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Abstract

We study the asymptotic regularity of solutions of Hartree-Fock equations for Coulomb sys-
tems. In order to deal with singular Coulomb potentials, Fock operators are discussed within the
calculus of pseudo-differential operators on conical manifolds. First, the non-self-consistent-field
case is considered which means that the functions that enter into the nonlinear terms are not
the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on
the functions that build up the Fock operator which guarantee ellipticity for the local part of
the Fock operator on the open stretched cone R+ × S2. This proves existence of a parametrix
with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that
the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a
fixed-point approach based on Cancès and Le Bris analysis of the level-shifting algorithm, we
show via another bootstrap argument, that the corresponding self-consistent-field solutions of
the Hartree-Fock equation have the same type of asymptotic regularity.
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1 Hartree-Fock equation on the open stretched cone

1.1 Outline of the Hartree-Fock model

The nonrelativistic Schrödinger equation within the Born-Oppenheimer approximation provides a
firm basis for electronic structure calculations in quantum chemistry. We are focusing on solutions
of the stationary Schrödinger equation

H Ψ (x1, x2, . . . , xN ) = E Ψ (x1, x2, . . . , xN ) , (1.1)

where the Hamiltonian for an N electron system

H =

N∑

i=1

(

−1

2
∆i −

K∑

k=1

Zk
|xi − Rk|

)

+
∑

i<j

1

|xi − xj|

includes Coulomb interactions between the electrons as well as external Coulomb potentials due
to the presence of nuclei with charge Zk at Rk ∈ R

3. Atomic units have been used throughout
the present work. The Hamiltonian does not contain spin-dependent interactions, like spin-orbit
coupling, therefore there is no immediate need to introduce spin degrees of freedom. Nevertheless it
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is convenient to express the wavefunction Ψ in terms of combined spatial and spin coordinates xi :=
(xi, χ) for i = 1, . . . , N , with xi ∈ R

3, χ ∈ {1/2,−1/2} in order to achieve a simple representation
of Fermi statistics. The latter can be formulated via Pauli’s principle which states that Ψ must be
an antisymmetric function with respect to the variables xi for i = 1, . . . , N .

Ab initio quantum chemistry deals with approximate models of the many-electron Schrödinger
equation (1.1) without referring to external experimental or computational data. A prime example
for such kind of approach is the Hartree-Fock (HF) model which can be considered as a constraint
variational formulation of the original many-electron problem. Within the HF model, the N -electron
wavefunction is approximated by a so-called Slater determinant

Φ = 1/
√

N ! det[φi(xj)]i,j=1,...,N with 〈φi|φj〉 = δi,j ,

which represents an ansatz to construct a many-electron wavefunction Φ, consistent with Pauli’s
principle, from a set of single-electron wavefunctions {φi}i=1,...,N . Here and in the following scalar
products 〈 | 〉 refer to the standard Hilbert space in quantum theory L2. By definition, the HF
energy is given by

EHF := inf
{
E[Φ] := 〈Φ|HΦ〉 : Φ Slater determinant, φi ∈ H1(R3 × {±1/2})

}
. (1.2)

From the work of Lieb, Simon and Lions [8, 9] it is known that a minimizer EHF = E[ΦHF] exists.
Furthermore they have shown that the functions φi are globally Lipschitz, actually smooth except
at the nuclei, and decay exponentially at infinity. The variational formulation of the HF method
leads to the nonlinear HF equation

hφi = εi φi, with φi ∈ H1(R3), (1.3)

which corresponds to an effective one-particle Schrödinger equation with Hamiltonian

h = −1

2
∆ −

K∑

k=1

Zk
|x − Rk|

+ VH + U , (1.4)

VH(x) = 2

N/2
∑

i=1

∫ |φi(y)|2
|x − y| dy (Hartree potential), (1.5)

Uu(x) = −
N/2
∑

i=1

∫
φi(x)φi(y)u(y)

|x − y| dy (exchange operator). (1.6)

In the following the Hamiltonian (1.4) is denoted as Fock operator. We restrict our discussion to
the closed shell HF equation for an even number N of electrons, where spin degrees of freedom are
not taken into account explicitly. Each spatial eigenfunction φi of the Fock operator belongs to two
eigenstates because of the electron spin. Therefore, the sums in the Hartree potential (1.5) and
exchange operator (1.6) run over the N/2 eigenfunctions with lowest eigenvalue εi.

With the emergence of powerful computers, the HF model became a workhorse of computational
chemists and countless applications have been reported in the literature. Furthermore the HF model
provides a convenient starting point for more sophisticated many-particle theories. We refer to the
monograph [6] for a state of the art discussion of these topics. Despite of its outstanding significance
for computational chemistry, there is still a lack of rigorous results concerning the approximation of
HF eigenfunctions. An attempt in this direction has been presented in Ref. [4] for tensor product
wavelets within the framework of best N -term approximation theory. Due to a lack of knowledge
concerning the asymptotic behaviour, it was however necessary to assume an asymptotic smoothness
property

|∂βxφi(x)| . |x − Rk|1−|β| for Ωk ∋ x 6= Rk and |β| ≥ 1 (1.7)
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for HF eigenfunctions in bounded neighbourhoods Ωk ⊂ R
3 of the nuclei. Here and in the following

we have used the standard short-hand notation for mixed partial derivatives

∂β :=
∂β1

∂xβ1

1

∂β2

∂xβ2

2

∂β3

∂xβ3

3

,

with absolute value of the multi-index |β| := β1 + β2 + β3. Furthermore, a . b means that a
is uniformly bounded by some constant multiple of b. A verification of assumption (1.7) within
the self-consistent solution scheme discussed below, cf. Proposition 1, is a simple byproduct of our
asymptotic analysis.

In order to study the asymptotic behaviour of eigenfunctions, we formally consider the underlying
R

3 as a manifold with conical singularities at the locations of the nuclei. This can be realized by
introducing charts with polar coordinates in possibly unbounded neighbourhoods of the nuclei.
We refer to Ref. [3] for further details concerning manifold with conical singularities. Our basic
motivation for this seemingly artificial construction are the singular parts of the Fock operator
which can be handled within this setting in a natural manner as it is demonstrated below. Since
such kind of construction can be always carried out for each nucleus separately, we restrict in the
following our discussion to a single nucleus. To be more specific we consider the HF equation on
the open stretched cone X∧ := R+ × X with X = S2. The quotient X△ := (R+ × S2)/(0 × S2)
corresponds to a manifold with conical point at the orgin which can be identified with R

3. For the
convenience of the reader and in order to keep the paper reasonably self-contained, we provide some
background material on the calculus of pseudo-differential operators on conical manifolds in Section
3.

1.2 Weighted Sobolev spaces with asymptotics on X
∧

For further reference, we recall some basic definitions of weighted Sobolev spaces on X∧, and refer
e.g. to Ref. [3] for a general exposition and to the monograph [10] for a comprehensive treatment
of the subject. It should be mentioned that for the convenience of the reader, we follow with our
notation closely Ref. [3]. The open stretched cone X∧ can be considered as a half space of the
infinite cylinder on which we introduce the standard Sobolev spaces

Hs
cone(X

∧) :=
{
u ∈ Hs

loc
(R × S2)|R+×S2 : (1 − ω)u ∈ Hs(R3)

}
, (1.8)

for any cut-off function ω, i.e. ω ≡ 1 near 0, ω ≡ 0 outside some neighbourhood of 0. Furthermore,
we introduce the weighted Sobolev spaces with s ∈ Z+ and γ ∈ R

Hs,γ(X∧) :=
{

u ∈ D′(X∧) : |x||α|∂αu ∈ |x|γ L2(R3) for all |α| ≤ s
}

. (1.9)

According to Remark 2.1.13 of Ref. [10], the definition (1.9) is equivalent to the original definition
using the Mellin transform. It is convenient to introduce the corresponding norm

‖u‖Hs,γ (X∧) :=
∑

|α|≤s

∥
∥
∥|x|−γ+|α|∂αu

∥
∥
∥
L2(R3)

.

Neither the Sobolev space (1.8) nor (1.9) is really appropriate for the infinite open stretched cone
X∧. Instead it is better to consider the combination

Ks,γ(X∧) := ωHs,γ(X∧) + (1 − ω)Hs
cone(X

∧), (1.10)

which provides the appropriate asymptotic behaviour in the limits |x| → 0 and |x| → ∞, respectively.
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Next we consider subspaces of Ks,γ(X∧) of certain asymptotic type in the vicinity of the tip of
the cone. For this it is convenient to introduce polar coordinates (r, φ, θ). These subspaces consist
of functions with asymptotic expansions

u(r, φ, θ) ∼
∑

j

mj∑

k=0

cjk(φ, θ)r−pj lnk r, (1.11)

where cjk belong to finite dimensional subspaces Lj ⊂ C∞(S2) and pj ∈ C are taken from a strip of
the complex plane, i.e.

pj ∈
{

z :
3

2
− γ + ϑ < ℜz <

3

2
− γ

}

The width and location of a strip are determined by it’s weight data (γ,Θ) with Θ = (ϑ, 0] and
−∞ ≤ ϑ < 0, where each substrip of finite width contains only a finite number of pj. An asymptotic
expansion (1.11) is completely characterized by the asymptotic type P := {(pj ,mj , Lj)}j∈Z+

. To-
gether, weight data (γ,Θ) and asymptotic type P define weighted Sobolev spaces with asymptotics

Ks,γ
P (X∧) :=

{

u ∈ Ks,γ(X∧) : u − ω
∑

j

mj∑

k=0

cjk(φ, θ)r−pj lnk r ∈ Ks,γ
Θ (X∧)

}

, (1.12)

where

Ks,γ
Θ (X∧) :=

⋂

ǫ>0

Ks,γ−ϑ−ǫ(X∧).

The sum in (1.12) is taken over those j such that ℜpj > 3
2 − γ + ϑ. Alternatively these spaces can

be considered as a direct sum of the spaces

Ks,γ
P (X∧) = EγP + Ks,γ

Θ (X∧) with EγP :=

{

ω
∑

j

mj∑

k=0

cjk(φ, θ)r−pj lnk r

}

. (1.13)

intersecting in {0}. Furthermore, we employ the asymptotic spaces

SγP (X∧) :=
{
u ∈ K∞,γ

P (X∧) : (1 − ω)u ∈ S(R, C∞(S2))|R+×S2

}
, (1.14)

with Schwartz class type of behaviour for exit r → ∞. The spaces (1.12) and (1.14) are Fréchet spaces
equipped with natural quasi-norms according to the decomposition (1.13), we refer to Refs. [3, 10]
for further datails.

2 Basic definitions and main theorems

The basic statement of the paper concerns the iterative solution of the HF equation (1.3) within a
function class of a certain asymptotic type P .

Definition 1. A function u is asymptotically well behaved if u ∈ SγP (X∧) for γ < 3
2 , asymptotic type

P = {(−j, 0, Lj)}j∈Z+
and associated weight data (γ,Θ) with Θ = (−∞, 0]. The finite dimensional

spaces Lj ⊂ C∞(S2) are given by Lj = span{Yl,m : l ≤ j}, where Yl,m denotes spherical harmonics
on S2.

Proposition 1. An asymptotically well behaved function u belongs to C∞(R+ × S2) and possesses
the asymptotic smoothness property (1.7).
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Proof. The function u can be written as

u(r, φ, θ) =
k∑

j=0

cj(φ, θ)rjω(r)

︸ ︷︷ ︸

∈C∞(R+×S2)

+Φk+1(r, φ, θ),

where the remainder Φk+1 belongs to Ks,δ(X∧) for δ < 5/2 + k and s ∈ R. For k sufficiently large,
ωΦk+1 ∈ Hs,s(R+ × S2) with s ∈ Z+, which according to (1.9) is equivalent to

∑

|α|≤s

∫

R3

|x|2|α|−2s|∂α(ωΦk+1)|2 dx < ∞.

This estimate together with (1.10) proves that Φk+1 belongs to Hs(R3). According to Sobolev’s
lemma, cf. Ref. [5], we have Hs(R3) →֒ Cm

B (R3) for m < s−2, where Cm
B ⊂ Cm denotes the space of

bounded mixed derivatives. Therefore, Φk+1 belongs to Cm
B (R3) for k > m − 1/2. The asymptotic

smoothness property (1.7) is an obvious consequence.

Remark 1. The product uv of two asymptotically well behaved function u, v is again asymptotically
well behaved.

Various iteration schemes for the HF equation have been reported in the literature. We just want
to mention the Roothaan, DIIS and level-shifting algorithms discussed in Ref. [1]. For the continous
HF equation (1.3) only the level-shifting algorithm has been proven to converge to a solution [2].
The problem under which conditions such a solution actually corresponds to the global minimum
of the original variational formulation (1.2) is still open. It can be only taken for granted that the
solution either represents a possibly local minimum or at least a saddle point of the variational
problem. The level-shifting algorithm follows the iterative scheme

· · · −→ {φ(n)
i }i=1,...,N/2 −→ h

(n)
shift

:= h(n) − bP(n) −→ {φ(n+1)
i }i=1,...,N/2 −→ · · · , (2.1)

where in each step, the N/2 lowest eigenfunctions φ
(n)
i of a shifted Fock operator h

(n−1)
shift

are selected

according to the aufbau principle in order to construct a new shifted Fock operator h
(n)
shift

. Here

the operator P(n) denotes an orthogonal projection on the space spanned by the eigenfunctions

{φ(n)
i }i=1,...,N/2. The convergence of this algorithm (up to extractions), for a sufficiently large pa-

rameter b, to a “self-consistent-field” solution of the HF equation (1.3) has been proven by Cancès
and Le Bris in Ref. [2]. In Theorem 11 of their paper, the convergence of the reduced one-particle
density matrix, as a Hilbert-Schmidt operator on H1(R3), has been demonstrated in the corre-
sponding operator norm. For simplicity, we assume in the following the absence of “accidental”
degeneracies within the N/2 lowest eigenvalues of the Fock operator, which means that in the case
of a degenerate eigenvalue, the corresponding eigenfunctions can be uniquely characterized by sym-
metry. In this case it is possible to assign a unique set of eigenfunctions to the reduced one-particle
density matrix. Otherwise it might happen that different subsequences converge to different sets
of eigenfunctions, cf. the proof of Theorem 7 in Ref. [2]. These sets, however, are equivalent up to
unitary transformations and give rise to the same Slater determinant.

The first theorem concerns the properties of the eigenfunctions φ
(n)
i in the intermediate steps of

the level-shifting algorithm.

Theorem 1. The eigenfunctions {φ(n+1)
i }i=1,...,N/2 of a shifted Fock operator h

(n)
shift

constructed from

a set {φ(n)
i }i=1,...,N/2 of asymptotically well behaved functions, are again asymptotically well behaved.
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Our central theorem is a consequence of Theorem 1 and the convergence property of the level-
shifting algorithm.

Theorem 2. The self-consistent-field solutions of the HF equation (1.3), obtained via the level-

shifting algorithm, are asymptotically well behaved provided that the initial guess {φ(0)
i }i=1,...,N/2

possesses this property.

Such an initial guess can be obtained e.g. from the linear part of the Fock operator discussed in
the next section.

2.1 Ellipticity of local Fock operator on an infinite cone

In order to prove Theorem 1, we have to show that the local part of the Fock operator constructed

from a set {φ(n)
i }i=1,...,N/2 of asymptotically well behaved functions belongs to the operator class

C2(X∧, g) for the weight data g = (γ, γ − 2,Θ), γ < 3/2 and Θ = (−∞, 0], cf. Def. 1, p. 258 of
Ref. [3], and is elliptic in the sense of Def. 6, p. 259 of Ref. [3]. We refer to Section 3.3 for a brief
discussion of this operator calculus.

First we consider the linear part of the Fock operator for a nucleus located at the origin

hlin = −1

2
∆ − Z

|x| + Vext,

where Vext corresponds to an external potential which belongs to C∞(R3) and satisfies asymptotic
estimates of the form |∂αVext| . (1 + |x|)−1−|α|. On an open stretched cone X∧ this operator can
be expressed in polar coordinates x → (r, θ, φ) as a Fuchs type differential operator (cf. Ref. [3],
p. 144f)

hlin =
1

r2

[

−1

2

(

−r
∂

∂r

)2

+
1

2

(

−r
∂

∂r

)

+
1

2
l2 − Zr + r2Vext

]

, (2.2)

where l2 corresponds to the total angular momentum operator on S2, cf. Ref. [12].

Proposition 2. The linear part of the Fock operator hlin belongs to C2(X∧, g) for weight data
g = (γ, γ − 2,Θ) with γ ∈ R and Θ = (−∞, 0]. Furthermore, the shifted operator hlin − ε for ε < 0
is elliptic in the sense of Def. 6, p. 259 of Ref. [3] for 3/2 − γ ∈ R \ Z. There exists a parametrix
Plin ∈ C−2(X∧, h) for h = (γ − 2, γ,Θ) and a corresponding Green operator Glin ∈ CG(X∧,m) for
m = (γ, γ,Θ) with

Plin(hlin − ε) = I + Glin

which provide continous maps

Plin : Ks,γ
P (X∧) −→ Ks+2,γ+2

Q (X∧) and Glin : Ks,γ(X∧) −→ SγQ(X∧). (2.3)

Proof. Since hlin is a second order differential operator of Fuchs type, the first property follows
immediately.

In order to prove ellipticity we have to check three different ellipticity conditions, cf. Section 3.2,
which have to be fulfilled by various symbols defined for the operator class C2(X∧, g).

(i) The homogeneous principal symbol is given by

σ2
ψ(hlin − ε) =

1

2r2

[

(rτ)2 +
1

sin(θ)2
ξ2
φ + ξ2

θ

]

It obviously satisfies the first two ellipticity conditions

σ2
ψ(hlin − ε)(r, φ, θ, τ, ξφ, ξθ) 6= 0 for all (r, φ, θ, τ, ξφ, ξθ) ∈ T ∗(R+ × S2) \ 0

r2σ2
ψ(hlin − ε)(r, φ, θ, r−1τ, ξφ, ξθ) 6= 0 for all (r, φ, θ, τ, ξφ, ξθ) ∈ T ∗(R+ × S2) \ 0.
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(ii) The conormal symbol, with z ∈ C, is given by

σ2
M (hlin − ε)(z) =

1

2

[
l2 − z2 + z

]
,

and represents a family of continous operators

σ2
M (hlin − ε)(z) : Hs(S2) → Hs−2(S2). (2.4)

It follows from the basic properties of the total angular momentum operator l2, cf. Ref. [12],
that the operator family (2.4) has a pure point spectrum with eigenfunctions Ylm ∈ H∞(S2)
and eigenvalues 1

2

(
l(l + 1) − z2 + z

)
, l ∈ Z+. The second ellipticity condition requires that

the operators (2.4) are isomorphisms for some s and all z ∈ Γ3/2−γ , where Γ3/2−γ is a straight
line through 3/2 − γ parallel to the imaginary axis. This condition is obviously satisfied for
s ∈ R and 3/2 − γ 6∈ Z.

(iii) The principal exit symbols, expressed in cartesian coordinates, are given by

σ0
e(hlin − ε) =

1

2

3∑

i=1

ξ2
i − ε > 0 for all (x, ξ) ∈ T ∗X∧, ε < 0

σ2,0
ψ,e(hlin − ε) =

1

2

3∑

i=1

ξ2
i > 0 for all (x, ξ) ∈ T ∗X∧ \ 0

and satisfy the third ellipticity condition.

It turns out that the Hartree potential VH can be attached to the linear part of the Fock operator
without affecting the assertions of Proposition 2. For this, we first prove two lemmas concerning
Coulomb convolutions on weighted Sobolev spaces with asymptotics.

Lemma 1. Suppose u ∈ SγP for some asymptotic type P and weight data (γ,Θ) with γ < 3/2,
Θ = (−∞, 0]. The convolution product ω(x) 1

|x| ∗ u, with arbitrary cut-off function ω, belongs to SγQ
for some asymptotic type Q.

Proof. Given an appropriate cut-off function η, with η(x) = 1 for x ∈ suppω, u can be written as
u = ηu + (1− η)u, where the lemma is obviously true for the second part of the decomposition. For
the first part, we use the partial wave expansion of the Coulomb potential

1

|x − y| =
∞∑

l=0

4π

2l + 1

rl<

rl+1
>

∑

m

Yl,m(x̂)Y ∗
l,m(ŷ), (2.5)

with r< := min{|x|, |y|}, r> := max{|x|, |y|}, and x̂ := x/|x|, in order to study the effect of the
convolution ∫

R3

1

|x − y|c(ŷ)|y|−p lnk |y|η(|y|) dy, (2.6)

on individual terms of the asymptotic expansion. For c(x̂) ∈ C∞(S2), the expansion in spherical
harmonics

c(x̂) =

∞∑

l=0

∑

m

cl,mYl,m(x̂)
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is absolutely convergent. Inserting the expansion (2.5) into the integral (2.6) we obtain

∞∑

l=0

4π

2l + 1

(
∑

m

cl,mYl,m(x̂)

)[

1

|x|l+1

∫ |x|

0
rl−p+2 lnk rdr + |x|l

∫ ∞

|x|
r1−l−p lnk rη(r)dr

]

,

where we assume |x| < ǫ. After some rearrangements, the integral (2.6) becomes

|x|2−pb0(x̂) + g0(x) for k = 0,

|x|2−p
k+1∑

j=0

bj(x̂) ln |x|j + gk(x) for k > 0

with

bj(x̂) =

∞∑

l=0

′ 4π

2l + 1
al,j

(
∑

m

cl,mYl,m(x̂)

)

for j < k + 1, (2.7)

bk+1(x̂) =
4π

3 − 2p
a2−p,k+1

(
∑

m

c2−p,mY2−p,m(x̂)

)

,

where the constants al,j satisfy the estimate |al,j| . l−1, and gk ∈ C∞(R3). The prime in (2.7)
indicates that the sum runs over all l except l = 2 − p.

Lemma 2. Suppose u ∈ SγP for some asymptotic type P and weight data (γ,Θ) with γ < 3/2,
Θ = (−∞, 0]. The convolution product 1

|x| ∗ u satisfies the asymptotic estimates

(1 − ω(x))

∣
∣
∣
∣
∂α

1

|x| ∗ u

∣
∣
∣
∣
. (1 + |x|)−1−|α| for all |α| ≥ 0.

Proof. Given an approriate cut-off function η, u can be written as u = ηu + (1 − η)u, where the
lemma is clearly true for the first term of the decomposition. We consider the expansion of (1− η)u
in spherical harmonics

(1 − η)u(x) =
∑

l

∑

m

Yl,m(x̂)ul,m(|x|).

Using the partial wave expansion of the Coulomb potential (2.5), the convolution product can be
written as

1

|x| ∗ (1 − η)u =
∑

l

4π

2l + 1

∑

m

Yl,m(x̂)vl,m(|x|)

with

vl,m(|x|) =
1

|x|l+1

∫ |x|

0
rl+2ul,m(r)dr + |x|l

∫ ∞

|x|
r1−lul,m(r)dr.

It is therefore sufficient to prove estimates |v(n)
l,m(|x|)| . (1 + |x|)−1−l−n for the n’th derivates v

(n)
l,m.

Because of (1−η)u ∈ S(R, C∞(S2))R+×S2, the second integral vanishes for |x| → ∞ faster than any

|x|−n for n ∈ Z+ and vl,m(|x|) . (1 + |x|)−l−1. For the same reason, the first derivative

v
(1)
l,m(|x|) = − l + 1

|x|l+2

∫ |x|

0
rl+2ul,m(r)dr + l|x|l−1

∫ ∞

|x|
r1−lul,m(r)dr.

satisfies the estimate
∣
∣
∣v

(1)
l,m(|x|)

∣
∣
∣ . (1 + |x|)−l−2. This argument can be continued to arbitrarily high

derivatives of vl,m.
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Lemma 3. The Hartree potential VH for a set {φi}i=1,N/2 of asymptotically well behaved functions

belongs to C∞(R+ × S2). Furthermore it satisfies the estimate

(1 − ω(x)) |∂αVH(x)| . (1 + |x|)−1−|α| for all |α| ≥ 0. (2.8)

Proof. This is an immediate consequence of Remark 1 and Lemmas 1, 2.

Lemma 4. Given a set {φi}i=1,N/2 of asymptotically well behaved functions. The corresponding
local part of the shifted Fock operator

hloc − ε := hlin + VH − bP − ε for ε < 0,

belongs to C2(X∧, g) and is elliptic, in the sense of Def. 6, p. 259 of Ref. [3], for weight data
g = (γ, γ − 2,Θ) with 3/2 − γ ∈ R \ Z, γ < 3/2 and Θ = (−∞, 0]. There exists a parametrix
Ploc ∈ C−2(X∧, h) for h = (γ − 2, γ,Θ) and a corresponding Green operator Gloc ∈ CG(X∧,m) for
m = (γ, γ,Θ) with

Ploc (hloc − ε) = I + Gloc,

which provide continous maps

Ploc : Ks,γ
P (X∧) −→ Ks+2,γ+2

Q (X∧) and Gloc : Ks,γ(X∧) −→ SγQ(X∧).

Proof. This is an immediate consequence of Proposition 2 and Lemma 3, where the latter ensures
that the exit part of the symbol belongs to S2,0(R3 × R

3), cf. Section 3.2. The existence of a
parametrix for elliptic operators has been proven e.g. in Theorem 8, p. 259 of Ref. [3].

2.2 Proof of Theorem 1

Proof. The shifted HF equation at the n’th iteration of the level-shifting algorithm (2.1) is given by

(

hlin + V
(n−1)
H + U (n−1) − bP(n−1)

)

φ
(n)
i = ε

(n)
i φ

(n)
i . (2.9)

For sufficiently large parameter b, N/2 negative eigenvalues ε
(n)
i are known to exist, cf. Ref. [2].

According to Lemma 4, we can separate the local part of the Fock operator and obtain

(

h
(n−1)
loc

− ε
(n)
i

)

φ
(n)
i = −U (n−1)φ

(n)
i , (2.10)

where the term in parenthesis corresponds to an elliptic operator in C2(X∧, g). Acting with the
parametrix Ploc on the left of (2.10) yields

φ
(n)
i = −PlocU (n−1)φ

(n)
i − Glocφ

(n)
i . (2.11)

With this equation at hand, we can perform a bootstrap argument for which we introduce a sequence
of weighted Sobolev spaces Kk,γ

Pk
(X∧), k = 1, 2, . . ., with weight data (γ, (γ − k − 1, 0]). Suppose

φ
(n)
i ∈ Kk,γ

Pk
(X∧), and let us further assume that U (n−1)φ

(n)
i belongs to Kk,γ

Pk
(X∧), it follows from

(2.11) that φ
(n)
i belongs to Kk+2,γ

Pk+2
(X∧).

From the work of Lieb, Simon and Lions [8, 9] it is known that the eigenfunctions φ
(n)
i are globally

Lipschitz and decay exponentially for r → ∞. According to the definitions (1.9) and (1.10), these
eigenfunctions, therefore, belong to K0,γ(X∧) for γ < 3/2. As a starting point for the bootstrap

argument we choose K0,0(X∧) ≡ L2(R3). It follows from (2.11) that φ
(n)
i belongs to K1,γ

P1
(X∧) if

9



U (n−1)φ
(n)
i belongs to K0,0(X∧). In order to deal with convolutions of the Coulomb potential, the

following estimate (cf. Ref. [7])

∣
∣
∣
∣

1

|x| ∗ (fg)

∣
∣
∣
∣
≤
∥
∥
∥
∥

f(·)
|x − ·|

∥
∥
∥
∥
L2(R3)

‖g‖L2R3) . ‖f‖H1(R3)‖g‖L2(R3) (2.12)

uniform in x, with f ∈ H1(R3), g ∈ L2(R3), turned out to be useful. From this estimate, and

φ
(n−1)
j ∈ H1(R3) (cf. proof of Proposition 1), we obtain the desired result

∥
∥
∥
∥
φ

(n−1)
j

1

|x| ∗
(

φ
(n−1)
j φ

(n)
i

)
∥
∥
∥
∥
K0,0(X∧)

.
∥
∥
∥φ

(n)
i

∥
∥
∥
K0,0(X∧)

∥
∥
∥φ

(n−1)
j

∥
∥
∥
H1(R3)

∥
∥
∥φ

(n−1)
j

∥
∥
∥
K0,0(X∧)

,

for the individual terms of U (n−1)φ
(n)
i .

In the next step we proceed to weighted Sobolev spaces with asymptotics, where it has to be

shown that U (n−1)φ
(n)
i belongs to Kk,γ

Pk
(X∧). Let us first point out that the products φ

(n)
i φ

(n−1)
j

with φ
(n)
i ∈ Kk,γ

Pk
(X∧) and φ

(n−1)
j ∈ SγP (X∧) belong to Kk,γ

Pk
(X∧) again. Here we assume that the

asymptotic type Pk has been chosen broad enough to comprise these products. Again, we consider
individual terms

φ
(n−1)
j

1

|x| ∗
(

φ
(n−1)
j φ

(n)
i

)

,

separately and perform the decomposition of φ
(n−1)
j = v

(n−1)
j +w

(n−1)
j and φ

(n)
i = v

(n)
i +w

(n)
i into its

components in EγPk
(X∧) and Kk,γ

Θk
(X∧), where we assume w.l.o.g. that v

(n−1)
j and v

(n)
i have compact

support within in a bounded neighbourhood of the origin Ω. Correspondingly, we decompose the
quadratic term

φ
(n−1)
j φ

(n)
i = vc + wc

with vc := v
(n−1)
j v

(n)
i ∈ K∞,γ

Pk
(X∧) and wc := v

(n−1)
j w

(n)
i + w

(n−1)
j v

(n)
i + w

(n−1)
j w

(n)
i ∈ Kk,γ

Θk
(X∧).

Then it follows from Lemmas 1 and 2 that
∥
∥
∥
∥
v
(n−1)
j

1

|x| ∗ vc

∥
∥
∥
∥
Kk,γ

Pk
(X∧)

< ∞.

The second and third combination

w
(n−1)
j

1

|x| ∗ vc, w
(n−1)
j

1

|x| ∗ wc,

are supposed to belong to Kk,γ
Θk

(X∧) which can be proven by analogous arguments. For the second
combination we introduce a cut-off function η with supp η ⊂ Ω according to (1.10) and consider first
the weighted Sobolev space Hk,k+1−ǫ(X∧) for 1 > ǫ > 0 where we get

∥
∥
∥
∥
ηw

(n−1)
j

1

|x| ∗ vc

∥
∥
∥
∥
Hk,k+1−ǫ(X∧)

.
∑

|α|≤k

∑

α1+α2=α

∥
∥
∥
∥
|x||α1|∂α1

1

|x| ∗ vc

∥
∥
∥
∥
L∞(Ω)

×
∥
∥
∥|x|−k−1+ǫ+|α2|∂α2

(

ηw
(n−1)
j

)∥
∥
∥
L2(Ω)

.
∥
∥
∥ηw

(n−1)
j

∥
∥
∥
Hk,k+1−ǫ(X∧)

< ∞.

The last step is a consequence of Lemma 1 which demonstrates boundedness of the factors in L∞

norm. A similar estimate can be obtained for the (1− η)(·) term in Hk(R3). The third combination
follows by similar estimates, except that the L∞ terms need special considerations. In order to keep
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the asymptotic behaviour of the convolution under control, we first split the Coulomb potential into
L2(R3) + L∞(R3) through the decomposition

1

|x| = Y(x) + W(x), with Y(x) :=
e−|x|

|x| and W(x) :=
1 − e−|x|

|x| . (2.13)

For the Yukawa part of the potential, we obtain, by applying Young’s inequality, the estimate

‖Y ∗ ∂α1wc‖L∞(Ω) ≤ ‖Y‖L2(R3) ‖∂α1wc‖L2(R3)

.
∥
∥
∥|x|−k−1+ǫ+|α1|∂α1 (η̃wc)

∥
∥
∥
L2(R3)

+ ‖∂α1 ((1 − η̃)wc)‖L2(R3)

. ‖wc‖Kk,k+1−ǫ(X∧) , (2.14)

where in the second last step wc has been split up according to (1.10) using an arbitrary cut-off
function η̃. Using another variant of Young’s inequality, the bounded part of the potential can be
estimated

‖W ∗ ∂α1wc‖L∞(Ω) ≤ ‖W‖L∞(R3) ‖∂α1wc‖L1(R3)

.
∥
∥
∥|x|−γ−k−1+ǫ+|α1|∂α1

(

v
(n−1)
j w

(n)
i + w

(n−1)
j v

(n)
i

)∥
∥
∥
L1(Ω)

+
∥
∥
∥∂α1

(

w
(n−1)
j w

(n)
i

)∥
∥
∥
L1(R3)

.
∥
∥
∥v

(n−1)
j

∥
∥
∥
Kk,γ

Pk
(X∧)

∥
∥
∥w

(n)
i

∥
∥
∥
Kk,k+1−ǫ(X∧)

+
∥
∥
∥w

(n−1)
j

∥
∥
∥
Kk,k+1−ǫ(X∧)

∥
∥
∥v

(n)
i

∥
∥
∥
Kk,γ

Pk
(X∧)

+
∥
∥
∥w

(n−1)
j

∥
∥
∥
Kk,k+1−ǫ(X∧)

∥
∥
∥w

(n)
i

∥
∥
∥
Kk,k+1−ǫ(X∧)

, (2.15)

where we assume −k − 1 + ǫ ≤ γ < 3/2.
It remains to consider the fourth combination

v
(n−1)
j

1

|x| ∗ wc, (2.16)

where we decompose the convolution term via a Taylor series

1

|x| ∗ wc =
∑

|β|≤k−1

cβ xβ + Wk, with cβ :=
1

β!

∫
∂βwc(y)

|y| dy

and formal residuum

Wk :=
1

|x| ∗ wc −
∑

|β|≤k−1

cβ xβ,

which makes sense because of (2.14), (2.15) and the compact supports of the functions v
(n−1)
j . For

the terms in the Taylor series we get
∥
∥
∥v

(n−1)
j xβ

∥
∥
∥
Kk,γ

Pk

< ∞ with |β| ≤ k − 1.

The derivatives of the residuum Wk can be estimated according to

|∂αWk| =

∣
∣
∣
∣
∣
∣

1

|x| ∗ ∂αwc −
∑

0≤|β|≤k−1−|α|

xβ

β!

∫
∂α+βwc(y)

|y| dy

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

|β|=k−|α|

xβ

β!

∫
∂α+βwc(y)

|tx − y| dy

∣
∣
∣
∣
∣
∣

with t ∈ [0, 1]

. |x|k−|α|
∑

|β|=k−|α|

(∥
∥
∥Y ∗ ∂α+βwc

∥
∥
∥
L∞(Ω)

+
∥
∥
∥W ∗ ∂α+βwc

∥
∥
∥
L∞(Ω)

)

, (2.17)
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using the integral representation for the remainder of the Taylor expansion together with (2.14) and
(2.15). As already mentioned above, the fourth combination (2.16) has compact support within a
bounded neighbourhood Ω of the origin. It is therefore sufficient to consider for the residuum the
space Hk,k+1−ǫ(X∧) where the estimate

∥
∥
∥v

(n−1)
j Wk

∥
∥
∥
Hk,k+1−ǫ(X∧)

.
∑

|α1|+|α2|≤k

∥
∥
∥|x|−k−1+ǫ+|α1|+|α2|∂α1v

(n−1)
j ∂α2Wk

∥
∥
∥
L2(Ω)

.
∑

|α1|+|α2|≤k

∥
∥
∥|x|−1+ǫ+|α1|∂α1v

(n−1)
j

∥
∥
∥
L2(Ω)

∥
∥
∥|x|−k+|α2|∂α2Wk

∥
∥
∥
L∞(Ω)

< ∞(2.18)

completes the proof that U (n−1)φ
(n)
i belongs to Kk,γ

Pk
(X∧).

After having shown that φ
(n)
i ∈ K∞,γ

P∞
(X∧), it follows immediately that φ

(n−1)
j φ

(n)
i belong to a

function space SγQ. Together with Lemmas 1 and 2 we can further conclude that U (n−1)φ
(n)
i belongs

to some SγQ. Using the canonical decomposition of the parametrix (cf. Ref. [3])

P = P ′ + P̃ + G̃ with P ′ := ηP0η̃ and P̃ := (1 − η)P1(1 − ˜̃η),

with cut-off functions η̃ ≡ 1 on supp η, η ≡ 1 on supp ˜̃η, where P1 corresponds to a pseudo-differential
operator on R

3 with symbol in S−2,0(R3 × R
3) (cf. Section 3.2), which maps S(R3) into S(R3), we

obtain from (2.11) that φ
(n)
i itself belongs to a function space SγQ.

It remains to specify the asymptotic type Q. This can be done by inserting the asymptotic
expansion of the eigenfunctions

φ
(n)
i = ω

∑

j∈Z+

mj∑

k=0




∑

l,m

cj,k,lmYlm



 r−pj lnk r + Φ (2.19)

into the shifted HF equation (2.9) and comparing different terms Ylm(φ, θ)r−pj lnk r. By definition,
we assume for k = mj that there exists a cj,mj ,lm 6= 0 for some l ≥ 0 and −l ≤ m ≤ l. The action
of the Laplacian on these terms in a neighbourhood of the origin is given by

1

r2

[(

−r
∂

∂r

)2

−
(

−r
∂

∂r

)

− l2

]

Ylmr−pj lnk r

= Ylmr−pj−2
[

(pj(pj − 1) − l(l + 1)) lnk r − k(2pj − 1) lnk−1 r + k(k − 1) lnk−2 r
]

. (2.20)

Furthermore we have to consider the action of local potentials which can be easily derived from
their asymptotic expansions

−Z

r
+ Vext + V

(n−1)
H − ε(n) ∼ −Z

r
+
∑

n∈Z+

(
n∑

l=0

∑

m

dn,lmYlm

)

rn, (2.21)

and of the nonlocal exchange and projection operators

U (n−1)Ylmr−pj lnk r ∼ Ylmr2−pj

(
k∑

s=0

ds lns r + δl,2−pj
dk+1 lnk+1 r

)

+ d∞rlYlm + · · · , (2.22)

P(n−1)Ylmr−pj lnk r ∼ Ylm
∑

l≤n

dnr
n (2.23)

which follow immediately from Definition 1 and the proof of Lemma 1.
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At first we want to consider the cases −pj 6∈ Z+. The proof proceeds in an inductive manner
starting from the interval 0 < −pj < 1. According to (2.20), the Laplacian maps

∆ : −pj ∈ (0, 1) −→ −pj − 2 ∈ (−2,−1).

These terms have no counterparts in (2.9) and must therefore satisfy the equation

pj(pj − 1) − l(l + 1) = 0 with l ∈ Z+, (2.24)

for the highest power mj of the logarithm. This leads to a contradiction because (2.24) has only
integer solutions. Proceeding to the next interval 1 < −pj < 2, the Laplacian (2.20) maps

∆ : −pj ∈ (1, 2) −→ −pj − 2 ∈ (−1, 0).

Possible counterterms originating from the asymptotic expansion of the local potentials (2.21)

r−1 : −pj ∈ (0, 1) 6−→ −pj − 1 ∈ (−1, 0)

cannot contribute because we have already shown that there exists no 0 < −pj < 1. Therefore
we obtain again a contradiction from (2.24). A similar argument can be applied to the interval
2 < −pj < 3, where

∆ : −pj ∈ (2, 3) −→ −pj − 2 ∈ (0, 1),

and possible counterterms from the local potentials (2.21)

r−1 : −pj ∈ (1, 2) 6−→ −pj − 1 ∈ (0, 1)

r0 : −pj ∈ (0, 1) 6−→ −pj ∈ (0, 1)

are again excluded because there exists no 0 < −pj 6= 1 < 2. The inductive arguments can be
extended to arbitrary intervals (n, n + 1) with n ∈ Z+ which proves that −pj ∈ Z+ for all j.

It remains to study the cases −pj ∈ Z+ with mj ≥ 0. Like in the first part of the proof, we
consider the action of the Laplacian on terms with p0 = 0 and continue in an inductive manner.
Suppose k = m0, the leading order term r−2 lnm0 r then yields c0,m0,lm = 0 for l 6= 0. For l = 0 and
m0 > 0, we obtain c0,m0,00 = 0 from the logarithmic term r−2 lnm0−1 r. This demonstrates that all
coefficients, except c0,0,00, must vanish. Furthermore, we observe that the asymptotic expansions
(2.21), (2.22) and (2.23) acting on c0,0,00Y00 contribute terms of the form

r−1Y00, and rnYlm with n ∈ Z+, l ≤ n (2.25)

The next terms in the series with −p1 = 1 can be treated in a similar manner. Suppose first
k = m1 > 0, then (2.20) in leading order r−1 lnm1 r yields c1,m1,lm = 0 for l 6= 1. From the
term r−1 lnm1−1 r, we obtain c1,m1,1m = 0 because no other terms from (2.25) contribute. The
possibly only nonvanishing coefficients are c1,0,00 (linked with c0,0,00r

−1Y00) and c1,0,1m. Again, we
observe that the asymptotic expansions (2.21), (2.22) and (2.23) acting on c1,0,00rY00 and c1,0,1mrY1m

contribute terms of the form

Y00, Y1m, and rn+1Ylm with n ∈ Z+, l ≤ n + 1. (2.26)

This line of arguments can be continued to arbitrary terms with −pj = j, where (2.20) with k =
mj > 0 in leading order rj−2 lnmj r yields cj,mj ,lm = 0 for l 6= j. As before, the next lower logarithmic

term rj−2 lnmj−1 r yields cj,mj ,jm = 0 because no other terms of this form are contained in (2.25),
(2.26), etc.. Therefore, we obtain mj = 0 and possibly nonvanishing coefficients cj,0,lm with l ≤ j
(coefficients with l < j are linked in leading order with correspoding terms from (2.25), (2.26), etc.).
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The terms cj,0,lmrjYlm couple with the asymptotic expansions (2.21), (2.22) and (2.23) to generate
terms of the form

rj−1Ylm with l ≤ j, and rn+jYlm with n ∈ Z+, l ≤ n + j.

These arguments demonstrate the absence of logarithmic terms in the expansion (2.19). Furthermore
our arguments show that for each j only a finite number of spherical harmonics with l ≤ −pj
contribute.

2.3 Proof of Theorem 2

Proof. In order to prove that the self-consistent-field solutions of the Hartree-Fock equation obtained
via the level-shifting algorithm are asymptotically well behaved, we proceed in two steps. First we
show via a bootstrap argument, similar to which we have used in the proof of Theorem 1, that these
solutions belong to K∞,γ

P (X∧) and restrict in the following the function space further to SγP (X∧).
The Fock operator of the n’th iteration splits up into

h(n−1) = hlin + V (n−1), with V (n−1) := V
(n−1)
H + U (n−1) − bP(n−1),

where the shifted linear part hlin − ε, with ε < 0, corresponds to an elliptic operator in C2(X∧, g).
According to Proposition 2, there exists a parametrix Plin and a corresponding Green operator
Glin. Application of the parametrix Plin to HF equations at successive iterations yields the following
equation

φ
(n)
i − φ

(m)
i = Plin

[(

V (m−1) − V (n−1)
)

φ
(m)
i − V (n−1)

(

φ
(n)
i − φ

(m)
i

)]

(2.27)

+
(

ε
(n)
i − ε

(m)
i

)

Plinφ
(n)
i +

(

ε
(m)
i − ε

)

Plin

(

φ
(n)
i − φ

(m)
i

)

− Glin

(

φ
(n)
i − φ

(m)
i

)

.

For the bootstrap argument we consider again a sequence of weighted Sobolev spaces Kk,γ
Pk

(X∧),

k = 1, 2, . . ., with weight data (γ, (γ − k − 1, 0]). Let us assume that the eigenfunctions φ
(n)
i form a

Cauchy sequence i.e.

lim
n,m→∞

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
Kk,γ

Pk
(X∧)

= 0

and

lim
n,m→∞

∥
∥
∥

(

V (m−1) − V (n−1)
)

φ
(m)
i − V (n−1)

(

φ
(n)
i − φ

(m)
i

)∥
∥
∥
Kk,γ

Pk
(X∧)

= 0. (2.28)

Given limn,m→∞ |ε(n)
i − ε

(m)
i | = 0, it follows immediately from (2.3) and (2.27) that

lim
n,m→∞

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
Kk+2,γ

Pk+2
(X∧)

= 0.

The bootstrap argument provides a series of Cauchy sequences

· · · =⇒ lim
n,m→∞

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
Kk,γ

Pk
(X∧)

= 0 =⇒ lim
n,m→∞

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
Kk+2,γ

Pk+2
(X∧)

= 0 =⇒ · · · ,

where convergence of a Cauchy sequence φ
(n)
i in the Frechet space Kk,γ

Pk
(X∧) implies strong conver-

gence s-limn→∞φ
(n)
i = φi ∈ Kk,γ

Pk
(X∧).
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It has been proven by Cancès and Le Bris, cf. Ref. [2], that the level-shifting algorithm (2.1)

generates a sequence of eigenvalues and eigenfunctions from which a subsequence ε
(n)
i , φ

(n)
i , can

be extracted that converges in R and H1(R3), respectively. Furthermore, the subsequence φ
(n−1)
i

converges in H1(R3) to the same limit, cf. our discussion of the level-shifting algorithm in Section
2. Our starting point is K0,0(X∧) which is equivalent to L2(R3). We consider the two terms in the
norm (2.28) separately. The second term is given explicitly by

V (n−1)
(

φ
(n)
i − φ

(m)
i

)

=

N/2
∑

j=1

[(

φ
(n)
i − φ

(m)
i

) 2

|x| ∗
∣
∣
∣φ

(n−1)
j

∣
∣
∣

2
(2.29)

−φ
(n−1)
j

1

|x| ∗
(

φ
(n−1)
j

(

φ
(n)
i − φ

(m)
i

))

− bφ
(n−1)
j

〈

φ
(n)
i − φ

(m)
i , φ

(n−1)
j

〉

L2(R3)

]

.

From (2.12), we obtain the following estimates for the individual terms

∥
∥
∥
∥

(

φ
(n)
i − φ

(m)
i

) 2

|x| ∗
∣
∣
∣φ

(n−1)
j

∣
∣
∣

2
∥
∥
∥
∥
L2(R3)

.
∥
∥
∥φ

(n−1)
j

∥
∥
∥
H1(R3)

∥
∥
∥φ

(n−1)
j

∥
∥
∥
L2(R3)

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
L2(R3)

∥
∥
∥
∥
φ

(n−1)
j

1

|x| ∗
(

φ
(n−1)
j

(

φ
(n)
i − φ

(m)
i

))
∥
∥
∥
∥
L2(R3)

.
∥
∥
∥φ

(n−1)
j

∥
∥
∥
H1(R3)

∥
∥
∥φ

(n−1)
j

∥
∥
∥
L2(R3)

∥
∥
∥φ

(n)
i − φ

(m)
i

∥
∥
∥
L2(R3)

.

A corresponding estimate for the projection term follows immediately from Schwarz’s inequality.
Similar arguments apply to the first term given by

(

V (m−1) − V (n−1)
)

φ
(m)
i =

N/2
∑

j=1

[

φ
(m)
i

2

|x| ∗
(∣
∣
∣φ

(m−1)
j

∣
∣
∣

2
−
∣
∣
∣φ

(n−1)
j

∣
∣
∣

2
)

(2.30)

−φ
(m−1)
j

1

|x| ∗
((

φ
(m−1)
j − φ

(n−1)
j

)

φ
(m)
i

)

+
(

φ
(n−1)
j − φ

(m−1)
j

) 1

|x| ∗
(

φ
(n−1)
j φ

(m)
i

)

− b
(

φ
(m−1)
j − φ

(n−1)
j

)〈

φ
(m)
i , φ

(m−1)
j

〉

L2(R3)
+ bφ

(n−1)
j

〈

φ
(m)
i , φ

(n−1)
j − φ

(m−1)
j

〉

L2(R3)

]

.

Again, from (2.12), we get estimates for the individual terms

∥
∥
∥
∥
φ

(m)
i

2

|x| ∗
(∣
∣
∣φ

(m−1)
j

∣
∣
∣

2
−
∣
∣
∣φ

(n−1)
j

∣
∣
∣

2
)∥
∥
∥
∥
L2(R3)

.
∥
∥
∥φ

(m)
i

∥
∥
∥
L2(R3)

∥
∥
∥φ

(m−1)
j − φ

(n−1)
j

∥
∥
∥
L2(R3)

×
(∥
∥
∥φ

(m−1)
j

∥
∥
∥
H1(R3)

+
∥
∥
∥φ

(n−1)
j

∥
∥
∥
H1R3)

)

,

∥
∥
∥
∥
φ

(m−1)
j

1

|x| ∗
((

φ
(m−1)
j − φ

(n−1)
j

)

φ
(m)
i

)
∥
∥
∥
∥
L2(R3)

.
∥
∥
∥φ

(m−1)
j

∥
∥
∥
L2(R3)

∥
∥
∥φ

(m)
i

∥
∥
∥
H1(R3)

∥
∥
∥φ

(m−1)
j − φ

(n−1)
j

∥
∥
∥
L2(R3)

,

∥
∥
∥
∥

(

φ
(n−1)
j − φ

(m−1)
j

) 1

|x| ∗
(

φ
(n−1)
j φ

(m)
i

)
∥
∥
∥
∥
L2(R3)

.
∥
∥
∥φ

(n−1)
j

∥
∥
∥
L2(R3)

∥
∥
∥φ

(m)
i

∥
∥
∥
H1(R3)

∥
∥
∥φ

(m−1)
j − φ

(n−1)
j

∥
∥
∥
L2(R3)

.

These estimates together with (2.27) imply s-limn→∞φ
(n)
i = φi ∈ K1,γ

P1
(X∧) for γ < 3/2. Actually it

implies slightly more with respect to the Sobolev regularity. The reason for this downgrading will
become clear in the following.

The finite dimensional spaces EγPk
are isomorphic to R

m for a m ∈ N, we can therefore reduce

convergence considerations to individual sequences of coefficients {c(n)
j } where the following remark

turns out to be helpful.
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Remark 2. Given two Cauchy sequences {c(n)
j }, {c(n)

k } in R. Then the product {c(n)
j c

(n)
k } is a

Cauchy sequence again.

Proof.

∣
∣
∣c

(n)
j c

(n)
k − c

(m)
j c

(m)
k

∣
∣
∣ =

∣
∣
∣c

(n)
j

(

c
(n)
k − c

(m)
k

)

−
(

c
(m)
j − c

(n)
j

)

c
(m)
k

∣
∣
∣

≤
∣
∣
∣c

(n)
j

∣
∣
∣

∣
∣
∣c

(n)
k − c

(m)
k

∣
∣
∣+
∣
∣
∣c

(n)
j − c

(m)
j

∣
∣
∣

∣
∣
∣c

(m)
k

∣
∣
∣

Next, we consider products of Cauchy sequences in weighted Sobolev spaces Ks,γ .

Proposition 3. The functions in Ks,γ, with s ∈ Z+, s > 2 and γ ≥ s, constitute an algebra. Given
two Cauchy sequences {fn}, {gn} ∈ Ks,γ in such function spaces, then the product {fngn} ∈ Ks,γ is
a Cauchy sequence again.

Proof. According to definition (1.10), the proof can be subdived in two parts. First we consider
ω(fngn − fmgm) in the weighted Sobolev space Hs,γ(X∧). For convenience, we introduce another
cut-off function ω̃ with ω̃ = 1 on suppω and supp ω̃ contained in a bounded domain Ω. Let us define
f̃n := ωfn and g̃n := ω̃gn. With this we get the following estimate

‖ω (fngn − fmgm)‖Hs,γ(X∧) =
∥
∥
∥f̃ng̃n − f̃mg̃m

∥
∥
∥
Hs,γ(X∧)

=
∑

|α|≤s

∥
∥
∥|x|−γ+|α|∂α

(

f̃ng̃n − f̃mg̃m

)∥
∥
∥
L2(Ω)

.
∑

|α|≤s

∑

α1+α2=α

[∥
∥
∥|x|−γ+|α|∂α1 f̃n (∂α2 g̃n − ∂α2 g̃m)

∥
∥
∥
L2(Ω)

+
∥
∥
∥|x|−γ+|α|

(

∂α1 f̃n − ∂α1 f̃m

)

∂α2 g̃m

∥
∥
∥
L2(Ω)

]

.

For the next estimate let us assume w.l.o.g. that |α1| ≤ |α2| and therefore |α1| ≤ ⌊s/2⌋. Furthermore
we require the Sobolev imbedding Hs(Ω) →֒ C l

B(Ω) :=
{
u ∈ C l(Ω) : ∂αu ∈ L∞(Ω) for |α| ≤ l

}
for

0 ≤ l < s − 3/2 (cf. Ref. [5]). With this we obtain for the individual terms

∥
∥
∥|x|−γ+|α|∂α1 f̃n (∂α2 g̃n − ∂α2 g̃m)

∥
∥
∥
L2(Ω)

≤
∥
∥
∥|x||α1|∂α1 f̃n

∥
∥
∥
L∞(Ω)

∥
∥
∥|x|−γ+|α2| (∂α2 g̃n − ∂α2 g̃m)

∥
∥
∥
L2(Ω)

.
∥
∥
∥f̃n

∥
∥
∥
Hs(Ω)

‖g̃n − g̃m‖Hs,γ(X∧)

.
∥
∥
∥f̃n

∥
∥
∥
Hs,γ(X∧)

‖g̃n − g̃m‖Hs,γ(X∧) ,

∥
∥
∥|x|−γ+|α|

(

∂α1 f̃n − ∂α1 f̃m

)

∂α2 g̃m

∥
∥
∥
L2(Ω)

.
∥
∥
∥f̃n − f̃m

∥
∥
∥
Hs,γ(X∧)

‖g̃m‖Hs,γ(X∧) .

The remaining part (1−ω)(fngn−fmgm), in the space Hs(R3), can be dealt with similar arguments.

Together with Remark (2), the previous proposition can be used to prove the following lemma.

Lemma 5. The functions in Kk,γ
Pk

(X∧), with k > 2 and γ < 3/2, constitute an algebra. Given

two Cauchy sequences {fn}, {gn} in such function spaces, then the product {fngn} ∈ Kk,γ
Pk

(X∧) is a
Cauchy sequence again.
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Proof. We decompose the functions according to fn = vn+wn, gn = ṽn+ w̃n with vn, ṽn ∈ EγPk
(X∧)

and wn, w̃n ∈ Kk,γ
Θk

(X∧). With this, the products splits into

fngn = vnṽn + vnw̃n + wnṽn + wnw̃n.

The proposition follows immediately for the first and fourth term on the right hand side from Remark
2 and Proposition 3, respectively. The mixed terms vnw̃n and wnṽn belong to Kk,γ

Θk
(X∧) and can be

handled like in the proof of Proposition 3 where we utilize that {|x|α1∂α1vn} are Cauchy sequences
in L∞(Ω).

The following corollary is an immediate consequence of the proof of Proposition 3 and Lemma
5.

Corollary 1. Given a bounded sequence {fn} and a Cauchy sequence {gn} in Kk,γ
Pk

(X∧). Then

lim
n,m→∞

‖fl(gn − gm)‖
Kk,γ

Pk
(X∧)

= 0

uniformly in l.

We turn now to estimates for the nonlinear quantities (2.29) and (2.30) in the weighted Sobolev

space with asymptotics Kk,γ
Pk

(X∧). The estimates are given for k > 2 and a subsequent argument
shows how to bridge a remaining gap in the bootstrap argument. Let us start with the first term
on the right hand side of (2.29). Our discussion follows here almost literally the preceding proof
of Theorem 1. For the convenience of the reader, we repeat the basic arguments since we are

now concerned with Cauchy sequences instead of single function estimates. We decompose φ
(n)
i =

v
(n)
i + w

(n)
i , φ

(m)
i = v

(m)
i + w

(m)
i and φ

(n−1)
j = v

(n−1)
j + w

(n−1)
j into its components in EγPk

(X∧) and

Kk,γ
Θk

(X∧). Correspondingly, we decompose the quadratic term

∣
∣
∣φ

(n−1)
j

∣
∣
∣

2
= v(n−1)

q + w(n−1)
q ,

with

v(n−1)
q :=

(

v
(n−1)
j

)2
∈ SγP∞

(X∧), and w(n−1)
q := 2v

(n−1)
j w

(n−1)
j +

(

w
(n−1)
j

)2
∈ Kk,γ

Θk
(X∧).

Then it follows from Lemmas 1 and 2 that

lim
n,m→∞

∥
∥
∥
∥

(

v
(n)
i − v

(m)
i

) 1

|x| ∗ v(n−1)
q

∥
∥
∥
∥
Kk,γ

Pk
(X∧)

= 0.

For the second combination

(

w
(n)
i − w

(m)
i

) 1

|x| ∗ v(n−1)
q ∈ Kk,γ

Θk
(X∧),

we introduce a cut-off function η with supp η ⊂ Ω and consider first the spaces Hk,k+1−ǫ(X∧) for
ǫ > 0 where we get

∥
∥
∥
∥
η
(

w
(n)
i − w

(m)
i

) 1

|x| ∗ v(n−1)
q

∥
∥
∥
∥
Hk,k+1−ǫ(X∧)

.
∑

|α|≤k

∑

α1+α2=α

∥
∥
∥
∥
|x||α1|∂α1

1

|x| ∗ v(n−1)
q

∥
∥
∥
∥
L∞(Ω)

×
∥
∥
∥|x|−k−1+ǫ+|α2|∂α2

[

η
(

w
(n)
i − w

(m)
i

)]∥
∥
∥
L2(Ω)

.
∥
∥
∥η
(

w
(n)
i − w

(m)
i

)∥
∥
∥
Hk,k+1−ǫ(X∧)

.
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The uniform boundedness of the factors in L∞ norm is a consequence of Lemma 1. Similar estimates
can be obtained for the (1 − η)(·) term in Hk(R3). The third combination

(

w
(n)
i − w

(m)
i

) 1

|x| ∗ w
(n−1)
j ∈ Kk,γ

Θk
(X∧),

can be handled likewise, except that the L∞ terms again require particular attention. Like in the
proof of Theorem 1, we first decompose the Coulomb potential into L2(R3) + L∞(R3) according to
(2.13). According to (2.14), we obtain, by applying Young’s inequality to the Yukawa part of the
potential, the estimate

∥
∥
∥Y ∗ ∂α1w(n−1)

q

∥
∥
∥
L∞(Ω)

.
∥
∥
∥w(n−1)

q

∥
∥
∥
Kk,k+1−ǫ(X∧)

. (2.31)

The bounded part of the Coulomb can be estimated, according to (2.15), using the other variant of
Young’s inequality

∥
∥
∥W ∗ ∂α1w(n−1)

q

∥
∥
∥
L∞(Ω)

.
∥
∥
∥v

(n−1)
j

∥
∥
∥
Kk,γ

Pk
(X∧)

∥
∥
∥w

(n−1)
j

∥
∥
∥
Kk,k+1−ǫ(X∧)

+
∥
∥
∥w

(n−1)
j

∥
∥
∥

2

Kk,k+1−ǫ(X∧)
. (2.32)

It remains to consider the fourth combination

(

v
(n)
i − v

(m)
i

) 1

|x| ∗ w(n−1)
q ,

which restricts to a bounded domain Ω because of the compact support of the functions v
(n)
i . Again,

we perform a Taylor series decomposition of the convolution term

1

|x| ∗ w(n−1)
q =

∑

|β|≤k−1

c
(n−1)
β xβ + W

(n−1)
k , with c

(n−1)
β :=

1

β!

∫
∂βw

(n−1)
q (y)

|y| dy

with formal residuum

W
(n−1)
k :=

1

|x| ∗ w(n−1)
q −

∑

|β|≤k−1

c
(n−1)
β xβ .

The Taylor expansion converges as a Cauchy sequence

lim
n,m→∞

∥
∥
∥
∥
∥
∥

(

v
(n)
i − v

(m)
i

) ∑

|β|≤k−1

c
(n−1)
β xβ

∥
∥
∥
∥
∥
∥
Kk,γ

Pk
(X∧)

= 0,

because the constants c
(n−1)
β are bounded according to the estimates (2.31) and (2.32). Following

(2.17), the derivatives of the residuum W
(n−1)
k can be estimated

|x||α|−k
∣
∣
∣∂αW

(n−1)
k

∣
∣
∣ .

∥
∥
∥w(n−1)

q

∥
∥
∥
Kk,k+1−ǫ(X∧)

+
∥
∥
∥v

(n−1)
j

∥
∥
∥
Kk,γ

Pk
(X∧)

∥
∥
∥w

(n−1)
j

∥
∥
∥
Kk,k+1−ǫ(X∧)

+
∥
∥
∥w

(n−1)
j

∥
∥
∥

2

Kk,k+1−ǫ(X∧)
,

using an explicit expression for the remainder of the Taylor expansion together with (2.31) and
(2.32). It is sufficient to consider for the residuum the space Hk,k+1−ǫ(X∧) where an estimate

∥
∥
∥

(

v
(n)
i − v

(m)
i

)

W
(n−1)
k

∥
∥
∥
Hk,k+1−ǫ(X∧)

.
∥
∥
∥v

(n)
i − v

(m)
i

∥
∥
∥
Kk,γ

Pk
(X∧)

∑

|α|≤k

∥
∥
∥|x||α|−k∂αW

(n−1)
k

∥
∥
∥
L∞(Ω)

,

analogous to (2.18), demonstrates convergence of the Cauchy sequence.
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The second term on the right hand side of (2.29) can be treated along the lines of the previous
one. Again, we decompose the convolution term

φ
(n−1)
j

(

φ
(n)
i − φ

(m)
i

)

= v(n,m) + w(n,m) with v(n,m) := v
(n−1)
j

(

v
(n)
i − v

(m)
i

)

∈ SγP∞
(X∧)

and w(n,m) := v
(n−1)
j

(

w
(n)
i − w

(m)
i

)

+ w
(n−1)
j

(

v
(n)
i − v

(m)
i

)

+ w
(n−1)
j

(

w
(n)
i − w

(m)
i

)

∈ Kk,γ
Θk

(X∧).

Both parts have separate limits

lim
n,m→∞

∥
∥
∥v(n,m)

∥
∥
∥
Kk,γ

Pk
(X∧)

= 0, and lim
n,m→∞

∥
∥
∥w(n,m)

∥
∥
∥
Kk,γ

Θk
(X∧)

= 0,

which ensures that the right hand side of the estimate (2.31) vanish for n,m → ∞. Finally we just
want to mention that the first term on the right hand side of (2.30) reduces to the previous case
using the identity

(

φ
(m−1)
j

)2
−
(

φ
(n−1)
j

)2
=
(

φ
(m−1)
j − φ

(n−1)
j

)

φ
(m−1)
j +

(

φ
(m−1)
j − φ

(n−1)
j

)

φ
(n−1)
j .

All remaining terms in (2.30) are similar to the terms discussed explicitly.

Altogether, this proves the limit (2.28) for Kk,γ
Pk

(X∧) with k > 2. It remains to consider the case
k = 1 which has so far been skipped in our discussion. Going through the proofs of Proposition 3
and Lemma 5 it can be seen that these proofs go through even in the case k = 1 using the additional
regularity from the fact that Plin provides a continous map from K0,0(X∧) into K2,2(X∧). This is
sufficient for the remaining steps required for the proof of the limit (2.28) for K1,γ

P1
(X∧).

So far we have shown that the iterative solutions φ
(n)
i of the level-shifting algorithm converge to

solutions φi of the HF equation (1.3) in the weighted Sobolev space with asymptotics K∞,γ
P∞

(X∧) i.e.

lim
n→∞

∥
∥
∥φ

(n)
i − φi

∥
∥
∥
K∞,γ

P∞
(X∧)

= 0 for all i = 1, N/2.

What remains to show is φi ∈ SγP∞
(X∧), which finishes the proof that the solutions are asymptot-

ically well behaved. The proof can be simplified using the trick of Lieb and Simon [8] to represent
the nonlocal HF equations as a system of coupled local equations. For this they introduced the
operator matrix h with entries

hi,j := δi,j (hlin + VH − εi) + Ui,j, with Ui,j := −
∫

φi(y)φj(y)

|x − y| dy, (2.33)

by which the HF equations can be written in the form hφ = 0. It will be shown in the following that
the operator matrix h actually corresponds to an elliptic operator. This means that a parametrix
P and a Green operator G exists from which we obtain the desired result

Phφ = φ + Gφ = 0 −→ φi ∈ SγP∞
.

It is evident from the properties of the Sobolev space K∞,γ
P∞

that the short-range behaviour
of the nonlinear potentials in the operator matrix (2.33) is in correspondence with the ellipticity
requirement mentioned in Section 3.2 and we are left with the estimates for the long-range behaviour
(cf. (2.8)),

∣
∣
∣
∣
∂α
[

(1 − ω)
1

|x| ∗
(

φ̃iφ̃j

)]
∣
∣
∣
∣
. (1 + |x|)−1−|α|, with φ̃i = (1 − ω)φi.

The following propositions enable us to get control on the long-range behaviour of convolutions with
the Coulomb potential.
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Proposition 4. The convolution of a function u ∈ Ks,γ
P (X∧), with the Coulomb potential can be

expressed through

1

|x| ∗ u = −Pmu + (−1)mcm
1

|x| ∗ P
m
c u − 1

|x| ∗ Gmu, (2.34)

with Pm := 4πPc
m−1∑

i=0

(−1)iciPi
c, and Gm := Gc

m−1∑

i=0

(−1)iciPi
c

where Pc and Gc are the parametrix and Green operator of a shifted Laplacian for weight data
g = (γ, γ − 2,Θ) with 3/2 − γ ∈ R \ Z, γ < 3/2 and Θ = (−∞, 0], respectively, i.e.

(∆ − c)Pc = I + Gc with c > 0. (2.35)

Proof. The existence of a parametrix for a shifted Laplacian ∆ − c with c > 0 is an immediate
consequence of the general theory of elliptic operators, cf. Theorem 8, p. 259 of Ref. [3]. Recursive
application of (2.35) yields

u = ∆Pcu − cPcu − Gcu
= ∆Pcu − c∆P2

c u + c2P2
c u + cGcPcu − Gcu

...

= ∆Pc
m−1∑

i=0

(−1)iciPi
cu + (−1)mcmPm

c u − Gc
m−1∑

i=0

(−1)iciPi
cu.

This Poisson type equation has a unique solution (2.34) obtained through convolution with the
Coulomb potential. Uniqueness follows from the fact that Pmu ∈ L2(R3) and therefore belongs to
S ′(R3). In S ′(R3) the only distributional solutions of ∆w = 0 are harmonic polynomials, cf. Ref. [12]
p. 147, which do not belong to L2(R3).

Proposition 5. Given A ∈ Cn(X∧, g) with n < −s − 3
2 and s ∈ Z+. For any u ∈ Ks,γ

P (X∧),

which in addition satisfies supx |xβu(x)| < ∞ for all |β| ≥ 0, and arbitrary cut-off function ω, the
following asymptotic estimate can be derived

|∂αxA(1 − ω)u| .
(
1 + |x|2

)−m
, for all |α| ≤ s and m ∈ Z+.

Proof. First we perform a canonical decomposition of A (cf. Ref. [3])

A = A′ + Ã + G̃ with A′ := ηA0η̃ and Ã := (1 − η)A1(1 − ˜̃η), (2.36)

for appropriately chosen cut-off functions η̃ ≡ 1 on suppη, η ≡ 1 on supp ˜̃η and ωη̃ = η̃, where
A1 corresponds to a pseudo-differential operator on R

3 with symbol a(x, ξ) in the symbol class
Sn,0(R3 × R

3). It is obvious from (2.36) that it is sufficient to consider A1, where we adapt a
standard proof that pseudo-differential operators on R

3 map S into S, cf. p. 232ff in Ref. [11].
Following the proof in Ref. [11], we introduce the operator

Lξ :=
(
1 + |x|2

)−1
(1 − ∆ξ) ,

which has the obvious property Lξe
ixξ = eixξ. Herewith, and setting ũ := (1 − ω)u, we obtain the
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required estimate

|∂αxA1(1 − ω)u| .
∑

α1+α2=α

∣
∣
∣
∣

∫

∂α1
x a(x, ξ)ξα2 ˆ̃u(ξ)eixξ dξ

∣
∣
∣
∣

=
∑

α1+α2=α

∣
∣
∣
∣

∫

∂α1
x a(x, ξ)ξα2 ˆ̃u(ξ)Lmξ eixξ dξ

∣
∣
∣
∣

.
(
1 + |x|2

)−m ∑

α1+α2=α

∫ ∣
∣
∣(1 − ∆ξ)

m
[

∂α1
x a(x, ξ)ξα2 ˆ̃u(ξ)

]∣
∣
∣ dξ

.
(
1 + |x|2

)−m ∑

α1+α2=α

∑

β1+β2≤2m

∫ ∣
∣
∣∂
β1

ξ [∂α1
x a(x, ξ)ξα2 ] ∂β2

ξ
ˆ̃u(ξ)

∣
∣
∣ dξ

.
(
1 + |x|2

)−m ∑

β1+β2≤2m

∥
∥
∥(1 + |ξ|)n+|α|−|β1|

∥
∥
∥
L2

∥
∥
∥xβ2ũ

∥
∥
∥
L2

.
(
1 + |x|2

)−m
, for all m ∈ Z+ and |α| ≤ s. (2.37)

Remark 3. In order to prove the estimate (2.37) it is sufficient that the symbol of the pseudo-
differential operator A1 belongs to Sn(R3 × R

3), cf. Ref. [11], this corresponds to the class of all
symbols a(x, ξ) ∈ C∞(R3 × R

3) which satisfy the estimates

∣
∣
∣∂αx ∂βξ a(x, ξ)

∣
∣
∣ . (1 + |ξ|)n−|β|,

for all (x, ξ) ∈ R
3 × R

3 and |α|, |β| ≥ 0.

Using (2.34), the convolution can be decomposed according to

1

|x| ∗
(

φ̃iφ̃j

)

= −Pm
(

φ̃iφ̃j

)

+ (−1)mcm
1

|x| ∗ P
m
c

(

φ̃iφ̃j

)

− 1

|x| ∗ Gm
(

φ̃iφ̃j

)

. (2.38)

For |α| ≤ s, m is chosen such that 2m > s + 3/2. According to Proposition 5 and Lemma 2 it is
sufficient to consider only the first term in (2.38). The problem can be further reduced by performing
a canonical decomposition

Pm = P ′
m + P̃m + G̃m with P ′

m := ηP0η̃ and P̃m := (1 − η)P1(1 − ˜̃η), (2.39)

for appropriately chosen cut-off functions, i.e. η̃ ≡ 1 on supp η, η ≡ 1 on supp ˜̃η and ωη̃ = η̃, which
yields

Pm
(

φ̃iφ̃j

)

= P̃m
(

φ̃iφ̃j

)

+ G̃m
(

φ̃iφ̃j

)

.

It remains to show how to express P̃m(φ̃iφ̃j) in such a manner that Proposition 5 can be applied. For
this we use again the paramterix of the linear part of the Fock operator i.e. Pi (hlin − εi) = 1 + Gi,
which yields the following expression for the eigenfunctions

−φi = Pi (VHφi) +
∑

j

Pi (Ui,jφj) + Giφi (2.40)

Using a canonical decomposition of the parametrix (2.39) and an appropriately chosen cut-off func-
tion η1, equation (2.40) yields

−φ̃i = P̃iṼH φ̃i +
∑

j

P̃iŨi,jφ̃j + G̃iφi, with ṼH := (1 − η1)VH , Ũi,j := (1 − η1)Ui,j. (2.41)
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It is easy to see that the functions ṼH and Ũi,j have bounded derivatives and therefore have been
considered here and in the following as multiplicative pseudo-differential operators with ξ indepen-
dent symbols in S0(R3), cf. Remark 3. The same holds for the functions φ̃i, with this we get the
expression

P̃m
(

φ̃iφ̃j

)

≡
{

P̃mφ̃i

}

φ̃j = −
{

P̃mφ̃iP̃jṼH
}

φ̃j −
∑

k

{

P̃mP̃jŨj,k
}

φ̃k − P̃m
(

φ̃iG̃jφ̃j
)

, (2.42)

where the terms in curly brackets denote composite operators within the algebra of pseudo-differential
operators on R

3. We notice that {P̃mφ̃iP̃j ṼH} and {P̃mP̃jŨj,k} correspond to pseudo-differential
operators with symbols in S−4(R3). Furthermore, we remark that φ̃iG̃j φ̃j belongs to S(R3) and
that P̃m maps S(R3) into S(R3). We can now consecutively insert (2.41) into (2.42) generating
pseudo-differential operators of even lower order modulo higher order operators acting on functions
from S(R3). This argument enables us to apply the estimate (2.37) and therefore completes the
proof that the solutions of the HF equation belong to SγP (X∧).

3 Background on the analysis near conical singularities

This section has the character of an appendix on general tools around elliptic operators near conical
singularities or conical exits to infinity.

3.1 Ellipticity and parametrices near conical singularities

In general descriptions it makes things more transparent when we admit the operators to be of
arbitrary order m, not necessarily of order m = 2, since the parametrices are always of opposite
order and the calculus also employs compositions, and, in particular, operators of order zero. Given
a differential operator Ã in R

n+1 ∋ x with smooth coefficients, polar coordinates x → (r, α) in
R
n+1 \ {0}, (r, α) ∈ R+ × X, X := Sn, transform Ã into an operator of the form

A = r−m
m∑

j=0

aj(r)

(

−r
∂

∂r

)j

, (3.1)

with coefficients aj(r) ∈ C∞(R+,Diffm−j(X)); here Diffl(X) denotes the space of all differential
operators on X of order l with (in local coordinates) smooth coefficients. Operators of the form
(3.1) are much more general than operators going back to Ã with smooth coefficients across the origin
in R

n+1. In our case we may replace a0(r) by a0(r) + rk for any k ∈ N, which corresponds in the
original operator to an extra potential term |x|−m+k which is singular at |x| = 0 when −m + k < 0.
This is just the situation in equation (2.2) for m = 2 and k = 1 (up to a factor at the potential).
One of the main observations on elliptic equations Au = f in R+ × X (≡ R

n+1 \ {0}) is that the
solvability depends on chosen weights γ ∈ R in the spaces Hs,γ(X∧) (see the formula (1.9)) and
that solutions have asymptotic expansions of the form (1.11) as r → 0, where cjk ∈ Lj ⊂ C∞(X),
pj ∈ C, 0 ≤ k ≤ mj, j ∈ N. Here ℜpj < n+1

2 − γ, ℜpj → −∞ as j → ∞. Let us briefly explain the
general mechanism of how such asymptotics appear and in which way they depend on the individual
operator. First of all the ellipticity does not only refer to the homogeneous principal symbol of A of
order m which is a smooth function σψ(A)(r, α, ̺, ξ) on the cotangent bundle of X∧ ∋ (r, α) minus
the zero section (̺, ξ) = 0, but also on a reduced symbol

σ̃ψ(A)(r, α, ̺, ξ) := rmσψ(A)(r, α, r−1̺, ξ),

which is smooth up to r = 0, and in addition on the principal conormal symbol

σM (A)(z) :=

m∑

j=0

aj(0)z
j : Hs(X) → Hs−m(X), (3.2)
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which is operator-valued, depending as a holomorphic function on z ∈ C. It is known that when
σ̃ψ(A) 6= 0 for (̺, ξ) 6= 0, up to r = 0, the operator function (3.2) is a family of Fredholm operators
on X of index zero, and there is a countable set D = DA ⊂ C, where {c ≤ ℜz ≤ c′} ∩D is finite for
every c ≤ c′, such that (3.2) consists of isomorphisms for all z ∈ C \ D. Constructing a parametrix
of A close to r = 0 within the so-called cone algebra requires to invert the symbolic components
(σψ(A), σM (A)(z)). The second component σ−1

M (A)(z) is a meromorphic operator function with
poles at the points p ∈ D of certain finite multiplicities and Laurent coefficients of the principal
part belonging to finite rank operators on X with kernels in C∞(X × X). The ellipticity of A with
respect to σM (A) and the weight γ ∈ R is just the condition that the line {z : ℜz = n+1

2 − γ} does
not intersect the set D for n = dimX. A parametrix of A near r = 0 may be found in form of a
Mellin pseudo-differential operator

rmop
γ−m−n

2

M (h) + M + G, (3.3)

where h(r, z) is a holomorphic function in z, smoothly depending on r up to zero, with values in
classical pseudo-differential operators on X. The notation means

opδM (f)u(r, x) := rδM−1
(

T−δf
)

Mr−δu(r, x),

where
(
T−δf

)
(r, z) := f(r, z − δ) for any δ ∈ R and any Mellin symbol f as described before.

Furthermore

(Mv) (z) =

∫ ∞

0
rz−1v(r)dr and

(
M−1g

)
(r) =

1

2πi

∫

ℜz=1/2
r−zg(z)dz

are the standard Mellin transform and its inverse, respectively. The operator M is a linear combi-
nation of expressions of the form

ωrm+jop
δj−m−n

2

M (fj)ω̃, j ∈ N,

with cut-off functions ω(r), ω̃(r), meromorphic Mellin symbols fj(z) with values in smoothing opera-
tors on X, Schwartz functions in ℑz for |ℑz| → ∞, and poles, multiplicities and Laurent coefficients
of a similar kind as described before in connection with σ−1

M (A)(z). The weights δj are chosen in
such a way that γ − m − j < δj − m < γ − m and that the line ℜz = n+1

2 − (δj − m) does not
intersect the sequence of poles of fj. The operator G in (3.3) is of Green type and maps distribu-
tions in ωHs−m,γ−m(X∧) to functions in H∞,γ

Q,loc(X
∧) for some asymptotic type Q (see the notation

in Section 1.2; the loc-notation means H∞,γ
Q (X∧) after multiplication by a cut-off function). With

it, the inverse of the conormal symbol has the form

σ−1
M (A)(z) = h(0, z) + f0(z).

In order to complete the information to a calculus on X∧ with conical exit to infinity we have to
focus on what happens for r → ∞.

3.2 Ellipticity and parametrices near a conical exit to infinity

Our next objective is to consider operators on R+ × X from the point of view of ellipticity up to
r = ∞. Since the consideration can be localized with respect to the variable on X, the cylinder
R+ × U for a coordinate neighbourhood U on X can be identified with a conical subset of R

n+1.
The relationship between points on R+ × U ∋ (r, α) and points in R

n+1 \ {0} can be formulated
by passing from U via a diffeomorphism to an open subset V in the open unit ball B ⊂ R

n, with
y ∈ R

n, such that V ⊂ B and then identifying (r, α) with (r, ry) where y corresponds to α via
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U → V . Thus setting x = (r, ry), r > 0, we now assume for convenience that our differential
operator A, the ellipticity of which at |x| = ∞ we are considering, is given globally in R

n+1 ∋ x.
Symbols refer to (x, ξ), where ξ is the covariable to x (clearly everything can be rephrased again
in polar coordinates). To understand phenomena it is enough to study ellipticity also across x = 0
which will be cutted out in the final cone calculus on X∧ and replaced near zero by an operator in
the cone calculus. Within this setting, we denote by Sm,0(Rn+1 × R

n+1) the space of all symbols
a(x, ξ) ∈ C∞(Rn+1 × R

n+1) which satisfy the estimates
∣
∣
∣∂αx∂βξ a(x, ξ)

∣
∣
∣ . (1 + |ξ|)m−|β| (1 + |x|)−|α|,

for all (x, ξ) ∈ R
n+1 × R

n+1 and |α|, |β| ≥ 0. Different types of principal symbols have to be
considered. First, a differential operator

A =
∑

|α|≤m

aα(x)Dα
x ,

with coefficients aα ∈ C∞(Rn+1) has its standard homogeneous principal symbol

σψ(A)(x, ξ) =
∑

|α|=m

aα(x)ξα ∈ C∞(Rn+1 × (Rn+1 \ {0})).

At |x| = ∞ we assume the coefficients aα to be classical symbols in x of order zero. In particular,
we can form

σe(A)(x, ξ) :=
∑

|α|≤m

σ0
e(aα)(x)ξα ∈ C∞((Rn+1 \ {0}) × R

n+1), (3.4)

where σ0
e(aα)(x) denotes the homogeneous principal component of aα of order zero in x 6= 0. Finally

(3.4) has again a homogeneous principal symbol in ξ 6= 0.

σψ,e(A)(x, ξ) :=
∑

|α|=m

σ0
e(aα)(x)ξα ∈ C∞((Rn+1 \ {0}) × (Rn+1 \ {0})).

The operator A is said to be elliptic globally in R
n+1 with respect to the symbolic components

σ(A) = (σψ(A), σe(A), σψ,e(A)) , (3.5)

if σψ(A)(x, ξ) 6= 0 for (x, ξ) ∈ R
n+1 × (Rn+1 \ {0}), σe(A)(x, ξ) 6= 0 for (x, ξ) ∈ (Rn+1 \ {0})×R

n+1,
and σψ,e(A)(x, ξ) 6= 0 for (x, ξ) ∈ (Rn+1 \ {0}) × (Rn+1 \ {0}). Simple examples show that these
three conditions are independent. For instance,

A = ∆ − c for c > 0

is elliptic in that sense (we have m = 2 in this case), while A = ∆ is not. A standard theorem of
that calculus tells us that A is elliptic with respect to (3.5) if and only if

A : Hs(Rn+1) → Hs−m(Rn+1)

is a Fredholm operator for any fixed s = s0 ∈ R (this entails then the Fredholm property for all
s ∈ R). If A is elliptic, then there is a parametrix P which is a classical pseudo-differential operator
in R

n+1, again with a triple of symbols σ(P ) = (σψ(P ), σe(P ), σψ,e(P )), the components of which
are inverse to the ones in (3.5). The operator P satisfies the relation

PA = 1 + Cl, AP = 1 + Cr,

with smoothing operators Cl and Cr which are integral operators with kernels in S(Rn+1 × R
n+1).
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3.3 The cone calculus

By cone calculus, here on X∧ ∋ (r, α) with r → 0 coresponding to a conical singularity, r → ∞ to
a conical exit, we understand a calculus of operators

A = r−mωopγ−
n
2 (h)ω̃ + (1 − ω)Aint(1 − ˜̃ω) + M + G, (3.6)

where ω, ω̃, ˜̃ω are cut-off functions on the half-axis, ω̃ ≡ 1 on suppω, ω ≡ 1 on supp ˜̃ω, such that
h(r, z) is C∞ in r ∈ R̄+, holomorphic in z ∈ C, such that h(r, β + i̺) is a parameter-dependent
pseudo-differential operator of order m ∈ R on X with parameter ̺, Aint is a pseudo-differential
operator of order m on R

n+1 with exit symbolic structure as explained in the preceding section, M
is as in Section 3.1, while G is a Green operator on X∧ with discrete asymptotics for r → 0, that
means

G : Ks,γ(X∧) → Sγ−mQ (X∧) (3.7)

is continuous for every s ∈ R, with some asymptotic type Q, and the formal adjoint with respect
to the K0,0(X∧)-scalar product has a similar property. We denote by Cm(X∧, g), the class of all
operators (3.6) which can be associated to specific weight data g.

The operators (3.6) belong to the space of classical pseudo-differential operators of order m on
the open C∞ manifold R+ ×X with σψ(A), the standard homogenous principal symbol of order m.
In this connexion ellipticity also refers to the reduced symbol σ̃ψ(A) near r = 0, moreover, to the
conormal symbol σM (A)(z), ℜz = n+1

2 − γ for a weight γ ∈ R, and to the exit symbolic components
σe(A) and σψ,e(A). This has been explained in the preceding sections. Observe that every operator
(3.6) induces continuous operators

A : Ks,γ(X∧) → Ks−m,γ−m(X∧) (3.8)

and
A : Ks,γ

Q (X∧) → Ks−m,γ−m
R (X∧),

A : SγQ(X∧) → Sγ−mR (X∧),

for every s ∈ R and every asymptotic type Q with some resulting asymptotic type R (which also
depends on A, more precisely, on the meromorphic structure of the involved Mellin symbols).

Theorem 3. For an operator (3.6) the following conditions are equivalent:

(i) A is elliptic ( with respect to γ what concerns σM (A) ).

(ii) A induces a Fredholm operator (3.8).

Theorem 4. An elliptic operator (3.6) has a parametrix P of analogous structure, of order −m,
elliptic with respect to the weight γ − m, which means

PA = 1 + Gl, AP = 1 + Gr,

with some Green operators Gl, Gr. Moreover, Au = f ∈ Ks−m,γ−m
(R) (X∧) and u ∈ K−∞,γ(X∧)

entails u ∈ Ks,γ
(Q)(X

∧) for every s ∈ R and every asymptotic type R with a resulting asymptotic type

Q ( parentheses mean that such a result is valid also with respect to the spaces without control of
asymptotics ).

Corollary 2. Au = 0 entails u ∈ SγQ(X∧) for some asymptotic type Q.

Proof. Choose a parametrix P of A and compute PA = 1+Gl. Then Au = 0 implies (1+Gl)u = 0;
however, the relation (3.7) gives us u ∈ SγQ(X∧).
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