, 3, ...
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5.4 Boundness in the Hs,δ norm

We introduce the following notations: u(t) := u(t, x) and

|||u|||s,δ,T := sup{‖u(t)‖Hs,δ : 0 ≤ t ≤ T}.

The main result of this subsection is:

Lemma 5.9 (Boundness in the Hs,δ norm) There are positive constants T ∗ and L
such that

(A) |||uk − u0
0|||s,δ,T ∗ ≤ R

(B) |||∂tuk|||s−1,δ+1,T ∗ ≤ L.

Proof (of lemma 5.9) We first prove (B). Let

Gk+1 =
3∑

a=1

Aa(uk; t, x)∂au
k+1 +B(uk; t, x)uk+1 + F (uk; t, x),

then by the algebra property (B.12) and Moser type estimate (B.23),

‖Gk+1‖Hs−1,δ+1

≤
3∑

a=1

‖Aa(uk)‖Hs,δ‖∂auk‖Hs−1,δ+1
+ ‖B(uk)‖Hs,δ‖uk‖Hs,δ + ‖F (uk)‖Hs,δ

≤
3∑

a=1

(
C‖uk‖Hs,δ + ‖Aa(0)‖Hs,δ

)
‖uk‖Hs,δ +

(
C‖uk‖Hs,δ + ‖B(0)‖Hs,δ

)
‖uk‖Hs,δ

+ C‖uk‖Hs,δ + ‖F (0)‖Hs,δ . (5.40)

The constant C here depends on ‖Aa‖CN+1(G2), ‖B‖CN+1(G2), ‖F‖CN+1(G2) and ‖uk‖L∞ (see
(B.18)). Since

‖uk(t)‖Hs,δ ≤ ‖uk(t)− u0
0‖Hs,δ + ‖u0

0‖Hs,δ , (5.41)

the induction assumption (A) and the inequality (5.33) imply that ‖uk‖Hs,δ ≤ R +
C‖u0‖Hs,δ . Using the embedding ‖uk‖L∞ ≤ C‖uk‖Hs,δ , we see that ‖Gk+1‖Hs−1,δ+1

≤ C1(R),
where the constant C1(R) depends upon R, condition (H3) and the initial data, but it is
independent of k. From (5.37) we have

∂tu
k+1 =

(
A0(uk; t, x)

)−1
Gk+1 =

((
A0(uk; t, x)

)−1 − I
)
Gk+1 +Gk+1.

Repeating same arguments as above, we conclude that

‖
((
A0(uk; t, x)

)−1 − I
)
Gk+1‖Hs−1,δ+1

≤ C2(R)
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and the constant C2(R) does not depends on k. We take L = C1(R) + C2(R). Here

we have used Moser estimate with F (u) = A−1(u) − I, and the formula ∂A−1(u)
∂u

=

A−1(u)∂A(u)
∂u

A−1(u). Thus the constant C(R) depends on ‖A0‖CN+2(G2) and µ.

We turn now to show (A). Let V k+1 = uk+1 − u0
0, then inserting it in the equation (5.37)

we have obtained

A0(uk; t, x)∂tV
k+1 = A0(uk; t, x)uk+1

t =
3∑

a=1

Aa(uk; t, x)∂au
k+1 +B(uk; t, x)uk + F (uk; t, x)

=
3∑

a=1

Aa(uk; t, x)∂aV
k+1 +B(uk; t, x)V k+1 + F (uk; t, x) (5.42)

+
3∑

a=1

Aa(uk; t, x)∂au
0
0 +B(uk; t, x)u0

0

and V k+1(x, 0) = uk+1
0 (x, 0) − u0

0(x). At this stage we would like employ the energy
estimate Lemma 5.6. Due the the fact that the coefficients of (5.42) depend on uk, it
is obligatory to control the constant of (5.29) in terms of ‖uk‖Hs,δ . Therefore we need

to bound ‖
(
A0(uk; t, x)− I

)
‖Hs,δ , ‖Aa(uk; t, x)‖Hs,δ , ‖B(uk; t, x)‖Hs,δ , ‖F (uk; t, x)‖Hs,δ and

‖ ∂
∂t
A0(uk; t, x)‖L∞ by ‖uk‖Hs,δ . The first four are similar, so take for example Aa(uk; t, x):

We use assumption (H2), Moser type estimate (B.19) and Remark B.10, then

‖Aa(uk; t, x)‖Hs,δ ≤ C
{
‖Aa‖CN+1(G2)

(
1 + ‖uk‖NL∞

)}
‖uk‖Hs,δ + ‖Aa(0; t, ·)‖Hs,δ . (5.43)

For the last one we have

‖ ∂
∂t
A0(uk; t, x)‖L∞ = ‖ ∂

∂u
A0(uk; t, x)∂tu

k(t, x) + ∂tA
0(uk; t, x)‖L∞

≤‖ ∂
∂u
A0(uk; t, x)‖L∞‖∂tuk(t, x)‖L∞ + ‖∂tA0(uk; t, x)‖L∞

≤ C‖ ∂
∂u
A0(uk; t, x)‖L∞‖∂tuk(t, x)‖Hs−1,δ+1

+ ‖∂tA0(uk; t, x)‖L∞ .

(5.44)

We conclude from inequalities (5.43) and (5.44), the inductions hypothesis (A) and (B),
(5.35) and (H4) that the constant of (5.29) depends on R, L, ‖u0‖Hs,δ and the Hs,δ-norm of
the coefficients, but it is independent of k. Hence, the energy estimate Lemma 5.6 implies
that

d

dt
‖V k+1(t)‖2

Hs,δ,A0
≤ C(R,L)

(
µ‖V k+1(t)‖2

Hs,δ,A0
+ 1
)
, (5.45)
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Applying Gronwall’s inequality, (5.34), (5.36) and the equivalence (5.8) results in

|||V k+1|||2s,δ,T ≤ µeC(R,L)µT
(
µ‖V k+1(0)‖2

Hs,δ
+ T

)
= µeC(R,L)µT

(
µ‖uk+1

0 − u0
0‖2
Hs,δ

+ T
)

≤ µeC(R,L)µT
(
µ
(
‖uk+1

0 − u0‖2
Hs,δ

+ ‖u0
0 − u0‖2

Hs,δ

)
+ T

)
≤ eC(R,L)µT

(
2µ2

(
R

µ8

)2

+ µT

)
. (5.46)

Therefore |||V k+1|||2s,δ,T ≤ R2, if

T ≤ 1

µC(R,L)
log

(
R2(

R2

32
+ µT

)) ≤ log(32)

µC(R, T )
.

Thus taking T ∗ = log(32)
µC(R,T )

proves (A) and completes the proof of Lemma 5.9.

5.5 Contraction in the lower norm

We show here that
{
uk
}

has a contraction property in ‖·‖0,δ,T ∗∗ for a positive T ∗∗. In order
to achieved it we need an energy estimate in H0,δ v L2

δ . For that purpose we introduce the
below inner-product in L2

δ : for two vectors u and v in L2
δ , we set

〈u, v〉L2
δ ,A

0 =

∫
(1 + |x|)2δ (uTA0v

)
dx, (5.47)

and its associated norm ‖u‖2
L2
δ ,A

0 = 〈u, u〉L2
δ ,A

0 . The ordinary norm is denoted by ‖u‖2
L2
δ

=

〈u, u〉L2
δ ,I

. Since A0 satisfies (5.32),

1

µ
‖u‖2

Lδ
≤ 〈u, u〉L2

δ ,A
0 ≤ µ‖u‖2

Lδ
, (5.48)

and hence by Theorem A.2, ‖u‖2
L2
δ ,A

0 ' ‖u‖H0,δ
.

Proposition 5.10 (Energy estimate in L2
δ) Suppose u satisfies the linear hyperbolic

system (5.38), then

d

dt
〈u(t), u(t)〉L2

δ ,A
0 ≤ µC〈u(t), u(t)〉L2

δ ,A
0 + ‖F‖2

L2
δ
, (5.49)

where C = C(‖∂tA0‖L∞ , ‖Aa‖L∞−1
, ‖B‖L∞ , ‖∂aAa‖L∞).
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Proof (of Proposition 5.10) Taking the derivative of (5.47) with respect to t, we get

d

dt
〈u, u〉L2

δ ,A
0 = 2〈u, ∂tu〉L2

δ ,A
0 +

∫
(1 + |x|)2δ (uT∂tA0u

)
dx

= 2
3∑

a=1

∫
(1 + |x|)2δ (uTAa∂au) dx+ 2

∫
(1 + |x|)2δ (uTBu) dx

+ 2

∫
(1 + |x|)2δ (uTF) dx+

∫
(1 + |x|)2δ (uT∂tA0u

)
dx

= 2
3∑

a=1

L1,a + 2L2 + 2L3 + L4.

Clearly,

|L2| ≤ ‖B‖L∞
∫

(1 + |x|)2δ |u|2dx ≤ ‖B‖L∞‖u‖2
L2
δ

and in a similar way we obtain the estimates of L4 while by Cauchy-Schwarz inequality,

|L3| ≤ ‖u‖L2
δ
‖F‖L2

δ
≤ 1

2

(
‖u‖2

L2
δ

+ ‖F‖2
L2
δ

)
.

Now,

0 =

∫
∂a

(
(1 + |x|)2δ (uTAau)) dx

= 2δ

∫
(1 + |x|)2δ−1 xa

|x|
(
uTAau

)
dx+

∫
(1 + |x|)2δ ((∂au)TAau

)
dx

+

∫
(1 + |x|)2δ (uT∂aAau) dx+

∫
(1 + |x|)2δ (uTAa∂au) dx,

and since A0 is symmetric, the second and the fourth terms are equal to L1,a. Hence,

2|L1,a| ≤ 2δ

∫
(1 + |x|)2δ |A0|

1 + |x|
(
|u|2
)
dx+

∫
(1 + |x|)2δ |∂aAa||u|2dx

≤
(
‖Aa‖L∞−1

+ ‖∂aA‖L∞
)
‖u‖2

L2
δ
.

In order to proof the contraction we shall also need the following proposition.

Proposition 5.11 (Difference estimate in L2
δ) Let G : Rm → Rm be a C1 mapping.

Then
‖G(u)−G(v)‖2

L2
δ
≤ ‖∇G‖2

L∞‖u− v‖2
L2
δ
. (5.50)
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Proof (of Proposition 5.11)

‖G(u)−G(v)‖2
L2
δ

=

∫
(1 + |x|)2δ (G(u)−G(v))2 dx

=

∫
(1 + |x|)2δ

(∫ 1

0

∇G (su+ (1− s)v) (u− v)ds

)2

dx ≤ ‖∇G‖2
L∞‖u− v‖2

L2
δ
.

Lemma 5.12 (Contraction in a lower norm) There is a positive T ∗∗, 0 < Λ < 1
and a positive sequence {βk} with

∑
βk <∞ such that

|||uk+1 − uk|||0,δ,T ∗∗ ≤ Λ|||uk − uk−1|||0,δ,T ∗∗ + βk. (5.51)

Here |||u|||0,δ,T ∗∗ = sup{‖u(t)‖H0,δ
: 0 ≤ t ≤ T ∗∗}.

Proof (of Lemma 5.12) Since uk satisfies equation (5.37), the difference
[
uk+1 − uk

]
will

satisfy

A0(uk)∂t
[
uk+1 − uk

]
=

3∑
a=1

Aa(uk)∂a
[
uk+1 − uk

]
+B(uk)

[
uk+1 − uk

]
+ F k,(5.52)

where

F k = −
[
A0(uk)− A0(uk−1)

]
∂tu

k +
3∑

a=1

[
Aa(uk)− Aa(uk−1)

]
∂au

k

+
[
B(uk)−B(uk−1)

]
uk +

[
F (uk)− F (uk−1)

]
.

Applying Proposition 5.10 to equation (5.52) above we have

d

dt
〈
[
uk+1 − uk

]
,
[
uk+1 − uk

]
〉L2

δ ,A
0 ≤ µC〈

[
uk+1 − uk

]
,
[
uk+1 − uk

]
〉L2

δ ,A
0 + ‖F k‖2

L2
δ
. (5.53)

Thus Gronwall’s inequality yields,

‖
[
uk+1(t)− uk(t)

]
‖2
L2
δ ,A

0 ≤ eµCt
[
‖
[
uk+1(0)− uk(0)

]
‖2
L2
δ ,A

0 +

∫ t

0

‖F k(s)‖L2
δ
ds

]
. (5.54)

The constant C in inequalities (5.53) and (5.54) depends on ‖Aa(uk)‖L∞−1
, ‖B(uk)‖L∞ ,

‖∂t(A0(uk))‖L∞ and ‖∂a
(
Aa(uk)

)
‖L∞ . The first two of them are bounded by a constant

independent of k, since it follows from (A) of Lemma 5.9 that uk ∈ G2. The estimation of
‖∂t(A0(uk))‖L∞ is done in (5.44) and for the last one, since s− 1 > 3

2
, we have

‖∂a
(
Aa(uk; t, x)

)
‖L∞ ≤ ‖

∂

∂u
Aa(uk; t, x)∂au

k‖L∞ + ‖∂aAa(uk; t, x))‖L∞

≤ C‖ ∂
∂u
Aa(uk; t, x)‖L∞‖∂auk‖Hs−1,δ+1

+ ‖∂aAa(uk; t, x))‖L∞

≤ C‖ ∂
∂u
Aa(uk; t, x)‖L∞‖uk‖Hs,δ + ‖∂aAa(uk; t, x))‖L∞
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Lemma 5.9 (A) implies that ‖uk‖Hs,δ is bounded and uk ∈ G2, therefore the above inequal-

ity shows that ‖∂a
(
Aa(uk; t, x)

)
‖L∞ is bounded by a constant independent of k. From

Proposition 5.11 we obtain

∥∥F k
∥∥2

L2
δ

≤ 2
∥∥[A0(uk)− A0(uk−1)

]
∂tu

k
∥∥2

L2
δ

+ 2
3∑

a=1

∥∥[Aa(uk)− Aa(uk−1)
]
∂au

k
∥∥2

L2
δ

+ 2
∥∥[B(uk)−B(uk−1)

]
uk
∥∥2

L2
δ

+ 2
∥∥[F (uk)− F (uk−1)

]∥∥2

L2
δ

≤ 2

{
‖∇A0‖2

L∞(G2)

∥∥∂tuk∥∥2

L∞
+

3∑
a=1

‖∇Aa‖2
L∞(G2)

∥∥∂auk∥∥2

L∞

+ ‖∇B‖2
L∞(G2)

∥∥uk∥∥2

L∞
+ ‖∇F‖2

L∞(G2)

}∥∥[uk − uk−1]
∥∥2

L2
δ

, (5.55)

here ∇ is the gradient with respect to u. Since
∥∥∂tuk∥∥L∞ ≤ C

∥∥∂tuk∥∥Hs−1,δ+1
,
∥∥∂auk∥∥L∞ ≤

C
∥∥uk∥∥

Hs−1,δ+1
≤ C

∥∥uk∥∥
Hs,δ

and
∥∥uk∥∥

L∞
≤ C

∥∥uk∥∥
Hs,δ

, it follows from (5.55) and Lemma

5.9 that ∥∥F k(s)
∥∥2

L2
δ

≤ C1

∥∥[uk(s)− uk−1(s)]
∥∥2

L2
δ

, (5.56)

where the constant C1 depends upon R and L of Lemma 5.9, but it is independent of k.
By the equivalence ‖u‖2

L2
δ ,A

0 ' ‖u‖H0,δ
, (5.56) and (5.54) above, we conclude that∥∥[uk+1(t)− uk(t)

∥∥2

H0,δ

≤ C2e
µCt

[∥∥[uk+1(0)− uk(0)]
∥∥2

H0,δ
+ C1

∫ t

0

∥∥[uk(s)− uk−1(s)
∥∥2

H0,δ

]
≤ C2e

µCt

[∥∥[uk+1(0)− uk(0)]
∥∥2

H0,δ
+ C1t sup

0≤s≤t

∥∥[uk(s)− uk−1(s)
∥∥2

H0,δ

]
,

where C1, C2 and C do not depend on k. Hence

|||[uk+1(t)− uk(t)|||0,δ,T ∗∗

≤
√

2C2eµCT
∗∗
[∥∥[uk+1(0)− uk(0)]

∥∥
H0,δ

+
√

2C1T ∗∗|||[uk − uk−1|||
0,δ,T ∗∗

]
.

Thus, taking T ∗∗ sufficiently small so that Λ := 2
√
C2eµCT

∗∗√C1T ∗∗ < 1 and putting
βk =

√
2C2eµCT

∗∗
∥∥[uk+1(0)− uk(0)]

∥∥
H0,δ

completes the proof of the Lemma.

Lemma 5.12 implies that {uk} is a Cauchy sequence in C([0, T ∗∗], H0,δ). Combing this

with the intermediate estimates ‖u‖Hs′,δ ≤ ‖u‖
s′
s
Hs,δ
‖u‖1− s

′
s

H0,δ
(see Proposition B.4 (ii)) and

Lemma 5.9 (A), we conclude that {uk} is a Cauchy sequence in C([0, T ∗∗], Hs′,δ) for any
s′ < s. Therefore there is a unique u ∈ C([0, T ∗∗], Hs′,δ) such that

|||uk − u|||s′,δ,T ∗∗ → 0 for any s′ < s. (5.57)
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Taking 5
2
< s′ < s and utilizing the embedding Theorem B.13, we have

uk → u in C
(
[0, T ∗∗], C1

β(R3)
)

for any β ≤ δ +
3

2
,

where C1
β(R3) is the class for which the norm

sup
R3

(
(1 + |x|)β|u(x)|+

3∑
a=1

(1 + |x|)β+1|∂au(x)|

)

is finite. From (5.37)

∂tu
k+1 =

(
A0(uk; t, x)

)−1

[
3∑

a=1

Aa(uk; t, x)∂au
k+1 +B(uk; t, x)uk+1 + F (uk; t, x)

]
,

therefore by Corollary B.11 ∂tu
k → ∂tu in Hs−1,δ+1. Hence

∂tu
k → ∂tu in C

(
[0, T ∗∗], Cβ+1(R3)

)
for any β ≤ δ +

3

2
.

Thus u ∈ C1 (R3 × [0, T ∗∗]) is a classical solution of the nonlinear system (5.1). Moreover,
it follows from Lemma 5.9 (B) that u ∈ Lip ([0, T ∗∗], Hs−1,δ+1). Our next task is to show
that uk converges weakly to u in Hs,δ.

5.6 Weak Convergence

Lemma 5.13 (Weak Convergence) For any φ ∈ Hs,δ, we have

lim
k

〈
uk(t), φ

〉
s,δ

= 〈u(t), φ〉s,δ (5.58)

uniformly for 0 ≤ t ≤ T ∗∗. Consequently

‖u(t)‖Hs,δ ≤ lim
k

inf ‖uk(t)‖Hs,δ (5.59)

and hence the solution u of the initial value problem (5.1) belongs to L∞ ([0, T ∗∗], Hs,δ).

We recall that
〈u, v〉s,δ =

∑
j

2( 3
2

+δ)2j
〈
(ψ2

ju)(2j), (ψ
2
j v)(2j)

〉
s

is an inner-product on Hs,δ. In order to show Lemma 5.13 we need the below property.

Proposition 5.14 Let s < s′+s′′

2
, u ∈ Hs′,δ, v ∈ Hs′′,δ. Then we have∣∣∣〈u, v〉s,δ∣∣∣ ≤ ‖u‖Hs′,δ‖u‖Hs′′,δ . (5.60)
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Proof (of Proposition 5.14) Elementary arguments show that

|〈u, v〉s| ≤ ‖u‖Hs′‖u‖Hs′′ ,

here

〈u, v〉s =

∫
(Λsu)T Λs(v)dx =

∫
(1 + |ξ|2)sûT v̂dξ.

Applying it term-wise and using the Cauchy-Schwarz inequality we have∣∣∣〈u, v〉s,δ∣∣∣ ≤ ∞∑
j=0

2( 3
2

+δ)2j
∣∣∣〈(ψ2

ju
)

2j
,
(
ψ2
j v
)

2j

〉
s

∣∣∣
≤

∞∑
j=0

(
2( 3

2
+δ)j

∥∥∥(ψ2
ju
)

2j

∥∥∥
Hs′

)(
2( 3

2
+δ)j

∥∥∥(ψ2
j v
)

2j

∥∥∥
Hs′′

)

≤

(
∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ2

ju
)

2j

∥∥∥2

Hs′

) 1
2
(
∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ2

j v
)

2j

∥∥∥2

Hs′′

) 1
2

= ‖u‖Hs′,δ‖v‖Hs′′,δ

Proof (of Lemma 5.13) Take s′ and s′′ such that s′ < s < s′′ and s < s′+s′′

2
. For a given

φ ∈ Hs,δ and positive ε, we may find by Theorem B.14 (b), φ̃ ∈ Hs′′,δ such that

‖φ− φ̃‖Hs,δ ≤
ε

2R
and ‖φ̃‖Hs′′,δ ≤ C(ε)‖φ‖Hs,δ , (5.61)

where R is the positive number appearing in (5.35). Now,〈
uk(t)− u(t), φ

〉
s,δ

=
〈
uk(t)− u(t), φ̃

〉
s,δ

+
〈
uk(t)− u(t),

(
φ− φ̃

)〉
s,δ

= Ik + IIk.

Therefore Proposition 5.14, (5.61) and (5.57) imply that

|Ik| ≤ ‖uk(t)− u(t)‖Hs′,δ‖φ̃‖Hs′′,δ ≤ ‖u
k(t)− u(t)‖Hs′,δC(ε)‖φ‖Hs,δ → 0.

While in the second estimate we use Lemma 5.9 (A) and get

|IIk| ≤ ‖uk(t)− u(t)‖Hs,δ‖φ− φ̃‖Hs,δ

≤
(
‖uk(t)− u0

0‖Hs,δ + ‖u(t)− u0
0‖Hs,δ

)
‖φ− φ̃‖Hs,δ ≤

2Rε

2R
= ε.

Thus,

lim sup
k

∣∣∣〈uk(t)− u(t), φ
〉
s,δ

∣∣∣ ≤ ε

which completes the proof of the limit (5.58).
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For each k,
〈
uk(t), φ

〉
s,δ

is continuous for t ∈ [0, T ∗∗] and by Lemma 5.13 it convergences

uniformly to 〈u(t), φ〉s,δ, hence 〈u(t), φ〉s,δ is a continuous function of t for any φ ∈ Hs,δ

and we have obtained the following:

Theorem 5.15 (Existence) Under conditions (H1)-(H4) and (5.32) there is u ∈
C1 (R3 × [0, T ∗∗]) a classical solution to the hyperbolic system (5.1) such that u(t, x) ∈ G2

and
u ∈ L∞ ([0, T ∗∗], Hs,δ) ∩ Cw ([0, T ∗∗], Hs,δ) ∩ Lip ([0, T ∗∗], Hs−1,δ+1) , (5.62)

where Cw means continuous in the weak topology of Hs,δ.

5.7 Well-posedness

In this section we well prove continuity in Hs,δ-norm and uniqueness.

Theorem 5.16 (Uniqueness) Assume conditions (H1)-(H4) and (5.32) hold. If
u1(t, x) and u2(t, x) are classical solutions to the hyperbolic system (5.1) such that u1, u2 ∈
G2, then u1 ≡ u2.

Proof (of Theorem 5.16) Let u1 and u2 be a solutions to the hyperbolic system hyper-
bolic system (5.1) with the same initial data and let V (t, x) = u1(t, x)− u2(t, x). Then V
satisfies the equation

A0(u1)∂tV =
3∑

a=1

Aa(u1)∂aV +B(u1)V

−
[
A0(u1)− A0(u2)

]
∂tu1 +

3∑
a=1

[Aa(u1)− Aa(u2))]∂au1

+ [B(u1)−B(u2)]u1 + [F (u1)− F (u2))] (5.63)

and V (x, 0) = 0. Setting

G = [Aa(u1)− Aa(u2))]∂au1 + [B(u1)−B(u2)]u1 + [F (u1)− F (u2))]

and applying Proposition 5.10 to (5.63), we have

d

dt
〈V, V 〉L2

δ ,A
0(u1) ≤ µC〈V, V 〉L2

δ ,A
0(u1) + ‖G‖2

L2
δ
.

Let T ≤ T ∗, then Gronwall’s inequality and the equivalence (5.48) imply

|||V |||20,δ,T ≤ C1e
CµT

∫ T

0

‖G(t)‖2
L2
δ
dt.

Similar estimation as done in (5.55) yield that ‖G(t)‖2
L2
δ
≤ C2‖V (t)‖2

L2
δ
. Hence,
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|||V |||20,δ,T ≤ C3e
CµTT |||V |||20,δ,T . (5.64)

Thus, if T is sufficiently small, then 5.64 leads to a contradiction unless V ≡ 0.

Theorem 5.17 (Continuation in norm) Under conditions (H1)-(H4) and (5.32),
any solutions u to the hyperbolic system (5.1) which satisfies u(t, x) ∈ G2 and the regularity
condition (5.62), satisfies in addition

u ∈ C ([0, T ∗∗], Hs,δ) ∩ C1 ([0, T ∗∗], Hs−1,δ+1) . (5.65)

Proof (of Theorem 5.17) We first treat the continuity C ([0, T ∗∗], Hs,δ). Since u is a
solution of initial value problem (5.1) which is reversible in time, is sufficient to show that

lim
t↓0
‖u(t)− u(0)‖Hs,δ = lim

t↓0
‖u(t)− u0‖Hs,δ = 0. (5.66)

We shall use the following known argument: suppose {wn} is a sequence in Hilbert space
which converge weakly to w0 and lim supn ‖wn‖ ≤ ‖w0‖, then limn ‖wn−w0‖ = 0. We are
going to use the equivalence norm ‖ · ‖Hs,δ,A0(u(0))

, so we need to show

lim sup
t↓0

‖u(t)‖Hs,δ,A0(u(0))
≤ ‖u0‖Hs,δ,A0(u(0)). (5.67)

Let {uk(t)} be the sequence which is defined by the iteration process (5.37). It follows
from the uniqueness Theorem 5.16 and (5.59) that

‖u(t)‖Hs,δ,A0(u(t))
≤ lim inf

k
‖uk(t)‖Hs,δ,A0(u(t)), (5.68)

where the limit above is uniformly in t. Applying the the energy estimate (5.29), we have

d

dt
‖uk+1(t)‖2

H
s,δ,A0(uk(t))

≤ C
(
µ‖uk+1(t)‖2

H
s,δ,A0(uk(t))

+ 1
)
.

So Gronwall’s inequality yields

‖uk+1(t)‖2
H
s,δ,A0(uk(t))

≤ eCµt
[
‖uk+1(0)‖2

H
s,δ,A0(uk(0))

+ t
]
. (5.69)

Take now arbitrary ε > 0, since uk(t) → u(t) uniformly in [0, T ∗∗], we see from the inner-
product (5.7) that there is k0 such that

‖v(t)‖Hs,δ,A0(u(t))
≤ (1 + ε)‖v(t)‖H

s,δ,A0(uk(t))
for k ≥ k0. (5.70)
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Combing (5.68), (5.69), (5.70) and (5.36) with the fact that uk(t) → u(t) uniformly in
[0, T ∗∗], we obtain

lim sup
t↓0

‖u(t)‖2
Hs,δ,A0(0)

= lim sup
t↓0

‖u(t)‖2
Hs,δ,A0(u(t))

≤ lim sup
t↓0

(
lim inf

k
‖uk+1(t)‖2

Hs,δ,A0(u(t))

)
≤ lim sup

t↓0

(
lim inf

k
(1 + ε)2‖uk+1(t)‖2

H
s,δ,A0(uk(t))

)
≤ lim sup

t↓0

(
lim inf

k
eCµt

[
(1 + ε)2‖uk+1(0)‖2

H
s,δ,A0(uk(0))

+ t
])

= lim sup
t↓0

(
eCµt

[
(1 + ε)2‖u0‖2

Hs,δ,A0(u(0))
+ t
])

=(1 + ε)2‖u0‖2
Hs,δ,A0(u(0))

which proves (5.67).

It remains to show that limt→t0
(
‖∂tu(t)− ∂tu(t0)‖Hs−1,δ+1

)
= 0. Now,

∂tu =
(
A0(u; t, x)

)−1

{
3∑

a=1

Aa(u; t, x)∂au+B(u; t, x)u+ F (u; t, x)

}
. (5.71)

By the first step of the proof, ‖∂au(t) − ∂au(t0)‖Hs−1,δ+1
→ 0 and ‖u(t) − u(t0)‖Hs,δ → 0.

At this stage we apply Corollary B.11 to the right hand of (5.71) and this completes the
proof of Theorem 5.17.

5.8 Local existence for the evolution equations of Einstein-Euler
system

In the previous subsections we have established the well-posdness of first order symmetric
hyperbolic systems in Hs,δ spaces. We would like to apply it to the evolution equations of
Einstein-Euler systems (2.33) and (2.16).

The unkowns of the evolution equations are the gravitaional field gαβ and its first order
partial derivatives ∂αgγδ, the Makino variable w and the velocity vector uα. We represent
them by the vector

U =
(
gαβ − ηαβ, ∂agγδ, ∂0gγδ, w, u

a, u0 − 1
)
, (5.72)

here ηαβ denotes the Minkowski metric.

We first probe it’s initial data. Recall that the initial data for Einstein-Euler systems (2.1)
and (2.4) are (h̄ab, Āab, ŷ, v̂

a), where

(h̄ab − I, Āab, (ŷ, v̂a)) ∈ Hs,δ ×Hs−1,δ+1 ×Hs−1,δ+2 (5.73)
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and the initial data for the semi-Riemannian metric gαβ are given by (4.1). Therefore
when t = 0, we have by Theorem 4.3 and Corollary ??, that gab − ηab = hab − I ∈ Hs,δ,
∂0gab ∈ Hs−1,δ+1 and (w, ua, u0 − 1) ∈ Hs−1,δ+2, while g0a = 0, g00 = −1 and ∂ag0α = 0. So
we conclude that

U(0, ·) ∈ Hs,δ ×Hs−1,δ+1 ×Hs−1,δ+2. (5.74)

In this situation we cannot apply directly Theorem 5.1. We intoduce some more conve-
nience notations: g = gαβ − ηα,β, ∂g = ∂αgγδ (that is, ∂g is the set of all first order partial
derivatives), v = (w, ua, u0 − 1) and U = (g, ∂g,v).

The idea to overcome this obstacle is the following. Since Hs−1,δ ⊂ Hs,δ, it follows from
(5.74) that

U(0, ·) ∈ Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2. (5.75)

If we prove the existence of U(t, x) which is a solution to the coupled systems (2.33) and
(2.16) with initial data in the form of (5.75) and such that U(t, ·) ∈ Hs−1,δ × Hs−1,δ+1 ×
Hs−1,δ+2 and it is continuous with respect to this norm, then from inequality

‖g‖Hs,δ .
(
‖g‖Hs−1,δ

+ ‖∂g‖Hs−1,δ+1

)
, (5.76)

we will get that U(t, ·) ∈ Hs,δ ×Hs−1,δ+1 ×Hs−1,δ+2 and it will be continuous with respect
to the norm of Hs,δ ×Hs−1,δ+1 ×Hs−1,δ+2. Note that (5.76) is a simple consequence of the
integral representation (A.3) of the Hs,δ norm.

In order to achieve this we carefully examine the structure of the coupled systems (2.33)
and (2.16). According to Conclusion 2.4, we can write Einstein-Euler system in the form:

A0∂tU =
3∑

a=1

Aa∂aU +BU, (5.77)

where Aα and B are 55× 55 matrices such that

A0 =


I10 010×40 010×5

040×10 Ã0(g) 040×5

05×10 05×40 Â0(g,v)

 , Aa =


010 010×40 010×5

040×10 Ãa(g) 040×5

05×10 05×40 Âa(g,v)

 (5.78)

and

B =


010 b10×40 010×5

B̃(g, ∂g,v)

05×10 05×40 B̂(g, ∂g)

 . (5.79)
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Here Ãα(g) is 40×40 symmetric, Âα(g,v) is 5×5 symmetric and both Ã0(g) and Â0(g,v)

are positive definite matrices; B̃(g, ∂g,v) is 40× 55 matrix, B̂(g, ∂g) is 5× 5 matrix and
b = (I10×10 | 010×30) matrix.

A natural norm on the product space Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2 is

‖U‖2
s−1,δ = ‖g‖2

Hs−1,δ
+ ‖∂g‖2

Hs−1,δ+1
+ ‖v‖2

Hs−1,δ+2
. (5.80)

Note that from the algebra property (B.12) and Moser type estimates (B.19) we have that
AαU,BU ∈ Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2, whenever U ∈ Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2.

We formulate an inner-product in accordance with the norm (5.80) and the structure of
A0. Let U1 = (g1, ∂g1,v1) and U2 = (g2, ∂g2,v2), similarly to (5.7) we set

〈U1, U2〉s−1,δ,A0

:=
∞∑
j=0

2( 3
2

+δ)2j

∫ [
Λs−1

(
(ψ2

jg1)(2j)

)]T [
Λs−1

(
(ψ2

jg2)(2j)

)]
dx

+
∞∑
j=0

2( 3
2

+δ+1)2j
[
Λs−1

(
(ψ2

j∂g1)(2j)

)]T
(Ã0)(2j)

[
Λs−1

(
(ψ2

j∂g2)(2j)

)]
dx

+
∞∑
j=0

2( 3
2

+δ+2)2j
[
Λs−1

(
(ψ2

jv1)(2j)

)]
(Â0)(2j)

[
Λs−1

(
(ψ2

jv2)(2j)

)]
dx (5.81)

and ‖U‖2
s−1,δ,A0 = 〈U,U〉s−1,δ,A0 . Since A0 is positive definite, ‖U‖s−1,δ,A0 ∼ ‖U‖s−1,δ

We can now repeat all the arguments and estimations of subsections 5.2-5.7, which are
applied term-wise to the norm (5.80) and inner-product (5.81), and in this way we extend
Theorem 5.1 to the product space:

Theorem 5.18 (Well posedness of hyperbolic systems in product spaces) Let
s− 1 > 5

2
, δ ≥ −3

2
and assume the coefficient of (5.77) are of the form (5.78) and (5.79).

If U0 ∈ Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2 and satisfies

1

µ
UT

0 U0 ≤ UT
0 A

0U0 ≤ µUT
0 U0, µ ∈ R+ (5.82)

then there exits a positive T which depends on ‖U0‖s−1,δ and a unique U(t, x) a solution to
(5.77) such that U(0, x) = U0(x) and in addition it satisfies

U ∈ C([0, T ], Hs−1,δ ×Hs−1,δ+1 ×Hs−1,δ+2) ∩ C1([0, T ], Hs−2,δ+1 ×Hs−2,δ+2 ×Hs−2,δ+3).
(5.83)

Corollary 5.19 (Solution to the gravitational field and the fluid) Let 7
2
< s <

2
γ−1

+ 3
2

and δ > −3
2
. Then there exists a positive T , a unique gravitational field gαβ solution

to (2.33) and a unique (w, uα) solution to Euler equation (2.16) such that

gαβ − ηαβ ∈ C([0, T ], Hs,δ) ∩ C1([0, T ], Hs−1,δ+1) (5.84)
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and
(w, ua, u0 − 1) ∈ C([0, T ], Hs−1,δ+2) ∩ C1([0, T ], Hs−2,δ+3). (5.85)

Proof (of Corollary 5.19) Theorem 4.3 implies that the initial data for gαβ belong to
Hs,δ and Corollary ?? yields that initial data for (w, uα) are in Hs−1,δ+2. Thus U(0, ·) ∈
Hs−1,δ × Hs−1,δ+1 × Hs−1,δ+2, where U is given by (5.72). In addition, the continuity of
A0 and Theorem 4.1 imply that the vector U(0, ·) satisfies (5.82). Therefore Theorem 5.18
with inequality (5.76) give the desired result.

6 Quasi Linear Elliptic Equations in Hs,δ

In this section we will establish the elliptic theory in Hs,δ which is essential for the solution
of the constraint equations. We will extend earlier results in weighted Sobolev spaces of
integer order which were obtained by Cantor [7], Choquet-Bruhat and Christodoulou [11]
and Christodoulou and O’Murchadha [14] to the fractional ordered spaces. The essential
tool is the a priori estimate (6.18) and proving it requires first to establish an analogous
a priori estimate in Bessel potential spaces. Our approach is based on the techniques
of Pseudodifferential Operators which have symbols with limited regularity and we are
adopting ideas being presented in Taylor’s books [38]and [39]. A different method was
derived recently by Maxwell [29].

6.1 A priori estimates for linear elliptic systems in Hs

In this section we consider a second order homogeneous elliptic system

(Lu)i =
∑
α,β,j

aαβij (x)∂α∂βu
j, (6.1)

where the indexes i, j = 1, , , N and α, β = 1, 2, 3 (since only R3 is being discussed in this
paper). We will use the convention

Lu = A(x)D2u, (6.2)

where A(x) is N × N block matrix with blocks Aij, each one of them is 3 × 3 matrix,
D2u is N × 1 block matrix with each block 3 × 3 matrix and the meaning of AijD

2uj is∑
α,β=1,2,3 a

αβ
ij ∂α∂βu

j. The symbol of (6.1) is N ×N matrix A(x, ξ), defined for all ξ ∈ C3

as follows:
A(x, ξ)ij := −〈Aijiξ, iξ〉 =

∑
α,β

aαβij (x)ξαξβ. (6.3)

The following definitions are due to Morrey [31].

Definition 6.1
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1. The system (6.1) is elliptic provided that

det (A(x, ξ)) = det

(∑
α,β

aαβij (x)ξαξβ

)
6= 0, for all 0 6= ξ ∈ R3; (6.4)

2. The system (6.1) is strongly elliptic provided that for some positive λ

〈A(x, ξ)η, η〉 =
∑
α,β,i,j

aαβij (x)ξαξβη
iηj ≥ λ|ξ|2|η|2. (6.5)

Our main task is to obtain a priori estimate in the Bessel potential spaces Hs for the
operator (6.1) whose coefficients aijαβ belong to Hs2 . In case s and s2 are integers, then
one may prove (6.8) below by means of induction and the classical results of Douglis and
Nirenberg [15], and Morrey [31]. We will employ techniques of Pseudodifferential calculus.

If the coefficients of the matrix A belongs to Hs2 , then A(x, ξ) ∈ Hs2S2
1,0, that is,

‖∂αξ A(·, ξ)‖Hs2 ≤ Cα(1 + |ξ|2)(2−|α|)/2). We follow Taylor and decompose

A(x, ξ) = A#(x, ξ) + Ab(x, ξ) (6.6)

in such way that a good parametrix can be constructed for A#(x, ξ), while Ab(x, ξ) will
have order less than 2. According to Proposition 8.2 in [39], for s2 >

3
2

there is 0 < δ < 1
such that

A#(x, ξ) ∈ S2
1,δ, Ab(x, ξ) ∈ Hs2S2−σδ

1,δ , σ = s2 −
3

2

where A#(x, ξ) =
∑∞

k=0 JεkA(x, ξ)φk(ξ), εk = c2−kδ. Here {φk} is the Littlewood-Paley
partition of unity, that is, φ0 ∈ C∞0 (R3), φ0(0) = 1, φk(ξ) = φ0(2−kξ) − φ0(2−k+1ξ) and∑∞

k=0 φk(ξ) = 1. The smoothing operator Jε is defined as follows:

Jεf(x) = φ0(εD)f(x) =

(
1

2π

) 3
2
∫
ε−3φ̂0(

y

ε
)f(x− y)dy,

where φ̂0 is the inverse Fourier transform. In order that A# will have a good parametrix we
need to verify that it is a strongly elliptic. Since the original operator is strongly elliptic,∑

α,β,i,j

Jεka
αβ
ij (x)φk(ξ)ξαξβη

iηj

=

(
1

2π

) 3
2
∫ (∑

α,β,i,j

ε−3
k φ̂0(

y

εk
)(y)aαβij (y − x)φk(ξ)ξαξβη

iηj

)
dy

≥
(

1

2π

) 3
2

λφk(ξ)|ξ|2|η|2
∫
ε−3
k φ̂0(

y

εk
)dy = λφk(ξ)|ξ|2|η|2φ0(0)

= λφk(ξ)|ξ|2|η|2
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for each fixed k. Summing over the k we have,

〈A#(x, ξ)η, η〉 =
∞∑
k=0

∑
α,β,i,j

(
Jεka

αβ
ij

)
(x)φk(ξ)ξαξβη

iηj ≥
∞∑
k=0

λφk(ξ)|ξ|2|η|2 = λ|ξ|2|η|2,

thus (6.5) holds for A#. The last step assures that ‖A#(x, ξ)−1‖ ≤ 1
λ|ξ|2 and then it follows

from the identity ∂(A−1) = A−1(∂(A))A−1 that

‖∂βx∂αξ (A#(x, ξ))−1‖ ≤ Cαβ(1 + |ξ|2)(−2−|α|+δ|β|)/2,

that is, (A#(x, ξ))−1 ∈ S−2
1,δ . Hence, the operator A#(x,D) has a parametrix E#(x,D) ∈

OPS−2
1,δ satisfying

E#(x,D)A#(x,D) = I + S, (6.7)

where S ∈ OPS−∞ (See e. g. [38] Section 0.4).

Lemma 6.2 (An a priori estimates in Hs) Let Lu = A(x)D2u be a strongly elliptic
system and assume A ∈ Hs2, s2 >

3
2

and 0 ≤ s− 2 ≤ s2. Then there is a constant C such
that

‖u‖Hs ≤ C {‖Lu‖Hs−2 + ‖u‖Hs−2} . (6.8)

Proof (of Lemma 6.2) We decompose A(x,D) as in (6.2) and let E#(x,D) be the above
parametrix, then by (6.7)

E#(x,D)A(x,D)u = u+ Su+ E#(x,D)Ab(x,D)u. (6.9)

Since E#(x,D), S : Hs−2 → Hs are bounded,

‖E#(x,D)A(x,D)u‖Hs = ‖E#(x,D)Lu‖Hs ≤ C‖Lu‖Hs−2 (6.10)

and
‖Su‖Hs ≤ C‖u‖Hs−2 . (6.11)

According to [39] Proposition 8.1, (see also [38] Proposition 2.1.J)

Ab(x,D) : Hs−σδ → Hs−2.

Hence,
‖E#(x,D)Ab(x,D)u‖Hs ≤ C‖Ab(x,D)u‖Hs−2 ≤ C‖u‖Hs−σδ . (6.12)

Using the intermediate estimate ‖u‖Hs−σδ ≤ ε‖u‖Hs +C(ε)‖u‖Hs−2 , and combining it with
(6.9)-(6.11), we obtain the estimate (6.8).
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6.2 A priori estimates in Hs,δ

Our main task here is to extend the a priori estimate (6.8) to Hs,δ-spaces and for a second
order elliptic systems of the form:

(Lu)i =
∑
α,β,j

aαβij (x)∂α∂βu
j +
∑
α,j

bαij(x)∂αu
j +
∑
j

cij(x)uj

= A(x)D2u+B(x)(Du) + C(x)u.

(6.13)

Here A(x) is as in the previous subsection, B(x) is N × N block matrix with each block
1×3 matrix, C(x) is N×N matrix and Du = (∂1u

1, ..., ∂3u
N)T . We introduce the following

hypotheses:

Hypotheses (H)

(H1)
∑
aα,βi,j (x)ηiηjξαξβ ≥ λ|η|2|ξ|2 (i.e. L is strongly elliptic);

(H2) (A(·)− A∞) ∈ Hs2,δ2 , B ∈ Hs1,δ1 , C ∈ Hs0,δ0

si ≥ s − 2, i = 0, 1, 2, s2 > 3
2
, s1 > 1

2
, s0 ≥ 0 and δi >

1
2
− i, i = 0, 1, 2,

the matrix A∞ has constant coefficients and A∞D
2u is an elliptic system, that is,

det
(∑

(a∞)α,βij ξαξβ

)
6= 0.

We shall first derive an a priori estimate for a second order homogeneous operator

L2u = A(x)D2u.

Lemma 6.3 (An a priori estimate for homogeneous operator in Hs,δ) Assume
the operator L2 satisfies hypotheses (H) and s ≥ 2. Then

‖u‖Hs,δ ≤ C
{
‖L2u‖Hs−2,δ+2

+ ‖u‖Hs−2,δ

}
, (6.14)

where the constant C depends on s, δ and ‖A− A∞‖Hs2,δ2 .

Proof (of Lemma 6.3) According to Corollary A.5,

∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ4

ju
)

2j

∥∥∥2

Hs

is an equivalent norm in Hs,δ. The main idea of the proof is to apply Lemma 6.2 to each
term of the equivalent norm above. We use the convention (6.2) and compute

L2(ψ4u) = ψ4L2

(
D2u

)
+ ψA(x)R(u, ψ),
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where
R(u, ψ) = 8ψ (Dψ)T (ψDu) + 12 (Dψ)T (Dψ) (ψu) + 4ψ

(
D2ψ

)
(ψu).

Applying the a priori estimate (6.8), we have

‖u‖2
Hs,δ

.
∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ4

ju
)

2j

∥∥∥2

Hs

.
∞∑
j=0

2( 3
2

+δ)2j

{∥∥∥L2

(
(ψ4

ju)
)

2j

∥∥∥2

Hs−2
+
∥∥∥(ψ4

ju
)

2j

∥∥∥2

Hs−2

}

.
∞∑
j=0

2( 3
2

+δ)2j

{
24j
∥∥∥(ψ4

jL2(u)
)

2j

∥∥∥2

Hs−2
+
∥∥∥(ψ4

ju
)

2j

∥∥∥2

Hs−2

}

+
∞∑
j=0

2( 3
2

+δ+2)2j
∥∥(ψjAR(u, ψj))2j

∥∥2

Hs−2

. ‖L2(u)‖2
Hs−2,δ+2

+ ‖u‖2
Hs−2,δ

+ ‖AR‖2
Hs−2,δ+2

. (6.15)

The assumption on s2 and δ2 enable us to use the algebra property (B.12) and get

‖AR‖Hs−2,δ+2
≤ C

(
‖(A− A∞)R‖Hs−2,δ+2

+ ‖A∞R‖Hs−2,δ+2

)
≤ C

(
‖(A− A∞)‖Hs2,δ2 + ‖A∞‖

)
‖R‖Hs−2,δ+2

.
(6.16)

Property (A.4) of ψj and Proposition B.1 imply

‖(ψjR)2j‖Hs−2 ≤ C
(
2−j‖(ψjDu)2j‖Hs−2 + 2−2j‖(ψju)2j‖Hs−2

)
and hence ‖R‖Hs−2,δ+2

≤ C
(
‖u‖Hs−1,δ

+ ‖u‖Hs−2,δ

)
. Thus, inequalities (6.15) and (6.16)

yields

‖u‖Hs,δ ≤ C
{
‖L2u‖Hs−2,δ+2

+
(
‖A− A∞‖Hs2,δ2 + 1

) (
‖u‖Hs−1,δ + ‖u‖Hs−2,δ

)}
. (6.17)

Invoking the intermediate estimate ‖u‖Hs−1,δ ≤
√

2ε‖u‖Hs,δ + C(ε)‖u‖Hs−2,δ (see(B.10))

and taking ε so that C
(
‖A− A∞‖Hs2,δ2 + 1

)√
2ε ≤ 1

2
, we obtain from (6.17) the desired

estimate (6.14).

Lemma 6.4 (An a priori estimate in Hs,δ) Assume the operator L of the form
(6.13) satisfies hypotheses (H) and s ≥ 2. Then

‖u‖Hs,δ ≤ C
{
‖Lu‖Hs−2,δ+2

+ ‖u‖Hs−2,δ

}
, (6.18)

where the constant C depends on s, δ and the coefficients of L.
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Proof (Proof of Lemma 6.4) By Lemma 6.3,

‖u‖Hs,δ ≤ C
{
‖L2u‖Hs−2,δ+2

+ ‖u‖Hs−2,δ

}
≤ C

{
‖Lu‖Hs−2,δ+2

+ ‖u‖Hs−2,δ
+ ‖(L− L2)u‖Hs−2,δ+2

}
,

where (L− L2)u = B(x)(Du) + C(x)u. Hypothesis (H2) together with the algebra (B.12)
give

‖B(x)(Du)‖Hs−2,δ+2
. ‖B‖Hs1,δ1‖Du‖Hs−2,δ+1

. ‖B‖Hs1,δ1‖u‖Hs−1,δ
, (6.19)

and
‖C(x)u‖Hs−2,δ+2

. ‖C|‖Hs0,δ0‖u‖Hs−2,δ
.

Finally, we apply the intermediate estimate (B.10) to the right hand side of (6.19) and by
taking ε sufficiently small we obtain (6.18).

Lemma 6.5 (Isomorphism of an operator with constant coefficients) Let
A∞u := A∞D

2u be a homogeneous elliptic system with constant coefficients. Then for any
s ≥ 2 and −3

2
< δ < −1

2
, the operator A∞ : Hs,δ+2 → Hs−2,δ is isomorphism satisfying

‖u‖Hs,δ ≤ C‖A∞D2u‖Hs−2,δ+2
. (6.20)

Proof (of Lemma 6.5) Both statements are true when s is an integer, see

e. g. [11], Theorem 5.1. For s between two integers m0 and m1, we have s = sθ =
θm0 + (1− θ)m1 and s− 2 = sθ − 2 = θ(m0 − 2) + (1− θ)(m1 − 2), where 0 < θ < 1. The
interpolation property (A.21) implies

Hs,δ = [Hm0,δ, Hm1,δ]θ and Hs−2,δ = [Hm0−2,δ, Hm1−2,δ]θ.

Since A−1
∞ : Hmi−2,δ → Hmi,δ+2, i = 0, 1, is continuous, it follows from interpolation theory

that A−1
∞ : Hsθ−2,δ → Hsθ,δ+2 is also continuous (see e. g. [41]). Hence (6.20) holds.

The next lemma improves the a priori estimate (6.18).

Lemma 6.6 (Improved a priori estimate) Let L be an elliptic operator of the form
(6.13) which satisfies hypotheses (H). Assume s ≥ 2 and −3

2
< δ < −1

2
. Then for any δ′

there is a constant C such that

‖u‖Hs,δ ≤ C
{
‖Lu‖Hs−2,δ+2

+ ‖u‖Hs−1,δ′

}
. (6.21)

The constant C depends on the Hsi,δi-norm of the coefficients of L, s, δ and δ′.
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Proof (of Lemma 6.6) Let χR ∈ C∞0 (R3) be a cut-off function satisfying supp(χR) ⊂
{|x| ≤ 2R}, χR(x) = 1 for |x| ≤ R, 0 ≤ χR(x) ≤ 1 and ‖∂αχR‖∞ ≤ CαR

−|α|. For u ∈ Hs,δ

we write
u = (1− χR)u+ χRu

and R will be determinate later on. We start with the estimation of ‖(1 − χR)u‖Hs,δ and
for that purpose we use the convention (6.2) and compute

A∞(D2(1− χR)u) = (1− χR)A∞(D2u)− 2A∞(DχR)T (Du)− A∞(D2χR)(u)

= (1− χR)(Lu) + E1 + E2,
(6.22)

where
E1 = −(1− χR)

{
((A− A∞)) (D2u) +B(x)(Du) + C(x)u

}
and

E2 = −
{

2A∞(DχR)T (Du) + A∞(D2χR)(u)
}

Applying inequality (6.20) of Lemma 6.5,

‖(1− χR)u‖Hs,δ ≤ C‖A∞D2((1− χR)u)‖Hs−2,δ+2

≤ C
{
‖(1− χR)Lu‖Hs−2,δ+2

+ ‖E1‖Hs−2,δ+2
+ ‖E2‖Hs−2,δ+2

}
.

(6.23)

Since ‖(1−χR)Lu‖Hs−2,δ+2
. ‖Lu‖Hs−2,δ+2

(see Proposition B.2 (a)), it remains to estimate
‖E1‖Hs−2,δ+2

and ‖E2‖Hs−2,δ+2
. We may choose δ′i so that δi > δ′i >

1
2
−i, i = 0, 1, 2 and then

we put γ = mini=0,1,2(δi − δ′i). Under these conditions we can apply the algebra property
(B.12), Proposition B.2 (b) and get

‖E1‖Hs−2,δ+2
≤ C

∥∥(1− χR)
{

(A− A∞) (D2u) +B(Du) + Cu
}∥∥

Hs−2,δ+2

≤ C{‖(1− χR)(A− A∞)‖Hs2,δ′2
‖D2u‖Hs−2,δ+2

+ ‖(1− χR)B‖Hs1,δ′1
‖Du‖Hs−1,δ+1

+ ‖(1− χR)C‖Hs0,δ′ ‖u‖Hs,δ}

≤ C1

Rγ

(
‖(A− A∞)‖Hs2,δ2 + ‖B‖Hs1,δ1 + ‖C‖Hs0,δ0

)
‖u‖Hs,δ

≤ C1Λ

Rγ
‖u‖Hs,δ ,

(6.24)

where Λ =
(
‖A− A∞‖Hs2,δ2 + ‖B‖Hs1,δ2 + ‖C‖Hs0,δ0

)
.

Next, since DχR has compact support, inequality (A.23) implies that

‖E2‖Hs−2,δ+2
≤ C(R)

{
‖2A∞((DχR)T (Du))‖Hs−2,δ′+1

+ ‖A∞((D2χR)u)‖Hs−2,δ′

}
≤ C(R)‖A∞‖

{
2‖Du‖Hs−2,δ′+1

+ ‖u‖Hs−2,δ′

}
≤ C(R)‖A∞‖‖u‖Hs−1,δ′

.

(6.25)
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We turn now to the estimation of ‖χRu‖Hs,δ . Noting that (χRu) has compact support, we
have by (A.23), (6.18) and Proposition B.2 that

‖χRu‖Hs,δ ≤ C(R)‖χRu‖Hs,δ′ ≤ C(R){‖L(χRu)‖Hs−2,δ′+2
+ ‖u‖Hs−1,δ′

}. (6.26)

Similarly to (6.22) we compute

L(χRu) = χRL(u) + 2A((DχR)T (Du)) + A((D2χR)u) +B(DχR)u. (6.27)

We estimate each term of (6.27) separately. Once again, since χRLu has compact support,

‖χR(Lu)‖Hs−2,δ′+2
≤ C(R)‖Lu‖Hs−2,δ+2

. (6.28)

Next, using the second assumption of (H), algebra (B.12) and compactness of supp(χR)
we get

‖2A((DχR)T (Du))‖Hs−2,δ′+2

≤ 2‖(A− A∞)(DχTR(Du))‖Hs−2,δ′+2
+ ‖A∞(DχTR(Du))‖Hs−2,δ′+2

≤ C
(
‖(A− A∞)‖Hs2,δ2 + ‖A∞‖

)
‖(DχR)T (Du)‖Hs−2,δ′+2

≤ C(R)
(
‖(A− A∞)‖Hs2,δ2 + ‖A∞‖

)
‖Du‖Hs−2,δ′+1

≤ C(R)
(
‖(A− A∞)‖Hs2,δ2 + ‖A∞‖

)
‖u‖Hs−1,δ′

.

(6.29)

In a similar manner we estimate the other terms and together with inequalities (6.23)-
(6.26), (6.28) and (6.29) we have

‖u‖Hs,δ ≤ ‖(1− χR)u‖Hs,δ + ‖χRu‖Hs,δ

≤ C

{
‖Lu‖Hs−2,δ+2

+ C2‖u‖Hs−1,δ′
+
C1Λ

Rγ
‖u‖Hs,δ

}
,

(6.30)

where C1 and C2 depend on the norms of the coefficients of L and in addition C2 depends
in R. We now take R such that C1Λ

Rγ
≤ 1

2
, then (6.21) follows from (6.30).

The next two theorems are consequence of the compact embedding, Theorem B.12, the a
priori estimate (6.21) and standard arguments of Functional Analysis.

Theorem 6.7 (Semi Fredholm) Assume the operator L satisfies hypotheses(H), s ≥ 2
and −3

2
< δ < −1

2
. Then L : Hs,δ → Hs−2,δ+2 is semi Fredholm, that is,

(i) dim(KerL) <∞;

(ii) If L is injective, then there is a constant C such that

‖u‖Hs,δ ≤ C‖Lu‖Hs−2,δ+2
; (6.31)
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(iii) L has a closed range.

Theorem 6.8 (A homotopy argument) Lets ≥ 2 and −3
2
< δ < −1

2
. Assume

L be an elliptic operator of the form (6.13) that fulfilled the hypotheses (H) and Lt is a
continuous family of operators which satisfy hypotheses (H) for t ∈ [0, 1], L1 = L and

Lt : Hs,δ → Hs−2,δ+2 is injective.

If
L0 : Hs,δ → Hs−2,δ+2 is an isomorphism,

then the same is true for L.

The next Lemma shows that solutions to the homogeneous system have lower growth at
infinity. We follow Christodoulou and O’Murchadha’s proof [14].

Lemma 6.9 (Lower growth of homogeneous solutions) Assume L satisfies hy-
potheses (H), u ∈ Hs,δ, s ≥ 2 and −3

2
< δ < −1

2
. If Lu = 0, then u ∈ Hs,δ′ for any

−3
2
< δ′ < −1

2
.

Proof (of Lemma 6.9) The inclusion Hs,δ ⊂ Hs,δ′ for δ′ < δ, implies that it suffices to
show the statement for δ′ > δ. The conditions on δi imply that we may find δ′ > δ so that
δi + δ + i > δ′ + 2− 3

2
. Applying the algebra property (B.12) to

f := A∞u− Lu = (A∞ − A(x)) ·D2u−B(x)(Du)T − C(x)u,

we obtain that f belongs to Hs−2,δ′+2. Now Lu = 0, so A∞u = f and since A∞ : Hs,δ′ →
Hs−2,δ′+2 is isomorphism by Lemma 6.5, we conclude that hence u ∈ Hs,δ′ . We now replace
δ by δ′ repeat the above arguments.

6.3 Semi Linear Elliptic Equations on Asymptotically Flat Man-
ifolds

A Riemannian 3-manifold (M,h) is asymptotically flat (AF) if there is a compact subset
K such that M \K is diffeomorphic to R3 \ B1(0) and the metric h tends to the identity
I at infinity. A natural definition of the last statement in our case is h− I ∈ Hs′,δ′ . Thus
the assumptions of this subsection are: h− I ∈ Hs′,δ′ , s

′ > 3
2

and δ′ > −3
2
.

We denote by ∆h be the Laplace-Beltrami operator on (M,h). In the coordinates
(x1, x2, x3) it takes the form

∆h =
1√
|h|
∂j

(√
|h|hij∂i

)
, (6.32)

59



where |h| = det(hij) and hij = (hij)
−1. Inserting the identity ∂j|h| = |h|tr(hij(∂j(hij)) into

(6.32), we have

∆h = hij∂j∂i + ∂j(h
ij)∂i +

1

2
tr(hij(∂j(hij))h

ij∂i. (6.33)

Hence, by means of algebra (B.12) and Moser type estimate (B.19), the elliptic operator
(6.33) satisfies hypothesis (H) of Section 6.2 provided that s ≤ s′.

Let us introduce some more notations. We denote by µh =
√
|h|dx the Lebesgue measure

on the manifold (M,h), (Du ·Dv)h = hij∂iu∂jv, and ‖Du‖2
h = (Du ·Du)h. Integration by

parts yields ∫
(∆hu) vdµh =

∫
∂j

(√
|h|hij∂iu

)
vdx

= −
∫
hij∂iu∂jv

√
|h|dx = −

∫
(Du ·Dv)hdµh.

(6.34)

Formula (6.34) holds whenever v ∈ H1
0 (R3), u ∈ Hs,δ and s ≥ 1. Therefore it enables us

to define weak solutions on the manifold (M,h).

Definition 6.10 (Weak solutions) A function u in Hs,δ is a weak solution of

−∆hu+ c(x)u = f ∈ Hs−2,δ+2

on (M,h), if ∫
((Du ·Dv)h + cuv) dµh =

∫
fvdµh, (6.35)

for all v ∈ H1
0 (R3).

Remark 6.11 In case u, v ∈ Hs,δ, s ≥ 2 and δ ≥ −1, then by algebra hij∂iu,
√
|h|∂jv ∈

Hs−1,0. Applying the Cauchy Schwarz inequality∫
|(Du ·Dv)h|dµh =

∫
|hij∂iu∂jv|

√
|h|dx

≤
(∫

(hij∂iu)2

) 1
2
(∫ √

|h|∂jv)2

) 1
2

≤ ‖hij∂iu‖Hs−1,0‖
√
|h|∂jv‖Hs−1,0 ,

we see that hij∂iu∂jv|
√
|h| ∈ L1(R3). Similarly, the integrand of the left hand side of (6.34)

belongs to L1(R3). Hence, approximating u and v by C∞0 functions and using Lebesgue’s
Dominated Convergence Theorem we have∫

(∆hu) vdµh = −
∫

(Du ·Dv)hdµh, u, v ∈ Hs,δ, whenever s ≥ 2, and δ ≥ −1. (6.36)
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In this section we will prove existence and uniqueness for the semi-linear equation

−∆hu = F (x, u) :=
N∑
i=1

mi(x)hi(u), (6.37)

where mi ∈ Hs0,δ0 , mi(x) ≥ 0, s0 ≥ 0, δ0 > 1
2

and for u > −1 the functions hi are
decreasing, nonnegative and smooth. These conditions ensure F (·, u) and ∂F

∂p
(·, u) are in

Hs−2,δ+2 whenever u ∈ Hs,δ and s ≥ 2.

Theorem 6.12 (Existence and uniqueness) Let h − I ∈ Hs′,δ′, s
′ > 3

2
, δ′ > −3

2
,

2 ≤ s ≤ s′ and −3
2
< δ < −1

2
. Then equation (6.37) has a unique solution u in Hs,δ.

Furthermore, 0 ≤ u ≤ K for a nonnegative constant K.

In order to show Theorem 6.12 we need the weak maximal principle:

Proposition 6.13 (Weak maximal principle) Assume c ∈ Hs′−2,δ′+2 is nonnegative.
If u ∈ Hs,δ satisfies

−∆hu+ cu ≤ 0, (6.38)

then u ≤ 0.

Proof (of Proposition 6.13) For ε > 0 we put w = max(u − ε, 0). It has compact
support since limx→∞ u(x) = 0. Further, Dw = Du a.e. in {u(x) > ε} (see e. g. [18] or
[25]. Thus, w ∈ H1

0 (R3) and w ≥ 0, so by (6.35)

0 ≥
∫

((Du,Dw)h + cuw) dµh =

∫
{u≥ε}

(
‖Du‖2

h + cu2
)
dµh.

Therefore u ≡ ε in {u(x) ≥ ε}. Since ε is arbitrary, we have u ≤ 0.

Proof (of Existence) The proof will be done in several steps. We define a map Φ :
{Hs,δ × [0, 1], u(x) > −1} → Hs−2,δ+2 by

Φ(u, τ) = −∆hu− τF (x, u),

let u(τ) denotes a solution of Φ(u, τ) = 0 and put J = {0 ≤ s ≤ 1 : Φ(u(s), s) = 0}. We
will show that J is both open and closed set. Since 0 ∈ J , J = [0, 1] which yields the
existence result.

Step 1. The set J is open:

Let

Lw :=

(
∂Φ

∂u
(u, τ)

)
(w) = −∆hw − τ

∂F

∂p
(·, u)w

and

Ltw = −∆{th+(1−t)I}w − tτ
∂F

∂p
(·, u)w.
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If Ltw = 0, then by Lemma (6.9) w ∈ Hs,−1. So we may use (6.36) and get∫
(Ltw)wdµ{th+(1−t)I} =

∫ (
‖Dw‖2

{th+(1−t)I} − tτ
∂F

∂p
(·, u)w2

)
dµ{th+(1−t)I}.

Since ∂F
∂p
≤ 0, the above yields that Ltw = 0 implies w ≡ 0 for each t ∈ [0, 1]. In addition

L0 = −∆I = −∆ is an isomorphism according to Lemma 6.5. So Theorem 6.8 implies that
L1 = L is an isomorphism too. Thus J is open by the Implicit Function Theorem.

Step 2. ‖u(τ)‖Hs,δ ≤ C for a constant C independent of τ :

We first establish the bound in H2,δ-norm. The the weak maximum principle implies
u(τ) ≥ 0 and since F (x, p) is decreasing in p,

‖F (·, u(τ))‖H0,δ+2
≤ ‖F (·, 0)‖H0,δ+2

≤

(
N∑
i=1

hi(0)2‖mi‖2
H0,δ+2

) 1
2

:= K.

We showed in Step 1 that ∆h : Hs,δ → Hs−2,δ+2 is injective, therefore from Theorem 6.7
(ii),

‖u(τ)‖H2,δ
≤ C‖ −∆hu(τ)‖H0,δ+2

≤ C‖F (·, 0)‖H0,δ+2
≤ CK. (6.39)

Now, by Moser estimate (B.19), ‖hi(u(τ))‖H2,δ
≤ C‖(u(τ))‖H2,δ

and by algebra (B.12),
‖F (·, u(τ))‖H2,δ

≤ C‖u(τ)‖H2,δ
. In order to improve (6.39), we take s′′ so that s′′ − 2 ≤ 2

and s′′ ≤ s. Then we may apply again (6.31) and with (6.39) we have

‖u(τ)‖Hs′′,δ ≤ C‖ −∆hu(τ)‖Hs′′−2,δ+2
≤ C‖ −∆hu(τ)‖H2,δ+2

= C‖F (·, u(τ))‖H2,δ
≤ C‖u(τ)‖H2,δ

≤ CK.
(6.40)

We have proved the boundedness in case s′′ = s, otherwise we can repeat the same pro-
cedure as above to improve regularity until we would reach the desired regularity. It is
obvious that the bound on ‖u(τ)‖Hs,δ does not depend on τ .

Step 3. Lipschitz continuity with respect to τ :

Differentiation of the equation Φ(u(τ), τ) = 0 with respect to τ gives

−∆huτ (τ)− τ ∂F
∂p

F (x, u(τ))uτ (τ) = F (x, u(τ)).

Now ∂F
∂p
F (x, p) ≤ 0, so in the same way as we did in Step 1 we obtain that the operator

L = −∆h − τ ∂F∂p F (x, u(τ)) : Hs,δ → Hs−2,δ+2 is injective. Hence, by 6.7 (ii),

‖uτ‖Hs,δ ≤ C‖L(uτ )‖Hs−2,δ+2
= C‖F (x, u(τ))‖Hs−2,δ+2

. (6.41)
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Next, Step 2 implies

‖F (x, u(τ))‖Hs−2,δ+2
≤ C‖u(τ)‖Hs,δ

(
N∑
i=1

‖mi‖Hs0,δ0

)
≤ C. (6.42)

Thus, combining (6.41) with (6.42) we get

‖u(τ1)− u(τ2)‖Hs,δ ≤ C|τ1 − τ2|. (6.43)

Step 4. The set J is closed:

Take a sequence {τn} ⊂ J such that τn → τ0. By (6.43), {u(τn)} is Cauchy in Hs,δ

and therefore it converges to u0 ∈ Hs,δ. Since the map Φ is continuous, it follows that
Φ(u0, τ0) = 0, that is τ0 ∈ J . This completes the proof of the existence.

Proof (of Uniqueness) Assume u1 and u2 are solutions to (6.37). We conduct the proof
by showing that Ω := {x : u1(x) > u2(x)} is an empty set. Note that Ω is open since u1

and u2 are continuous. Put w = u1 − u2, then −∆hw = F (x, u1) − F (x, u2) ≤ 0 in Ω.
So w ≤ 0 in Ω by Proposition (6.13). That obviously leads to a contradiction unless Ω is
empty.

Appendix

A Construction of the Spaces Hs,δ:

The weighted Sobolev spaces of integer order below were introduced by Cantor [6] and
independently by Nirenberg and Walker [32]. Nirenberg and Walker initiate the study of
elliptic operators in these spaces, while Cantor used them to solve the constraint equations
on asymptotically flat manifolds. For an nonnegative integer m and a real δ we define a
norm (

‖u‖∗m,δ
)2

=
∑
|α|≤m

∫ (
〈x〉δ+|α||∂αu|

)2
dx, (A.1)

where 〈x〉 = 1 + |x|. The space Hs,m is the completion of C∞0 (R3) under the norm (A.1).
Note that the weight varies with the derivatives.

Here we will repeat Triebel’s extension of these spaces into a fractional order, [40],[41]. Let
s = m+ λ, where m is a nonnegative integer and 0 < λ < 1. One possibility of extending
the ordinary integer order Sobolev spaces is the Lipschitz-Sobolevskij Spaces, having a norm

‖u‖2
m+λ,2 =

∑
|α|≤m

∫
|∂αu|2dx+

∑
|α|=m

∫ ∫
|∂αu(x)− ∂αu(y)|2

|x− y|3+λ2
dxdy. (A.2)
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Hence, a reasonable definition of weighted fractional Sobolev norm is a combination of the
norm (A.1) with (A.2):

(
‖u‖∗s,δ

)2
=



∑
|α|≤m

∫
|〈x〉δ+|α|∂αu|2dx, s = m

∑
|α|≤m

∫
|〈x〉δ+|α|∂αu|2dx

+
∑
|α|=m

∫ ∫
|〈x〉m+λ+δ∂αu(x)− 〈y〉m+λ+δ∂αu(y)|2

|x− y|3+2λ
dxdy


, s = m+ λ.

(A.3)
here m is a nonnegative integer and 0 < λ < 1. The space Hs,δ is the completion of C∞0 (R3)
under the norm (A.3).

The norm (A.3) is essential for the understating of the connections between the integer
and the fractional order. But it has a disadvantage, namely, the double integral makes it
almost impossible to establish any property (embedding, a priori estimate, etc.) needed
for PDEs. We are therefore looking for an equivalent definition of the norm (A.3).

Let Kj = {x : 2j−3 ≤ |x| ≤ 2j+2}, (j = 1, 2, ...) and K0 = {x : |x| ≤ 4}. Let {ψj}∞j=0 ⊂
C∞0 (R3) be a sequence such that ψj(x) = 1 on Kj, supp(ψj) ⊂ {x : 2j−4 ≤ |x| ≤ 2j+3}, for
j ≥ 1, supp(ψ0) ⊂ {x : |x| ≤ 23} and

|∂αψj(x)| ≤ Cα2−|α|j, (A.4)

where the constant Cα does not depend on j.

We define now,

(
‖u‖Fs,δ

)2

=



∞∑
j=0

2δ2j‖ψju‖2
L2 + 2(δ+m)2j

∑
|α|=m

‖∂α(ψju)‖2
L2

 , s = m

∞∑
j=0

2δ2j‖ψju‖2
L2 + 2(δ+m)2j

∑
|α|=m

‖∂α(ψju)‖2
L2


+
∞∑
j=0

2(δ+m+λ)2j

∑
|α|=m

∫ ∫
|∂α(ψju)(x)− ∂α(ψju)(y)|2

|x− y|3+2λ
dxdy

 ,


s = m+ λ.

(A.5)

Proposition A.1 (Equivalence of norms) There are two positive constants c0 and
c1 depending only on s, δ and the constants in (A.4) such that

c0‖u‖Fs,δ ≤ ‖u‖
∗
s,δ ≤ c1‖u‖Fs,δ. (A.6)
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This equivalence was proved in [40] (see also [4]).

We express these norms in terms of Fourier transform. Let

û(ξ) = F(u)(ξ) =
1

(2π)3

∫
u(x)e−ix·ξdx

denotes the Fourier transform, put

Λsu = F−1(1 + |ξ|2)
s
2Fu), (A.7)

and let Hs denotes the Bessel Potentials space having the norm

‖u‖2
Hs = ‖Λsu‖2

L2 =

∫
(1 + |ξ|2)s|û(ξ)|2dξ. (A.8)

We also set

‖u‖2
hs = ‖F−1(|ξ|sFu)‖2

L2 =

∫
(|ξ|s|û(ξ)|)2dξ.

It is well known that (see e. g. [19]; p. 240-241)

‖u‖2
hs '

{ ∑
|α|=m

∫
|∂αu|2dx s = m∑

|α|=m
∫ ∫ |∂αu(x)−∂αu(y)|2

|x−y|3+2λ dx s = m+ λ
(A.9)

and since (1 + |ξ|2)s ' (1 + |ξ|s),

‖u‖2
Hs '

(
‖u‖2

L2 + ‖u‖2
hs

)
. (A.10)

Hence, by (A.5), (
‖u‖Fs,δ

)2

'
∞∑
j=0

(
2δ2j‖ψju‖2

L2 + 2(δ+s)2j‖ψju‖2
hs

)
(A.11)

We invoke now the scaling uε(x) := u(εx) (ε > 0), then simple calculations yields ‖uε‖2
L2 =

ε−3‖u‖2
L2 and ‖uε‖2

hs = ε2s−3‖u‖2
hs . Combining the later one with (A.10), we have

‖uε‖2
Hs ' ε−3

(
‖u‖L2 + ε2s‖u‖2

hs

)
. (A.12)

Setting ε = 2j, multiplying (A.12) by 23j and inserting it in (A.11), we conclude(
‖u‖Fs,δ

)2

'
∞∑
j=0

2( 3
2

+δ)2j‖(ψju)2j‖2
Hs . (A.13)

The last one is the most convenience form of norm for applications.
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Definition 3.1 (Weighted Spaces, an infinite sum). For s ≥ 0 and −∞ < δ < ∞, we
define the Hs,δ norm by (

‖u‖Hs,δ
)2

=
∑
j

2( 3
2

+δ)2j‖(ψju)(2j)‖2
Hs . (A.14)

The space Hs,δ is the set of all temperate distributions with a finite norm given by (A.14).

Combining Proposition A.1 with (A.11) and (A.13) we get:

Theorem A.2 (Equivalence of norms, Triebel) There are two positive constant
c0 and c1 depending only on s, δ and the constants in (A.4) such that

c0‖u‖Hs,δ ≤ ‖u‖∗s,δ ≤ c1‖u‖Hs,δ. (A.15)

Remark A.3 Let s′ ≤ s and δ′ ≤ δ, then the inclusion Hs,δ ↪→ Hs′,δ′ follows easily from
the representations (A.8) and (A.14) of the norms.

Remark A.4 The functions {ψj} are constructed by means of a composition of exponential
functions. Hence, for any positive γ there holds

c1(γ, α)|∂αψγj (x)| ≤ |∂αψj(x)| ≤ c2(γ, α)|∂αψγj (x)|. (A.16)

Therefore the equivalence (A.6) remains valid with ψγj replacing ψj and hence

∑
j

2( 3
2

+δ)2j‖(ψγj u)(2j)‖2
Hs '

(
‖u‖Fs,δ

)2

'
∑
j

2( 3
2

+δ)2j‖(ψju)(2j)‖2
Hs . (A.17)

Corollary A.5 (Equivalence of norms) For any positive γ, there are two positive
constants c0 and c1 depending on s, δ and γ such that

c0‖u‖2
Hs,δ
≤
∑
j

2( 3
2

+δ)2j‖(ψγj u)(2j)‖2
Hs ≤ c1‖u‖2

Hs,δ
. (A.18)

Definition A.6 (Inner-Product) The norm A.14 enables us to define an inner-product
on Hs,δ. We first recall that if u, v : R3 → Rm are in Hs, then

〈u, v〉s = 〈Λsu,Λsv〉L2=

∫
(Λsu)T (Λsv) dx =

∫
(1 + |ξ|2)sûT (ξ)v̂(ξ)dξ (A.19)

is an inner product on Hs, here UT denotes the transpose vector. By means of this and
Corollary A.5, for any positive γ, the expression

〈u, v〉s,δ =
∑
j

2( 3
2

+δ)2j
〈
(ψγj u)(2j), (ψ

γ
j v)(2j)

〉
s

(A.20)

is an inner-product on Hs,δ.
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Theorem A.7 ( Complex interpolation, Triebel) Let 0 < θ < 1, 0 ≤ s0 < s1 and
sθ = θs0 + (1− θ)s1, then

[Hs0,δ, Hs1,δ]θ = Hsθ,δ, (A.21)

where (A.21) is a complex interpolation.

As a consequence of the interpolation Theorem A.7 we get

Corollary A.8 (Embedding of Hs,δ in Hs−1,δ+1)

‖∂iu‖Hs−1,δ+1
≤ ‖u‖Hs,δ (A.22)

Proof (of Corollary A.8) Let m be a positive integer and define T : Hm,δ → Hm−1,δ+1

by T (u) = ∂iu. Using the norm (A.1) we see that ‖T (u)‖Hm−1,δ+1
≤ ‖u‖Hm,δ . So (A.22)

follows from Theorem A.7.

Remark A.9 If suppu ⊂ {|x| ≤ R}, then for any δ

c1(R)‖u‖Hs ≤ ‖u‖Hs,δ ≤ c2(R)‖u‖Hs . (A.23)

This follows from the integral representation of the norm (A.1) and the interpolation (A.21).

B Some Properties of Hs,δ

We start with a well known fact in Hs spaces.

Proposition B.1 (Multiplication by smooth functions) Let N ≥ s be an integer.
Assume f ∈ CN(R3) satisfies sup|α|≤N |∂αf | ≤ K, then

‖fu‖Hs ≤ CsK‖u‖Hs . (B.1)

Proof (of Proposition B.1) Obviously there holds ‖fu‖HN ≤ CK‖u‖HN and ‖fu‖L2 ≤
K‖u‖L2 . Since Hs is a complex interpolation space [L2, HN ]θ = Hs, where θ = N−s

N
(see

e.g [37]; 13.6) and in addition u 7→ fu is a linear map, it follows from Interpolation Theory
that

‖fu‖Hs ≤ KC1−θ‖u‖Hs . (B.2)

Let χR ∈ C∞(R3) satisfies χR(x) = 1 for |x| ≤ R, χR(x) = 0 for |x| ≥ 2R and

|∂αχR| ≤ cαR
−|α|. (B.3)

Proposition B.2 (Two useful estimates)
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(a) Let N ≥ s be an integer. Assume f ∈ CN(R3) satisfies sup |Dkf | ≤ K for k =
0, 1, ...N , then

‖fu‖Hs,δ ≤ CsK‖u‖Hs,δ . (B.4)

(b) For δ′ < δ

‖(1− χR)u‖Hs,δ′ ≤
C(δ, δ′)

Rδ−δ′ ‖u‖Hs,δ . (B.5)

Corollary B.3 (Multiplication by cutoff functions)

(a)

‖(DmχR)u‖Hs,δ ≤
C

Rm
‖u‖Hs,δ . (B.6)

(b)
‖(1− χR)u‖Hs,δ ≤ C‖u‖Hs,δ . (B.7)

Proof (of Proposition B.2)

(a) By Proposition (B.1),

‖fu‖2
Hs,δ

=
∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψjfu)2j

∥∥2

Hs ≤ (CK)2

∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs

= (CK)2‖u‖2
Hs,δ

.

(B.8)

(b) Let J0 be the smallest integer such that R ≤ 2J0−3. Then (1 − χR)ψj = 0 for
j = 0, 1, ..., J0 − 1. Hence

‖(1− χR)u‖2
Hs,δ′

=
∞∑
j=J0

2( 3
2

+δ′)2j
∥∥(ψj(1− χR)u)2j

∥∥2

Hs

≤ C2

∞∑
j=J0

2( 3
2

+δ′)2j
∥∥(ψju)2j

∥∥2

Hs = C2

∞∑
j=J0

2( 3
2

+δ)2j2(δ′−δ)2j ∥∥(ψju)2j

∥∥2

Hs

≤ C22(δ′−δ)2J0

∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs ≤
C2

(8R)(δ−δ′)2‖u‖
2
Hs,δ

.

(B.9)
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B.1 Two intermediate estimates

Proposition B.4 (Intermediate estimates)

(i) Let 0 ≤ s0 < s < s1 and ε > 0, then there is a constant C = C(ε) such that

‖u‖Hs,δ ≤
√

2ε‖u‖Hs1,δ + C‖u‖Hs0,δ , (B.10)

holds for all u ∈ Hs1,δ.

(ii) Let 0 < s′ < s, then

‖u‖Hs′,δ ≤ ‖u‖
s′
s
Hs,δ
‖u‖1− s

′
s

H0,δ
. (B.11)

Proof (of Proposition B.4) Both inequalities (B.10) and (B.11) are well known in Hs

spaces. We apply them to each term of the norm (A.14). Therefore

‖u‖2
Hs,δ

=
∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs

≤ 2ε2
∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs1
+ 2C2(ε)

∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs0

= 2ε2‖u‖2
Hs1,δ

+ 2C2(ε)‖u‖2
Hs0,δ

,

which proves (i). In the proof of (ii) we use Hölder inequality and obtain

‖u‖2
Hs,δ

=
∑
j

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

H2
s

≤
∑
j

2( 3
2

+δ)2j
“
s′
s

” ∥∥(ψju)2j

∥∥2 s
′
s

Hs
2( 3

2
+δ)2j

“
s−s′
s

” ∥∥(ψju)2j

∥∥2 s−s
′

s

L2

≤

(∑
j

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs

) s′
s

(∑
j

2( 3
2

+δ)2j ‖(ψju)u2j‖2
L2

) s−s′
s

=
(
‖u‖Hs,δ

) 2s′
s

(
‖u‖L2,δ

) 2(s′−1)
s .

B.2 Algebra

Proposition B.5 (Algebra in Hs,δ) If s1, s2 ≥ s, s1 + s2 > s+ 3
2

and δ1 + δ2 ≥ δ− 3
2
,

then
‖uv‖Hs,δ ≤ C‖u‖Hs1,δ1‖v‖Hs2,δ2 . (B.12)
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Proof (of Proposition B.5) By Corollary A.5,

‖uv‖2
Hs,δ
'

∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ2

juv
)

2j

∥∥∥2

Hs
. (B.13)

We apply the classic algebra property ‖uv‖Hs ≤ C‖u‖Hs1‖v‖Hs2 (see e. g. [36]), to each
term of the norm (B.13) and then we use Cauchy Schwarz inequality,

‖uv‖2
Hs,δ
≤ C

∞∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψ2

juv
)

2j

∥∥∥2

Hs

≤ C2

∞∑
j=0

2( 3
2

+δ)2j
∥∥(ψju)2j

∥∥2

Hs1

∥∥(ψjv)2j

∥∥2

Hs2

≤ C2

∞∑
j=0

(
2( 3

2
+δ1)2j

∥∥(ψju)2j

∥∥2

Hs1

)(
2( 3

2
+δ2)2j

∥∥(ψjv)2j

∥∥2

Hs2

)

≤ C2

(
∞∑
j=0

(
2( 3

2
+δ1)2j

∥∥(ψju)2j

∥∥2

Hs1

)2
) 1

2
(
∞∑
j=0

(
2( 3

2
+δ2)2j

∥∥(ψjv)2j

∥∥2

Hs2

)2
) 1

2

≤ C2

(
∞∑
j=0

(
2( 3

2
+δ1)2j

∥∥(ψju)2j

∥∥2

Hs1

))( ∞∑
j=0

(
2( 3

2
+δ2)2j

∥∥(ψjv)2j

∥∥2

Hs2

))
≤ C2‖u‖2

Hs1,δ1
‖v‖2

Hs2,δ2
.

B.3 Fractional power |u|γ

In [22] Kateb showed that if u ∈ Hs ∩ L∞, 1 < γ and 0 < s < γ + 1
2
, then

‖|u|γ‖Hs ≤ C(‖u‖L∞)‖u‖Hs . (B.14)

Proposition B.6 (Fractional power in Hs,δ) Let u ∈ Hs,δ∩L∞, 1 < γ, 0 < s < γ+ 1
2

and δ ∈ R, then

‖|u|γ‖Hs,δ ≤ C(‖u‖L∞)‖u‖Hs,δ . (B.15)
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Proof (of Proposition B.6) Property (B.15) is a direct consequence of the equivalence
(A.18) and (B.14). Because

‖|u|γ‖2
Hs,δ '

∞∑
j=0

2( 3
2

+δ)2j‖(ψγj |u|γ)(2j)‖2
Hs

≤ (C(‖u‖L∞))2
∞∑
j=0

2( 3
2

+δ)2j‖(ψju)(2j)‖2
Hs ≤ (C(‖u‖L∞))2 ‖u‖2

Hs,δ
.

(B.16)

B.4 Moser type estimates

Y. Meyer proved the below Moser type estimate [30].See also Taylor [38].

Theorem B.7 (Third Moser inequality for Bessel potentials spaces) Let F :
Rm → Rl be CN+1 function such that F (0) = 0. Let s > 0 and u ∈ Hs ∩ L∞. Then

‖F (u)‖Hs ≤ K‖u‖Hs , (B.17)

where
K = KN(F, ‖u‖L∞) ≤ C‖F‖CN+1

(
1 + ‖u‖NL∞

)
, (B.18)

here N is a positive integer such that N ≥ [s] + 1.

We generalize this important inequality to the Hs,δ spaces.

Theorem B.8 (Third Moser inequality in Hs,δ) Let F : Rm → Rl be CN+1 function
such that F (0) = 0. Let s > 0, δ ∈ R and u ∈ Hs,δ ∩ L∞. Then

‖F (u)‖Hs,δ ≤ K‖u‖Hs,δ , (B.19)

The constant K in (B.19) depends on one in (B.18) and in addition on δ.

Proof (of Theorem B.8) We set Ψj(x) = 1
ϕ(x)

ψj(x), where ϕ(x) =
∑∞

j=0 ψj(x). From

the properties of the sequence {ψj}, it follows that 1 ≤ ϕ(x) ≤ 7. So the sequence
{Ψj} ⊂ C∞0 (R3) and

∑∞
j=0 Ψj(x) = 1. From (A.12) we conclude that

‖uε‖2
Hs ≤ C max{ε2s−3, ε−3}‖u‖2

Hs (B.20)
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and with the combination of Proposition B.1 and Meyer’s TheoremB.7 we have,

‖F (u)‖2
Hs,δ

=
∞∑
j=0

2( 3
2

+δ)2j‖(ψj(F (u))(2j)‖2
Hs

=
∞∑
j=0

2( 3
2

+δ)2j

∥∥∥∥∥∥
(
ψjF

(
∞∑
k=0

Ψk(x)u

))
(2j)

∥∥∥∥∥∥
2

Hs

=
∞∑
j=0

2( 3
2

+δ)2j

∥∥∥∥∥∥
(
ψjF

(
j+3∑

k=j−4

Ψk(x)u

))
(2j)

∥∥∥∥∥∥
2

Hs

≤ CK2

∞∑
j=0

2( 3
2

+δ)2j

j+3∑
k=j−4

‖ (Ψku)(2j) ‖
2
Hs

≤ CK2

∞∑
j=0

2( 3
2

+δ)2j

j+3∑
k=j−4

‖ ((Ψku)2j−k)(2k) ‖
2
Hs

≤ CK2

∞∑
j=0

2( 3
2

+δ)2j

j+3∑
k=j−4

max{2(2s−3)(j−k), 2−3(j−k)}‖ (Ψku)(2k) ‖
2
Hs

≤ C(s)K2

∞∑
j=0

2( 3
2

+δ)2j

j+3∑
k=j−4

‖ (ψku)(2k) ‖
2
Hs

≤ C(s, δ)K2

∞∑
j=0

j+3∑
k=j−4

2( 3
2

+δ)2k‖ (ψku)(2k) ‖
2
Hs

≤ 7C(s, δ)K2

∞∑
k=0

2( 3
2

+δ)2k‖ (ψku)(2k) ‖
2
Hs ≤ 7C(s, δ)K2‖u‖2

Hs,δ
.

(B.21)

As a consequence of Theorem B.13 we can sharpen this result.

Corollary B.9 (Sharp version of the third Moser inequality) Let F : Rm → Rl

be CN+1 function, F (0) = 0, N ≥ [s] + 1, s > 3
2

and δ ≥ −3
2
. Then

‖F (u)‖Hs,δ ≤ C(‖F‖CN+1 , ‖u‖Hs,δ)‖u‖Hs,δ . (B.22)

Remark B.10 If F (0) 6= 0 and F (0) ∈ Hs,δ, then we can apply Theorem B.8 to F̃ (u) :=
F (u)− F (0) and get

‖F (u)‖Hs,δ ≤ ‖F̃ (u)‖Hs,δ + ‖F (0)‖Hs,δ ≤ K‖u‖Hs,δ + ‖F (0)‖Hs,δ . (B.23)

We may apply Theorem B.8 to the estimate the difference F (u)− F (v).
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Corollary B.11 (A difference estimate in Hs,δ) Suppose F is a CN+2 function
and u, v ∈ Hs,δ ∩ L∞. Then

‖F (u)− F (v)‖Hs,δ ≤ C(‖u‖L∞ , ‖v‖L∞)
(
‖u‖Hs,δ + ‖v‖Hs,δ

)
‖u− v‖Hs,δ . (B.24)

Proof (of Corollary B.11) Put F̃ (u) = F (u)−F (0)−DF ′(0)u, then it suffices to show
inequality (B.24) for F̃ . Now,

F̃ (u)− F̃ (v) =

∫ 1

0

(
DF̃ (tu+ (1− t)v)

)
(u− v)dt = G(u, v)(u− v), (B.25)

where G(u, v) =
∫ 1

0
DF̃ (tu+ (1− t)v) dt. Since G(0, 0) =

∫ 1

0
DF̃ (0)dt = 0, we can apply

Theorem B.8 to G(u, v) and get:

‖G(u, v)‖Hs,δ ≤ C(‖u‖L∞ , ‖v‖L∞)
(
‖u‖Hs,δ + ‖v‖Hs,δ

)
. (B.26)

Applying algebra (B.12) to the right side of (B.25), we have∥∥∥F̃ (u)− F̃ (v)
∥∥∥
Hs,δ
≤ C ‖G(u, v)‖Hs,δ ‖(u− v)‖Hs,δ (B.27)

and its combination with (B.26) gives (B.24).

B.5 Compact embedding

Theorem B.12 (Compact embedding) Let 0 ≤ s′ < s and δ′ < δ, then the embedding

Hs,δ ↪→ Hs′,δ′ . (B.28)

is compact.

Proof (of Theorem B.12) Let {un} ⊂ Hs,δ be a sequence with ‖un‖Hs,δ ≤ 1. Since Hs,δ

is a Hilbert space there is a subsequence, denoted by {un}, which converges weakly to u0.
We will complete the proof by showing that un → u0 strongly in Hs′,δ′ .

Let χR ∈ C∞0 such that χR(x) = 1 for |x| ≤ R and supp(χR) ⊂ B2R. For a given

ε > 0, we take R such that 2C(δ,δ′)

Rδ−δ′
< ε, where C(δ, δ′) is the constant of inequality

(B.5). For a bounded domain Ω, it is known that the embedding Hs(Ω) ↪→ Hs′(Ω) is
compact and from Remark A.9 it follows that ‖χRun‖Hs ≤ C, where C does not depend
on n . Hence χRun converges strongly to û0 in Hs′ . In addition, we have that χRun →
χRu0 weakly in Hs and hence χRun → χRu0 weakly in Hs′ . Thus the sequence {χRun}
converges both strongly to û0 and weakly to χRu0 in Hs′ , hence û0 = χRu0 (because
limn〈(χRun− χRu0), (û0− χRu0)〉s′ = 〈(û0− χRu0), (û0− χRu0)〉s′ = ‖û0− χRu0‖2

Hs′ = 0).
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By (A.23) limn ‖χRun − χRu0‖Hs′,δ′ = 0, hence we may take n sufficiently large so that
‖χRun − χRu0‖Hs′,δ′ < ε. Therefore

‖un − u0‖Hs′,δ′ = ‖(χRun − χRu0) + (1− χR)(un − u0)‖Hs′,δ′
≤ ‖(χRun − χRu0)‖Hs′,δ′ + ‖(1− χR)(un − u0)‖Hs′,δ′

< ε+
C

Rδ−δ′ ‖(un − u0)‖Hs,δ ≤ ε+
C

Rδ−δ′
(
‖un‖Hs,δ + ‖u0‖Hs,δ

)
≤ ε+ 2

C(δ, δ′)

Rδ−δ′ < 2ε

(B.29)

and that completes the proof.

B.6 Embedding into the continuous

We introduce the following notations. For a nonnegative integer m, 0 < σ < 1 and β ∈ R,
we set

Hσ(x, u) = sup{y:|y−x|≤ 1
2

(1+|x|)}
|u(x)−u(y)|
|x−y|σ

‖u‖Cβ = supx
(
(1 + |x|)β|u(x)|

)
‖u‖Cσβ = ‖u‖Cβ + supx

(
(1 + |x|)β+σHσ(x, u)

)
‖u‖Cmβ =

∑
|α|≤m supx

(
(1 + |x|)β+|α||∂αu(x)|

)
‖u‖Cm+σ

β
= ‖u‖Cmβ +

∑
|α|=m supx

(
(1 + |x|)β+m+σ|Hσ(x, ∂αu)|

)
Let Cm

β , Cm+σ
β be the functions spaces corresponding to the above norms.

Theorem B.13 (Embedding into the continuous)

1. If s > 3
2

+m and δ+ 3
2
≥ β, then any u ∈ Hs,δ has a representative ũ ∈ Cm

β satisfying

‖ũ‖Cmβ ≤ C‖u‖Hs,δ . (B.30)

2. If s > 3
2

+ m + σ and δ + 3
2
≥ β, then any u ∈ Hs,δ has a representative ũ ∈ Cm

β,σ

satisfying
‖ũ‖Cm+σ

β
≤ C‖u‖Hs,δ . (B.31)

Proof (of Theorem B.13) We first show (B.30) and (B.31) when m = 0. In order to
make notations simpler we will use the convention 2k = 0 if k < 0. Recall that ψj(x) = 1

74



on Kj := {2j−3 ≤ |x| ≤ 2j+2}. Using the known embedding supx |u(x)| ≤ C‖u‖Hs (see
e. g. [26]),we have

sup
x

(1 + |x|)β|u(x)| ≤ 2β sup
j≥−1

(
2βj sup

{2j≤|x|≤2j+1}
|u(x)|

)
≤2β sup

j≥−1

(
2βj sup |ψj(x)u(x)|

)
= 2β sup

j≥−1

(
2βj sup |ψj(2jx)u(2jx)|

)
≤2βC sup

j≥−1

(
2βj‖(ψju)2j‖Hs

)
≤ 2βC sup

j≥−1

(
2( 3

2
+δ)j‖(ψju)2j‖Hs

)
≤ 2βC‖u‖Hs,δ .

(B.32)

In order to show (B.31) we use the known estimate

sup
x
|u(x)|+ sup

x,y,x6=y

|u(x)− u(y)|
|x− y|σ

≤ C‖u‖Hs .x

(see e. g. [26]) and repeat similar arguments to the above, then

sup
x

(1 + |x|)(β+σ) sup
{|y−x|≤ 1

2
(1+|x|)

|u(x)− u(y)|
|x− y|σ

≤ 2(β+σ) sup
j≥−1

(
2(β+σ)j sup

{2j≤|x|≤2j+1}
sup

{|y−x|≤ 1
2

(1+|x|)}

|u(x)− u(y)|
|x− y|σ

)

≤ 2(β+σ) sup
j≥−1

(
2(β+σ)j sup

{2j≤|x|≤2j+1}
sup

{ 1
2

max{2j−1,0}≤|y|≤ 1
2

(1+3·2j+1)}

|u(x)− u(y)|
|x− y|σ

)

≤ 2(β+σ) sup
j≥−1

(
2(β+σ)j sup

x∈Kj
sup
y∈Kj

|u(x)− u(y)|
|x− y|σ

)

≤ 2(β+σ) sup
j≥−1

(
2(β+σ)j sup

x
sup
y

|ψj(x)u(x)− ψj(y)u(y)|
|x− y|σ

)
≤ 2(β+σ) sup

j≥−1

(
2(β+σ)j sup

x
sup
y

|ψj(2jx)u(2jx)− ψj(2jy)u(2jy)|
|2jx− 2jy|σ

)
= 2(β+σ) sup

j≥−1

(
2βj sup

x
sup
y

|ψj(2jx)u(2jx)− ψj(2jy)u(2jy)|
|x− y|σ

)
≤ 2(β+σ)C sup

j≥−1

(
2βj‖(ψju)2j‖Hs

)
≤ 2(β+σ)C sup

j≥−1

(
2( 3

2
+δ)j‖(ψju)2j‖Hs

)
≤ C‖u‖Hs,δ .

(B.33)

If m > 1, s > 3
2
+m or s > 3

2
+σ+m and δ+ 3

2
≥ β, then ∂αu ∈ Hs−|α|,δ+|α| for 1 ≤ |α| ≤ m.

So we may apply (B.32) and (B.33) to ∂αu and obtain ‖∂αu‖Cβ+k
or ‖∂αu‖Cσβ+k

are less or

equal to ‖∂αu‖Hs−|α|,δ+|α| .
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B.7 Density

Theorem B.14 (Density of C∞0 functions)

(a) The class C∞0 (R3) is dense in Hs,δ.

(b) Given u ∈ Hs,δ and s′ > s ≥ 0. Then for ρ > 0 there is uρ ∈ C∞0 (R3) and a positive
constant C(ρ) such that

‖uρ − u‖Hs,δ ≤ ρ and ‖uρ‖Hs′,δ ≤ C(ρ)‖u‖Hs,δ . (B.34)

Property (a) was proved by Triebel [41]. We prove both of them here since (b) relies on
(a).

Proof (of Theorem B.14) Let Jε be the standard mollifier, that is, supp(Jε) ⊂ B(0, ε),
Ĵε(ξ) = Ĵ1(εξ) = Ĵ(εξ) and Ĵ(0) = 1. It is well known that for any v ∈ Hs, ‖Jε∗v−v‖Hs →
0 and that Jε ∗ v belongs to C∞(R3). In addition, we claim that there is C = C(ε, s, s′)
such that

‖Jε ∗ v‖Hs′ ≤ C‖v‖Hs . (B.35)

Indeed, since J ∈ C∞0 (R3), |Ĵ(ξ)| ≤ Cm(1+ |ξ|)−m for any integer m. Therefore, for a given
s′ and ε, we chose m and the constant C(ε, s, s′) so that (1 + |ξ|2)s

′−s|Ĵ(εξ)|2 ≤ C2(ε, s, s′).
Hence

‖Jε ∗ v‖2
Hs′ =

∫
(1 + |ξ|2)s

′|Ĵ(εξ)|2|v̂(ξ)|2dξ =

∫
(1 + |ξ|2)s|v̂(ξ)|2(1 + |ξ|2)s

′−sĴ(εξ)|2dξ

≤C2(ε, s, s′)

∫
(1 + |ξ|2)s|v̂(ξ)|2dξ = C2(ε, s, s′)‖v‖2

Hs .

(a) Given u ∈ Hs,δ and ρ > 0 we may chose N such that

∞∑
j=N−2

2( 3
2

+δ)2j‖(ψj(u)(2j)‖2
Hs ≤ ρ2.

Set now uN =
∑N

j=0 Ψku, where Ψk is defined as in the proof of Theorem B.8. We
use Proposition B.1 and get

‖u− uN‖2
Hs,δ
≤

∞∑
j=0

2( 3
2

+δ)2j

∥∥∥∥∥∥
(
ψj

(
∞∑

k=N+1

Ψku

))
(2j)

∥∥∥∥∥∥
2

Hs

=
∞∑

j=N−2

2( 3
2

+δ)2j

∥∥∥∥∥∥
(

j+4∑
k=j−3

ψjΨku

)
(2j)

∥∥∥∥∥∥
2

Hs

≤ C

∞∑
j=N−2

2( 3
2

+δ)2j

j+4∑
k=j−3

∥∥∥(ψju)(2j)

∥∥∥2

Hs

≤ 7C
∞∑

j=N−2

2( 3
2

+δ)2j
∥∥∥(ψju)(2j)

∥∥∥2

Hs
= 7Cρ2.
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Now uN has compact support, therefore Jε ∗ uN ∈ C∞0 (R3) and

‖Jε ∗ uN − uN‖2
Hs,δ
≤

N+4∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψj(Jε ∗ uN − uN))(2j)

∥∥∥2

Hs
→ 0 as ε→ 0.

(b) Let u ∈ Hs,δ and ρ > 0, then by (a) we can chose N sufficiently large and ε small so
that ‖Jε ∗ uN − u‖Hs,δ < ρ and by (B.35)

‖Jε ∗ uN‖2
Hs′,δ
≤

N+4∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψj(Jε ∗ uN))(2j)

∥∥∥2

Hs′

≤ C2(ε, s, s′)
N+4∑
j=0

2( 3
2

+δ)2j
∥∥∥(ψjuN))(2j)

∥∥∥2

Hs
≤ C2C2(ε, s, s′)‖u‖2

Hs,δ
.

Thus, uρ = Jε ∗ uN .
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