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Abstract

We establish elements of a new approch to ellipticity and parametrices

within operator algebras on a manifold with higher singularities, only based

on some general axiomatic requirements on parameter-dependent operators

in suitable scales of spaces. The idea is to model an iterative process with

new generations of parameter-dependent operator theories, together with

new scales of spaces that satisfy analogous requirements as the original ones,

now on a corresponding higher level.

The “full” calculus is voluminous; so we content ourselves here with some

typical aspects such as symbols in terms of order reducing families, classes

of relevant examples, and operators near the conical exit to infinity.
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Introduction

This paper is aimed at studying operators with certain degenerate operator-valued
amplitude functions, motivated by the iterative calculus of pseudo-differential op-
erators on manifolds with higher singularities. Here, in contrast to [36], [37], we
develop the aspect of symbols, based on “abstract” reductions of orders which
makes the approch transparent from a new point of view. To illustrate the idea,
let us first consider, for example, the Laplacian on a manifold with conical singular-
ities (say, without boundary). In this case the ellipticity does not only refer to the
“standard” principal homogeneous symbol but also to the so-called conormal sym-
bol. The latter one, contributed by the conical point, is operator-valued and singles
out the weights in Sobolev spaces, where the operator has the Fredholm property.
Another example of ellipticity with different principal symbolic components is the
case of boundary value problems. The boundary (say, smooth), interpreted as an
edge, contributes the operator-valued boundary (or edge) symbol which is respon-
sible for the nature of boundary conditions (for instance, of Dirichlet or Neumann
type in the case of the Laplacian). In general, if the configuration has polyhedral
singularities of order k, we have to expect a principal symbolic hierarchy of length
k+ 1, with components contributed by the various strata. In order to characterise
the solvability of elliptic equations, especially, the regularity of solutions in suit-
able scales of spaces, it is adequate to embed the problem in a pseudo-differential
calculus, and to construct a parametrix. For higher singularities this is a program
of tremendous complexity. It is therefore advisable to organise general elements
of the calculus by means of an axiomatic framework which contains the typical
features, such as the cone- or edge-degenerate behaviour of symbols but ignores
the (in general) huge tail of k − 1 iterative steps to reach the singularity level k.
The “concrete” (pseudo-differential) calculus of operators on manifolds with con-
ical or edge singularities may be found in several papers and monographs, see,
for instance, [27], [31], [30], [5]. Operators on manifolds of singularity order 2 are
studied in [32], [36], [15], [6]. Theories of that kind are also possible for boundary
value problems with the transmission property at the (smooth part of the) bound-
ary, see, for instance, [26], [12], [8]. This is useful in numerous applications, for
instance, to models of elasticity or crack theory, see [12], [9], [7]. Elements of oper-
ator structures on manifolds with higher singularities are developed, for instance,
in [35], [1]. The nature of such theories depends very much on specific assumptions
on the degeneracy of the involved symbols. There are worldwide different schools
studying operators on singular manifolds, partly motivated by problems of geome-
try, index theory, and topology, see, for instance, Melrose [16], Melrose and Piazza
[17], Nistor [22], Nazaikinskij, Savin, Sternin [18], [19], [20], and many others. We
do not study here operators of “multi-Fuchs” type, often associated with “corner
manifolds”. Our operators are of a rather different behaviour with respect to the
degeneracy of symbols. Nevertheless the various theories have intersections and
common sources, see the paper of Kondratiev [13] or papers and monographs of
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other representatives of a corresponding Russian school, see, for instance, [24], [25].
Let us briefly recall a few basic facts on operators on manifolds with conical sin-
gularities or edges.
Let M be a manifold with conical singularity v ∈M , i.e., M \ {v} is smooth, and
M is close to v modelled on a cone X∆ := (R+ × X)/({0} × X) with base X ,
where X is a closed compact C∞ manifold. We then have differential operators of
order µ ∈ N on M \ {v}, locally near v in the splitting of variables (r, x) ∈ R+ ×X
of the form

A := r−µ
µ∑

j=0

aj(r)

(
−r

∂

∂r

)j
(0.1)

with coefficients aj ∈ C∞(R+,Diffµ−j(X)) (here Diffν(·) denotes the space of
all differential operators of order ν on the manifold in parentheses, with smooth
coefficients). Observe that when we consider a Riemannian metric on R+ ×X :=
X∧ of the form dr2 + r2gX , where gX is a Riemannian metric on X , then the
associated Laplace-Beltrami operator is just of the form (0.1) for µ = 2. For such
operators we have the homogeneous principal symbol σψ(A) ∈ C∞(T ∗(M\{v})\0),
and locally near v in the variables (r, x) with covariables (ρ, ξ) the function

σ̃ψ(A)(r, x, ρ, ξ) := rµσψ(A)(r, x, r−1ρ, ξ)

which is smooth up to r = 0. If a symbol (or an operator function) contains r and
ρ in the combination rρ we speak of degeneracy of Fuchs type.
It is interesting to ask the nature of an operator algebra that contains Fuchs type
differential operators of the from (0.1) on X∆, together with the parametrices
of elliptic elements. An analogous problem is meaningful on M . Answers may be
found in [31], including the tools of the resulting so-called cone algebra. As noted
above the ellipticity close to the tip r = 0 is connected with a second symbolic
structure, namely, the conormal symbol

σc(A)(w) :=

µ∑

j=0

aj(0)wj : Hs(X) → Hs−µ(X) (0.2)

which is a family of operators, depending on w ∈ Γn+1
2 −γ , Γβ := {w ∈ C : Rew =

β}, n = dimX . Here Hs(X) are the standard Sobolev spaces of smoothness s ∈ R

on X . Ellipticity of A with respect to a weight γ ∈ R means that (0.2) is a family
of isomorphisms for all w ∈ Γn+1

2 −γ .

The ellipticity on the infinite cone X∆ refers to a further principal symbolic struc-
ture, to be observed when r → ∞. The behaviour in that respect is not symmetric
under the substitution r → r−1. Also the present axiomatic approch will refer
to “abstract” conical exits to infinity based on specific insight on a relationship
between edge-degeneracy and such conical exits, known from the edge calculus of
[28], [30] (see also [2] in a higher singular case). A differential operator on an open
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stretched wedge R+ ×X ×Ω ∋ (r, x, y), Ω ⊆ Rq open, is called edge-degenerate, if
it has the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)

(
−r

∂

∂r

)j
(rDy)

α, (0.3)

ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)). Observe that (0.3) can be written in the
form A = r−µOpr,y(p) for an operator-valued symbol p of the form p(r, y, ρ, η) =

p̃(r, y, rρ, rη) and p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X ; R1+q
ρ̃,η̃ )),

Opr,y(p)u(r, y) =

∫∫
ei(r−r

′)ρ+i(y−y′)ηp(r, y, ρ, η)u(r′, y′)dr′dy′d̄ρd̄η.

Here Lµcl(X ; Rlλ) means the space of classical parameter-dependent pseudo-differen-
tial operators on X of order µ, with parameter λ ∈ Rl, that is, locally on X the op-
erators are given in terms of amplitude functions a(x, ξ, λ), where (ξ, λ) is treated
as an (n+ l)-dimensional covariable, and we have L−∞(X ; Rl) := S(Rl, L−∞(X))
with L−∞(X) being the (Fréchet) space of smoothing operators on X .
The notion of parameter-dependent operators of the form (0.1), with a parameter
η ∈ Rq is motivated by edge-degenerate operators. Omitting now the variable y
such operator families have the form

A(η) = r−µ
∑

j+|α|≤µ

ajα(r)

(
−r

∂

∂r

)j
(rη)α. (0.4)

This can also be written A(η) = r−µOpr(p)(η), p(r, ρ, η) := p̃(r, rρ, rη), for a
suitable p̃(r, ρ̃, η̃) ∈ C∞(R+, L

µ
cl(X ; R1+q

ρ̃,η̃ )). In this form we also reach parameter-
dependent pseudo-differential operators of Fuchs type. As we know from the cal-
culus on the infinite cone a definition of adequate distribution spaces at r = ∞,
denoted by Hs

cone(R+ ×X)(:= Hs
cone(R ×X)|R+×X), can be formulated in terms

of parameter-dependent isomorphisms on the base X of the cone as follows.
Hs

cone(R×X), s ∈ R, is defined to be the completion of S(R, C∞(X)) with respect
to the norm {∫

‖[r]−s (Opr(p)u) (r, x)‖2
L2(X)dr

} 1
2

for a family p(r, ρ, η) := p̃(rρ, rη), η ∈ Rq \ {0} fixed, where p̃(ρ̃, η̃) ∈ Lscl(X,R
1+q
ρ̃,η̃ )

is parameter-dependent elliptic of order s, with parameters (ρ̃, η̃), chosen in such
a way that p̃(ρ̃, η̃) : Ht(X) → Ht−s(X) is an isomorphism for every (ρ̃, η̃) ∈ R1+q,
t ∈ R. Changing η 6= 0, or the family p̃ itself, gives rise to equivalent norms in the
space Hs

cone(R × X). This will be the background of a definition of analogues of
such spaces in the abstract set up (see Definition 2.20 below).

This paper is organised as follows. In Chapter 2 we introduce spaces of symbols
based on families of reductions of orders in given scales of (analogues of Sobolev)
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spaces.
Chapter 3 is devoted to the specific effects of an axiomatic cone calculus at the
conical exit to infinity. The cone at infinity is represented by a real axis R ∋ r,
and the operators take values in vector-valued analogues of Sobolev spaces in r.

As indicated above, our results are designed as a step of a larger concept of
abstract edge and corner theories, organised in an iterative manner. The full calcu-
lus employs the one for r → ∞ in combination with Mellin operators on R+ near
r = 0. However, the continuation of the calculus in that sense needs more space
than available in the present note. We believe that the structures for r → ∞ in the
present form are completely new, despite of the efforts with analogous intentions
in the papers [1], [2]. The main difficulty was to invent convenient classes of sym-
bols with a specific intertwining of variables and covariables together with extra
parameters η 6= 0 which play the role of future edge covariables in homogeneous
edge symbols of higher generation (see (0.4) as an example).

1 Elements of the cone calculus

1.1 Scales and order reducing families

Let E denote the set of all families E = (Es)s∈R of Hilbert spaces with continuous
embeddings Es

′

→֒ Es, s′ ≥ s, so that E∞ :=
⋂
s∈R

Es is dense in every Es, s ∈ R

and that there is a dual scale E∗ = (E∗s)s∈R with a non-degenerate sesquilinear
pairing (., .)0 : E0 × E∗0 → C, such that (., .)0 : E∞ × E∗∞ → C, extends to a
non-degenerate sesquilinear pairing

Es × E∗−s → C

for every s ∈ R, where supf∈E∗−s\{0}
|(u,f)0|
‖f‖

E∗−s
and supg∈Es\{0}

|(g,v)0|
‖g‖Es

are equiva-

lent norms in the spaces Es and E∗−s, respectively; moreover, if E = (Es)s∈R, Ẽ =

(Ẽs)s∈R are two scales in consideration and a ∈ Lµ(E , Ẽ) :=
⋂
s∈R

L(Es, Ẽs−µ),
for some µ ∈ R, then

sup
s∈[s′,s′′]

‖a‖s,s−µ <∞

for every s′ ≤ s′′; here ‖.‖s,s̃ := ‖.‖L(Es, eEs̃). Later on, in the case s = s̃ = 0 we

often write ‖.‖ := ‖.‖0,0.
Let us say that a scale E ∈ E is said to have the compact embedding property, if
the embeddings Es

′

→֒ Es are compact when s′ > s.

Remark 1.1. Every a ∈ Lµ(E , Ẽ) has a formal adjoint a∗ ∈ Lµ(Ẽ∗, E∗), obtained

by (au, v)0 = (u, a∗v)0 for all u ∈ E∞, v ∈ Ẽ∗∞.

Remark 1.2. The space Lµ(E , Ẽ) is Fréchet in a natural way for every µ ∈ R.
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Definition 1.3. A system (bµ(η))µ∈R of operator functions bµ(η) ∈
C∞(Rq,Lµ(E , E)) is called an order reducing family of the scale E , if
bµ(η) : Es → Es−µ is an isomorphism for every s, µ ∈ R, η ∈ R

q, b0(η) = id for
every η ∈ Rq, and

(i) Dβ
η b
µ(η) ∈ C∞(Rq,Lµ−|β|(E , E)) for every β ∈ Nq;

(ii) for every s ∈ R, β ∈ Nq we have

max
|β|≤k

sup
η∈Rq

s∈[s′,s′′]

‖bs−µ+|β|(η){Dβ
η b
µ(η)}b−s(η)‖0,0 <∞

for all k ∈ N, and for all real s′ ≤ s′′.

(iii) for every µ, ν ∈ R, ν ≥ µ, we have

sup
s∈[s′,s′′]

‖bµ(η)‖s,s−ν ≤ c〈η〉B

for all η ∈ Rq and s′ ≤ s′′ with constants c(µ, ν, s), B(µ, ν, s) > 0, uni-
formly bounded in compact s-intervals and compact µ, ν-intervals for ν ≥ µ;
moreover, for every µ ≤ 0 we have

‖bµ(η)‖0,0 ≤ c〈η〉µ

for all η ∈ Rq with constants c > 0, uniformly bounded in compact µ-
intervals, µ ≤ 0.

Clearly the operators bµ in (iii) for ν > µ or µ < 0, are composed with a
corresponding embedding operator.
In addition we require that the operator families (bµ(η))

−1
are equivalent to b−µ(η),

according to the following notation. Another order reducing family (bµ1 (η))µ∈R, η ∈
Rq, in the scale E is said to be equivalent to (bµ(η))µ∈R, if for every s ∈ R, β ∈ Nq,
there are constants c = c(β, s) such that

‖b
s−µ+|β|
1 (η){Dβ

η b
µ(η)}b−s1 (η)‖0,0 ≤ c,

‖bs−µ+|β|(η){Dβ
η b
µ
1 (η)}b−s(η)‖0,0 ≤ c,

for all η ∈ Rq, uniformly in s ∈ [s′, s′′] for every s′ ≤ s′′.

Remark 1.4. Parameter-dependent theories of operators are common in many con-
crete contexts. For instance, if Ω is an (open) C∞ manifold, there is the space
Lµcl(Ω,R

q) of parameter-dependent pseudo-differential operators on Ω of order
µ ∈ R, with parameter η ∈ Rq, where the local amplitude functions a(x, ξ, η)
are classical symbols in (ξ, η) ∈ Rn+q, treated as covariables, n = dimΩ, while
L−∞(Ω,Rq) is the space of Schwartz functions in η ∈ R

q with values in L−∞(Ω),
the space of smoothing operators on Ω. Later on we will also consider specific
examples with more control on the dependence on η, namely, when Ω = M \ {v}
for a manifold M with conical singularity v.
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Example. Let X be a closed compact C∞ manifold, Es := Hs(X), s ∈ R, the scale
of classical Sobolev spaces on X and bµ(η) ∈ Lµcl(X ; Rqη) a parameter-dependent
elliptic family that induces isomorphisms bµ(η) : Hs(X) → Hs−µ(X) for all s ∈ R.
Then for ν ≥ µ we have

‖bµ(η)‖L(Hs(X),Hs−ν(X)) ≤ c〈η〉π(µ,ν)

for all η ∈ Rq, uniformly in s ∈ [s′, s′′] for arbitrary s′, s′′, as well as in compact
µ- and ν-intervals for ν ≥ µ, where

π(µ, ν) := max(µ, µ− ν) (1.1)

with a constant c = c(µ, ν, s′, s′′) > 0. Observe that supξ∈Rp
〈ξ,η〉µ

〈ξ〉ν ≤ 〈η〉π(µ,ν) for

all η ∈ R
q.

Remark 1.5. Let bs(τ̃ , η̃) ∈ Lµcl(X ; R1+q
τ̃,η̃ ) be an order reducing family as in the

above example, now with the parameter (τ̃ , η̃) ∈ R
1+q rather than η, and of order

s ∈ R. Then, setting bs(t, τ, η) := bs(tτ, tη) the expression

{∫
‖[t]−sOpt(b

s)(η1)u‖2
L2(X)dt

} 1
2

for η1 ∈ Rq \ {0}, |η1| sufficiently large, is a norm on the space S(R, C∞(X)). Let
Hs

cone(R ×X) denote the completion of S(R, C∞(X)) in this norm. Observe that
this space is independent of the choice of η1, |η1| sufficiently large. For reference
below we also form weighted variants Hs;g

cone(R×X) := 〈t〉−gHs
cone(R×X), g ∈ R,

and set
Hs;g

cone(R+ ×X) := Hs;g
cone(R ×X)|R+×X . (1.2)

As is known, cf. [12], the spaces Hs;g
cone(R×X) are weighted Sobolev spaces in the

calculus of pseudo-differential operators on R+×X with |t| → ∞ being interpreted
as a conical exit to infinity.

Another feature of order reducing families, known, for instance, in the case
of the above example, is that when U ⊆ Rp is an open set and m(y) ∈ C∞(U)
a strictly positive function, m(y) ≥ c for c > 0 and for all y ∈ U , the family
bs1(y, η) := bs(m(y)η), s ∈ R, is order reducing in the sense of Definition 1.3 and
equivalent to b(η) for every y ∈ U , uniformly in y ∈ K for any compact subset
K ⊂ U . A natural requirement is that when m > 0 is a parameter, there is a
constant M = M(s′, s′′) > 0 such that

‖bs(η)b−s(mη)‖0,0 ≤ cmax(m,m−1)M (1.3)

for every s ∈ [s′, s′′], m ∈ R+, and η ∈ R
q.

We now turn to another example of an order reducing family, motivated by the cal-
culus of pseudo-differential operators on a manifold with edge (here in “abstract”
form), where all the above requirements are satisfied, including the latter one.
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Definition 1.6. (i) If H is a Hilbert space and κ := {κλ}λ∈R+ a group of
isomorphisms κλ : H → H , such that λ→ κλh defines a continuous function
R+ → H for every h ∈ H , and κλκρ = κλρ for λ, ρ ∈ R, we call κ a group
action on H .

(ii) Let H = (Hs)s∈R ∈ E and assume that H0 is endowed with a group action
κ = {κλ}λ∈R+ that restricts (for s > 0) or extends (for s < 0) to a group
action on Hs for every s ∈ R. In addition, we assume that κ is a unitary
group action on H0. We then say that H is endowed with a group action.

If H and κ are as in Definition 1.6 (i), it is known that there are constants
c,M > 0, such that

‖κλ‖L(H) ≤ cmax(λ, λ−1)M (1.4)

for all λ ∈ R+.
Let Ws(Rq, H) denote the completion of S(Rq, H) with respect to the norm

‖u‖Ws(Rq,H) :=
{∫

〈η〉2s‖κ−1
〈η〉û(η)‖

2
Hdη

} 1
2

;

û(η) = Fy→ηu(η) is the Fourier transform in Rq. The space Ws(Rq, H) will be
referred to as edge space on Rq of smoothness s ∈ R (modelled on H). Given a
scale H = (Hs)s∈R ∈ E with group action we have the edge spaces

W s := Ws(Rq, Hs), s ∈ R.

If necessary we also write Ws(Rq, Hs)κ. The spaces form again a scale W :=
(W s)s∈R ∈ E.
For purposes below we now formulate a class of operator-valued symbols

Sµ(U × R
q;H, H̃)κ,κ̃ (1.5)

for open U ⊆ Rp and Hilbert spaces H and H̃ , endowed with group actions κ =
{κλ}λ∈R+ , κ̃ = {κ̃λ}λ∈R+ , respectively, as follows. The space (1.5) is defined to be

the set of all a(y, η) ∈ C∞(U × Rq,L(H, H̃)) such that

sup
(y,η)∈K×Rq

〈η〉−µ+|β|‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) <∞ (1.6)

for every K ⋐ U,α ∈ Np, β ∈ Nq.

Remark 1.7. Analogous symbols can also be defined in the case when H̃ is a
Fréchet space with group action, i.e., H̃ is written as a projective limit of Hilbert
spaces H̃j , j ∈ N, with continuous embeddings H̃j →֒ H̃0, where the group action

on H̃0 restricts to group actions on H̃j for every j. Then Sµ(U × Rq;H, H̃) :=

lim
−→j∈N

Sµ(U × Rq;H, H̃j).
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Consider an operator function p(ξ, η) ∈ C∞(Rp+qξ,η ,L
µ(H,H)) that represents a

symbol
p(ξ, η) ∈ Sµ(Rp+qξ,η ;Hs, Hs−µ)κ,κ

for every s ∈ R, such that p(ξ, η) : Hs → Hs−µ is a family of isomorphisms for all
s ∈ R, and the inverses p−1(ξ, η) represent a symbol

p−1(ξ, η) ∈ S−µ(Rp+qξ,η ;Hs, Hs+µ)κ,κ

for every s ∈ R. Then bµ(η) := Opx(p)(η) is a family of isomorphisms

bµ(η) : W s →W s−µ, η ∈ R
q,

with the inverses b−µ(η) := Opx(p
−1)(η).

Proposition 1.8. (i) We have

‖bµ(η)‖L(W 0,W 0) ≤ c〈η〉µ (1.7)

for every µ ≤ 0, with a constant c(µ) > 0.

(ii) For every s, µ, ν ∈ R, ν ≥ µ, we have

‖bµ(η)‖L(W s,W s−ν) ≤ c〈η〉π(µ,ν)+M(s)+M(s−µ) (1.8)

for all η ∈ Rq, with a constant c(µ, s) > 0, and M(s) ≥ 0 defined by

‖κλ‖L(Hs,Hs) ≤ cλM(s) for all λ ≥ 1.

Proof. (i) Let us check the estimate (1.7). For the computations we denote by
j : H−µ →֒ H0 the embedding operator. We have for u ∈W 0

‖bµ(η)u‖2
W 0 =

∫
‖jp(ξ, η)(Fu)(ξ)‖2

H0dξ

=

∫
‖κ−1

〈ξ,η〉jκ〈ξ,η〉κ
−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H0dξ

≤

∫
‖κ−1

〈ξ,η〉jκ〈ξ,η〉‖
2
L(H−µ,H0)‖κ

−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H−µdξ

≤c

∫
‖κ−1

〈ξ,η〉p(ξ, η)κ〈ξ,η〉‖
2
L(H0,H−µ)‖κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H0dξ

≤c sup
ξ∈Rp

〈ξ, η〉2µ‖u‖2
W 0 .

Thus ‖bµ(η)‖L(W 0,W 0) ≤ c supξ∈Rp〈ξ, η〉µ ≤ c〈η〉µ, since µ ≤ 0.
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(ii) Let j : Hs−µ →֒ Hs−ν denote the canonical embedding. For every fixed
s ∈ R we have

‖bµ(η)u‖2
W s−ν =

∫
〈ξ〉2(s−ν)‖κ−1

〈ξ〉jp(ξ, η)(Fx→ξu)(ξ)‖
2
Hs−νdξ

=

∫
〈ξ〉2(s−ν)‖κ−1

〈ξ〉jp(ξ, η)κ〈ξ〉〈ξ〉
−s〈ξ〉sκ−1

〈ξ〉(Fx→ξu)(ξ)‖
2
Hs−νdξ

= sup
ξ∈Rp

〈ξ〉−2ν‖κ−1
〈ξ〉jp(ξ, η)κ〈ξ〉‖

2
L(Hs,Hs−ν)

∫
〈ξ〉2s‖κ−1

〈ξ〉Fx→ξu(ξ)‖
2
Hsdξ

We have

‖κ−1
〈ξ〉

(
jp(ξ, η)

)
κ〈ξ〉‖L(Hs,Hs−ν)

≤ ‖κ−1
〈ξ〉jκ〈ξ〉‖L(Hs−µ,Hs−ν)‖κ

−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

≤ c‖κ−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

with a constant c > 0.

We employed here that ‖κ−1
〈ξ〉jκ〈ξ〉‖L(Hs−µ,Hs−ν) ≤ c for all ξ ∈ Rp. Moreover,

we have

‖κ−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

≤ ‖κ−1
〈ξ〉κ〈ξ,η〉‖L(Hs−µ,Hs−µ)‖κ

−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉‖L(Hs,Hs−µ)‖κ

−1
〈ξ,η〉κ〈ξ〉‖L(Hs,Hs)

≤ c〈ξ, η〉µ‖κ〈ξ,η〉〈ξ〉−1‖L(Hs−µ,Hs−µ)‖κ〈ξ,η〉−1〈ξ〉‖L(Hs,Hs)

≤ c〈ξ, η〉µ
( 〈ξ, η〉

〈ξ〉

)M(s−µ)+M(s)
.

As usual, c > 0 denotes different constants (they may also depend on s); the
numbers M(s), s ∈ R, are determined by the estimates

‖κλ‖L(Hs,Hs) ≤ cλM(s) for all λ ≥ 1.

We obtain altogether that

‖bµ(η)‖L(W s,W s−ν) ≤ c sup
ξ∈Rn

〈ξ, η〉µ

〈ξ〉ν
( 〈ξ, η〉

〈ξ〉

)M(s−µ)+M(s)
≤ c〈η〉π(µ,ν)+M(s−µ)+M(s) .

It can be proved that the operators in Proposition 1.8 also have the uniformity
properties with respect to s, µ, ν in compact sets, imposed in Definition 1.3.
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1.2 Symbols based on order reductions

We now turn to operator valued symbols, referring to scales

E = (Es)s∈R, Ẽ = (Ẽs)s∈R ∈ E.

For purposes below we slightly generalise the concept of order reducing families
by replacing the parameter space Rq ∋ η by H ∋ η, where

H := {η = (η′, η′′) ∈ R
q′+q′′ : q = q′ + q′′, η′′ 6= 0}. (1.9)

In other words for every µ ∈ R we fix order-reducing families bµ(η) and b̃µ(η)

in the scales E and Ẽ , respectively, where η varies over H, and the properties of
Definition 1.3 are required for all η ∈ H. In many cases we may admit the case
H = Rq as well.

Definition 1.9. By Sµ(U × H; E , Ẽ) for open U ⊆ Rp, µ ∈ R, we denote the set

of all a(y, η) ∈ C∞(U × H,Lµ(E , Ẽ)) such that

Dα
yD

β
ηa(y, η) ∈ C∞(U × H,Lµ−|β|(E , Ẽ)), (1.10)

and for every s ∈ R we have

max
|α|+|β|≤k

sup
y∈K,η∈H,η≥h

s∈[s′,s′′]

‖b̃s−µ+|β|(η){Dα
yD

β
ηa(y, η)}b

−s(η)‖0,0 (1.11)

is finite for all K ⋐ U , k ∈ N, h > 0.

Let Sµ(H; E , Ẽ) denote the subspace of all elements of Sµ(U ×H; E , Ẽ) that are
independent of y.
Observe that when (bµ(η))µ∈R is an order reducing family parametrised by η ∈ H

then we have
bµ(η) ∈ Sµ(H; E , E) (1.12)

for every µ ∈ R.

Remark 1.10. The space Sµ(U × H; E , Ẽ) is Fréchet with the semi-norms

a→ max
|α|+|β|≤k

sup
(y,η)∈K×H,|η|≥h

s∈[s′,s′′]

‖b̃s−µ+|β|(η){Dα
yD

β
ηa(y, η)}b

−s(η)‖0,0 (1.13)

parametrised by K ⋐ U , s ∈ Z, α ∈ Np, β ∈ Nq, h > 0, which are the best
constants in the estimates (1.11). We then have

Sµ(U × H; E , Ẽ) = C∞(U, Sµ(H; E , Ẽ)) = C∞(U)⊗̂πS
µ(H; E , Ẽ).
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We will also employ other variants of such symbols, for instance, when Ω ⊆ Rm

is an open set,

Sµ(R+ × Ω × H; E , Ẽ) := C∞(R+ × Ω, Sµ(H; E , Ẽ)).

In order to emphasise the similarity of our considerations for H with the case
H = Rq we often write again Rq and later on tacitly use the corresponding results
for H in general.

Remark 1.11. Let a(y, η) ∈ Sµ(U × Rq) be a polynomial in η of order µ and
E = (Es)s∈R a scale and identify Dα

yD
β
ηa(y, η) with

(
Dα
yD

β
ηa(y, η)

)
ι with the

embedding ι : Es → Es−µ+|β|. Then we have

‖bs−µ+|β|(η)
(
Dα
yD

β
ηa(y, η)

)
b−s(η)‖0,0

≤ |Dα
yD

β
ηa(y, η)|‖b

−µ+|β|(η)‖0,0 ≤ c〈η〉µ−|β|〈η〉−µ+|β| = c

for all β ∈ Nq, |β| ≤ µ, y ∈ K ⋐ U (see Definition 1.3 (iii)). Thus a(y, η) is
canonically identified with an element of Sµ(U × Rq; E , E).

Proposition 1.12. We have

S−∞(U × R
q; E , Ẽ) :=

⋂

µ∈R

Sµ(U × R
q; E , Ẽ) = C∞(U,S(Rq,L−∞(E , Ẽ))).

Proof. Let us show the assertion for y-independent symbols; the y-dependent
case is then straightforward. For notational convenience we set Ẽ = E ; the
general case is analogous. First let a(η) ∈ S−∞(Rq; E , E), which means that
a(η) ∈ C∞(Rq,L−∞(E , E)) and

‖bs+N(η){Dβ
ηa(η)}b

−s(η)‖0,0 < c (1.14)

for all s ∈ R, N ∈ N, β ∈ Nq and show that

sup
η∈Rq

‖〈η〉MDβ
ηa(η)‖s,t <∞ (1.15)

for every s, t ∈ R, M ∈ N, β ∈ Nq. To estimate (1.15) it is enough to assume t > 0.
We have

‖〈η〉MDβ
ηa(η)‖s,t = ‖b−kt(η)bkt(η)〈η〉MDβ

ηa(η)b
−s(η)bs(η)‖s,t (1.16)

for every k ∈ N, k ≥ 1, it is sufficient to show that the right hand side is uniformly
bounded in η ∈ Rq for sufficiently large choice of k. The right hand side of (1.16)
can be estimated by

‖b−t(η)‖0,t‖b
(1−k)t(η)‖0,0‖b

kt(η)Dβ
ηa(η)b

−s(η)‖0,0‖b
s(η)‖s,0.
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Using ‖bkt(η)Dβ
η a(η)b

−s(η)‖0,0 ≤ c, which is true by assumption and the estimates

‖bs(η)‖s,0 ≤ c〈η〉B , ‖b−t(η)‖0,t ≤ c〈η〉B
′

,

with different B,B′ ∈ R and ‖b(1−k)t(η)‖0,0 ≤ c〈η〉(1−k)t (see Definition 1.3 (iii))
we obtain altogether

‖〈η〉MDβ
ηa(η)‖s,t ≤ c〈η〉M+B+B′+(1−k)t

for some c > 0. Choosing k large enough it follows that the exponent on the right
hand side is < 0, i.e., we obtain uniform boundedness in η ∈ Rq.
To show the reverse direction suppose that a(η) satisfies (1.15), and let β ∈ Nq,
M, s, t ∈ R be arbitrary. We have

‖bt(η)Dβ
η a(η)b

−s(η)‖0,0 ≤

‖bt(η)〈η〉−M‖t,0‖〈η〉
2MDβ

ηa(η)‖s,t‖〈η〉
−M b−s(η)‖0,s. (1.17)

Now using (1.15) and the estimates

‖bt(η)〈η〉−M‖t,0 ≤ c〈η〉A−M , ‖〈η〉−M b−s(η)‖0,s ≤ c〈η〉A
′−M ,

with constants A,A′ ∈ R, we obtain

‖bt(η)Dβ
η a(η)b

−s(η)‖0,0 ≤ c〈η〉A+A′−2M .

Choosing M large enough we get uniform boundedness of (1.17) in η ∈ Rq which
completes the proof.

Proposition 1.13. Let a(y, η) ∈ Sµ(U × Rq; E , Ẽ) and µ ≤ 0. Then we have

‖a(y, η)‖0,0 ≤ c〈η〉µ

for all y ∈ K ⋐ U, η ∈ Rq, with a constant c = c(s,K) > 0.

Proof. For simplicity we consider the y-independent case. It is enough to show that
‖a(η)u‖ eE0 ≤ c〈η〉µ‖u‖E0 for all u ∈ E∞. Let j : E−µ → E0 denote the embedding
operator. We then have

‖a(η)u‖ eE0 =‖a(η)b−µ(η)jbµ(η)u‖ eE0

≤‖a(η)b−µ(η)‖L(E0, eE0)‖jb
µ(η)u‖E0 ≤ c〈η〉µ‖u‖E0.

Proposition 1.14. A symbol a(y, η) ∈ Sµ(U × Rq; E , Ẽ), µ ∈ R, satisfies the

estimates

‖a(y, η)‖s,s−ν ≤ c〈η〉A (1.18)

for every ν ≥ µ, for every y ∈ K ⋐ U, η ∈ Rq, s ∈ R, with constants c = c(s, µ, ν) >
0, A = A(s, µ, ν,K) > 0 that are uniformly bounded when s, µ, ν vary over compact

sets, ν ≥ µ.
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Proof. For simplicity we consider again the y-independent case. Let j : Ẽs−µ →֒
Ẽs−ν be the embedding operator. Then we have

‖a(η)‖s,s−ν = ‖jb̃−s+µ(η)b̃s−µ(η)a(η)b−s(η)bs(η)‖s,s−ν

≤ ‖jb̃−s+µ(η)‖0,s−ν‖b̃
s−µ(η)a(η)b−s(η)‖0,0‖b

s(η)‖s,0.

Applying (1.11) and Definition 1.3 (iii) we obtain (1.18) with A = B(−s+µ,−s+
ν, 0)+B(s, s, 0), together with the uniform boundedness of the involved constants.

Also here it can be proved that the involved constants in Propositions 1.13, 1.14
are uniform in compact sets with respect to s, µ, ν.

Proposition 1.15. The symbol spaces have the following properties:

(i) Sµ(U × Rq; E , Ẽ) ⊆ Sµ
′

(U × Rq; E , Ẽ) for every µ′ ≥ µ;

(ii) Dα
yD

β
ηS

µ(U × Rq; E , Ẽ) ⊆ Sµ−|β|(U × Rq; E , Ẽ) for every α ∈ Np, β ∈ Nq;

(iii) Sµ(U × Rq; E0, Ẽ)Sν(U × Rq; E , E0) ⊆ Sµ+ν(U × Rq; E , Ẽ) for every µ, ν ∈ R

(the notation on the left hand side of the latter relation means the space of

all (y, η)-wise compositions of elements in the respective factors).

Proof. For simplicity we consider symbols with constant coefficients. Let us write
‖ · ‖ := ‖ · ‖0,0, etc.

(i) a(η) ∈ Sµ(Rq; E , Ẽ) means (1.10) and (1.11); this implies

‖b̃s−µ
′+|β|(η){Dβ

ηa(η)}b
−s(η)‖ = ‖b̃µ−µ

′

(η)b̃s−µ+|β|(η){Dβ
ηa(η)}b

−s(η)‖

≤ c〈η〉µ−µ
′

‖b̃s−µ+|β|(η){Dβ
ηa(η)}b

−s(η)‖ ≤ c‖b̃s−µ+|β|(η){Dβ
ηa(η)}b

−s(η)‖.

We employed µ− µ′ ≤ 0 and the property (iv) in Definition 1.3.

(ii) The estimates (1.10) can be written as

‖b̃s−(µ−|β|)(η){Dβ
ηa(η)}b

−s(η)‖ ≤ c

which just means that Dβ
ηa(η) ∈ Sµ−|β|(Rq; E , Ẽ).

(iii) Given a(η) ∈ Sµ(Rq; E0, Ẽ), ã(η) ∈ Sν(Rq; E , E0) we have (with obvious
meaning of notation)

‖b̃
s−ν+|γ|
0 (η){Dγ

η ã(η)}b
−s(η)‖ ≤ c, ‖b̃s−µ+|δ|(η){Dδ

ηa(η)}b
−s
0 (η)‖ ≤ c
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for all γ, δ ∈ Nq. If α ∈ Nq is any multi-index, Dα
η (aã)(η) is a linear combination

of compositions Dδ
ηa(η)D

γ
η ã(η) with |γ| + |δ| = |α|. It follows that

‖b̃s−(µ+ν)+|α|(η)Dδ
ηa(η){D

γ
η ã(η)}b

−s(η)‖

= ‖b̃s−(µ+ν)+|α|(η)Dδ
ηa(η)b

−s+ν−|γ|
0 (η)b

s−ν+|γ|
0 (η)Dγ

η ã(η)b
−s(η)‖

≤ ‖b̃t−µ+|α|−|γ|(η)Dδ
ηa(η)b

−t
0 (η)‖ ‖b

s−ν+|γ|
0 (η)Dγ

η ã(η)b
−s(η)‖ (1.19)

for t = s− ν + |γ|; the right hand side is bounded in η, since |α| − |γ| = |δ|.

Remark 1.16. Observe from (1.19) that the semi-norms of compositions of symbols
can be estimated by products of semi-norms of the factors.

1.3 An example from the parameter-dependent cone calcu-

lus

We now construct a specific family of reductions of orders between weighted spaces
on a compact manifold M with conical singularity v, locally near v modelled on a
cone

X∆ := (R+ ×X)/({0} ×X)

with a smooth compact manifold X as base. The parameter η will play the role
of covariables of the calculus of operators on a manifold with edge; that is why
we talk about an example from the edge calculus. The associated “abstract” cone
calculus according to what we did so far in the Sections 1.1 and 1.2 and then below
in Chapter 3 will be a contribution to the calculus of corner operators of second
generation. It will be convenient to pass to the stretched manifold M associated
with M which is a compact C∞ manifold with boundary ∂M ∼= X such that when
we squeeze down ∂M to a single point v we just recover M . Close to ∂M the
manifold M is equal to a cylinder [0, 1)×X ∋ (t, x), a collar neighbourhood of ∂M

in M . A part of the considerations will be performed on the open stretched cone
X∧ := R+ ×X ∋ (t, x) where we identify (0, 1)×X with the interior of the collar
neighbourhood (for convenience, without indicating any pull backs of functions or

operators with respect to that identification). Let M̃ := 2M be the double of M

(obtained by gluing together two copies M± of M along the common boundary

∂M, where we identify M with M+); then M̃ is a closed compact C∞ manifold.
On the space M we have a family of weighted Sobolev spaces Hs,γ(M), s, γ ∈ R,
that may be defined as

Hs,γ(M) := {σu+ (1 − σ)v : u ∈ Hs,γ(X∧), v ∈ Hs
loc(M \ {v})},

where σ(t) is a cut-off function (i.e., σ ∈ C∞
0 (R+), σ ≡ 1 near t = 0), σ(t) = 0 for

t > 2/3. Here Hs,γ(X∧) is defined to be the completion of C∞
0 (X∧) with respect
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to the norm





1

2πi

∫

Γ n+1
2

−γ

‖bµbase(Imw)(Mu)(w)‖2
L2(X)dw





1
2

, (1.20)

n = dimX , where bµbase(τ) ∈ Lµcl(X ; Rτ ) is a family of reductions of order on
X , similarly as in the example in Section 1.1 (in particular, bsbase(τ) : Hs(X) →
H0(X) = L2(X) is a family of isomorphisms). Moreover, M is the Mellin trans-
form, (Mu)(w) =

∫∞

0
tw−1u(t)dt, w ∈ C the complex Mellin covariable, and

Γβ := {w ∈ C : Rew = β}

for any real β. From tδHs,γ(X∧) = Hs,γ+δ(X∧) for all s, γ, δ ∈ R it follows the
existance of a strictly positive function hδ ∈ C∞(M \ {v}), such that the operator
of multiplication by hδ induces an isomorphism

hδ : Hs,γ(M) → Hs,γ+δ(M) (1.21)

for every s, γ, δ ∈ R.
Moreover, again according to the same example, now for any smooth compact
manifold M̃ we have an order reducing family b̃(η) in the scale of Sobolev spaces

Hs(M̃), s ∈ R. More generally, we employ parameter-dependent families ã(η) ∈

Lµcl(M̃ ; Rq). The symbols a(η) that we want to establish in the scale Hs,γ(M)
on our compact manifold M with conical singularity v will be essentially (i.e.,
modulo Schwartz functions in η with values in globally smoothing operators on
M) constructed in the form

a(η) := σaedge(η)σ̃ + (1 − σ)aint(η)(1 − ˜̃σ), (1.22)

aint(η) := ã(η)|intM, with cut-off functions σ(t), σ̃(t), ˜̃σ(t) on the half axis, sup-
ported in [0, 2/3), with the property

˜̃σ ≺ σ ≺ σ̃

(here σ ≺ σ̃ means the σ̃ is equal to 1 in a neighbourhood of supp σ).
The “edge” part of (1.22) will be defined in the variables (t, x) ∈ X∧. Let us
choose a parameter-dependent elliptic family of operators of order µ on X

p̃(t, τ̃ , η̃) ∈ C∞(R+, L
µ
cl(X ; R1+q

τ̃,η̃ )).

Setting
p(t, τ, η) := p̃(t, tτ, tη) (1.23)

we have what is known as an edge-degenerate family of operators on X . We now
employ the following Mellin quantisation theorem.
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Definition 1.17. Let Mµ
O(X ; Rq) defined as the set of all h(z, η) ∈

A(C, Lµcl(X ; Rq)) such that h(β+ iτ, η) ∈ Lµcl(X ; R1+q
τ,η ) for every β ∈ R, uniformly

in compact β-intervals (here A(C, E) with any Fréchet space E denotes the space
of all E-valued holomorphic functions in C, in the Fréchet topology of uniform
convergence on compact sets).

Observe that also Mµ
O(X ; Rq) is a Fréchet space in a natural way. Given an

f(t, t′, z, η) ∈ C∞(R+ × R+, L
µ
cl(X ; Γ 1

2−γ
× R

q)) we set

opγM (f)(η)u(r) :=

∫

R

∫ ∞

0

(
t

t′
)−( 1

2−γ+iτ)f(t, t′,
1

2
− γ + iτ, η)u(t′)

dt′

t′
d̄τ

which is regarded as a (parameter-dependent) weighted pseudo-differential opera-
tor with symbol f , referring to the weight γ ∈ R. There exists an element

h̃(t, z, η̃) ∈ C∞(R+,M
µ
O(X ; Rqη̃)) (1.24)

such that, when we set
h(t, z, η) := h̃(t, z, tη) (1.25)

we have
opγM (h)(η) = Opt(p)(η) (1.26)

mod L−∞(X∧; Rqη), for every weight γ ∈ R. Observe that when we set

p0(t, τ, η) := p̃(0, tτ, tη), h0(t, z, η) := h̃(0, z, tη)

we also have opγM (h0)(η) = Opt(p0)(η) mod L−∞(X∧; R+), for all γ ∈ R.
Let us now choose cut-off functions ω(t), ω̃(t), ˜̃ω(t) such that ˜̃ω ≺ ω ≺ ω̃.
Fix the notation ωη(t) := ω(t[η]), and form the operator function

aedge(η) := ωη(t)t
−µop

γ−n
2

M (h)(η)ω̃η(t)

+ t−µ
(
1 − ωη(t)

)
Opt(p)(η)

(
1 − ˜̃ωη(t)

)
+m(η) + g(η). (1.27)

Here m(η) and g(η) are smoothing Mellin and Green symbols of the edge calculus.
The definition of m(η) is based on smoothing Mellin symbols f(z) ∈M−∞(X ; Γβ).
Here M−∞(X ; Γβ) is the subspace of all f(z) ∈ L−∞(X ; Γβ) such that for some
ε > 0 (depending on f) the function f extends to an

l(z) ∈ A(Uβ,ε, L
−∞(X))

where Uβ,ε := {z ∈ C : |Rez − β| < ε} and

l(δ + iτ) ∈ L−∞(X ; Rτ )
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for every δ ∈ (β − ε, β + ε), uniformly in compact subintervals. By definition we
then have f(β + iτ) = l(β + iτ); for brevity we often denote the holomorphic
extension l of f again by f . For f ∈M−∞(X ; Γn+1

2 −γ) we set

m(η) := t−µωηop
γ−n

2

M (f)ω̃η

for any cut-off functions ω, ω̃.
In order to explain the structure of g(η) in (1.27) we first introduce weighted spaces
on the infinite stretched cone X∧ = R+ ×X , namely,

Ks,γ;g(X∧) := ωHs,γ(X∧) + (1 − ω)Hs;g
cone(X

∧) (1.28)

for any s, γ, g ∈ R, and a cut-off function ω, see (1.20) which defines Hs,γ(X∧)
and the formula (1.2). Moreover, we set Ks,γ(X∧) := Ks,γ;0(X∧). The operator
families g(η) are so-called Green symbols in the covariable η ∈ Rq, defined by

g(η) ∈ Sµcl(R
q
η;K

s,γ;g(X∧),Sγ−µ+ε(X∧)), (1.29)

g∗(η) ∈ Sµcl(R
q
η;K

s,−γ+µ;g(X∧),S−γ+ε(X∧)), (1.30)

for all s, γ, g ∈ R, where g∗ denotes the η−wise formal adjoint with respect to the
scalar product of K0,0;0(X∧) = r−

n
2 L2(R+ ×X) and ε = ε(g) > 0. Here

Sβ(X∧) := ωK∞,β(X∧) + (1 − ω)S(R+, C
∞(X))

for any cut-off function ω. The notion of operator-valued symbols in (1.29), (1.30)

refers to (1.5) in its generalisation to Fréchet spaces H̃ (rather than Hilbert spaces)
with group actions (see Remark 1.7) that is in the present case given by

κλ : u(t, x) → λ
n+1

2 +gu(λt, x), λ ∈ R+ (1.31)

n = dimX , both in the spaces Ks;γ,g(X∧) and Sγ−µ+ε(X∧).
The following Theorem 1.18 is crucial for proving that our new order reduction
family is well defined. Therefore we will sketch the main steps of the proof, which
is based on the edge calculus. Various aspects of the proof can be found in the
literature, for example in Kapanaze and Schulze [11, Proposition 3.3.79], Schrohe
and Schulze [29], Harutyunyan and Schulze [8]. Among the tools we have the
pseudo-differential operators on X∧ interpreted as a manifold with conical exit to
infinity r → ∞; the general background may be found in Schulze [34]. The calculus
of such exit operators goes back to Parenti [23], Cordes [3], Shubin [40], and others.

Theorem 1.18. We have

σaedge(η)σ̃ ∈ Sµ(Rq;Ks,γ;g(X∧),Ks−µ,γ−µ;g(X∧)) (1.32)
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for every s, g ∈ R, more precisely,

Dβ
η {σaedge(η)σ̃} ∈ Sµ−|β|(Rq;Ks,γ;g(X∧),Ks−µ+|β|,γ−µ;g(X∧)) (1.33)

for all s, g ∈ R and all β ∈ N
q. (The spaces of symbols in (1.32), (1.33) refer to

the group action (1.31)).

Proof. To prove the assertions it is enough to consider the case withoutm(η)+g(η),
since the latter sum maps to K∞,γ;g(X∧) anyway. The first part of the Theorem
is known, see, for instance, [8] or [4]. Concerning the relation (1.33) we write

σaedge(η)σ̃ = σ{ac(η) + aψ(η)}σ̃ (1.34)

with
ac(η) := t−µωηop

γ−n
2

M (h)(η)ω̃η,

aψ(η) := t−µ(1 − ωη)Opt(p)(η)(1 − ˜̃ωη)

and it suffices to take the summands separately. In order to show (1.33) we con-
sider, for instance, the derivative ∂/∂ηj =: ∂j for some 1 ≤ j ≤ q. By iterating the
process we then obtain the assertion. We have

∂jσ{ac(η) + aψ(η)}σ̃ = σ{∂jac(η) + ∂jaψ(η)}σ̃ = b1(η) + b2(η) + b3(η)

with

b1(η) := σt−µ
{
ωηop

γ−n
2

M (h)(η)∂j ω̃η + (1 − ωη)Opt(p)(η)∂j(1 − ˜̃ωη)
}
σ̃,

b2(η) := σt−µ
{
ωηop

γ−n
2

M (∂jh)(η)ω̃η + (1 − ωη)Opt(∂jp)(η)(1 − ˜̃ωη)
}

˜̃σ,

b3(η) := σt−µ
{
(∂jωη)op

γ−n
2

M (h)(η)ω̃η + (∂j(1 − ωη))Opt(p)(η)(1 − ˜̃ωη)
}
σ̃.

In b1(η) we can apply a pseudo-locality argument which is possible since ∂jω̃η ≡ 0
on suppωη and ∂j(1− ˜̃ωη) ≡ 0 on supp (1−ωη); this yields (together with similar
considerations as for the proof of (1.32))

b1(η) ∈ Sµ−1(Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)).

Moreover we obtain

b2(η) ∈ Sµ−1(Rq;Ks,γ;g(X∧),Ks−µ+1,γ−µ;g(X∧))

since ∂jh and ∂jp are of order µ− 1 (again combined with arguments for (1.32)).
Concerning b3(η) we use the fact that there is a ψ ∈ C∞

0 (R+) such that ψ ≡ 1 on
supp ∂jω, ω̃ − ψ ≡ 0 on supp ∂jω and (1 − ˜̃ω) − ψ ≡ 0 on supp ∂jω. Thus, when
we set ψη(t) := ψ(t[η]), we obtain b3(η) := c3(η) + c4(η) with

c3(η) := σt−µ
{
(∂jωη)op

γ−n
2

M (h)(η)ψη − (∂jωη)Opt(p)(η)ψη

}
σ̃,

c4(η) := σt−µ
{
(∂jωη)op

γ−n
2

M (h)(η)[ω̃η − ψη] − (∂jωη)Opt(p)(η)[(1 − ˜̃ωη) − ψη]
}
σ̃.
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Here, using ∂jωη = (ω′)η∂j(t[η]) which yields an extra power of t on the left of the
operator, together with pseudo-locality, we obtain

c4(η) ∈ Sµ−1(Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)).

To treat c3(η) we employ that both ∂jωη and ψη are compactly supported on R+.
Using the property (1.26), we have

c3(η) = σt−µ(∂jωη)
{
op
γ−n

2

M (h)(η) − Opt(p)(η)
}
ψησ̃

∈ Sµ−1(Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)).

Definition 1.19. A family of operators c(η) ∈ S(Rq,
⋂
s∈R

L(Hs,γ(M), H∞,δ(M)))
is called a smoothing element in the parameter-dependent cone calculus on M
associated with the weight data (γ, δ) ∈ R2, written c ∈ CG(M, (γ, δ); Rq), if there
is an ε = ε(c) > 0 such that

c(η) ∈ S(Rq,L(Hs,γ(M), H∞,δ+ε(M))),
c∗(η) ∈ S(Rq ,L(Hs,−δ(M), H∞,−γ+ε(M)));

for all s ∈ R; here c∗ is the η-wise formal adjoint of c with respect to the H0,0(M)-
scalar product.

The η-wise kernels of the operators c(η) are in C∞ ((M \ {v}) × (M \ {v})).
However, they are of flatness ε in the respective distance variables to v, relative to
the weights δ and γ, respectively. Let us look at a simple example to illustrate the
structure. We choose elements k ∈ S(Rq , H∞,δ+ε(M)), k′ ∈ S(Rq , H∞,−γ+ε(M))
and assume for convenience that k and k′ vanish outside a neighbourhood of v,
for all η ∈ Rq. Then with respect to a local splitting of variables (t, x) near v we
can write k = k(η, t, x) and k′ = k′(η, t′, x′), respectively. Set

c(η)u(t, x) :=

∫∫
k(η, t, x)k′(η, t′, x′)u(t′, x′)t′ndt′dx′

with the formal adjoint

c∗(η)v(t′, x′) :=

∫∫
k′(η, t′, x′)k(η, t, x)v(t, x)tndtdx.

Then c(η) is a smoothing element in the parameter-dependent cone calculus.
By Cµ(M, (γ, γ − µ); Rq) we denote the set of all operator families

a(η) = σaedge(η)σ̃ + (1 − σ)aint(η)(1 − ˜̃σ) + c(η) (1.35)

where aedge is of the form (1.27), aint ∈ Lµcl(M \{v}; Rq), while c(η) is a parameter-
dependent smoothing operator on M , associated with the weight data (γ, γ − µ).
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Theorem 1.20. Let M be a compact manifold with conical singularity. Then the

η-dependent families (1.22) which define continuous operators

a(η) : Hs,γ(M) → Hs−ν,γ−ν(M) (1.36)

for all s ∈ R, ν ≥ µ, have the properties:

‖a(η)‖L(Hs,γ(M),Hs−ν,γ−ν(M)) ≤ c〈η〉B (1.37)

for all η ∈ Rq, and s ∈ R, with constants c = c(µ, ν, s) > 0, B = B(µ, ν, s), and,

when µ ≤ 0
‖a(η)‖L(H0,0(M),H0,0(M)) ≤ c〈η〉µ (1.38)

for all η ∈ R, s ∈ R, with constants c = c(µ, s) > 0.

Proof. The result is known for the summand (1 − σ)aint(η)(1 − ˜̃σ) as we see from
the example in Section 1.1. Therefore, we may concentrate on

p(η) := σaedge(η)σ̃ : Hs,γ(M) → Hs−ν,γ−ν(M).

To show (1.37) we pass to

σaedge(η)σ̃ : Ks,γ(X∧) → Ks−ν,γ−ν(X∧).

Then Theorem 1.18 shows that we have symbolic estimates, especially

‖κ−1
〈η〉p(η)κ〈η〉‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)) ≤ c〈η〉µ.

We have

‖p(η)‖L(Ks,γ(X∧),Ks−ν,γ−ν(X∧)) ≤ ‖p(η)‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)),

and

‖p(η)‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)) = ‖κ〈η〉κ
−1
〈η〉p(η)κ〈η〉κ

−1
〈η〉‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧))

≤ ‖κ〈η〉‖L(Ks−µ,γ−µ(X∧),Ks−µ,γ−µ(X∧))‖κ
−1
〈η〉p(η)κ〈η〉‖L(Ks,γ(X∧),Ks,γ(X∧))

‖κ−1
〈η〉‖L(Ks−µ,γ−µ(X∧),Ks,γ(X∧)) ≤ c〈η〉µ+fM+M .

Here we used that κ〈η〉, κ
−1
〈η〉 satisfy estimates like (1.4).

For (1.38) we employ that κλ is operating as a unitary group on K0,0(X∧). This
gives us

‖p(η)‖L(K0,0(X∧),K0,0(X∧)) = ‖κ−1
〈η〉p(η)κ〈η〉‖L(K0,0(X∧),K0,0(X∧))

≤ ‖κ−1
〈η〉p(η)κ〈η〉‖L(K0,0(X∧),K−µ,−µ(X∧)) ≤ c〈η〉µ.
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Theorem 1.21. For every k ∈ Z there exists an fk(z) ∈M−∞(X ; Γn+1
2 −γ) such

that for every cut-off functions ω, ω̃ the operator

A := 1 + ωop
γ−n

2

M (fk)ω̃ : Hs,γ(M) → Hs,γ(M) (1.39)

is Fredholm and of index k, for all s ∈ R.

Proof. We employ the result (cf. [33]) that for every k ∈ Z there exists an fk(z)
such that

Ã := 1 + ωop
γ−n

2

M (fk)ω̃ : Ks,γ(X∧) → Ks,γ(X∧) (1.40)

is Fredholm of index k. Recall that the proof of the latter result follows from a
corresponding theorem in the case dimX = 0. The Mellin symbol fk is constructed
in such a way that 1+fk(z) 6= 0 for all z ∈ Γ 1

2−γ
and the argument of 1+fk(z)|Γ 1

2
−γ

varies from 1 to 2πk when z ∈ Γ 1
2−γ

goes from Imz = −∞ to Imz = +∞. The
choice of ω, ω̃ is unessential; so we assume that ω, ω̃ ≡ 0 for r ≥ 1 − ε with some
ε > 0. Let us represent the cone M̃ := X∆ as a union of

(
[0, 1 + ε

2 ) ×X
)
/({0} ×

X) =: M̃− and (1 − ε
2 ,∞) ×X =: M̃+. Then

Ã|fM−
= 1 + ωop

γ−n
2

M (fk)ω̃, Ã|fM+
= 1. (1.41)

Moreover, without loss of generality, we represent M as a union
(
[0, 1 + ε

2 ) ×

X
)
/({0} ×X) ∪M+ where M+ is an open C∞ manifold which intersects

(
[0, 1 +

ε
2 ) × X

)
/({0} × X) =: M− in a cylinder of the form (1 − ε

2 , 1 + ε
2 ) × X . Let B

denote the operator on M , defined by

B− := A|M− = 1 + ωop
γ−n

2

M (fk)ω̃, B+ := A|M+ = 1 (1.42)

We are then in a special situation of cutting and pasting of Fredholm operators.
We can pass to manifolds with conical singularities N and Ñ by setting

N = M̃− ∪M+, Ñ = M− ∪ M̃+

and transferring the former operators in (1.41), (1.42) to N and Ñ , respectively, by

gluing together the ± pieces of Ã and A to belong to M̃± and M± to corresponding

operators B̃ on Ñ and B on N . We then have the relative index formula

indA− indB = indÃ− indB̃ (1.43)

(see [21]). In the present case Ã and M̃ are the same as B and N where B̃ and Ñ
are the same as A and M . It follows that

indÃ− indB̃ = indB − indA. (1.44)

From (1.43), (1.44) it follows that indA = indB = indÃ.
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Theorem 1.22. There is a choice of m and g such that the operators (1.22) form

a family of isomorphisms

a(η) : Hs,γ(M) → Hs−µ,γ−µ(M) (1.45)

for all s ∈ R and all η ∈ Rq.

Proof. We choose a function

p(t, τ, η, ζ) := p̃(tτ, tη, ζ)

similarly as (1.23) where p̃(τ̃ , η̃, ζ) ∈ Lµcl(X ; R1+q+l
τ̃ ,η̃,ζ ), l ≥ 1, is a parameter-

dependent elliptic with parameters τ̃ , η̃, ζ. For purposes below we specify
p̃(t, τ̃ , η̃, ζ) in such a way that the parameter-dependent homogeneous principal
symbol in (t, x, τ̃ , ξ, η̃, ζ) for (τ̃ , ξ, η̃, ζ) 6= 0 is equal to

(|τ̃ |2 + |ξ|2 + |η̃|2 + |ζ|2)
µ
2 .

We now form an element

h̃(t, z, η̃, ζ) ∈Mµ
O(X ; Rq+lη̃,ζ )

analogously as (1.24) such that

h(t, z, η, ζ) := h̃(t, z, tη, ζ)

satisfies
opγM (h)(η, ζ) = Opt(p)(η, ζ)

mod L−∞(X∧; Rq+lη,ζ ). For every fixed ζ ∈ R
l this is exactly as before, but in this

way we obtain corresponding ζ-dependent families of such objects. It follows

σbedge(η, ζ)σ̃ = t−µσ
{
ωηop

γ−n
2

M (h)(η, ζ)ω̃η + χηOpt(p)(η, ζ)χ̃η

}
σ̃

with
χη(t) := 1 − ωη(t), χ̃η(t) := 1 − ˜̃ωη(t).

Let us form the principal edge symbol

σ∧(σbedgeσ̃)(η, ζ) = t−µ
{
ω|η|op

γ−n
2

M (h)(η, ζ)ω̃|η| + χ|η|Opt(p)(η, ζ)χ̃|η|

}

for |η| 6= 0 which gives us a family of continuous operators

σ∧(σbedgeσ̃)(η, ζ) : Ks,γ;g(X∧) → Ks−µ,γ−µ;g(X∧) (1.46)

which is elliptic as a family of classical pseudo-differential operators on X∧. In
addition it is exit elliptic on X∧ with respect to the conical exit of X∧ to infinity.
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In order that (1.46) is Fredholm for the given weight γ ∈ R and all s, g ∈ R it is
necessary and sufficient that the subordinate conormal symbol

σcσ∧(σbedgeσ̃)(z, ζ) : Hs(X) → Hs−µ(X)

is a family of isomorphisms for all z ∈ Γn+1
2 −γ . This is standard information from

the calculus on the stretched cone X∧. By definition the conormal symbol is just

h̃(0, z, 0, ζ) : Hs(X) → Hs−µ(X). (1.47)

Since by construction h̃(β + iτ, 0, ζ) is parameter-dependent elliptic on X with
parameters (τ, ζ) ∈ R1+l, for every β ∈ R (uniformly in finite β-intervals) there
is a C > 0 such that (1.47) becomes bijective whenever |τ, ζ| > C. In particular,
choosing ζ large enough it follows the bijectivity for all τ ∈ R, i.e., for all z ∈
Γn+1

2 −γ . Let us fix ζ1 in that way and write again

p(t, τ, η) := p(t, τ, η, ζ1), h(t, z, η) := h(z, tη, ζ1).

We are now in the same situation we started with, but we know in addition that
(1.46) is a family of Fredholm operators of a certain index, say, −k for some k ∈ Z.
With the smoothing Mellin symbol fk(z) as in (1.40) we now form the composition

σbedge(η)σ̃(1 + ωηop
γ−n

2

M (fk)ω̃η) (1.48)

which is of the form

σbedge(η)σ̃ + ωηop
γ−n

2

M (f)ω̃η + g(η) (1.49)

for another smoothing Mellin symbol f(z) and a certain Green symbol g(η). Here,
by a suitable choice of ω, ω̃, without loss of generality we assume that σ ≡ 1
and σ̃ ≡ 1 on suppωη ∪ supp ω̃η, for all η ∈ Rq. Since (1.48) is a composition of
parameter-dependent cone operators the associated edge symbol is equal to

F (η) := σ∧(σbedgeσ̃)(η)(1 + ω|η|op
γ−n

2

M (fk)ω̃|η|) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧)
(1.50)

which is a family of Fredholm operators of index 0. By construction (1.50) depends
only on |η|. For η ∈ Sq−1 we now add a Green operator g0 on X∧ such that

F (η) + g0(η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧)

is an isomorphism; it is known that such g0 (of finite rank) exists (for N =

dimkerF (η) it can be written in the form g0u :=
∑N

j=1(u, vj)wj , where (·, ·)

is the K0,0(X∧)-scalar product and (vj)j=1,...,N and (wj)j=1,...,N are orthonormal
systems of functions in C∞

0 (X∧)). Setting

g(η) := σϑ(η)|η|µκ|η|g0κ
−1
|η| σ̃
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with an excision function ϑ(η) in Rq we obtain a Green symbol with σ∧(g)(η) =
|η|µκ|η|g0κ

−1
|η| and hence

σ∧(F (η) + g(η)) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧)

is a family of isomorphisms for all η ∈ Rq \ {0}. Setting

aedge(η) :=
[
t−µωηop

γ−n
2

M (h)ω̃η + χηOpt(p)(η)χ̃η

] (
1 + ωηop

γ−n
2

M (fk)ω̃η

)

+ |η|µϑ(η)κ|η|g0κ
−1
|η| (1.51)

we obtain an operator family

σaedge(η)σ̃ = F (η) + g(η)

as announced before. Next we choose a parameter-dependent elliptic aint(η) ∈
Lµcl(M \{v}; Rqη) such that its parameter-dependent homogeneous principal symbol
close to t = 0 (in the splitting of variables (t, x)) is equal to

(|τ |2 + |ξ|2 + |η|2)
µ
2 .

Then we form
a(η) := σaedge(η)σ̃ + (1 − σ)aint(η)(1 − ˜̃σ)

with σ, σ̃, ˜̃σ as in (1.22). This is now a parameter-dependent elliptic element of
the cone calculus on M with parameter η ∈ Rq. It is known, see the explanations
after this proof, that there is a constant C > 0 such that the operators (1.45) are
isomorphisms for all |η| ≥ C. Now, in order to construct a(η) such that (1.45)
are isomorphisms for all η ∈ Rq we simply perform the construction with (η, λ) ∈
Rq+r, r ≥ 1 in place of η, then obtain a family a(η, λ) and define a(η) := a(η, λ1)
with a λ1 ∈ Rr, |λ1| ≥ C.
Let us now give more information on the above mentioned space

Cµ(M, g; Rq), g = (γ, γ − µ),

of parameter-dependent cone operators on M of order µ ∈ R, with the weight data
g. The elements a(η) ∈ Cµ(M, g; Rq) have a principal symbolic hierarchy

σ(a) := (σψ(a), σ∧(a)) (1.52)

where σψ(a) is the parameter-dependent homogeneous principal symbol of order
µ, defined through a(η) ∈ Lµcl(M \ {v}; Rq). This determines the reduced symbol

σ̃ψ(a)(t, x, τ, ξ, η) := tµσψ(a)(t, x, t−1τ, ξ, t−1η)

given close to v in the splitting of variables (t, x) with covariables (τ, ξ). By con-
struction σ̃ψ(a) is smooth up to t = 0. The second component σ∧(a)(η) is defined
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as

σ∧(a)(η) := t−µω|η|op
γ−n

2

M (h0)(η)ω̃|η|

+ t−µ(1 − ω|η|)Opt(p0)(η)(1 − ˜̃ω|η|) + σ∧(m+ g)(η)

where σ∧(m+ g)(η) is just the (twisted) homogeneous principal symbol of m+ g
as a classical operator-valued symbol.

The element a(η) of CG(M, g; Rq) represent families of continuous operators

a(η) : Hs,γ(M) → Hs,γ−µ(M) (1.53)

for all s ∈ R.

Definition 1.23. An element a(η) ∈ Cµ(M, g; Rq) is called elliptic, if

(i) σψ(a) never vanishes as a function on T ∗((M \ {v}) × Rq) \ 0 and if σ̃ψ(a)
does not vanish for all (t, x, τ, ξ, η), (τ, ξ, η) 6= 0, up to t = 0;

(ii) σ∧(a)(η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧) is a family of isomorphisms for all
η 6= 0, and any s ∈ R.

Theorem 1.24. If a(η) ∈ Cµ(M, g; Rq), g = (γ, γ − µ) is elliptic, there exists an

element a(−1)(η) ∈ C−µ(M, g−1; Rq) g−1 := (γ − µ, γ), such that

1 − a(−1)(η)a(η) ∈ CG(M, gl; R
q), 1 − a(η)a(−1)(η) ∈ CG(M, gr; R

q),

where gl := (γ, γ), gr := (γ − µ, γ − µ).

The proof employs known elements of the edge symbolic calculus (cf. [34]); so we
do not recall the details here. Let us only note that the inverses of σψ(a), σ̃ψ(a) and
σ∧(a) can be employed to construct an operator family b(η) ∈ C−µ(M, g−1; Rq)
such that

σψ(a)(−1) = σψ(b), σ̃ψ(a)(−1) = σ̃ψ(b), σ∧(a)(−1) = σ∧(b).

This gives us 1 − b(η)a(η) =: c0(η) ∈ C−1(M, gl; R
q), and a formal Neumann

series argument allows us to improve b(η) to a left parametrix a(−1)(η) by set-

ting a(−1)(η) :=
(∑∞

j=0 c
j
0(η)

)
b(η) (using the existence of the asymptotic sum

in C0(M, g; Rq)). In a similar manner we can construct a right parametrix, i.e.,
a(−1)(η) is as desired.

Corollary 1.25. If a(η) is as in Theorem 1.24, then (1.53) is a family of Fredholm

operators of index 0, and there is a constant C > 0 such that the operators (1.53)
are isomorphisms for all |η| ≥ C, s ∈ R.
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Corollary 1.26. If we perform the construction of Theorem 1.24 with the pa-

rameter (η, λ) ∈ Rq+l, l ≥ 1, rather than η, Corollary 1.25 yields that a(η, λ) is

invertible for all η ∈ R
q, |λ| ≥ C. Then, setting a(η) := a(η, λ1), |λ1| ≥ C fixed,

we obtain a−1(η) ∈ C−µ(M, g−1; Rq).

Observe that the operator functions of Theorem 1.20 refer to scales of spaces
with two parameters, namely, s ∈ R, the smoothness, and γ ∈ R, the weight.
Compared with Definition 1.9 we have here an additional weight. There are two
ways to make the different view points compatible. One is to apply weight reducing
isomorphisms

h−γ : Hs,γ(M) → Hs,γ−µ(M) (1.54)

in (1.21). Then, passing from

a(η) : Hs,γ(M) → Hs−µ,γ−µ(M) (1.55)

to
bµ(η) := h−γ+µa(η)hγ : Hs,0(M) → Hs−µ,0(M) (1.56)

we obtain operator functions between spaces only referring to s but with properties
as required in Definition 1.9 (which remains to be verified).

Remark 1.27. The spaces Es := Hs,0(M), s ∈ R, form a scale with the properties
at the beginning of Section 1.1.

Another way is to modify the abstract framework by admitting scales Es,γ

rather than Es, where in general γ may be in Rk (which is motivated by the
higher corner calculus). We do not study the second possibility here but we only
note that the variant with Es,γ-spaces is very similar to the one without γ.
Let us now look at operator functions of the form (1.56).

Theorem 1.28. The operators (1.56) constitute an order reducing family in the

spaces Es := Hs,0(M), where the properties (i)-(iii) of Definition 1.3 are satisfied.

Proof. In this proof we concentrate on the properties of our operators for every
fixed s, µ, ν with ν ≥ µ. The uniformity of the involved constants can easily be
deduced; however, the simple (but lengthy) considerations will be left out.
(i) We have to show that

Dβ
η b
µ(η) = Dβ

η {h
−γ+µa(η)hγ} ∈ C∞(Rq,L(Es, Es−µ+|β|))

for all s ∈ R, β ∈ N
q. According to (1.22) the operator function is a sum of two

contributions. The second summand

(1 − σ)h−γ+µaint(η)h
γ(1 − ˜̃σ)
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is a parameter-dependent family in Lµcl(2M; Rq) and obviously has the desired
property. The first summand is of the form

σh−γ+µ{aedge(η) +m(η) + g(η)}hγ σ̃.

From the proof of Theorem 1.20 we have

Dβ
ησaedge(η)σ̃ ∈ Sµ−|β|(Rq;Ks,γ;g(X∧),Ks−µ+|β|,γ−µ;g(X∧))

for every β ∈ N
q. In particular, these operator functions are smooth in η and

the derivates improve the smoothness in the image by |β|. This gives us the de-
sired property of σh−γ+µaedge(η)h

γ σ̃. The C∞ dependence of m(η) + g(η) in η is
clear (those are operator-valued symbols), and they map to K∞,γ−µ;g(X∧) any-
way. Therefore, the desired property of σh−γ+µ{m(η) + g(η)}hγ σ̃ is satisfied as
well.
(ii) This property essentially corresponds to the fact that the product in consider-
ation close to the conical point is a symbol in η of order zero and that the group
action in K0,0(X∧)-spaces is unitary. Outside the conical point the boundedness
is as in the example in Section 1.1.
(iii) The proof of this property close to the conical point is of a similar structure
as Proposition 1.8, since our operators are based on operator-valued symbols re-
ferring to spaces with group action. The contribution outside the conical point is
as in the example in Section 1.1.

Remark 1.29. For Es := Hs,0(M), s ∈ R, E = (Es)s∈R, the operator functions
bµ(η) of the form (1.56) belong to Sµ(Rq; E , E) (see the notation after Definition
1.9).

2 Operators referring to a conical exit to infinity

2.1 Symbols with weights at infinity

Let E = (Es)s∈R be a scale in E with the compact embedding property (see Section
1.1), and choose a family of order reducing operators

bs(ρ, η, λ), (ρ, η, λ) ∈ R
1+q × (Rl \ {0}), s ∈ R, (2.1)

q, l ∈ N \ {0} (see Definition 1.3, here with (ρ, η, λ) instead of η). Let us form the
operator family

ps(r, ρ, η, λ) := bs([r]ρ, [r]η, [r]λ) (2.2)

for r ∈ R (recall that r → [r] is a strictly positive function in C∞(R) such that
[r] = |r| for |r| > R for some R > 0).
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Theorem 2.1. The operator

[r]sOpr(p
−s)(η, λ) : L2(R, E0) → L2(R, E0) (2.3)

is continuous for every s ≥ 0 and satisfies the estimate

‖[r]sOpr(p
−s)(η, λ)‖L(L2(R,E0)) ≤ c|η, λ|−s (2.4)

for all (η, λ) ∈ Rq × (Rl \ {0}), |λ| ≥ 1, for some constant c > 0.

For the proof we employ the following variant of the Calderón-Vaillancourt
theorem for operators with operator-valued symbols (cf. Hwang [10] for scalar
symbols, Seiler [39] in the operator-valued case,) see also [8, Section 2.2.2].

Theorem 2.2. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respec-

tively. Assume that a function a(y, η) ∈ C∞(R2q,L(H, H̃)) satisfies the estimate

π(a) := sup
{
‖κ̃−1

〈η〉{D
α
yD

β
ηa(y, η)}κ〈η〉‖L(H, eH) : (y, η) ∈ R

2q, α ≤ α, β ≤ β
}
<∞

for α := (M + 1, . . . ,M + 1), β := (1, . . . , 1), with M ∈ N being a constant such

that (1.4) holds for κ̃. Then Op(a) induces a continuous operator

Op(a) : W0(Rq, H) → W0(Rq, H̃),

and we have ‖Op(a)‖L(W0(Rq,H),W0(Rq, eH)) ≤ cπ(a) for a constant c > 0 indepen-

dent of a.

Proof of Theorem 2.1. In order to show the continuity of (2.3) and the estimate

(2.4) for the operator norm we apply Theorem 2.2 to the case H = H̃ = E0 and
κ = κ̃ = id; then M = 1. Setting for the moment

a(r, ρ, η, λ) := [r]sb−s([r]ρ, [r]η, [r]λ)

we have a(r, ρ, η, λ) ∈ C∞(R × R1+q+l,L(E0, E0)) and

‖a(r, ρ, η, λ)‖0,0 ≤ c[r]s〈[r]ρ, [r]η, [r]λ〉−s (2.5)

(see Definition 1.3 (iii)). From

sup
(r,ρ)∈R2

[r]s〈[r]ρ, [r]η, [r]λ〉−s ≤ |η, λ|−s

for all (η, λ) ∈ Rq+l, |λ| ≥ 1, we obtain

sup
(r,ρ)∈R2

‖a(r, ρ, η, λ)‖0,0 ≤ c|η, λ|−s
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for those η, λ. A similar estimate is needed for the derivatives Dk
rD

m
ρ a(r, ρ, η, λ)

for all 0 ≤ k,m ≤ 1. For simplicity, we consider the case q = l = 1. With the
notation ρ̃ = [r]ρ, η̃ = [r]η, λ̃ = [r]λ we obtain

∂r([r]
sb−s([r]ρ, [r]η, [r]λ)) =

[r]s∂r[r]
(
(ρ
∂

∂ρ̃
+ η

∂

∂η̃
+ λ

∂

∂λ̃
)b−s

)
([r]ρ, [r]η, [r]λ) + (∂r[r]

s)b−s([r]ρ, [r]η, [r]λ).

(2.6)

The last summand on the right hand side of (2.6) can be estimated in a similar
manner as before, since supr∈R

|(∂r[r]
s)[r]−s| < ∞. Concerning the derivatives of

b−s with respect to (ρ, η, λ) we can employ the fact that

b−s(ρ̃, η̃, λ̃) ∈ S−s(R1+q+l; E , E),

(see (1.12)). Then the first order derivatives in (ρ̃, η̃, λ̃) belong to
S−s−1(R1+q+l; E , E) and hence, according to Proposition 1.13,

‖Dα

ρ̃,η̃,λ̃
b−s(ρ̃, η̃, λ̃)‖0,0 ≤ c〈ρ̃, η̃, λ̃〉−s−1,

for any multi-index α with |α| = 1. This gives us, for instance, for the first sum-
mands on the right hand side of (2.6)

sup ‖(∂r[r])[r]
s{(ρ(∂ρ̃b

−s) + η(∂η̃b
−s) + λ(∂λ̃b

−s))([r]ρ, [r]η, [r]λ)}‖0,0

≤ c sup[r]s+1{|ρ| + |η| + |λ|}〈[r]ρ, [r]η, [r]λ〉−s−1

≤ c sup[r]s〈[r]ρ, [r]η, [r]λ〉−s ≤ c|η, λ|−s

for all (η, λ) ∈ Rq+l, |λ| ≥ 1.

Let us now consider the derivative in ρ. In this case we have

sup ‖
∂

∂ρ
[r]sb−s([r]ρ, [r]η, [r]λ)‖0,0 = sup ‖[r]s+1

( ∂
∂ρ̃
b−s
)
([r]ρ, [r]η, [r]λ)‖0,0

≤ sup[r]s+1〈[r]ρ, [r]η, [r]λ〉−s−1 ≤ c|η, λ|−s−1

for all (η, λ) ∈ Rq+l, |λ| ≥ 1. The other derivatives can be treated in a similar
manner. We thus obtain altogether the estimate (2.4).

Remark 2.3. The computations in the latter proof show that for s ≥ 0

‖Dα
η,λ

(
[r]sOpr(p

−s)(η, λ)
)
‖L(L2(R,E0)) ≤ c|η, λ|−s−|α|

for all (η, λ) ∈ R
q+l, |λ| ≥ 1, with a constant c > 0.
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Definition 2.4. Let us set H = {η ∈ Rq : η′′ 6= 0}, where q = q′ + q′′, η =
(η′, η′′) ∈ Rq

′+q′′ , q′′ > 0 (see the fomula (1.9)). By

Sµ;ν(R × R; E , Ẽ ; H)cone (2.7)

µ, ν ∈ R, we denote the set of all operator functions of the form

a(r, ρ, η) = [r]−µã(r, [r]ρ, [r]η), (2.8)

such that

‖b̃s−µ+|β|([r]ρ, [r]η)Dl
rD

β
ρ,η

{
[r]−µã(r, [r]ρ, [r]η)

}
b−s([r]ρ, [r]η)‖ ≤ c〈r〉ν−µ+|β|−l

(2.9)
for all (r, ρ, η) ∈ R × R × H, |η| ≥ h, h > 0, and all l ∈ N, β ∈ N1+q, s ∈ [s′, s′′],
with constants c = c(l, β, s′, s′′, h) > 0. Here, as usual, we write ‖.‖ = ‖.‖0,0.

In an analogous manner we define the subspace

Sµ;ν
cl (R × R; E , Ẽ ; H)cone (2.10)

of elements of (2.7) such that the function ã(r, ρ̃, η̃) in (2.8) is classical in r
of order ν, which means that there is a sequence of homogeneous components
ã(ν−j)(r, ρ̃, η̃) ∈ C∞(R \ {0}, C∞(Rρ̃ × Rη̃)), j ∈ N, such that

ã(ν−j)(λr, ρ̃, η̃) = λν−j ã(ν−j)(r, ρ̃, η̃)

for all λ ∈ R+, and the functions ã(ν−j)(±1, ρ̃, η̃) satisfy the estimates

‖b̃s−µ+|β|([r]ρ, [r]η)Dl
rD

β
ρ,η

{
[r]−µã(ν−j)(±1, [r]ρ, [r]η)

}
b−s([r]ρ, [r]η)‖

≤ 〈r〉−µ+|β|−l (2.11)

for all (r, ρ, η), l, β, and s as before, and that for any excision function χ(r) in the
variable r ∈ R the difference

a(r, ρ, η) − [r]−µχ(r)

N∑

j=0

ã(ν−j)(r, [r]ρ, [r]η) (2.12)

belongs to Sµ;ν−(N+1)(R × R; E , Ẽ ; H)cone in the former sense, for every N ∈ N.
If an assertion refers to classical as well as to general symbols we write Sµ;ν

(cl)(R ×

R; E , Ẽ ; H)cone.
It can easily be proved, using (1.3), that when δ(r) ∈ S1

cl(R) is a strictly positive

function such that δ−1(r) ∈ S−1
cl (R), the space Sµ;ν(R × R; E , Ẽ ; H)cone can be

equivalently defined as the set of all functions of the form δ−µ(r)ã(r, δ(r)ρ, δ(r)η),
where ã depends in a similar manner on (δ(r)ρ, δ(r)η) as the former one on
([r]ρ, [r]η).
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Remark 2.5. The space (2.7) is Fréchet in a natural way with the semi-norm
system

π(a) := sup ‖〈r〉−ν+µ−|β|+lb̃s−µ+|β|([r]ρ, [r]η)

Dl
rD

β
ρ,η{[r]

−µã(r, [r]ρ, [r]η)}b−s([r]ρ, [r]η)‖, (2.13)

where the supremum is taken over all r ∈ R, (ρ, η) ∈ R × H, |η| ≥ h, h > 0, l ∈ N,
β ∈ N

1+q, s ∈ [s′, s′′]. Also the subspace (2.10) of (2.7) is Fréchet with the semi-
norms (2.13) together with the semi-norms from the homogeneous components in
r (see (2.11)) as well as from the (non-classical) remainders (2.12).

Let
Sµ(R[r]ρ × H[r]η; E , Ẽ) (2.14)

denote the subspace of all a(r, ρ, η) ∈ Sµ;µ(R×R; E , Ẽ ; H)cone that are of the form
ã([r]ρ, [r]η) with ã as in (2.8). If we mean that for a function (2.8) the semi-norms

(2.13) are finite, we write Sν−µ(cl) (R, Sµ(R[r]ρ × H[r]η; E , Ẽ)) rather than (2.7).

Example. Let p̃(ρ̃, η̃) ∈ Lµcl(X ; R1+q
ρ̃,η̃ ), and

a(r, ρ, η) := [r]ν−µp̃([r]ρ, [r]η).

Then we have a(r, ρ, η) ∈ Sµ;ν
cl (R × R; E , Ẽ ; H)cone for E = Ẽ =

(
Hs(X)

)
s∈R

and

H = Rq \ {0} (η = 0 is ruled out, because the relevant properties that are of
interest here are valied only in this case).

Other interesting examples come from the parameter-depedent cone or edge
operators, see Chapter 2.

Proposition 2.6. The spaces of Definition 2.4 have the following properties:

(i) Sµ;ν
(cl)(R×R; E , Ẽ ; H)cone ⊆ Sµ+k;ν+j+k

(cl) (R×R; E , Ẽ ; H)cone for every j, k ∈ R+

in the general and j, k ∈ N in the classical case;

(ii) Dk
rD

β
ρ,ηS

µ;ν
(cl)(R × R; E , Ẽ ; H)cone ⊆ S

µ−|β|;ν−k
(cl) (R × R; E , Ẽ ; H)cone for every

µ, ν ∈ R, k ∈ N, β ∈ N
1+q;

(iii) Sµ;ν
(cl)(R × R; E0, Ẽ ; H)coneS

µ̃;ν̃
(cl)(R × R; E , E0; H)cone

⊆ Sµ+µ̃;ν+ν̃
(cl) (R × R; E , Ẽ ; H)cone for every µ, ν, µ̃, ν̃ ∈ R.

Proof. Let us check the assertions for general symbols; the classical case is left to
the reader. (i) The proof is similar as that of Proposition 1.15(i).

(ii) Let a(r, ρ, η) ∈ Sµ;ν(R ×R; E , Ẽ ; H)cone. By definition we have (2.8), and (2.9)
is finite. By induction it is enough to check the assertion for first order derivatives.
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We have ( ∂
∂r
ã)(r, [r]ρ, [r]η) ∈ Sν−1(R, Sµ(R[r]ρ × H[r]η; E , Ẽ)). Thus, when we dif-

ferentiate (2.8) with respect to r we may forget about the first r-variable in ã and
simply compute a derivative of the form

∂

∂r
{[r]−µã([r]ρ, [r]η)} (2.15)

for an r-independent ã of the form (2.14). Assume for simplicity q = 1. For (2.15)
we then obtain

(
∂

∂r
[r]−µ)ã([r]ρ, [r]η) + [r]−µ(

∂

∂r
[r])(ρ

∂ã

∂ρ̃
+ η

∂ã

∂η̃
)([r]ρ, [r]η). (2.16)

The factor in the first summand on the right of (2.16) can be rewritten as

∂

∂r
[r]−µ =

( ∂
∂r

[r]−µ
)
([r]µ)[r]−µ

but
(
∂
∂r

[r]−µ
)
[r]µ ∈ S−1

cl (R); so this contributes −1 to the order in r. To treat the
second summand in (2.16) we observe that

[r]
(
ρ
∂ã

∂ρ̃
+ η

∂ã

∂η̃

)
([r]ρ, [r]η)

is an element of (2.14) (see Remark 1.11 and Proposition 1.15 (ii)). Therefore, we
gain a factor [r]−1. Using ( ∂

∂r
[r])[r]−1 ∈ S−1

cl (R) then we see that the r-derivative
is as desired.

The first order derivative of a(r, ρ, η) in ρ has the form

[r]−µ+1
(∂ã
∂ρ̃

)
(r, [r]ρ, [r]η). (2.17)

By virtue of ∂ã
∂ρ̃

(r, [r]ρ, [r]η) ∈ Sν(R, Sµ−1(R[r]ρ×H[r]η; E , Ẽ)) (see also Proposition

1.15 (ii)) it follows that (2.17) is of analogous form as (2.8) with µ− 1 instead of
µ. The other derivatives can be treated in a similar manner.
(iii) In order to show that (aã)(r, ρ, η) has the asserted property for a(r, ρ, η) ∈

Sµ;ν(R × R; E0, Ẽ ; H)cone, ã(r, ρ, η) ∈ Sµ̃;ν̃(R × R; E , E0; H)cone we assume for con-

venience that E = E0 = Ẽ ; the general case is completely analogous.
Writing

a(r, ρ, η) = [r]−µp(r, [r]ρ, [r]η), ã(r, ρ, η) = [r]−µ̃p̃(r, [r]ρ, [r]η)

with
p(r, ρ̃, η̃) ∈ Sν(R, V ), p̃(r, ρ̃, η̃) ∈ S ν̃(R, Ṽ ), (2.18)

V := Sµ(R[r]ρ × H[r]η; E , E), Ṽ := Sµ̃(R[r]ρ × H[r]η; E , E),
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it follows that
(aã)(r, ρ, η) = [r]−(µ+µ̃)(pp̃)(r, [r]ρ, [r]η).

Then a straightforward computation shows that

(pp̃)(r, [r]ρ, [r]η) ∈ Sν+ν̃(R,
˜̃
V ),

˜̃
V := Sµ+µ̃(R[r]ρ × H[r]η; E , E).

In the calculus of operators with such symbols it is desirable also to have double
symbols. We need them only in the form

a(r, ρ, η)b(r′, ρ′, η) =: c(r, r′, ρ, ρ′, η) (2.19)

for a(r, ρ, η) := ã(r, [r]ρ, [r]η), b(r′, ρ′, η) := b̃(r′, [r′]ρ′, [r′]η) for some ã(r, ρ̃, η̃) ∈

Sµ;ν(R×R; E0, Ẽ ; H)cone, b̃(r
′, ρ̃′, η̃) ∈ Sµ̃;ν̃(R×R; E , E0; H)cone. The composition of

associated operators in terms of the symbolic structure will be studied in Section
2.2 below.

Observe that the space Sµ;ν(R×R; E , Ẽ; H)cone is embedded in another class of

operator families, defined to be the set of all a(r, ρ, η) ∈ C∞(R×R×H,Lµ(E , Ẽ))
such that (writing ‖.‖s,t := ‖.‖L(Es, eEt))

sup〈r〉−N−|β|〈ρ, η〉−M‖Dj
rD

β
ρ,ηa(r, ρ, η)‖s,s−µ (2.20)

is finite for certain N,M ∈ N and every j ∈ N, β ∈ N1+q, where sup is taken over
all (r, ρ, η) ∈ R × R × H, |η| ≥ h for any fixed h > 0, and s ∈ [s′, s′′] for arbitrary
s′ ≤ s′′, with orders N,M depending on µ, ν as well as on the chosen smoothness
interval [s′, s′′].
Let us check (2.20), for instance, for j = β = 0. In this case for ξ := ([r]ρ, [r]η),
a = ã(r, ξ) we have

‖a(r, ρ, η)‖s,s−µ = ‖b̃−s+µ(ξ)b̃s−µ(ξ)ã(r, ξ)b−s(ξ)bs(ξ)‖s,s−µ

≤ ‖b̃−s+µ(ξ)‖0,s−µ‖b̃
s−µ(ξ)ã(r, ξ)b−s(ξ)bs(ξ)‖0,0‖b

s(ξ)‖s,0

≤ c〈r〉ν−µ〈[r]ρ, [r]η〉B1+B2 (2.21)

using
‖b̃−s+µ(ξ)‖0,s−µ ≤ c〈ξ〉B1 , ‖bs(ξ)‖s,0 ≤ 〈ξ〉B2

for some B1, B2 > 0, uniformly in s ∈ [s′, s′′]. The right hand side of (2.21) can
be estimated by

c〈r〉ν−µ+B1+B2〈ρ, η〉B1+B2

which allows us to set N = ν − µ+B1 +B2, M = B1 +B2.
Concerning the derivates, using

∂rã(r, [r]ρ, [r]η) =
(
∂rã
)
(r, [r]ρ, [r]η) + ∂r[r]

(
∂ρ̃ã+

q∑

l=1

∂η̃l
ã
)
(r, [r]ρ, [r]η)
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or
∂ρã(r, [r]ρ, [r]η) = [r]

(
∂ρ̃ã
)
(r, [r]ρ, [r]η)

we see that the estimates remain true with the same N,M for all j, k ∈ N.
Let Sµ;M ,N (R × R × H; E , Ẽ) denote the set of all a(r, ρ, η) ∈ C∞(R × R ×

H,Lµ(E , Ẽ)) satisfying the symbolic estimates (2.20); here M := {M(s′, s′′) : s′ ≤
s′′}, N := {N(s′, s′′) : s′ ≤ s′′} is the system orders M,N in (2.20) which depends
on [s′, s′′].

2.2 Operators in weighted spaces

With a symbol a(r, ρ, η) ∈ Sµ;ν(R×R; E , Ẽ ; H)cone we associate a family of pseudo-
differential operators in the usual way, namely,

Op(a)(η)u(r) =

∫∫
ei(r−r

′)ρa(r, ρ, η)u(r′)dr′d̄ρ =

∫∫
e−ir

′ρa(r, ρ, η)u(r′+r)dr′d̄ρ

first for u ∈ S(R, E∞).

Theorem 2.7. Let a(r, ρ, η) ∈ Sµ;ν(R × R; E , Ẽ ; H)cone. Then

Opr(a)(η) : S(R, Es) → S(R, Ẽs−µ)

is a family of continuous operators for every s ∈ R.

The proof is relatively simple, based on the fact that even the respective oper-
ators for a(r, ρ, η) ∈ Sµ;M ,N (R × R × H; E , Ẽ) define such continuous operators.

Theorem 2.8. Let a(r, ρ, η) ∈ Sµ;0(R × R; E , Ẽ ; H)cone, µ ≤ 0 and g ∈ R. Then

Opr(a)(η) : 〈r〉−gL2(R, E0) → 〈r〉−gL2(R, Ẽ0)

is a family of continuous operators, and we have

‖Opr(a)(η)‖L(〈r〉−gL2(R,E0),〈r〉−gL2(R, eE0)) ≤ c|η|µ (2.22)

for all η ∈ H, |η| ≥ h for any h > 0, with a constant c = c(h) > 0.

Proof. For g = 0 the proof is completely analogous to that of Theorem 2.1. For
g 6= 0 we use the fact that 〈r〉−g can be regarded as an element of S0;−g(R ×

R; E , Ẽ ; H)cone for any g ∈ R. Then, since 〈r〉−g : L2(R, E0) → 〈r〉−gL2(R, Ẽ0)
is an isomorphism it suffices to show that 〈r〉−gOp(a)〈r〉g = Op(ag) for some

ag ∈ Sµ;0(R×R; E , Ẽ; H)cone. However, this will be a consequence of Theorem 2.16

below which implies that 〈r〉−ga(r, ρ, η)#〈r〉g ∈ Sµ;0(R × R; E , Ẽ ; H)cone.
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In the following we systematically refer to oscillatory integral techniques anal-
ogously as in Kumano-go [14]. Vector-valued generalisations are more or less
straightforward; however, we employ a rather subtle variant in terms of degen-
erate symbols; this makes it necessary to recall some basic constructions.
Let V be a Fréchet space, defined with a countable semi-norm system (πj)j∈N.

Definition 2.9. Given sequences µ := (µj)j∈N, ν := (νj)j∈N, we define the space

Sµ;ν(R2q;V )

of V -valued amplitude functions to be the set of all a(x, ξ) ∈ C∞(R2q, V ) such
that

πj
(
Dα
xD

β
ξ a(x, ξ)

)
≤ c〈ξ〉µj 〈x〉νj (2.23)

for all (x, ξ) ∈ R2q, α, β ∈ Nq, with constants c(α, β, j) > 0, for all j ∈ N. Moreover,
we set

S∞;∞(R2q;V ) :=
⋃

µ,ν

Sµ;ν(R2q;V )

where the union is taken over all µ,ν.

Remark 2.10. The space Sµ;ν(R2q;V ) is Fréchet for every fixed µ,ν, with the

semi-norm system sup(x,ξ)∈R2q〈x〉−νj 〈ξ〉−µjπj
(
Dα
xD

β
ξ a(x, ξ)

)
, for all α, β ∈ Nq,

j ∈ N (together with the semi-norms of C∞(R2q, V )).

The following observations and constructions may be found in Seiler [38], see
also [8].

Proposition 2.11. (i) a ∈ Sµ;ν(R2q;V ) implies Dα
xD

β
ξ a ∈ Sµ;ν(R2q;V ) for

every α, β ∈ Nq.

(ii) If V, Ṽ are Fréchet spaces and T : V → Ṽ is a continuous operator, then

a ∈ S∞;∞(R2q;V ) implies Ta := ((x, ξ) → T (a(x, ξ))) ∈ S∞;∞(R2q; Ṽ );
more precisely, a→ Ta defines a continuous operator

Sµ;ν(R2q;V ) → Sµ̃;ν̃(R2q, Ṽ )

for every (µ; ν), with a resulting pair of orders (µ̃; ν̃) (recall that the semi-

norm systems are fixed in the respective Fréchet spaces).

(iii) Let V be the projective limit of Fréchet spaces Vj with respect to linear

maps Tj : V → Vj , j ∈ I, (with I being a countable index set). Then

a ∈ S∞;∞(R2q;V ) is equivalent to Tja ∈ S∞;∞(R2q;Vj) for every j ∈ I.

(iv) If V0, V1, V be Fréchet spaces and 〈·, ·〉 : V0 × V1 → V a continuous bilinear

map, then ak ∈ S∞;∞(R2q, Vk), k = 0, 1, implies 〈a0, a1〉 ∈ S∞;∞(R2q;V );
more precisely, (a0, a1) → 〈a0, a1〉 induces continuous maps

Sµ0;ν0(R2q;V0) × Sµ1;ν1(R2q;V1) → Sµ;ν(R2q;V )

for every two pairs of sequences (µ0; ν0), (µ1; ν1), with some resulting (µ; ν).
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(v) Let W be a closed subspace of V ; then a ∈ S∞;∞(R2q;V ) implies [a] ∈
S∞;∞(R2q;V/W ), where [a] denotes the image under the quotient map V →
V/W .

Definition 2.12. A function χε(x) : (0, 1] × Rm → C is called regularising, if

(i) χε(x) ∈ S(Rm) for every 0 < ε ≤ 1;

(ii) sup(ε,x)∈(0,1]×Rm |Dα
xχε(x)| <∞ for every α ∈ Nm;

(iii) limε→0D
α
xχε(x) →

{
1 for α = 0

0 for α 6= 0,
pointwise in R

m.

An example of a regularising function in the sense of the latter definition is
χ(εx) for any χ(x) ∈ S(Rm) with χ(0) = 1.

Remark 2.13. If χε(x, ξ) is any regularising function on (0, 1]×R
2q, and a(x, ξ) ∈

S∞;∞(R2q;V ), then we can form the oscillatory integral

Os[a] = lim
ε→0

∫∫
e−ixξχε(x, ξ)a(x, ξ)dxd̄ξ. (2.24)

Remark 2.14. In the regularisation of
∫∫

e−ixξa(x, ξ)dxd̄ξ we first assume that
a(x, ξ) ∈ S(R2q ;V ), use the identities

e−ixξ = 〈ξ〉−2M (1 − ∆x)
Me−ixξ, e−ixξ = 〈x〉−2N (1 − ∆ξ)

Ne−ixξ,

and integrate by parts. This yields

∫∫
e−ixξa(x, ξ)dxd̄ξ =

∫∫
e−ixξ〈x〉−2N (1 − ∆ξ)

N 〈ξ〉−2M (1 − ∆x)
Ma(x, ξ)dxd̄ξ

for every N,M ∈ N. It follows that the right hand side converges with respect to
the semi-norm πj for N = Nj,M = Mj sufficiently large, for any fixed j ∈ N. This
implies

lim
ε→0

∫∫
e−ixξχε(x, ξ)a(x, ξ)dxd̄ξ

= lim
ε→0

∫∫
e−ixξ〈x〉−2Nj (1 − ∆ξ)

Nj 〈ξ〉−2Mj (1 − ∆x)
Mjχε(x, ξ)a(x, ξ)dxd̄ξ

with convergence with respect to πj . Similarly as in the scalar case, Lebesgue’s
theorem on dominated convergence gives us the convergence of the right hand side
for arbitrary a(x, ξ) ∈ S∞;∞(R2q;V ). Thus the left hand side exists as well.

A consequence is the following theorem.
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Theorem 2.15. For every a(x, ξ) ∈ S∞;∞(R2q;V ) the oscillatory integral (2.24)
exists as an element of V and is independent of the choice of χ. Moreover,

a(x, ξ) → Os[a] induces a continuous map

Os[·] : Sµ;ν(R2q;V ) → V

for every µ,ν.

One of the main issues here is to ensure that the operators Op(a)(η) with sym-

bols a(r, ρ, η) ∈ Sµ;ν(R × R; E , Ẽ ; H)cone form a calculus which is closed under the
usual operations, especially compositions. To formulate the corresponding result
it will be easier to first admit symbols of the larger class Sµ;M ,N (R×R×H; E , Ẽ)

and then to obtain the result for symbols in Sµ;ν(R × R; E , Ẽ ; H)cone itself.
As mentioned before we apply here elements of Kumano-go’s technique on oscil-
latory integrals, especially with double symbols in variables and covariables. We
only need such symbols in form of pointwise compositions

a(r, ρ, η)b(r′, ρ′, η)

for

a(r, ρ, η) ∈ Sµ;ν(R × R; E0, Ẽ ; H)cone, (2.25)

b(r′, ρ′, η) ∈ Sµ̃;ν̃(R × R; E , E0; H)cone. (2.26)

Using a ∈ Sµ;M ,N , b ∈ Sµ̃; fM ,fN for suitable M ,N and M̃ , Ñ we first carry out
the computations in that more general set-up and then obtain that the respective
subclasses remain preserved.

For simplicity the operators are considered for u ∈ S(R, E∞), cf. Theorem 2.7.
We have

Op(a)(η)Op(b)(η)u(r)

=

∫∫
ei(r−r

′)ρa(r, ρ, η)

{∫∫
ei(r

′−r′′)ρ′b(r′, ρ′, η)u(r′′)dr′′d̄ρ′
}
dr′d̄ρ

=

∫∫∫∫
ei(r−r

′)ρ+i(r′−r′′)ρ′a(r, ρ, η)b(r′, ρ′, η)u(r′′)dr′′d̄ρ′dr′d̄ρ

with integration in the order r′′, ρ′, r′, ρ. This implies

Op(a)(η)Op(b)(η)u(r)

=

∫∫∫
ei(r−r

′)ρ+ir′ρ′a(r, ρ, η)b(r′, ρ′, η)û(ρ′)d̄ρ′dr′d̄ρ. (2.27)

An analogue of a corresponding expression in Kumano-go [14] gives us

Op(a)(η)Op(b)(η)u(r)

=

∫∫
ei(tρ+t

′ρ′)a(r, ρ, η)b(r + t, ρ′, η)u(r + t+ t′)dtdt′d̄ρd̄ρ′
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as an oscillatory integral. Setting

a#b(r, ρ, η) :=

∫∫
e−itτa(r, ρ+ τ, η)b(r + t, ρ, η)dtd̄τ (2.28)

and applying a substitution in the variables it follows that

Op(a#b)(η) =

∫
eirρ

′

{∫∫
e−itτa(r, ρ′ + τ, η)b(r + t, ρ′, η)dtd̄τ

}
û(ρ′)d̄ρ′

=

∫
eirρ

{∫
e−ir

′ρ

{∫
eir

′ρ′a(r, ρ, η)b(r′, ρ′, η)û(ρ′)d̄ρ′
}
dr′
}
d̄ρ (2.29)

(see the formula (2.27)).
Now, as usual, Taylor’s formula gives us

a(r, ρ+ τ, η) =

N∑

k=0

τk

k!

(
∂kρa

)
(r, ρ, η) +

τN+1

N !

∫ 1

0

(1 − θ)N
(
∂Nρ a

)
(r, ρ+ θτ, η)dθ

and hence

a#b(r, ρ, η) =

N∑

k=0

(
∂kρa

)
(r, ρ, η)

∫∫
e−itτ

τk

k!
b(r + t, ρ, η)dtd̄τ

+

∫∫
e−itτ

τN+1

N !

{∫ 1

0

(1 − θ)N
(
∂N+1
ρ a

)
(r, ρ+ θτ, η)dθ

}
b(r + t, ρ, η)dtd̄τ.

(2.30)

Applying Dk
ru(r) =

∫∫
e−itτ τku(r + t)dtd̄τ in the sum on the right of (2.30) and

integrating by parts in the second term we obtain

a#b(r, ρ, η) =

N∑

k=0

1

k!
∂kρa(r, ρ, η)D

k
r b(r, ρ, η) + rN (r, ρ, η)

with

rN (r, ρ, η) =
1

N !

∫∫
e−itτ

{∫ 1

0

(1 − θ)N
(
∂N+1
ρ a

)
(r, ρ+ θτ, η)dθ

}

(
DN+1
r b

)
(r + t, ρ, η)dtd̄τ.

Theorem 2.16. Let a(r, ρ, η) ∈ Sµ;ν(R × R; E0, Ẽ ; H)cone, b(r, ρ, η) ∈ Sµ̃;ν̃(R ×
R; E , E0; H)cone. Then for the Leibniz product (2.28) we have

a#b(r, ρ, η) ∈ Sµ+µ̃;ν+ν̃(R × R; E , Ẽ ; H)cone.
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Proof. By virtue of Proposition 2.6 (iii) the sum on the right of (2.28) has the
asserted property. Therefore, it suffices to show that for every π from the system
of semi-norms on the space Sµ+µ̃;ν+ν̃(R×R; E , Ẽ ; H)cone we have π(rN ) <∞ when
N = N(π) is large enough. However, this is the case, as a straightforward (but
lengthy) computation shows, using the shape of π, see the formula (2.13), and the
regularisation process, described in Remark 2.14.

Remark 2.17. The computation that verifies π(rN ) < ∞ shows, in fact, more,
namely, that for every M ∈ N and every semi-norm πM+1 in the space

Sµ+µ̃−M ;ν+ν̃−M (R × R; E , Ẽ ; H)cone

we have πM+1(rN ) < ∞ provided that N = N(πM+1) ≥M is large enough. This
gives us

πM+1

(
a#b−

M∑

k=0

1

k!
(∂kρa)D

k
r b

)
= πM+1

(
rN +

N∑

k=M+1

1

k!
(∂kρa)D

k
r b

)

≤ πM+1(rN ) + πM+1

(
N∑

k=M+1

1

k!
(∂kρa)D

k
r b

)
<∞,

since by Proposition 2.6 (iii) the second summand on the right of the latter in-
equality is finite, and hence

a#b(r, ρ, η) −
M∑

k=0

1

k!
(∂kr a)(r, ρ, η)D

k
r b(r, ρ, η)

∈ Sµ+µ̃−(M+1);ν+ν̃−(M+1)(R × R; E , Ẽ ; H)cone. (2.31)

Theorem 2.18. The operator (2.3) for s ≥ 0 is injective for all (η, λ) ∈ Rq+l,

|λ| ≥ C, for a sufficiently large C > 0.

Proof. By virtue of Theorem 2.16 the composition

Opr([r]
−sps)(η, λ)Opr([r]

sp−s)(η, λ) (2.32)

is an operator with amplitude function

[r]−sps(r, ρ, η, λ)#[r]sp−s(r, ρ, η, λ) = 1 − c(r, ρ, η, λ), (2.33)

c(r, ρ, η, λ) ∈ S−1;−1(R × R; E , E ; Rq × (Rl \ {0})). From Theorem 2.8 we have the
estimate (2.22) with (η, λ) in place of η, for µ = −1. Thus the composition (2.32)
becomes an isomorphism in L2(R, E0) for sufficiently large |λ| and for all η ∈ Rq.
This implies the injectivity of the operator (2.3).



2 OPERATORS REFERRING TO A CONICAL EXIT TO INFINITY 41

Corollary 2.19. Let s, g ∈ R, and form the composition

Opr([r]
−s+gps)(η, λ)Opr([r]

s−gp−s)(η, λ) (2.34)

as a continuous operator S(R, E∞) → S(R, E∞) (see Theorem 2.7). Then (2.34)
extends to a continuous and injective operator L2(R, E0) → L2(R, E0) for all

(η, λ) ∈ Rq × (Rl \ {0}), |λ| ≥ C, for a suitable constant C > 0.

In the following definition we employ the symbols (2.2).

Definition 2.20. Let us set Bs;g(η, λ) := Opr([r]
−s+gps)(η, λ) for s, g ∈

R, (η, λ) ∈ Rq × (Rl \ {0}), |λ| ≥ C, where C > 0 is a constant as in Corollary
2.19. Then Hs;g

cone(R, E) is defined to be the completion of S(R, E∞) with respect
to the norm

‖Bs;g(η1, λ1)u‖L2(R,E0)

for any fixed η1 ∈ Rq and λ1 ∈ Rl, |λ1| ≥ C.

From the construction if follows that

Bs;g(η, λ1) : Hs;g
cone(R, E) → L2(R, E0) (2.35)

is a family of isomorphisms for every |λ1| sufficiently large.
By construction we have

[r]−s+gps(r, ρ, η, λ) ∈ Ss;g(R × R; E , E ; H)cone

for H = Rq × (Rl \ {0}). In the following we impose a requirement on the choice
of the operator family Bs;g(η, λ), namely, that for every s, g ∈ R there exists a
symbol f−s;−g(r, ρ, η, λ) ∈ S−s;−g(R × R; E , E ; H)cone such that

(
Bs;g(η, λ1)

)−1
= Opr(f

−s;−g)(η, λ1) : L2(R, E0) → Hs;g
cone(R, E)

for all η ∈ Rq and those λ1 ∈ Rl\{0} where (2.35) is invertible. In applications this
is a fairly mild condition which is connected with the property (also a requirement
in the abstract approch) that within the calculus there is an asymptotic summation
of symbols (or operators) when the involved orders µ and weights ν tend to −∞.
In order to simplify notation we assume Bs;0(η, λ) to be costructed (according to
Definition 2.20) first for s ≥ 0, where for s = 0 we simply take the identity; then we
set Bs;0(η, λ) = Op(fs;0)(η, λ) for s < 0, and finally Bs;g(η, λ) := 〈r〉gBs;0(η, λ)
for arbitrary s, g ∈ R.

Remark 2.21. The space Hs;g
cone(R, E) is independent of the specific η1, λ1 and also

of the choice of the order reducing family (2.1) that is involved in Bs;g (more
precisely, (2.1) may be replaced by an equivalent family).
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Theorem 2.22. For every a(r, ρ, η) ∈ Sµ;ν(R × R; E , Ẽ ; H)cone the operator

Opr(a)(η) : S(R, E∞) → S(R, Ẽ∞)

extends to a continuous mapping

Op(a)(η) : Hs;g
cone(R, E) → Hs−µ;g−ν

cone (R, Ẽ)

for every s, g ∈ R and every fixed η ∈ H.

Proof. First observe that we have

Hs;g
cone(R, E) = 〈r〉−gHs;0

cone(R, E).

Similarly as in the proof of Theorem 2.8 it suffices to consider the case g = 0, ν = 0.
It is clear that for |λ1| sufficiently large we get norms

Hs;0
cone(R, E) ∋ u→ ‖Bs;0(η, λ1)u‖L2(R,E0)

on the space Hs;0
cone(R, E) which are equivalent for every two fixed η = η1 or η2 in

H. Then we can write

‖Op(a)(η)u‖
H

s−µ;0
cone (R,eE) ∼ ‖Bs−µ;0(η, λ1)Op(a)(η)u‖L2(R,E0)

= ‖Bs−µ;0(η, λ1)Op(a)(η)B−s;0(η, λ1)Bs;0(η, λ1)u‖L2(R,E0)

≤ c‖Bs;0(η, λ1)u‖L2(R,E0) ∼ c‖u‖
H

s;0
cone(R,E),

where c := ‖Bs−µ;0(η, λ1)Op(a)(η)B−s;0(η, λ1)‖L(L2(R,E0),L2(R, eE0)) is finite. In

fact, the operator under the latter norm is equal to

Op
(
[r]−s+µps−µ(r, ρ, η, λ1)#a(r, ρ, η)#[r]sp−s(r, ρ, η, λ1)

)
;

by Corollary 2.19 the corresponding symbol belongs to S0;0(R × R; E , Ẽ ,H)cone,
and we can apply Theorem 2.8.

Theorem 2.23. There are continuous embeddings

Hs′;g′

cone (R, E) →֒ Hs;g
cone(R, E) (2.36)

for all s′ ≥ s, g′ ≥ g that are compact when s′ > s, g′ > g, and if the scale E has

the compact embedding property.

Proof. For u ∈ S(R, E∞) we can write

‖Bs;g(η, λ1)u‖L2(R,E0) = ‖Bs;g(η, λ1)B−s′;−g′(η, λ1)Bs
′;g′(η, λ1)‖L2(R,E0)

≤ c‖Bs
′;g′(η, λ1)‖L2(R,E0)
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for c = ‖Bs;g(η, λ1)B−s′;−g′(η, λ1)‖L(L2(R,E0),L2(R,E0)). By virtue of Theorem 2.16
we have

Bs;g(η, λ1)B−s′;−g′(η, λ1) = Op(h)(η, λ1)

for some h(r, ρ, η, λ) ∈ Ss−s
′;g−g′(R × R; E , E ; H)cone. Since the latter space is

contained in Ss−s
′;0(R×R; E , E ; H)cone (see Proposition 2.6 (i)) the operator Op(h)

in continuous in L2(R, E0) by Theorem 2.8. This implies c < ∞, and hence we
have a continuous embedding (2.36) for s′ ≥ s, g′ ≥ g. The compactness for s′ >
s, g′ > g follows from the fact that the embedding can also be interpreted as the
composition of operators

B−s;−g(Bs;gB−s′;−g′)Bs
′;g′

(always depending on (η, λ1)), where the operator

Bs;g(η, λ1)B−s′ ;−g′(η, λ1) = Op(h)(η, λ1) : L2(R, E0) → L2(R, E0)

is compact, since the weight and the order of the symbol h are strictly negative,
and h takes values in compact operators E0 → Es

′−s →֒ E0 (to be proved by
similar arguments as in [34, Theorem 1.3.61]).

2.3 Ellipticity in the exit calculus

In this section we assume that the scales E and Ẽ have the compact embedding
property.

Definition 2.24. An element

a(r, ρ, η) ∈ Sµ;ν(R × R; E , Ẽ ; H)cone

is said to be elliptic with parameter η ∈ Rq \ {0}, if there is an element

p(r, ρ, η) ∈ S−µ;−ν(R × R; Ẽ , E ; H)cone

such that

1 − p(r, ρ, η)a(r, ρ, η) =: c(r, ρ, η) ∈ S−1;−1(R × R; E , E ; H)cone,

1 − a(r, ρ, η)p(r, ρ, η) =: c̃(r, ρ, η) ∈ S−1;−1(R × R; Ẽ , Ẽ ; H)cone.

Remark 2.25. The conditions in Definition 2.24 imply that

a(r, ρ, η) : Es → Es−µ

is a family of Fredholm operators for all s ∈ R, (r, ρ, η) ∈ R × R × H because the
remainders c, c̃ are pointwise compact, since they consist of families of continuous
operators Es → Es+1 and Ẽs → Ẽs+1, respectively, for all s.
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Theorem 2.26. Let A(η) = Opr(a)(η), and let

a(r, ρ, η) ∈ Sµ;ν(R × R; E , Ẽ ; H)cone

be elliptic. Then A(η) induces a family of Fredholm operators

A(η) : Hs;g
cone(R, E) → Hs−µ;g−ν

cone (R, Ẽ)

for every s ∈ R and η ∈ H.

Proof. Let us set P (η) = Opr(p)(η). Then according to Theorem 2.16 and Remark
2.17 we have

1 − P (η)A(η) = Op(c0)(η)

for a symbol c0(r, ρ, η) that is equal to c(r, ρ, η) mod S−1;−1(R × R; E , E ; H)cone.
Similarly as in the proof of Theorem 2.23 it follows that Op(c0)(η) is a family of
compact operators in the space Hs;g

cone(R, E), s ∈ R. Analogously we obtain that

1 − A(η)P (η) = Op(c̃0)(η) for a symbol c̃0(r, ρ, η) ∈ S−1;−1(R × R; Ẽ , Ẽ ; H)cone is

compact in the space Hs−µ;g−µ
cone (R, Ẽ), s ∈ R. This gives us the Fredholm property

of A(η).

Remark 2.27. There are other properties of elliptic operators, analogously as in
the standard context on a closed C∞ manifold, such as independence of kernel
and cokernel (as the kernel of the formal adjoint) on s and g; those are finite-
dimensional subspaces of S(R, E∞) and S(R, E∗∞), respectively.

Let us finally note that in the higher corner calculus (to be elaborated else-
where) the present operators are localised near r = ∞ and glued together with
Mellin operators in a neighbourhood of r = 0. Together with weighted spaces
Hs,γ(R+, E), defined in an analogous manner as Hs,γ(X∧) (see the formula (1.20)),
the analogues of the spaces (1.28) then are defined by

Ks,γ;g(R+, E) = ωHs,γ(R+, E) + (1 − ω)Hs;g
cone(R, E)|R+

for some cut-off function ω on the half-axis.
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