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Abstract

The ellipticity of boundary value problems on a smooth manifold with
boundary relies on a two-component principal symbolic structure (σψ, σ∂),
consisting of interior and boundary symbols. In the case of a smooth edge
on manifolds with boundary we have a third symbolic component, namely
the edge symbol σ∧, referring to extra conditions on the edge, analogously as
boundary conditions. Apart from such conditions ‘in integral form’ there may
exist singular trace conditions, investigated in [6] on ‘closed’ manifolds with
edge. Here we concentrate on the phenomena in combination with boundary
conditions and edge problem.
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Introduction

We study boundary value problems on a manifold M with smooth edge Y and
boundary in the framework of a calculus of pseudo-differential operators with a
principal symbolic hierarchy σ = (σψ, σ∂ , σ∧), with interior, boundary, and edge
symbolic components, respectively. Such so-called edge algebras are developed in
different contexts, first on ‘closed’ manifolds with edge, (in this case without σ∂),
see [10], [2] and also on manifold with boundary, see [3], [8]. In such calculi the
edge contributes extra trace and potential operators, which is a similar effect as
in boundary value problems without the transmission property at the boundary.
In contrast to the case of operators with the transmission property, see the work
of Boutet de Monvel [1], the violated transmission property causes regularity of
solutions to elliptic equations in weighted Sobolev spaces instead of standard
ones. Thus, in general, there cannot exist local trace conditions, say, of Dirichlet
or Neumann type. The trace operators are non-local, i.e., of integral form (if they
exist at all for an elliptic operator). Recently there was found a way also to apply
analogues of local conditions in the edge case, see the paper [6] when the manifold
with edge is closed (see also [11, Section 3.2.4]).

In the present paper we investigate the case with a smooth edge on the boundary.
At the same time we establish a new version of edge calculus. To illustrate the idea
let us recall on how boundary conditions in the case of standard boundary value
problems are organised, for simplicity, on Schwartz spaces S(R+)(= S(R)|R+

)
on the inner normal R+ to the boundary. Local trace operators have the form
T : S(R+) → C,

T1u := Bu|r=0, B :=
N∑

j=0

bj∂
j
r , (0.1)

for certain coefficients bj and some N . The pseudo-differential calculus of boundary
value problems with the transmission property generates also trace operators in
integral form, namely,

T0u =
∫ ∞

0

g(r)u(r)dr (0.2)

for some g ∈ S(R+) or combinations of (0.1) and (0.2) of the form Tu =∫∞
0

g(r)Bu(r)dr. Operators (0.1) require the existence of derivatives of u up to
the boundary such that the restriction makes sense. If such a property is not guar-
anteed as in the case of violated transmission property where weighted spaces (for
instance r−pS(R+) for some p ∈ C) replace the ones with smoothness up to r = 0,
then we have analogues of trace operators (0.2) for suitable functions g such that
the integral makes sense. In the calculus itself such operators are employed as
the values of operator-valued symbols along the boundary; the associated pseudo-
differential operators are just the trace operators on the manifold with boundary.
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Those map functions inside to functions on the boundary. The solutions u(r) to
elliptic equations have asymptotics of the form

u(r) ∼
∑

j∈N

mj∑

k=0

cjkr−pj logkr

as r → 0, for certain pj ∈ C, Re pj → −∞ as j →∞ (for simplicity at the moment
we formulate things again on the half-axis). Then, instead of (0.1) we can try to
pose trace conditions of the form

T2u =
N∑

j=0

mj∑

k=0

djkcjk(u) (0.3)

for some coefficients djk (the coefficients cjk = cjk(u) are uniquely determined by
u). It is clear that T2 is meaningless on weighted spaces in general, but on subspaces
of functions with asymptotics of some length N this makes sense. This is roughly
the idea of treating a part of the asymptotics as the singular one, say, for all j such
that Re pj > 1

2−γ for some weight γ ∈ R, while other possible contributions to the
asymptotics, i.e., for Re p < 1

2 − γ (below called regular) are embedded in spaces
of weight γ and not individually distinguished by the trace operators that only
exist in this ‘weight region’ in integral form. It is clear that trace operator (0.1) are
a special case of (0.3). Analogously as in Boutet de Monvel’s calculus we speak
about singular trace operators. If these considerations concern a manifold with
edge rather than with boundary we have to replace R+ by the non-trivial model
cone X∆ = (R+ ×X)/{0} ×X) of local wedges. The base X is a C∞ manifold,
either closed compact, or with boundary. The latter is our case here, and the task
is to combine the operator structures on X with regular trace operators at ∂X
with singular trace operators with respect to the edge. This is essentially what we
do in this paper. In Chapter 1 we establish the tools on operators in the calculus
over X, organised in parameter-dependent form. Then we briefly formulate the
elements of the regular edge calculus of boundary value problems in weighted
spaces, with trace operators of integral form. In Chapter 2 we study singular trace
operators with respect to the edge, and also singular Green operators, analogues of
contributions to Green’s functions in boundary value problems. Everything refers
to the case of X with boundary. We finally formulate the global edge algebra, and
study ellipticity and parametrices within our calculus.
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1 Operators on a manifold with edge and bound-
ary

1.1 Edge-degenerate families of boundary value problems

A simplest example of a manifold with edge and boundary is a wedge M := X∆×Ω,
where X is an interval on the unit circle S1, X∆ := {x̃ ∈ R2 : x̃ = 0 or x̃

|x̃| ∈
X, for x̃ 6= 0}, and Ω ⊆ Rq an open set, the edge. More generally, we can
form a wedge X∆ × Ω for any compact C∞ manifold X with boundary; here
X∆ = (R+ ×X)/({0} ×X) is the cone with base X, defined as a quotient space
where {0} × X represents the tip v. Setting X∧ := R+ × X ∼= X∆ \ {v} we
have a splitting of variables (r, x, y) in X∧ × Ω. Any other admitted splitting is
associated with the given one by a diffeomorphism R+ ×X × Ω → R+ ×X × Ω
that is the restriction of a diffeomorphism R×X×Ω → R×X×Ω to R+×X×Ω
(in the sense of C∞ manifolds with boundary) which induces a diffeomorphism
{0} × X × Ω → {0} × X × Ω representing at the same time an isomorphism
between X-bundles over Ω. Together with X we often consider the double 2X
which is a smooth closed manifold, obtained by gluing together two copies X±
of X along the common boundary ∂X (we then identify X+ with X). Then our
wedge M := X∆×Ω is embedded in 2M := (2X)∆×Ω and the (closed) stretched
wedge M = R+ ×X × Ω in 2M = R+ × 2X × Ω. There is a canonical continuous
map 2M→ 2M induced by the projection R+× 2X → (2X)∆ and the identity on
Ω. The space 2M is a smooth manifold with boundary {0} × 2X × Ω which has
the structure of a (in this case trivial) 2X- bundle over the edge Ω. Similar con-
structions and observations make sense on an arbitrary manifold M with smooth
edge Y and boundary. In this case Y has a neighbourhood in M which is a locally
trivial X∆-bundle over Y for a smooth compact manifold X with boundary. We
then also have an associated R+×X-bundle over Y ; this gives rise to the stretched
manifold M belonging M . Similarly as before we have the doubles 2M and 2M ,
respectively, where 2M is a C∞ manifold with boundary, and ∂(2M) has the
structure of a 2X-bundle over Y . The ‘half’ M of 2M has certain corners; however,
since we can always pass to embedded objects in the respective double manifolds,
all our constructions make sense in an invariant way also in the case with boundary.

By Diffν(U) for a smooth C∞ manifold U with boundary we denote the space of
all differential operators on U of order ν ∈ N (with smooth coefficients up to the
boundary). Let Diffµ

deg(M) denote the subspace of all A ∈ Diffµ(M \ Y ) that are
close to Y in the variables (r, x, y) ∈ X∧ × Ω of the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)α
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with coefficients ajα ∈ C∞(R+,Diffµ−(j+|α|)(X)). Such operators will be called
edge-degenerate.

The idea of the edge algebra from [1] of boundary value problems (BVP) is
to establish an operator algebra that contains Diffµ

deg(M) together with the
parametrices of elliptic elements. Since M \ Y is a smooth manifold with bound-
ary ∂(M \ Y ) (of course non-compact when Y 6= ∅) such a program extends the
pseudo-differential algebra of BVP with the transmission property at the boundary.

Let us prepare our considerations by a few notions from the calculus of BVP of
that kind, see also [12] or [5]. We now formulate operators on compact X with
boundary. By Bµ,d(X) for µ ∈ Z, d ∈ N, we denote the set of all operators

A := (Aij)i,j=1,2 : C∞(X)⊕ C∞(∂X) → C∞(X)⊕ C∞(∂X) (1.1)

of the form
A = diag(r+P e+, 0) + (Gij)i,j=1,2 (1.2)

where P is a classical pseudo-differential operator on 2X of order µ with the
transmission property at ∂X. Here e+ is the operator of extension from intX+ by
0 to X−, and r+ the operator of restriction to intX+. The operator G = (Gij)i,j=1,2

belongs to Bµ,d
G (X) and is defined as follows.

Let us first recall some notation. For any open C∞ manifold Ω we have Lµ
(cl)(Ω),

the space of (classical or non-classical) pseudo-differential operators of order
µ ∈ R, based on local amplitude functions a(x, ξ) of Hörmander’s class Sµ

1,0 and
L−∞(Ω) ∼= C∞(Ω × Ω). We need here various operator-valued variants, referring
to Hilbert spaces H with group action κ = {κλ}λ∈R+ . By that we understand a
group of isomorphisms κλ : H → H such that κλκρ = κλρ for all λ, ρ ∈ R, where
λ → κλh defines a continuous map R+ → H for every h ∈ H. Now if (H,κ) and
(H̃, κ̃) are two Hilbert spaces with group action, U ⊆ Rp open, the space

Sµ(U × Rq;H, H̃) (1.3)

is defined to be the set of all a(x′, ξ′) ∈ C∞(U × Rq,L(H, H̃)) such that

sup〈ξ′〉−µ+|β| ‖ κ̃−1
〈ξ′〉{Dα

x′D
β
ξ′a(x′, ξ′)}κ〈ξ′〉 ‖L(H,H̃) (1.4)

is finite, where sup is taken over all x′ ∈ K, ξ′ ∈ Rq, for every K ⊂⊂ U , α ∈ Np,
β ∈ Nq. A similar definition makes sense when one (or both) spaces are replaced
by a Fréchet space E with group action κ, i.e., E = lim

←−j∈N
Ej for Hilbert spaces

Ej continuously embedded in E0, and κ|Ej group actions in Ej in the former
sense, for all j ∈ N.

A symbol a(x′, ξ′) is called classical if there is a sequence of a(µ−j)(x′, ξ′) ∈
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C∞(U × (Rq \ {0});H, H̃), j ∈ N, with homogeneity in the sense a(µ−j)(x′, λξ′) =
λµ−jκ̃λa(µ−j)(x′, ξ′)κ−1

λ for all λ ∈ R+, such that a− χ
∑N

j=0 a(µ−j) ∈ Sµ−(N+1)

for every N ∈ N, with χ being any excision function in ξ′ ∈ Rq.

Applying this to the case H = L2(R+), H̃ := 〈t〉−sHs(R+) where Hs(R) is
the Sobolev space of smoothness s ∈ R on the t-axis R and Hs(R+) = Hs(R)|R+ ,
and (κλu)(t) = λ

1
2 u(λt), λ ∈ R+, both in L2(R+) and 〈t〉−sHs(R+), we obtain

the symbol space
Sµ

cl(U × Rq;L2(R+),S(R+))

as the projective limit of those spaces over s ∈ N. More generally, we can form

Sµ
cl(U × Rq;L2(R+)⊕ Ck,S(R+)⊕ Cl) (1.5)

of l×k-block matrices where the group actions on Ck and Cl are taken as identity
for all λ ∈ R. For simplicity set k = l = 1 (in general Ck and Cl have the meaning
of fibres of some vector bundles over the boundary). Here and in the sequel we
assume U ⊆ Rq for q = dim ∂X. Observe that the space of lower right corners
in (1.5) for k = l = 1 coincides with Sµ

cl(U × Rq) (classical scalar symbols). An
operator function g(x′, ξ′) ∈ C∞(U × Rq,L(L2(R+) ⊕ C,S(R+) ⊕ C) is called a
Green symbol of order µ ∈ R and type 0 if

g(x′, ξ′) = diag(1, 〈ξ′〉 1
2 )f(x′, ξ′)diag(1, 〈ξ′〉− 1

2 ) (1.6)

for some f(x′, ξ′) in (1.5) such that also f∗(x′, ξ′) (the pointwise formal adjoint)
belongs to (1.5). More generally,

g(x′, ξ′) = g0(x′, ξ′) +
d∑

j=1

gj(x′, ξ′)diag(∂j
t , 0)

is called a Green symbol of order µ and type d ∈ N if gj(x′, ξ′) is Green symbol
of order µ− j and type 0.

A (global) smoothing operator C = (Cij)i,j=1,2 of the class B−∞,d(X) is an
operator of the form

C = C0 +
d∑

k=1

Ckdiag(Dk, 0) (1.7)

where D is a first order differential operator with smooth coefficients on X that
is close to ∂X a differentiation along a vector field normal to the boundary, and
the operators Ck, 0 ≤ k ≤ d, are 2× 2 matrices of integral operators with kernels
that are C∞ in the variables on X×X, X×∂X, ∂X×X, and ∂X×∂X, respectively.

Now Bµ,d
G (X) is defined to be the set of all operators G = (Gij)i,j=1,2 that

have the form C plus a finite sum of operators ϕGϕ̃, where G = (χ−1)∗Opx′(g) for
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a chart χ : V → U ×R+ from a neighbourhood V on X intersecting the boundary,
U ⊆ Rq open, q = dim∂X, with a Green symbol g(x′, ξ′) of order µ and type d,
and ϕ, ϕ̃ ∈ C∞0 (V ). Here Opx′(g) = F−1

ξ′→x′gFx′→ξ′ means the pseudo-differential
operator with the Fourier transform s in x′ with an amplitute function g (such a
notation will be used later on in other variants, as well).

We thus obtain altogether the operator space Bµ,d(X), see the formula (1.2). It is
known that every A ∈ Bµ,d(X) induces continuous operators

A : Hs(intX)⊕Hs− 1
2 (∂X) → Hs−µ(intX)⊕Hs− 1

2−µ(∂X). (1.8)

The only change in the definition of Bµ,d(X) for non-compact X is to replace
the former finite sum of operators ϕGϕ̃ by a locally finite sum. Instead of (1.8)
we then obtain continuity between the respective comp/loc -variants of Sobolev
spaces. There is a straightforward extension of Bµ,d to parameter-dependent
operators, i.e., to the space Bµ,d(X;Rl), with λ ∈ Rl as parameter. We simply
replace the former P ∈ Lµ

cl(2X) by P (λ) ∈ Lµ
cl(2X;Rl) (those operators rely

on local amplitude functions a(x, ξ, λ) with (ξ, λ) ∈ Rn+l treated as a convari-
able, and L−∞(X;Rl) = S(Rl, L−∞(X))). Moreover, η in (1.6) is replaced by
(η, λ) ∈ Rn−1+l and B−∞,d(X) by B−∞,d(X;Rl) := S(Rl,B−∞,d(X)). Here we
tacitly use canonical Fréchet topologies in the respective spaces.

A family of operators r−µp(r, y, ρ, η), µ ∈ Z, is called edge-degenerate if p
has the form p(r, y, ρ, η) = p̃(r, y, rρ, rη) for some

p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω,B−∞,d(X;R1+q
ρ̃,η̃ )).

1.2 The regular edge calculus

In order to develop the idea of singular trace and Green operators we need some
details on the (regular) edge calculus of BVP on a (not necessarily compact) man-
ifold M with edge Y and boundary, based on edge -degenerate families (see, for
instance [5] or [3]). The structure will be similar as (1.1) and (1.2). We form
operators

A = (Aij)i,j=1,2 :

C∞0 (M \ Y )
⊕

C∞0 (∂(M \ Y ))
⊕

C∞0 (Y )

→

C∞(M \ Y )
⊕

C∞(∂(M \ Y ))
⊕

C∞(Y )

, (1.9)
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where A11 :
C∞0 (M \ Y )

⊕
C∞0 (∂(M \ Y ))

→
C∞(M \ Y )

⊕
C∞(∂(M \ Y ))

contains elements P ∈

Bµ,d(M \ Y ). From r−µp by a certain operator convention we obtain P in such a
way that the operator admits a continuous extension to weighted spaces. The full
block matrix is given as

A = diag(P + M, 0) + G, G = (Gij)i,j=1,2 (1.10)

for a so-called smoothing Mellin operator M and a matrix G Green operators
of the edge calculus. We define P and M first on a wedge neighbourhood V of
a point y ∈ Y , locally represented by V = X∆ × Ω with its stretched version
V = R+ × X × Ω 3 (r, x, y). Let Mµ,d

O (X;Rl) denote the space of all h(z, λ) ∈
A(C,Bµ,d(X;Rl)) (where A(U,E), U ⊆ C open, is the space of all holomorphic
functions in U with values in a Fréchet space E) such that

h(β + iρ, λ) ∈ Bµ,d(X;R1+ρ
ρ,λ )

for every β ∈ R, uniformly in compact β−intervals. Moreover, given a closed set
R ⊂ C such that R∩{c ≤ Re z ≤ c′} is compact for every c ≤ c′, by M−∞,d

R (X) we
denote the subspace of all f ∈ A(C \ R,B−∞,d(X)) such that for any R-excision
function χ (i.e., χ ∈ C∞(C) with χ(z) = 0 for dist (z,R) < ε0, χ(z) = 1 for
dist (z, R) > ε1 for some 0 < ε0 < ε1) we have

χf(β + iρ) ∈ B−∞,d(X;Rρ)

for every β ∈ R, uniformly in compact β-intervals. The meaning of spaces
M−∞,d

R (X) for a continuous asymptotic type R is analogous as that in [12, Section
2.2.4], here in the variant of BVP and B−∞,d(X)-valued operator functions, see
also [5, Section 2.1.5]. Operator functions

h(r, y, z, λ) ∈ C∞(R+ × Ω,Mµ,d
O (X;Rl))

occur as symbols of pseudo-differential operators on R+, based on the Mellin trans-
form Mu(z) =

∫∞
0

rz−1u(r)dr. Set Γβ := {z ∈ C : Re z = β} and

opγ
M (f)(y, λ)u(r) =

∫∫ (
r′

r

)−( 1
2−γ+iρ)

f(r, r′, z, y, λ)u(r′)
dr′

r′
d̄ρ (1.11)

for some γ ∈ R, interpreted as a weight, f(r, r′, z, y, λ) ∈ C∞(R+ × R+ ×
Ω,Bµ,d(X; Γ 1

2
×Rl)), where ρ = Imz on Γ 1

2−γ is interpreted as a component of the
parameter (ρ, λ). The operator P in (1.10) is defined as an element of Bµ,d(M \Y )
that is locally near Y in the variables (r, x, y) ∈ X∧ × Ω of the form

P = Opy(a)
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where a(y, η) is a symbol in Sµ(Ω×Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) between spaces
Ks,γ to be defined below. The precise form of a(y, η) is as follows:

a(y, η) = σr−µ{ωηopγ−n
2

M (h)(y, η)ω̃η + χηOpr(p)(y, η)χ̃η}σ̃ + b(y, η) (1.12)

for p(r, y, ρ, η) := p̃(r, y, rρ, rη) where p̃(r, y, rρ, rη) ∈ C∞(R+×Ω,Bµ,d(X;R1+q
ρ̃,η̃ )),

moreover, h(r, y, z, η) := h̃(r, y, z, rη) where h̃(r, y, z, η̃) ∈ C∞(R+ ×
Ω,Mµ,d

O (X;Rq
η̃)) has the property

opγ−n
2

M (h)(y, η) = Opr(p)(y, η) mod C∞(Ω,Bµ,d(X∧;Rq)). (1.13)

(It is known that for any given p such an h exists, see [12]). Moreover, ω, ω̃, σ, σ̃,
are cut-off functions (i.e., functions in C∞0 (R+) that are equal to 1 near r = 0),
χ, χ̃ are excision functions, (i.e., elements of C∞(R+) that are equal to 1 for large
r and vanish near zero) where ω + χ = 1, and ω ≺ ω̃, χ ≺ χ̃ (e.g., ω ≺ ω̃ means
that ω̃ ≡ 1 on suppω), and ϕη(r) := ϕ(r[η]) for any ϕ ∈ C∞(R+) and any fixed
function η → [η] in C∞(Rq) that is strictly positive and |η| = [η] for |η| ≥ const.
The operator family b(y, η) is defined by

b(y, η) = ϕopr(B)(y, η)ϕ̃

for some B(r, y, ρ, η) ∈ C∞(R+ × Ω,Bµ,d(X,R1+q)) and ϕ, ϕ̃ ∈ C∞0 (R+). The
operator M in (1.10) is a smoothing Mellin operator (not necessarily compact
between the weighted spaces), locally near Y , defined as a finite linear combination
of operators Opy(m) for operator-valued symbols

m(y, η) = r−µ+jωηopγjα−n
2

M (fjα)(y)ηαω̃η,

j = 0, ..., k, with k ∈ N defining a weight interval Θ = (−(k + 1), 0] (see also
the role of Θ in the discussion of asymptotics below), where the ingredients
are as follows: α ∈ Nq, |α| ≤ j, γjα ∈ R, γ − j ≤ γjα ≤ γ for all j, α,
fjα(y) ∈ C∞(Ω,M−∞,d

Rjα
(X)), where Rjα ∩ Γn+1

2 −γjα
= ∅.

In the edge calculus of boundary value problems instead of the spaces in
(1.9) we refer to weighted spaces. Those spaces are very important in the se-
quel. So we recall a few definitions. First we have weighted Sobolev spaces
Hs,γ(X∧), on the infinite cone, already employed by Kondratyev [7], in the
case of a closed compact C∞ manifold X. This space for s ∈ N, γ ∈ R can be
defined to be the set of all u(r, x) ∈ rγ−n

2 L2(R+ ×X)drdx, n = dimX, such that
(r∂r)kDα

x u ∈ rγ−n
2 L2(R+ ×X) for all k + |α| ≤ s and every Dα

x ∈ Diff|α|(X). For
−s ∈ N we obtain the definition by duality via the H0,0(X∧)-scalar product, and
for real s by (complex) interpolation. Moreover, we set

Ks,γ(X∧) := ωHs,γ(X∧) + (1− ω)Hs
cone(X

∧),
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for some cut-off function ω(r), where Hs
cone is defined to be the subspace of all

u(r, x) ∈ Hs
loc(R×X)|R+×X such that for any coordinate neighbourhood U on X

and a diffeomorphism χ : U → U1, U1 ⊆ Sn open, and for every ϕ ∈ C∞0 (U1) the
function

(1− ω(r))ϕ(x)u(r, χ−1(x))

belongs to Hs(R1+n), with (r, x) ∈ R1+n \ {0} being interpreted as polar coordi-
nates in R1+n. Moreover, we set

Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧)

for any g ∈ R.

We fix a Hilbert space scalar product in Ks,γ;g(X∧) and identify K0,0;0(X∧)
with r−

n
2 L2(R+×X). The space Ks,γ;g(X∧) can be endowed with a group action

κg := {κg
λ}λ∈R+ ,

κg
λu(r, x) := λ

n+1
2 +gu(λr, x).

Let us set Θ = (ϑ, 0], −∞ ≤ ϑ < 0, and form the Fréchet spaces

Ks,γ;g
Θ (X∧) := lim

←−j∈N
Ks,γ−ϑ−(1+j)−1;g(X∧)

and Sγ
Θ(X∧) := lim

←−k∈N
Kk,γ;k(X∧). The interval Θ measures flatness of a distri-

bution with respect to the weight γ. It is also interesting to formulate non-trivial
asymptotics rather than flatness. By that we mean, say, for finite ϑ, that an ele-
ment u ∈ Ks,γ;g has a decomposition

u(r, x) = using(r, x) + uflat(r, x). (1.14)

Here uflat ∈ Ks,γ;g
Θ , and using is a singular term with, for instance, discrete asymp-

totics, i.e.,

using(r, x) = ω(r)
N∑

j=0

mj∑

k=0

cjk(x)r−pj logkr (1.15)

for certain pj ∈ C, Re pj < n+1
2 − γ, mj ∈ N, coefficients cjk ∈ C∞(X) and

some cut-off function ω. If we fix the sequence P = {(pj ,mj)}j=0,...,N we speak
about a discrete asymptotic type. This gives us a Fréchet subspace Ks,γ;g

P (X∧) of
Ks,γ;g(X∧), defined to be the set of all distributions (1.14) with using and uflat as
just described. For purposes below we also define the space

Sγ
P (X∧) = lim

←−j∈N
Kk,γ;k

P (X∧)

with the Fréchet topology of the projective limit. It is clear that the group action
κg on Ks,γ;g(X∧) induces group actions on the spaces Ks,γ;g

P (X∧) and SP (X∧).
This allows us to generalise the spaces of symbols (1.5) to

Sµ
cl(U × Rq;Ks,γ;g(X∧)⊕ Ck,Sγ−µ

P (X∧)⊕ Cl),
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for any open set U ⊆ Rq that corresponds to a chart on our edge Y . In this way
we will obtain an analogue of Green, trace and potential symbols explained by the
formula (1.6). The order of trace and potential symbols will be interpreted here
in a new way, compared with [10]. Before we do that we generalise once again
the notion of discrete asymptotics by admitting so-called continuous asymptotics
(similarly as before in our Mellin symbol spaces M−∞,d

R (X)). The main reason
is that discrete asymptotic types in the edge calculus may depend on the edge
variable y with a very irregular behaviour of the pattern of pj ∈ C and mj ∈ N
under varying y.

The idea is to describe asymptotics in terms of analytic functionals in the
complex plane of the Mellin covariable. In the sequel we freely employ notation
from this context, see [4] , [11] or [5, Section 2.3]. Let K ⊂ C be a compact set
and C ∈ C \K a (say, smooth) compact curve counterclockwise surrounding K,
with dist(C, K) < ε for some ε > 0, such that the winding number of C with
respect to every z ∈ K is equal to 1 (such a C always exists, see [9]). If U ⊆ C is
an open set containing an ε-neighbourhood of K, for every f ∈ A(U \K) we can
form a linear continuous functional ζ : A(U) → C by

〈ζ, h〉 :=
1

2πi

∫

C

f(z)h(z)dz,

h ∈ A(U). A similar construction makes sense for f ∈ A(U \ K, E) where
E is any Fréchet space. In this case we obtain ζ : A(U) → E. Observe that
when K = πCP =

⋃N
j=0{pj} and f is a meromorphic C∞(X)-valued function

with poles at the points pj of multiplicity mj + 1, then ω(r)〈ζ, r−z〉 is just of
the form (1.15). This is the background of the idea of continuous asymptotics.
Let A′(K, E) denote the space of all E-valued analytic functionals, carried by
the compact set K ⊂ C. We say that a function u(r, x) ∈ Ks,γ;g(X∧) has
continuous asymptotics of type P (with P being represented by a closed set,
P ⊂ {Re z < n+1

2 − γ}, such that P ∩ {c ≤ Re z ≤ c′} is compact for every
c ≤ c′) if for every β ∈ (ϑ, 0) there is a compact subset Kβ ⊆ P and an element
ζβ ∈ A′(Kβ , C∞(X)), such that u(r, x) = ω(r)〈ζβ , r−z〉 mod Ks,γ+β;g(X∧).
Clearly only P ∩ {Re z > n+1

2 − γ + ϑ} affects the asymptotics which is controlled
in the weight strip {n+1

2 − γ + ϑ < Re z < n+1
2 − γ}, since ζ ∈ A′(K, C∞(X))

for K ⊂ {Re z ≤ n+1
2 − γ + ϑ} entails ω(r)〈ζ, r−z〉 ∈ K∞,γ;g

Θ (X∧). Similarly as
before we assume that Θ is finite (the case of an infinite weight interval can be
considered as well, for simplicity we do not discuss the details).

The space Ks,γ;g
P (X∧) of all functions with continuous asymptotics of type

P is a Fréchet space. Similarly as before we form the spaces Sγ
P (X∧). Analogous

notions make sense for ∂X instead of X. We then obtain the spaces

Ks,γ(X∧) := Ks,γ(X∧)⊕Ks− 1
2 ,γ− 1

2 ((∂X)∧) (1.16)
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and subspaces

Ks,γ
P (X∧) := Ks,γ

P (X∧)⊕Ks− 1
2 ,γ− 1

2
P ′ ((∂X)∧)

of (discrete or continuous) asymptotics of type P . Here, for simiplicity, on the left
hand side we write P for both components (we could distinguish between P for X∧

and P ′ for (∂X)∧); however, since there are always asymptotic types with larger
carriers who cover both without loss of generality we can put P = P ′). Moreover,

we form Sγ
P (X∧) := Sγ

P (X∧) ⊕ Sγ− 1
2

P (X∧). On the spaces (1.16) or the various
subspaces we have the group action

κλ := diag(κλ,κ′λ)

where (κλu)(r, x) = λ
n+1

2 u(λr, x), (κ′λu)(r, x′) = λ
n
2 u(λr, x′) for λ ∈ R+.

2 Calculus with singular asymptotic types

2.1 Singular trace and Green symbols

In the regular edge calculus of Section 1.2 we have fixed a reference weight line
Γn+1

2 −γ ⊂ C and formulated asymptotic information on weighted distributions
in term of a behaviour of their Mellin transforms on the left of that line. Now
we admit asymptotic types carried on the right of that weight line. Although the
spaces with asymptotics themselves are as before, in our notation we distinguish
between the regular part of asymptotics on the left and the so-called singular part
on the right of the reference weight line; the operators of the calculus treat those
parts in a different manner. Our constructions are analogous to [6]; however, here
we introduce more general asymptotic types, also in the case without boundary.
A singular asymptotic type will be a finite sequence

S = {(pj ,mj)}j=0,...,N

with pj ∈ C, mj ∈ N and πCS = {p0, ..., pN} ⊂ {n+1
2 − γ < Re z < n+1

2 − (γ − σ)}
for some σ > 0. Let ω(r) be a fixed cut-off function, and set

E(X∧)S :=
{ N∑

j=0

mj∑

k=0

ω(r)cjk(x)r−pj logk r : cjk ∈ C∞(X)⊕C∞(∂X) for all j, k
}
.

(2.1)
Observe that E(X∧)S ⊂ K∞,γ−σ(X∧) and E(X∧)S ∩Ks,γ(X∧) = 0 for every s ∈
R. The space E(X∧)S is Fréchet in a natural way, namely, through the isomorphism

E(X∧)S
∼= (C∞(X)⊕ C∞(∂X))L (2.2)
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for L =
∑N

j=0(mj + 1). We now define

Ks,γ(X∧)S := Ks,γ(X∧)⊕ E(X∧)S (2.3)

in the Fréchet topology of the direct sum. (Clearly, (2.3) is independent of the
choice of ω.) More generally, we have Ks,γ;g(X∧)S := 〈r〉−gKs,γ(X∧)S for any
weight g ∈ R at infinity, and subspaces Ks,γ;g

P (X∧)S := 〈r〉−gKs,γ
P (X∧)S with

(continuous) asymptotics of type P on the left of the weight line. For purposes
below we set

Sγ
P (X∧)S := lim

←−k∈N
Kk,γ;k

P (X∧)S .

Let
bS : Ks,γ(X∧)S → S(X∧)S (2.4)

denote the canonical projection along Ks,γ(X∧). Observe that (2.4) is completely
determined by the map K−∞,γ(X∧) ⊕ E(X∧)S → E(X∧)S . Below we employ
parameter-dependent projections

p1,S(η) := κ[η]bSκ−1
[η] , p0,S(η) := 1− p1,S(η).

Definition 2.1.1. An element

t1(y, η) ∈
⋂

s∈R
Sν

cl(Ω× Rq;Ks,γ(X∧)S ,C)κ

is said to be a singular trace symbol of order ν with respect to the asymptotic type
S (and of type d ∈ N ) if t1(y, η) vanishes on Ks,γ(X∧) for all (y, η) ∈ Ω×Rq and
if it only depends on the coefficients

cjk(x) := (cjk,1(x), cjk,2(x)) ∈ C∞(X)⊕ C∞(∂X)

of the singular asymptotics via the action of a function djk(y, η) ∈ C∞(Ω ×
Rq,B−∞,d

21,22 (X)). Here B−∞,d
21,22 (X)) is the subspace of all C ∈ B−∞,d(X), C =

(Cij)i,j=1,2, such that C11 = C12 = 0, and the action of (C21, C22) on (cjk,1, cjk,2)
is of the form

d∑

l=0

∫

X

dl
jk,1(y, η, x)Dlcjk,1(x)dx +

∫

∂X

djk,2(y, η, x′)cjk,2(x′)dx′

for certain dl
jk,1 ∈ C∞(Ω × Rq, C∞(X)), djk,2 ∈ C∞(Ω × Rq, C∞(∂X)), and a

differential operator D as in (1.7).

Given a meromorphic function v in the half-plane Re z > β for some real β, for a
pole p of multiplicity m + 1, we set

Bp,kv :=
1

2πi

∫

|z−p|<ε

(z − p)kv(z)dz,

0 ≤ k ≤ m. Here ε > 0 is so small that |z − p| < ε does not contain other poles of
v.
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Proposition 2.1.2. Every function

t(y, η) ∈
⋂

s∈R
C∞(Ω× Rq,L(Ks,γ(X∧)S ,C)) (2.5)

that vanishes on Ks,γ(X∧) and such that the values of t(y, η) depend on the coef-
ficients cjk involved in E(X∧)S via mappings djk(y, η) as in Definition 2.1.1 has
a representation of the form

t(y, η) =
N∑

j=0

mj∑

k=0

djk(y, η) ◦Bpj ,k ◦Mω1 (2.6)

where ω1 is any cut-off function and M the Mellin transform, conversely (2.6)
represents an element of (2.5).

Proof. If we have a function (2.5) with the assumed properties then its values are
completely determined by its values on (2.2), and can be reproduced by

u → (Bpj ,k ◦Mω1u)0≤j≤N,0≤k≤mj
,

composed with the functions djk(y, η). Conversely, a function (2.6) belonging to
(2.5) vanishes on Ks,γ(X∧) and only depends on the coefficients cjk as described.

Remark 2.1.3. (i) The space of singular trace symbols of order −∞ associated
with the singular asymptotic type S consist of all t(y, η) of the form (2.5)
where the coefficients djk(y, η) depend on η as Schwartz functions;

(ii) the homogeneous components of a singular trace symbol of order ν can be
represented analogously as the right hand side of (2.5), now with coefficents
djk(y, η) that are homogeneous in η 6= 0 of corresponding orders.

This can be proved in a similar manner as Proposition 2.6. Analogously as the
case without boundary, see [6], we can show that when t(y, η) is a function on
Ω× (Rq \ {0}) with values in L(Ks,γ(X∧)S ,C), vanishing on Ks,γ(X∧), then it is
smooth exactly when its composition from the right with κ−1

[η] is smooth.

By a trace symbol of order ν of the local edge calculus on the wedge X∧ × Ω
referring to the singular asymptotic type S we understand an element of
Sν

cl(Ω× Rq;Ks,γ(X∧)S ,C) that has a representation

t(y, η) = t0(y, η)p0,S(η) + t1(y, η)

where t0(y, η) is a trace symbol in the regular set-up (see [5, Section 4.2.3]),
referring to the weight γ and some weight interval Θ, and t1(y, η) a singular trace



2 CALCULUS WITH SINGULAR ASYMPTOTIC TYPES 15

symbol.

The edge calculus admits different choices of weighted analogues of Sobolev
spaces. In general, if H is a Hilbert space with group action κ (cf. the def-
inition in Section 1.1) we have the space Ws(Rq,H) as the completion of
S(Rq,H) with respect to the norm ‖〈η〉sκ〈η〉û(η)‖L2(Rq,H) (if necessary we write
Ws(Rq,H)κ, since there are different possiblities to choose κ, and those may
affect the space). Let us consider the space Ks,γ;g(X∧) = 〈r〉−gKs,γ(X∧)
with the group action (κg

λu)(r, x) = λ
n+1

2 +gu(λr, x), λ ∈ R+. Then we
obtain Ws(Rq,Ks,γ;g(X∧))κg for every g ∈ R. Analogously, we proceed
with Ks− 1

2 ,γ− 1
2 ;g((∂X)∧) = 〈r〉gKs− 1

2 ,γ− 1
2 ((∂X)∧) where the group action is

v(r, x′) → λ
n
2 +gv(λr, x′) = (κ′,gλ v)(r, x′). This gives us spaces

Ws− 1
2 (Rq,Ks− 1

2 ,γ− 1
2 ;g((∂X)∧))κ′,g ,

and we form Ws(Rq,Ks,γ;g(X∧))κg ⊕Ws− 1
2 (Rq,Ks− 1

2 ,γ− 1
2 ;g((∂X)∧))κ′,g also de-

noted by Ws(Rq,Ks,γ;g(X∧)) for s, γ, g ∈ R. Especially for g = 0 we omit g from
the notation. Analogously we have the spaces

Ws(Rq,Ks,γ;g
(P ) (X∧)S) (2.7)

where subscript (P ) again indicates regular edge asymptotics of type P (or no
asymptotics on the left of the reference weight line) and S singular asymptotics.

If M is a (say, compact) manifold with edge Y and boundary ∂M we apply
local decriptions by wedges X∧ × Rq and (∂X)∧ × Rq, respectively. Concerning
the transition maps we impose a mild extra condition, namely, that those are
independent of r for small r. Using the invariance of the above-mentioned edge
spaces (that are far from r = 0 the standard Sobolev spaces) we obtain global
spaces

Ws,γ;g(M) and Ws,γ;g
(P ) (M)S , (2.8)

respectively (for instance, Ws,γ;g(M) = Ws,γ;g(M) ⊕Ws− 1
2 ,γ− 1

2 ;g(∂M)). In the
case g = s− γ our spaces have a particularly natural behaviour, e.g., with respect
to the multiplicativity of weights (recall that the group action depends on g). For
g = s− γ we employ the notation

Hs,γ(M) and Hs,γ
(P )(M)S

rather than (2.8). For g = 0 we omit the corresponding upper subscripts at the
spaces (2.8).
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2.2 Global operators and ellipticity with singular trace con-
dition

In spaces and operators globally on a (compact) manifold M with boundary ∂M
and edge Y it is useful to associate global operators P0,S with the symbols p0,S(η)
defined in Section 2.1.

First note that the spaces (2.7) (for g = 0, and without subscript (P )) can
be written in the form

Ws(Rq,Ks,γ(X∧)S) = Ws(Rq,Ks,γ(X∧))⊕ Vs(Rq,ES(X∧))

for

Vs(Rq,ES(X∧)) = Fκ〈η〉FHs(Rq, ES(X∧))⊕Fκ′〈η〉FHs− 1
2 (Rq, ES((∂X)∧)).

Then Op(p0,S) is the canonical projection to Ws(Rq,Ks,γ(X∧)). Analogously
as in the case without boundary (see [6, Theorem 6.2]) we form an operator
P0,S ∈ L(Ws,γ(M)S) which is a projection to Ws,γ(M), applying the local ex-
pressions Op(p0,S), combined with pull backs under charts to local wedges and
some partition of untiy on M . There are different choices of such operators, but
the difference is and a singular Green operator of order −1 that maps to functions
of infinite flatness at the edge (first locally and then in the sense of our global
definition below). A smoothing operator (of type d ∈ N along the smooth part of
∂M) associated with asymptotic types S and T and with weight data (γ, γ − µ)
is an operator

C = C0

(
P0,S 0

0 1

)
+

(
C11 0
C21 0

)
:

Ws,γ(M)S

⊕
Hs(Y )

→
W∞,γ−µ(M)T

⊕
H∞(Y )

which is continuous for all s ∈ R, s > d− 1
2 , where P0,S is a projection of the above

mentioned kind, and C0 is a of an analogous structure as smoothing operator from
the regular edge calculus of type d with continuous asymptotics close to Y (see
[5], here mapping to edge spaces with singular asymptotics of type T and regular
asymptotics of type P , see also [6]) while C11 and C21 vanish on Ws,γ(M), and
there is a continuous asymptotic type P such that C11 =

∑d
j=0 C11,jdiag(Dj , 0)

where
C11,j : Ws,γ(M) → W∞,γ−µ

P (M)T

for an operator D analogously as in (1.7), and C21 =
∑d

j=0 C21,jdiag(Dj , 0), C21,j :
Ws,γ(M) → H∞(Y ), for s > d − 1

2 . A Green operator on M of order ν ∈ R and
type d ∈ N, associated with singular asymptotic types S and T , is an operator of
the form G = G1+C where C is smoothing as just described while G1 is a finite sum
of 3×3 block matrix operators defined by Op(g) together with localising factors by
a partition of unity and pulled back to the manifold, where g ∈ Rν,d

G (Ω×Rq, (γ, γ−
µ))S,T , Ω ⊆ Rq.
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Definition 2.2.1. By Yµ,d(M, (γ, γ − µ))S,T we denote the space of all operators
of the form

A =
(

AP0,S 0
0 0

)
+ G

where G is a Green operator of order µ and type d, associated with the singular
asymptotic types S, T , and A is an operator in the regular edge calculus on M of
order µ and type d, both associated with the weight data (γ, γ−µ) (and continuous
asymptotics on the left of the reference weight lines).

Applying the general continuity properties of pseudo-differential operators with
operato-valued symbols we obtain that every A ∈ Yµ,d(M, (γ, γ − µ))S,T induces
continuous operators

Ws,γ(M)S

⊕
Hs(Y )

→
Ws−µ,γ−µ(M)T

⊕
Hs−µ(Y )

for s > d − 1
2 . Operators A ∈ Yµ,d(M, (γ, γ − µ))S,T have a principal symbolic

structure with three components, namely,

σ(A) = (σψ(A), σ∂(A), σ∧(A))

where σψ(A) ∈ C∞(T ∗(M \Y )\0) is the standard homogeneous principal symbol
of the upper left corner belonging to Lµ

cl(int(M \ Y )), moreover, σ∂(A) is the
homogeneous principal boundary symbol of the (2 × 2) upper left corner of A
belonging to Bµ,d(M \ Y ), and σ∧(A) is the homogeneous principal edge symbol,
namely

σ∧(A) = diag(σ∧(A)σ∧(P0,S), 0) + σ∧(G)

where σ∧(A) is the edge symbol of A in the sense of the regular edge calculus
of BVP, moreover, σ∧(P0,S) is locally defined by the above-mentioned operator
functions p0,S , and σ∧(G) comes from the principal homogeneous components of
the classical symbols in (y, η) involved in G. Definition 2.2.1 has a straightforward
extension to the case of operators between distributional sections of vector bundles
on M , ∂M , and Y , respectively. Assuming, for simplicity, the bundles over M to be
trivial and of fibre dimension 1, we have corresponding pairs of bundles (G−, G+)
over ∂M \Y and (J−, J+) over Y . In this case the boundary symbol is a family of
operators

σ∂(A) : Hs(R+)⊕G−,m′ → Hs−µ(R+)⊕G+,m′ , (2.9)

s > d− 1
2 , parametrised by the point of T ∗(∂M \ Y ) \ 0, where G±,m′ is the fibre

of G± over a point m′ ∈ ∂M \ Y . Moreover, the edge symbol represents a family
of continuous operators

σ∧(A)(y, η) : Ks,γ(X∧)S ⊕ J−,y → Ks−µ,γ−µ(X∧)T ⊕ J+,y (2.10)
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s > d− 1
2 , parametrised by points in T ∗Y \ 0, with J±,y being the fibre of J± over

y ∈ Y . The notation Ks,γ(X∧)S is now to be interpreted in the sense of spaces
with the respective bundles in the second components.

Theorem 2.2.2. Let A ∈ Yµ,d(M, (γ−ν, γ−µ−ν))R,T , B ∈ Yν,e(M, (γ, γ−ν))S,R

be operators in our edge operator spaces (where the involved bundles in the middle
fit together). Then we have

AB ∈ Yµ+ν,h(M, (γ, γ − (µ + ν)))S,T

for h = max((d + ν)+, c), with ρ+ = max(ρ, 0), and

σψ(AB) = σψ(A)σψ(B), σ∂(AB) = σ∂(A)σ∂(B), σ∧(AB) = σ∧(A)σ∧(B).
(2.11)

Proof. The details are voluminous but of a relatively simple structure. The proof
essentially consists of a combination of arguments from the standard pseudo-
differential calculus over the open manifold (M \Y )int which gives us the symbolic
rule for σψ, the calculus of pseudo-differential boundary value problems over the
smooth manifol M \Y with boundary with the symbolic rule for σ∂ , and the edge
calculus in the variant of local model cones with boundary which gives us the
symbolic rule for σ∧. Those elements are well known, see, for instance, [5] or [3]
for σ∂ and σ∧. The new aspects concern a neighbourhood of the edge Y where
the operators are locally described by standard pseudo-differential operators in
Rq, here with 3× 3 block matrix valued amplitude functions taking values in the
cone calculus of BVP over X∧ with singular trace and Green operators. These
amplitude functions are operator-valued symbols of a similar structure as (1.3),
with H, H̃ being replaced by the spaces in (2.9). The symbolic estimates are of the
kind (1.4), here with (y, η) instead of (x′, ξ′). Such pseudo- differential operators
can be composed within the corresponding calculus as is known in abstract
terms from [11] (see also [3, Section 1.2]). The specific novelty in our context is
that the compositions preserve the individual structure of the involved symbols,
namely, to be families of pseudo-differential boundary problems on X∧ with
singular trace etc. entries. The latter ingredients are hidden in Green operators
(apart from smoothing operators) and given in terms of classical symbols. Their
pointwise composition behaviour can be characterised in a similar manner as that
of operators in the cone algebra on X∧, modified by extra entries in the block
matrices coming from the involved singular asymptotic types, see, analogously,
Definition 6.2.10 and Remark 6.2.11 in [3].

We now impose an additional condition on the singular asymptotic types S,
namely, to be represented by a sequence of triples S = {(pj ,mj , Lj)}j=0,...,N

with {(pj ,mj)}j=0,...,N as before but spaces Lj := Lj(X) ⊕ L′j(∂X) for
finite-dimensional subspaces Lj(X) ⊂ C∞(X), L′j(∂X) ⊂ C∞(∂X). We
form E(X∧)S similarly as (2.1), now for cjk ∈ Lj , 0 ≤ k ≤ mj , rather than
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cjk ∈ C∞(X) ⊕ C∞(∂X). In this way the space E(X)S is finite dimensioin.
Concerning other singular asymptotic types T, ..., we make an analogous assump-
tion. All notions and constructions from Section 2.1 on have a straightforward
modification; we employ them in the rest of this paper, without changing notation.

Definition 2.2.3. An operator A ∈ Yµ,d(M, (γ, γ − µ))S,T is called elliptic if
σψ(A) does not vanish on T ∗((M \ Y )int) \ 0, and, in the splitting of variables
(r, x, y) near Y ,

σ̃ψ(A)(r, x, y, ρ, ξ, η) = rµσψ(A)(r, x, y, r−1ρ, ξ, r−1η) 6= 0

for (ρ, ξ, η) 6= 0, up to r = 0, moreover, σ∂(A), is bijective as an operator function
(2.9) parametrised by the points of T ∗(∂(M\Y ))\0, and, in the splitting of variables
(r, x′, y) near Y

σ̃∂(A)(r, x′, y, ρ, ξ′, η) = rµσ∂(A)(r, x′, y, r−1ρ, ξ′, r−1η)

is bijective for (ρ, ξ′, η) 6= 0, up to r = 0, and finally σ∧(A) is bijective as an
operator function (2.10), parametrised by (y, η) ∈ T ∗Y \ 0.

To have a convenient notation, if the first (first plus second) condition of Definition
holds we call the operator A σψ-elliptic ((σψ, σ∂) -elliptic).

Theorem 2.2.4. An elliptic operator A ∈ Yµ,d(M, (γ, γ−µ))S,T has a parametrix
P ∈ Y−µ,(d−µ)+(M, (γ − µ, γ))T,S, i.e., PA − I and AP − I are smoothing in
the operator classes with singular asymptotic types S, S′ and T , T ′, respectively.
Moreover, A induces a Fredholm operator

A :
Ws,γ(M)S

⊕
Hs(Y, J−)

→
Ws−µ,γ−µ(M)T

⊕
Hs−µ(Y, J+)

for every s > max(d, µ) − 1
2 (similarly as in (2.10) the bundles G− and G+ are

included in the meaning of the spaces Ws,γ and Ws−µ,γ−µ, respectively).

Proof. Writing A as in Definition 2.2.3 the operator A in the upper left corner is
elliptic in Bµ,d(M \ Y ) on the (non-compact) C∞ manifold M \ Y with smooth
boundary ∂(M \ Y ). As such it has a parametrix in B−µ,(d−µ)+(M \ Y ). This will
be an ingredient of the parametrix of A itself, namely, the part near the edge Y ,
multiplied by a function that vanishes near Y . It remains to construct P close
to the edge and to add the result to the former one after a multiplication by a
cut-off function that is equal to 1 near Y .

Let us now make some concluding remarks. As noted in the introduction
certain typical effects can be read off from the case of operators on the half-
axis which is a part of the edge (or boundary) symbolic structure anyway. The
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possibility of posing boundary conditions of the form (0.1) in elliptic BVP with
transmission property is a result of knowing that solutions are of sufficiently
large Sobolev smoothness when we assume a corresponding smoothness of the
right hand sides. However, in BVP on a manifold with singularities we may
have singular solutions, as we easily see in the case of an equation Au = f for
A = r−µ

∑µ
j=0 aj(−r∂r)j , say, with constants aj . Writing A = r−µopM (h) for

h(z) =
∑

ajz
j , under the assumption h(z) 6= 0 on Γ 1

2
we obtain solutions in the

form of u(r) = opM (h−1)(rµf). If we take the space L2(R+) with the weight
γ = 0 as the reference space then u(r) acquires asymptotics from the poles of
the meromorphic function h−1M(rµf) on the left of the weight line Γ 1

2
. However,

if there are points p ∈ C, Re p > 1
2 , with h(p) = 0, then there are solutions not

belonging to L2(R+). Those p on the right of the reference weight line generate
functions with singular asymptotics. Those cause singular trace operators, apart
form regular ones referring to the left of the weight line. We see that the nature
of singular asymptotics depend on the individual operator. Thus, in order to pose
singular trace conditions in a concrete case we need to complete the non-bijectivity
points of conormal symbols explicity. This is a separate task for every concrete
operator and subject for separate papers. In [3] there are explicitly characterised
those points for a large variety of BVP, in fact mixed problems with the edge as
the interface where the boundary conditions have their jump.
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