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Abstract

We study the asymptotic regularity of solutions of Hartree-Fock equations for Coulomb sys-
tems. In order to deal with singular Coulomb potentials, Fock operators are discussed within the
calculus of pseudo-differential operators on conical manifolds. First, the non-self-consistent-field
case is considered which means that the functions that enter into the nonlinear terms are not
the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on
the functions that build up the Fock operator which guarantee ellipticity for the local part of
the Fock operator on the open stretched cone R, x S2. This proves existence of a parametrix
with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that
the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a
fixed-point approach based on Cances and Le Bris analysis of the level-shifting algorithm, we
show via another bootstrap argument, that the corresponding self-consistent-field solutions of
the Hartree-Fock equation have the same type of asymptotic regularity.
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1 Hartree-Fock equation on the open stretched cone

1.1 Outline of the Hartree-Fock model

The nonrelativistic Schrodinger equation within the Born-Oppenheimer approximation provides a
firm basis for electronic structure calculations in quantum chemistry. We are focusing on solutions
of the stationary Schrodinger equation

HY (zy,z9,...,25) = EV (z),29,...,25), (1.1)
where the Hamiltonian for an IV electron system
N K
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includes Coulomb interactions between the electrons as well as external Coulomb potentials due
to the presence of nuclei with charge Zj, at R;, € R3. Atomic units have been used throughout
the present work. The Hamiltonian does not contain spin-dependent interactions, like spin-orbit
coupling, therefore there is no immediate need to introduce spin degrees of freedom. Nevertheless it



is convenient to express the wavefunction ¥ in terms of combined spatial and spin coordinates z; :=
(w5,%) fori =1,..., N, with z; € R3, x € {1/2,—1/2} in order to achieve a simple representation
of Fermi statistics. The latter can be formulated via Pauli’s principle which states that ¥ must be
an antisymmetric function with respect to the variables z; for i =1,..., N.

Ab initio quantum chemistry deals with approximate models of the many-electron Schrodinger
equation (1.1) without referring to external experimental or computational data. A prime example
for such kind of approach is the Hartree-Fock (HF) model which can be considered as a constraint
variational formulation of the original many-electron problem. Within the HF model, the N-electron
wavefunction is approximated by a so-called Slater determinant

© = 1/VNVdet[¢;(z;)]ij=1,..v With (¢5];) = 5,

which represents an ansatz to construct a many-electron wavefunction @, consistent with Pauli’s
principle, from a set of single-electron wavefunctions {¢;}i=1,. n. Here and in the following scalar
products ( | ) refer to the standard Hilbert space in quantum theory L?. By definition, the HF
energy is given by

Eyp := inf { E[®] := (®|H®) : & Slater determinant, ¢; € H'(R* x {£1/2})}.  (1.2)

From the work of Lieb, Simon and Lions [8, 9] it is known that a minimizer Fyp = E[®pgr| exists.
Furthermore they have shown that the functions ¢; are globally Lipschitz, actually smooth except
at the nuclei, and decay exponentially at infinity. The variational formulation of the HF method
leads to the nonlinear HF equation

hoi = ei ¢y, with ¢; € H'(R?), (1.3)

which corresponds to an effective one-particle Schrédinger equation with Hamiltonian

A Z|x—R|+VH+u’ (1.4)
N/2
=2 Z |¢Z dy (Hartree potential), (1.5)
2
Uu(z) = — Z / %@;’u@) dy (exchange operator). (1.6)

In the following the Hamiltonian (1.4) is denoted as Fock operator. We restrict our discussion to
the closed shell HF equation for an even number N of electrons, where spin degrees of freedom are
not taken into account explicitly. Each spatial eigenfunction ¢; of the Fock operator belongs to two
eigenstates because of the electron spin. Therefore, the sums in the Hartree potential (1.5) and
exchange operator (1.6) run over the N/2 eigenfunctions with lowest eigenvalue &;.

With the emergence of powerful computers, the HF model became a workhorse of computational
chemists and countless applications have been reported in the literature. Furthermore the HF model
provides a convenient starting point for more sophisticated many-particle theories. We refer to the
monograph [6] for a state of the art discussion of these topics. Despite of its outstanding significance
for computational chemistry, there is still a lack of rigorous results concerning the approximation of
HF eigenfunctions. An attempt in this direction has been presented in Ref. [4] for tensor product
wavelets within the framework of best N-term approximation theory. Due to a lack of knowledge
concerning the asymptotic behaviour, it was however necessary to assume an asymptotic smoothness
property

188¢(x)| < o — Ri|* 1 for Q) 32 # R, and |8 > 1 (1.7)



for HF eigenfunctions in bounded neighbourhoods Q;, C R? of the nuclei. Here and in the following
we have used the standard short-hand notation for mixed partial derivatives

9 5 ot §b2 s

E?xfl E?xgz 8x§3 ’

with absolute value of the multi-index || := (1 + (2 + (3. Furthermore, a < b means that a
is uniformly bounded by some constant multiple of b. A verification of assumption (1.7) within
the self-consistent solution scheme discussed below, cf. Proposition 1, is a simple byproduct of our
asymptotic analysis.

In order to study the asymptotic behaviour of eigenfunctions, we formally consider the underlying
R3 as a manifold with conical singularities at the locations of the nuclei. This can be realized by
introducing charts with polar coordinates in possibly unbounded neighbourhoods of the nuclei.
We refer to Ref. [3] for further details concerning manifold with conical singularities. Our basic
motivation for this seemingly artificial construction are the singular parts of the Fock operator
which can be handled within this setting in a natural manner as it is demonstrated below. Since
such kind of construction can be always carried out for each nucleus separately, we restrict in the
following our discussion to a single nucleus. To be more specific we consider the HF equation on
the open stretched cone X" := R, x X with X = S2. The quotient X* := (R4 x 52)/(0 x S?)
corresponds to a manifold with conical point at the orgin which can be identified with R3. For the
convenience of the reader and in order to keep the paper reasonably self-contained, we provide some
background material on the calculus of pseudo-differential operators on conical manifolds in Section
3.

1.2 Weighted Sobolev spaces with asymptotics on X"

For further reference, we recall some basic definitions of weighted Sobolev spaces on X”, and refer
e.g. to Ref. [3] for a general exposition and to the monograph [10] for a comprehensive treatment
of the subject. It should be mentioned that for the convenience of the reader, we follow with our
notation closely Ref. [3]. The open stretched cone X" can be considered as a half space of the
infinite cylinder on which we introduce the standard Sobolev spaces

Hipne(X") == {u € Hi (R x §%)[g, xs2 : (1 —w)u € H*(R®)}, (1.8)

for any cut-off function w, i.e. w =1 near 0, w = 0 outside some neighbourhood of 0. Furthermore,
we introduce the weighted Sobolev spaces with s € Z, and v € R

HEV(XD) = {u e D'(XM) : 28 e |zY L2(R?) for all |a] < s}. (1.9)

According to Remark 2.1.13 of Ref. [10], the definition (1.9) is equivalent to the original definition
using the Mellin transform. It is convenient to introduce the corresponding norm

||uHst(XA) = Z H|ZE|_7+‘°‘|aau

|af<s

L2 ()

Neither the Sobolev space (1.8) nor (1.9) is really appropriate for the infinite open stretched cone
X", Instead it is better to consider the combination

KEN(XN) = wHS (X)) + (1 — w)HEne (X7, (1.10)

which provides the appropriate asymptotic behaviour in the limits |x| — 0 and |x| — oo, respectively.



Next we consider subspaces of K*7(X") of certain asymptotic type in the vicinity of the tip of
the cone. For this it is convenient to introduce polar coordinates (r, ¢, ). These subspaces consist
of functions with asymptotic expansions

u(r, ¢,0) ~ Z EJ: cjn(0,0)rPin*r, (1.11)

J k=0

where cj;, belong to finite dimensional subspaces L; C C>(S5?%) and pj € C are taken from a strip of
the complex plane, i.e.

3 3
pje{zzi—’y+19<€ﬁz<§—’y}

The width and location of a strip are determined by it’s weight data (v,0) with © = (¢,0] and
—00 < 9 < 0, where each substrip of finite width contains only a finite number of p;. An asymptotic
expansion (1.11) is completely characterized by the asymptotic type P := {(p;,mj, L;)}jez,. To-
gether, weight data (v,©) and asymptotic type P define weighted Sobolev spaces with asymptotics

K31(XM) = {u € K (XN) tu— wzzj:cjk(qﬁ, 0)r~Piln*r € IC%’V(XA)}, (1.12)

Jj k=0

where
K (XM = ) K707(X ™).
e>0

The sum in (1.12) is taken over those j such that ®p; > % — v+ 9. Alternatively these spaces can
be considered as a direct sum of the spaces

m;
K3(XMN) =L+ K (X") with £} = {w > cir(¢,0)r Pt 7«}. (1.13)
j k=0
intersecting in {0}. Furthermore, we employ the asymptotic spaces
SHXN) ={ue KPT(X"): (1 —w)u € S(R,C™(5%))|r, xs52} - (1.14)

with Schwartz class type of behaviour for exit r — co. The spaces (1.12) and (1.14) are Fréchet spaces
equipped with natural quasi-norms according to the decomposition (1.13), we refer to Refs. [3, 10]
for further datails.

2 Basic definitions and main theorems

The basic statement of the paper concerns the iterative solution of the HF equation (1.3) within a
function class of a certain asymptotic type P.

Definition 1. A function u is asymptotically well behaved if u € SH(X") for v < %, asymptotic type
P ={(—7,0,Lj)}jez, and associated weight data (y,0) with © = (—00,0]. The finite dimensional
spaces Lj C C*(S?) are given by L; = span{Y}, : | < j}, where Y, denotes spherical harmonics
on S2.

Proposition 1. An asymptotically well behaved function u belongs to C*°(Ry x S?) and possesses
the asymptotic smoothness property (1.7).



Proof. The function u can be written as

=

u(r,,0) = > cj(¢,0)rw(r) + @y (r, ¢,0),

J=0

€C> (R4 xS2)

where the remainder ®;,; belongs to K£*9(X") for § < 5/2 + k and s € R. For k sufficiently large,
w®y 1 € H*(Ry x S?) with s € Z, which according to (1.9) is equivalent to

3 /3 2[2912510% (w4 1) 2 dar < oo
R

laf<s

This estimate together with (1.10) proves that ®;,; belongs to H*(R?). According to Sobolev’s
lemma, cf. Ref. [5], we have H*(R3) — CR(R3) for m < s—2, where C¥ C C™ denotes the space of
bounded mixed derivatives. Therefore, @41 belongs to C%(R3) for k > m — 1/2. The asymptotic
smoothness property (1.7) is an obvious consequence. [l

Remark 1. The product uv of two asymptotically well behaved function u,v is again asymptotically
well behaved.

Various iteration schemes for the HF equation have been reported in the literature. We just want
to mention the Roothaan, DIIS and level-shifting algorithms discussed in Ref. [1]. For the continous
HF equation (1.3) only the level-shifting algorithm has been proven to converge to a solution [2].
The problem under which conditions such a solution actually corresponds to the global minimum
of the original variational formulation (1.2) is still open. It can be only taken for granted that the
solution either represents a possibly local minimum or at least a saddle point of the variational
problem. The level-shifting algorithm follows the iterative scheme

- {¢z('n)}i:1,...,N/2 — héﬁift = h" — P — {¢§n+1)}z’:1,...,N/2 — (2.1)

where in each step, the N/2 lowest eigenfunctions QSZ(") of a shifted Fock operator béﬁ;tl ) are selected
according to the aufbau principle in order to construct a new shifted Fock operator hégﬁ. Here
the operator P denotes an orthogonal projection on the space spanned by the eigenfunctions
{¢§")}i:17___, ~y2- The convergence of this algorithm (up to extractions), for a sufficiently large pa-
rameter b, to a “self-consistent-field” solution of the HF equation (1.3) has been proven by Cances
and Le Bris in Ref. [2]. In Theorem 11 of their paper, the convergence of the reduced one-particle
density matrix, as a Hilbert-Schmidt operator on H'(R?), has been demonstrated in the corre-
sponding operator norm. For simplicity, we assume in the following the absence of “accidental”
degeneracies within the N/2 lowest eigenvalues of the Fock operator, which means that in the case
of a degenerate eigenvalue, the corresponding eigenfunctions can be uniquely characterized by sym-
metry. In this case it is possible to assign a unique set of eigenfunctions to the reduced one-particle
density matrix. Otherwise it might happen that different subsequences converge to different sets
of eigenfunctions, cf. the proof of Theorem 7 in Ref. [2]. These sets, however, are equivalent up to
unitary transformations and give rise to the same Slater determinant.

The first theorem concerns the properties of the eigenfunctions gbgn) in the intermediate steps of
the level-shifting algorithm.

Theorem 1. The eigenfunctions {¢§"+1)},~:17___,N/2 of a shifted Fock operator hgmft constructed from

a set {¢§n)}i:1,,,,7N/2 of asymptotically well behaved functions, are again asymptotically well behaved.



Our central theorem is a consequence of Theorem 1 and the convergence property of the level-
shifting algorithm.

Theorem 2. The self-consistent-field solutions of the HF equation (1.3), obtained via the level-
shifting algorithm, are asymptotically well behaved provided that the initial guess {¢§0)}i:1,"'7 N/2
possesses this property.

Such an initial guess can be obtained e.g. from the linear part of the Fock operator discussed in
the next section.

2.1 Ellipticity of local Fock operator on an infinite cone

In order to prove Theorem 1, we have to show that the local part of the Fock operator constructed
from a set {qﬁgn)}i:lw, ny2 of asymptotically well behaved functions belongs to the operator class
C?*(X", g) for the weight data g = (7,7 — 2,0), v < 3/2 and © = (—o0,0], cf. Def. 1, p. 258 of
Ref. [3], and is elliptic in the sense of Def. 6, p. 259 of Ref. [3]. We refer to Section 3.3 for a brief
discussion of this operator calculus.

First we consider the linear part of the Fock operator for a nucleus located at the origin

1 Z
blin = _§A — — + Vext,

|z
where Vext corresponds to an external potential which belongs to C°°(R?) and satisfies asymptotic
estimates of the form [0*Veyt| < (1 + |#|)~1~1%l. On an open stretched cone X" this operator can
be expressed in polar coordinates © — (r,0,¢) as a Fuchs type differential operator (cf. Ref. [3],
p. 144f)

1| 1 o\? 1 ) 1
Olin = 73 [_§<_TE> *5(”5)*5‘2—2’"”2% : (2:2)

where [2 corresponds to the total angular momentum operator on S2, cf. Ref. [12].

Proposition 2. The linear part of the Fock operator by, belongs to 02(X/\,g) for weight data
g=(v,7—2,0) with vy € R and © = (—00,0]. Furthermore, the shifted operator by, — e fore <0
is elliptic in the sense of Def. 6, p. 259 of Ref. [3] for 3/2 —~ € R\ Z. There exists a parametriz
Plin € C72(X,h) for h = (v —2,7,0) and a corresponding Green operator Gy, € Cq(X",m) for
m = (7,7, 0) with

Piin(0tin —€) = I + Guipy

which provide continous maps
Piin : K31 (X") — KS22(XM) and Gy : K¥7(X") — SHXM). (2.3)

Proof. Since by;, is a second order differential operator of Fuchs type, the first property follows
immediately.
In order to prove ellipticity we have to check three different ellipticity conditions, cf. Section 3.2,
which have to be fulfilled by various symbols defined for the operator class C?(X", g)-
(i) The homogeneous principal symbol is given by
2 1 2 1 2 | ¢2
0y (blin —€) = 22 (rr)° + Wqu +&p

It obviously satisfies the first two ellipticity conditions
03 (01in — €)(1,6,0,7,65,9) # 0 for all (r,¢,0,7, &4, &) € T*(Ry x §%)\ 0
2oy (Din — €)(r,,0,7717,€4,9) # 0 for all (r,6,6,7,&,&) € T*(Ry x 5%) \ 0.



(ii) The conormal symbol, with z € C, is given by

1
ot — ) (z) = 3 (2 — 22+ 2],
and represents a family of continous operators
orr(bin — €)(2) : H5(S?) — H*7%(5?). (2.4)

It follows from the basic properties of the total angular momentum operator 2, cf. Ref. [12],
that the operator family (2.4) has a pure point spectrum with eigenfunctions Y;,, € H>(S5?)
and eigenvalues 5 (l(l +1) =22+ z) l € Z4. The second ellipticity condition requires that
the operators (2.4) are isomorphisms for some s and all z € T'3/5_,, where I'35_, is a straight
line through 3/2 — ~ parallel to the imaginary axis. This condition is obviously satisfied for
se€Rand 3/2 -~ ¢ Z.

(iii) The principal exit symbols, expressed in cartesian coordinates, are given by

3
1
o(bpn — ) = 5 ng —e>0for all (z,8) e T*X", e <0
i=1

3
1 *
o3 (b — ) = 3 & > 0 for all (2,§) € "X\ 0
=1

and satisfy the third ellipticity condition.

0

It turns out that the Hartree potential Vg can be attached to the linear part of the Fock operator
without affecting the assertions of Proposition 2. For this, we first prove two lemmas concerning
Coulomb convolutions on weighted Sobolev spaces with asymptotics.

Lemma 1. Suppose u € S}, for some asymptotic type P and weight data (v,0) with v < 3/2,
© = (—00,0]. The convolution product w(m)%' x u, with arbitrary cut-off function w, belongs to 832
for some asymptotic type Q.

Proof. Given an appropriate cut-off function n, with n(x) = 1 for € suppw, u can be written as
u=nu+ (1 —n)u, where the lemma is obviously true for the second part of the decomposition. For
the first part, we use the partial wave expansion of the Coulomb potential

1 > . A
Zzl+1 l+1 Z}/lml‘ lm y)v (25)
=

|z =yl
with ro := min{|z|, |y|}, r~ := max{|z|,|y|}, and & := z/|z|, in order to study the effect of the
convolution .
| @l (i) . (2.6
R3 |z =yl

on individual terms of the asymptotic expansion. For ¢(2) € C'°°(S?), the expansion in spherical

harmonics
o0
=D mYim(®)

=0 m

7



is absolutely convergent. Inserting the expansion (2.5) into the integral (2.6) we obtain

— 4m X 1 2k U aciep ok
;214—1 (;clelm(aﬁ)) [W/O ' PTn" rdr + || /x r = P In" ry(r)dr|

where we assume |z| < e. After some rearrangements, the integral (2.6) becomes

|2[>"Pbo(%) + go(w) for k =0,

k+1
|z|?~ pr YIn |z’ + gp(z) for k> 0

with

where the constants a; ; satisfy the estimate |a;;| < 17", and gy € C*°(R?). The prime in (2.7)
indicates that the sum runs over all [ except [ =2 — p. O

Lemma 2. Suppose u € S}, for some asymptotz'c type P and weight data (v,0) with v < 3/2,

© = (—00,0]. The convolutzon product o] ¥ U satisfies the asymptotic estimates

8°‘i * U
|z|

Proof. Given an approriate cut-off function 7, u can be written as v = nu + (1 — n)u, where the
lemma is clearly true for the first term of the decomposition. We consider the expansion of (1 —n)u

in spherical harmonics
(1 =nu() =33 Yim(@umla).

Using the partial wave expansion of the Coulomb potential (2.5), the convolution product can be

written as 1
R “_Zzzﬂzy“” om(le)

(1—w(x)) < A+ [zl for all |af > 0.

with
1 = I+2 d l *© 1-1 d
U m(|$|) |l‘|l+1 0 r ul,m(r) T+ |$| ‘ r ul,m(’r) T.

z|

It is therefore sufficient to prove estimates |v (|x|)| < (1 + |z|)~=" for the n’th derivates vl(?zb

Because of (1 —n)u € S(R, C’OO(SQ))Ethz the second integral vanishes for |x| — oo faster than any
|z| =™ for n € Z4 and vy (J2|) < (1 + |z[)7!7L. For the same reason, the first derivative

I+1 || B 00 B
vlm(| x|) = W/O 2y (r)dr 4 1)) 1/|| =y (r)dr

satisfies the estimate ‘ |x|)‘ < (1+|z[)~7*2. This argument can be continued to arbitrarily high
derivatives of vy . O



Lemma 3. The Hartree potential Vi for a set {¢i}i:17N/2 of asymptotically well behaved functions
belongs to C°(R,. x S?%). Furthermore it satisfies the estimate

(1 —w(=)) [0°Vi(z)| < A+ |z~ for all |a| > 0. (2.8)
Proof. This is an immediate consequence of Remark 1 and Lemmas 1, 2. O

Lemma 4. Given a set {¢z’}z‘:1,N/2 of asymptotically well behaved functions. The corresponding
local part of the shifted Fock operator

Bioc — € =i+ Vu —bP —e fore <0,

belongs to Cz(XA,g) and s elliptic, in the sense of Def. 6, p. 259 of Ref. [3], for weight data
g = (v,v—2,0) with 3/2 —v € R\ Z, v < 3/2 and © = (—00,0]. There erists a parametriz
Ploc € C72(X,h) for h = (v —2,7,0) and a corresponding Green operator G;,. € Cq(X",m) for
m = (7,7, 0) with

Pioc (B10c =€) =1 + Gioes

which provide continous maps
Proc : K (X)) — KGPTTHXN) and Goe : K9V(XD) — SH(XM).

Proof. This is an immediate consequence of Proposition 2 and Lemma 3, where the latter ensures
that the exit part of the symbol belongs to S?9(R? x R3), cf. Section 3.2. The existence of a
parametrix for elliptic operators has been proven e.g. in Theorem 8, p. 259 of Ref. [3]. O

2.2 Proof of Theorem 1
Proof. The shifted HF equation at the n’th iteration of the level-shifting algorithm (2.1) is given by

(B1in + V74U — b)) 6l = Mo, (2.9)

For sufficiently large parameter b, N/2 negative eigenvalues EE") are known to exist, cf. Ref. [2].

According to Lemma 4, we can separate the local part of the Fock operator and obtain
(b = el) 6" =~ (2.10)

where the term in parenthesis corresponds to an elliptic operator in C?(X", g). Acting with the
parametrix Pj,. on the left of (2.10) yields

¢Z(n) = _Plocu(n_l)Qsz('n) - glOCqbz(n)‘ (2.11)

With this equation at hand, we can perform a bootstrap argument for which we introduce a sequence
of weighted Sobolev spaces ICI;)’:(XA), k =1,2,..., with weight data (v, (y — k — 1,0]). Suppose

qﬁl(-n) € ICIIZ’:(X M), and let us further assume that U ("_1)@(") belongs to ICIIZ’:(X ), it follows from
(2.11) that gbgn) belongs to K527 (XM).

Pyyo
From the work of Lieb, Simon and Lions [8, 9] it is known that the eigenfunctions (152(-”) are globally
Lipschitz and decay exponentially for »r — co. According to the definitions (1.9) and (1.10), these
eigenfunctions, therefore, belong to K%Y (X") for v < 3/2. As a starting point for the bootstrap

argument we choose K%0(X") = L?(R?). It follows from (2.11) that (;52(”) belongs to IC}D’;’(X/\) if

9



Z/{(”_l)qﬁl(-n) belongs to K%%(X"). In order to deal with convolutions of the Coulomb potential, the
following estimate (cf. Ref. [7])

ERCRIE

| |z — |

- gl 2rsy < 111 w3y 91l L2 ms) (2.12)
L2(R

uniform in z, with f € H*(R3), g € L?(R?), turned out to be useful. From this estimate, and
¢§-n_1) € H'(R3) (cf. proof of Proposition 1), we obtain the desired result

L) )

"
7] Z

¢§n—1)

)

Kooxn) KOO(XA) HI(R?) KOO(xN)
for the individual terms of U ("_1)¢§n).
In the next step we proceed to weighted Sobolev spaces with asymptotics, where it has to be

shown that Z/{(”_l)qﬁl(-n) belongs to IC?D’:(XA). Let us first point out that the products ¢§n)¢§n—1)

with qﬁl(-n) € ICIIZ’:(XA) and qﬁgn_l) € SH(X™) belong to ICIIZ’:(XA) again. Here we assume that the
asymptotic type P, has been chosen broad enough to comprise these products. Again, we consider

individual terms )
(n=1) + (n=1) ,(n)
¢j |33| * <¢] @bz ) s

separately and perform the decomposition of (bg-"_l) = "7V —i—w(n U and gbl(") = fugn) +w§") into its

j
components in 5 (X") and IC%’Z(X ), where we assume w.l.o.g. that v](-n_l) and vl-(n) have compact

support within in a bounded neighbourhood of the origin 2. Correspondingly, we decompose the
quadratic term

6" Vo = v+ we

with v = fuj(."_l)vi(") € Kp(X") and w, := v§"‘1>w§") + w](-"_l)vi(") + w](-"_l)wg") € IC%’Z(XA).
Then it follows from Lemmas 1 and 2 that

- 1
vj(-n D2y Ve < 0.
|| K (XM
The second and third combination
(n-1) 1 (n-1) 1
w; — %k VU, W — W
T

are supposed to belong to ICgZ(X A) which can be proven by analogous arguments. For the second
combination we introduce a cut-off function n with suppn C Q according to (1.10) and consider first
the weighted Sobolev space HFET1=¢(X") for 1 > € > 0 where we get

SDINDS

HERF(XN) |a|<k a1toas=a

% H|x|—k—1+e+\a2\8a2 <nw§n—1)>

1
* Ve |z|lerlg — o,

(n-1) 1
H” Y

L (%)

(n— 1)\

&)

L2( Hk,k«rlfe(X/\)

The last step is a consequence of Lemma 1 which demonstrates boundedness of the factors in L™
norm. A similar estimate can be obtained for the (1 —n)(-) term in H*(R?). The third combination
follows by similar estimates, except that the L terms need special considerations. In order to keep

10



the asymptotic behaviour of the convolution under control, we first split the Coulomb potential into
L?(R3) + L*°(R?) through the decomposition

ol — e~ lxl
1= V) W), with Yo = S and Wa) = 2 (2.13)

||
For the Yukawa part of the potential, we obtain, by applying Young’s inequality, the estimate

1Y% 0% well oy = [V Ilpams) 107 wellpews)

A

H ‘x’—k—l—l—e—l—\aﬂaal (

we) L2(RY) + [0 ((1 - ﬁ)WC)HH(RS)
S llwellgrrsiexny (2.14)

where in the second last step w. has been split up according to (1.10) using an arbitrary cut-off
function 7. Using another variant of Young’s inequality, the bounded part of the potential can be
estimated

W % 0% well poeay S IW Il oo ) 0% well 11 gy

< —y—k—14€e+|a1| a1 (n—l) (n) (n—l) (n) ‘
< ]zl 0 <v] w; "+ w; v, ) @)
o1 [, (n=1) (n) ‘
+ |9 (wJ Wi ) L1(R3)
5 U](n—l)‘ . ‘wz(n) + Hwﬁn—l)‘ vz(n) .
]CID};V(X/\) ]Ck,k+17€(X/\) ]Ck,k+17€(X/\) ’CF;I:(X/\)
) ™ : (2.15)
]Ck,k+1—e(X/\) ;Ck,kJrlfs(X/\)
where we assume —k — 1 +¢€ <y < 3/2.
It remains to consider the fourth combination
n—1) 1
ol >m % W, (2.16)

where we decompose the convolution term via a Taylor series

1 1 [0°
— kW, = Z cﬁazﬁ—i-Wk, withcf;::—'/wic(y)dy
ER Tl

and formal residuum

(n

which makes sense because of (2.14), (2.15) and the compact supports of the functions v; V. For
the terms in the Taylor series we get

e

b, <00 with [B] <k —1.
K

The derivatives of the residuum W can be estimated according to

1 P 8a+ﬁwc(y)
oW, = |— 0%, — —/761
Wl = | X ow) T W

0<|B|<k—1—|a]

B [ gots
D> :”—/aiwdy with ¢ € [0, 1]
PN

PECEY <Hy*3a+6wc

|Bl=k—|a

AN

oyt HW « aawwcHLm(m) . (217
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using the integral representation for the remainder of the Taylor expansion together with (2.14) and
(2.15). As already mentioned above, the fourth combination (2.16) has compact support within a
bounded neighbourhood €2 of the origin. It is therefore sufficient to consider for the residuum the
space HFF+1=¢(X ") where the estimate

< Z H’x‘—k—1+6+|a1\+|az\aa1v("—1)aa2Wk‘

~ J

lovt|+]a2|<k

HUJ Wk‘ Hk,kJrlfe(XA)

DY

lovt|+]a2|<k

L2(Q)

— -1
el ettty Y|

12(9) H,x‘—mmz@angHLm(m < 00(2.18)

completes the proof that Z/I("_l)qbl(") belongs to ICI;D’:(XA).

After having shown that gbl(") € Kp'(X"), it follows immediately that qﬁgn_l)qﬁgn) belong to a

function space ng. Together with Lemmas 1 and 2 we can further conclude that i (”_l)qﬁl(-n) belongs
to some Sg?. Using the canonical decomposition of the parametrix (cf. Ref. [3])

P=P +P+G with P :=yPyij and P := (1 — )P1(1 — 7),

with cut-off functions 7} = 1 on suppn, = 1 on supp 7, where P; corresponds to a pseudo-differential
operator on R? with symbol in S=20(R? x R3) (cf. Section 3.2), which maps S(R?) into S(R?), we

obtain from (2.11) that gbl(") itself belongs to a function space Sgg.
It remains to specify the asymptotic type . This can be done by inserting the asymptotic
expansion of the eigenfunctions

m;
(bl(") =w Z Z Z Ci ke gmYim | T In*r+ @ (2.19)
j€Z+ k=0 l,m

into the shifted HF equation (2.9) and comparing different terms Yj,, (¢, 0)r i In* 7. By definition,
we assume for k = my; that there exists a ¢;m; im # 0 for some [ > 0 and —I < m < [. The action
of the Laplacian on these terms in a neighbourhood of the origin is given by

#a) - (3)-

= Yyr P2 [(pj(pj — 1) — (4 1) InFr — k(2p; — 1) In* 1 4 k(k — 1) Ink2 r} . (2.20)

Yir P InF r

Furthermore we have to consider the action of local potentials which can be easily derived from
their asymptotic expansions

Z e " Z = "
_?JrvextJrVI({ D _ ) —=+ > (szn,szzm> ", (2.21)

n€Zy \l=0 m

and of the nonlocal exchange and projection operators

k
UMDY PiInk r ~ Yy, 2P (Z dsIn° 1 + 0y 0 p, o1 In"F! r) oot Vi +--, (2.22)
s=0
POy, rPilnFr ~ Y, Z dpr" (2.23)

I<n

which follow immediately from Definition 1 and the proof of Lemma 1.
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At first we want to consider the cases —p; € Zy. The proof proceeds in an inductive manner
starting from the interval 0 < —p; < 1. According to (2.20), the Laplacian maps

A:—p;e(0,1) — —p; —2 € (-2,-1).
These terms have no counterparts in (2.9) and must therefore satisfy the equation
pj(pj —1) =11+ 1) =0 with [ € Z, (2.24)

for the highest power m; of the logarithm. This leads to a contradiction because (2.24) has only
integer solutions. Proceeding to the next interval 1 < —p; < 2, the Laplacian (2.20) maps

A —Ppj € (172) — —Pj — 2¢e (_170)'
Possible counterterms originating from the asymptotic expansion of the local potentials (2.21)
r~t:—p; €(0,1) 4> —p; — 1 € (—1,0)

cannot contribute because we have already shown that there exists no 0 < —p; < 1. Therefore
we obtain again a contradiction from (2.24). A similar argument can be applied to the interval
2 < —p; < 3, where

A —Dpj € (273) — —pj—2¢€ (07 1)7

and possible counterterms from the local potentials (2.21)
b —p; e (1,2) 4> —pj —1€(0,1)

r0 —p; € (0,1) -4~ —p; € (0,1)

are again excluded because there exists no 0 < —p; # 1 < 2. The inductive arguments can be
extended to arbitrary intervals (n,n + 1) with n € Z, which proves that —p; € Z for all j.

It remains to study the cases —p; € Z; with m; > 0. Like in the first part of the proof, we
consider the action of the Laplacian on terms with pg = 0 and continue in an inductive manner.
Suppose k = my, the leading order term 7~21n™° 7 then yields €0,mo,im = 0 for [ # 0. For [ = 0 and
mgo > 0, we obtain cg y,,,00 = 0 from the logarithmic term r~2In™0 1y This demonstrates that all
coefficients, except cp 00, must vanish. Furthermore, we observe that the asymptotic expansions
(2.21), (2.22) and (2.23) acting on ¢ ,00Yoo contribute terms of the form

r 1Yo, and 7Y}, with n € Zy,1<n (2.25)

The next terms in the series with —p; = 1 can be treated in a similar manner. Suppose first
k = mi > 0, then (2.20) in leading order r—!'In™! r yields Cimigm = 0 for I # 1. From the
term 1 In™' "' 7, we obtain C1,m1,1m = 0 because no other terms from (2.25) contribute. The
possibly only nonvanishing coefficients are c1 9o (linked with co.0 007 'Yo0) and ¢1,0,1m. Again, we
observe that the asymptotic expansions (2.21), (2.22) and (2.23) acting on ¢1,0,007 Yoo and ¢1,0,1m7Y1m
contribute terms of the form

Y00, Yim, and r" Yy, withn e Z,, I < n+ 1. (2.26)

This line of arguments can be continued to arbitrary terms with —p; = j, where (2.20) with k =
m; > 0 in leading order rI=21In" r yields Cjm;im = 0 for [ # j. As before, the next lower logarithmic
term 7/ =21n" "1 r yields Cj,m;,jm = 0 because no other terms of this form are contained in (2.25),
(2.26), etc.. Therefore, we obtain m; = 0 and possibly nonvanishing coefficients c; o, with I < j
(coefficients with | < j are linked in leading order with correspoding terms from (2.25), (2.26), etc.).

13



The terms ¢; ¢ ;m7’ Yim couple with the asymptotic expansions (2.21), (2.22) and (2.23) to generate
terms of the form

1Yy, with [ < j, and r"*7Y},, with n € Z,, 1 < n + j.

These arguments demonstrate the absence of logarithmic terms in the expansion (2.19). Furthermore
our arguments show that for each j only a finite number of spherical harmonics with [ < —p;
contribute.

O

2.3 Proof of Theorem 2

Proof. In order to prove that the self-consistent-field solutions of the Hartree-Fock equation obtained

via the level-shifting algorithm are asymptotically well behaved, we proceed in two steps. First we

show via a bootstrap argument, similar to which we have used in the proof of Theorem 1, that these

solutions belong to K%"7(X") and restrict in the following the function space further to S)H(X").
The Fock operator of the n’th iteration splits up into

b(n—l) — hlin + V(n_l), with V(n—l) — V[({n—l) +u(n—1) _ bP(n_l),

where the shifted linear part by, — €, with € < 0, corresponds to an elliptic operator in C?(X", g)-
According to Proposition 2, there exists a parametrix P}, and a corresponding Green operator
Glin- Application of the parametrix Pj;;, to HF equations at successive iterations yields the following
equation

o) = o™ = Py [(VOD —ve) o vy (600 g™ o)
£ () Pl + (27— <) i (6 — 6™)
~ Giin <<Z5Z(-n) - ¢§m)) :

For the bootstrap argument we consider again a sequence of weighted Sobolev spaces ICIIZ’:(X N,

k=1,2,..., with weight data (v, (y —k — 1,0]). Let us assume that the eigenfunctions qﬁl(-n) form a
Cauchy sequence i.e.

Jim H@En) B qb(m)‘ IC’;;}:(XA)

n,M— 00 v

and

lim_|[(Vim) v gl -y (o) - g™ = 0. (2.28)

n,Mm—00 v

KT (XM)
Given limy, ;m—oco ]52(.") - Egm)’ =0, it follows immediately from (2.3) and (2.27) that

lim =0.
n,Mm—00

o - o)

)
The bootstrap argument provides a series of Cauchy sequences

= lim ‘¢Z (Zsz ‘ /Cg]:i’;(X/\)

n,Mm—00

=0 — 1im o ™|

]C];D’I:(XA) 7,1M—00

where convergence of a Cauchy sequence QSZ(") in the Frechet space ICI;D’:(X M) implies strong conver-
gence s—limnﬁooqﬁgn) =¢; € ICI;D’:(X M.

14



It has been proven by Cances and Le Bris, cf. Ref. [2], that the level-shifting algorithm (2. 1)
generates a sequence of eigenvalues and eigenfunctions from which a subsequence E qﬁ(n
be extracted that converges in R and H'(R3), respectively. Furthermore, the subsequence qbi 1)
converges in H'(R?) to the same limit, cf. our discussion of the level-shifting algorithm in Section
2. Our starting point is £%9(X") which is equivalent to L?(R®). We consider the two terms in the

norm (2.28) separately. The second term is given explicitly by

VoD (60— ) =3 (4= om) gy (229

1=

oL (670 (67— 7)) - 0 (4 — 6070

From (2.12), we obtain the following estimates for the individual terms

WWLW%ﬂM“\

L2(R3)] '

sl

o

CRE

H1(R3) L2(R3) L2(R3)

L2(R3)

o e (o (ol = o))

A corresponding estimate for the projection term follows immediately from Schwarz’s inequality.
Similar arguments apply to the first term given by

<l

)

o — ¢2m>‘

L2(R3)

L2(R3) H(R3) L2(R3)

(o) =3 o (- ) =
j=1
) (m—1) ﬁ <(¢§m—1) _ ¢§_n—1)> ¢§m)) n <¢§n—1> _ ¢§m—1>> % . <¢§_n—1)¢§m)>

(o DY (gl ¢§m—1>>L2(R3) g0 (gl 0D _ ¢§m—1>>L2(R3J .

Again, from (2.12), we get estimates for the individual terms

o 2 (P o ) s % 17 e 17 =6 e
(g 1)
o (6 = ) S e 17 e 187 = e
[ ) P )] IR 1 VN i N i N

These estimates together with (2.27) imply s—limnéooqbin =¢; € IC}D’;Y (X") for v < 3/2. Actually it
implies slightly more with respect to the Sobolev regularity. The reason for this downgrading will
become clear in the following.

The finite dimensional spaces E;k are isomorphic to R™ for a m € N, we can therefore reduce

convergence considerations to individual sequences of coefficients {cg-")} where the following remark
turns out to be helpful.

15



Remark 2. Given two Cauchy sequences {c§n)}, {c,(fn)} in R. Then the product {cg-")c,(fn)} is a
Cauchy sequence again.

Proof.

IN

Next, we consider products of Cauchy sequences in weighted Sobolev spaces K7,

Proposition 3. The functions in K7, with s € Z4, s > 2 and v > s, constitute an algebra. Given
two Cauchy sequences {fn}, {gn} € K7 in such function spaces, then the product {f,gn} € K7 is
a Cauchy sequence again.

Proof. According to definition (1.10), the proof can be subdived in two parts. First we consider
W(fngn — fmgm) in the weighted Sobolev space H*7(X"). For convenience, we introduce another
cut-off function @ with @ = 1 on suppw and supp @ contained in a bounded domain 2. Let us define
frn :=wfn and §n := @gn. With this we get the following estimate

”w (fngn - fmgm)HHS»“/(XA) = fngn fmgm‘

HS» ’y X/\)

= 3 |Jlal 10" (£ugn = Fonin )
lal<s

L2(Q)

> X ([l e, - o)

|o|<sa1taz=a
Z(QJ '

|l (0 F - 0 F) 023
For the next estimate let us assume w.l.o.g. that |ag| < |az| and therefore |a;| < |s/2]. Furthermore
we require the Sobolev imbedding H*(Q) — C4(Q) := {u € C'(Q) : 9%u € L>(Q) for |a| < I} for
0 <1< s—3/2(cf. Ref. [5]). With this we obtain for the individual terms

N

L2(Q)

—y+|al a1 £ a2~ o2 < lai| goa £ —vtlaz| (gr2s  _ gozg
H|x| O [, (0%%g,, — O gm)‘LQ(Q) < ||t anLOO(Q) H|l‘| (0%?Ggn — 0 gm)‘LQ(Q)
S fn He(Q) Hgn - EN]mHHSW(XA)
< g A
~ . ”gn gm”ns,'y(x )

vt (050 8) 5

]Fn - fm‘

1Grm |33y -

L2Q) ~ HsY(XN)

The remaining part (1 —w)(fngn — fmgm), in the space H*(R3), can be dealt with similar arguments.
O

Together with Remark (2), the previous proposition can be used to prove the following lemma.

Lemma 5. The functions in K';:(XA), with k > 2 and v < 3/2, constitute an algebra. Given

two Cauchy sequences {fn}, {gn} in such function spaces, then the product {fngn} € ICI;)’:(X/\) s a
Cauchy sequence again.
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Proof. We decompose the functions according to f,, = v, + Wy, gn = O + Wy, with vy, 0, € S;k (XM
and wy,, W, € ICg’Z(XA). With this, the products splits into

fngn = Unf)n + Unwn + wnf)n + wnwn

The proposition follows immediately for the first and fourth term on the right hand side from Remark
2 and Proposition 3, respectively. The mixed terms v,w,, and w,?, belong to IC%’Z(X M) and can be
handled like in the proof of Proposition 3 where we utilize that {|z|** 9 v, } are Cauchy sequences
in L*°(Q). O

The following corollary is an immediate consequence of the proof of Proposition 3 and Lemma
5.

Corollary 1. Given a bounded sequence {f,} and a Cauchy sequence {g,} in IC'I?:(XA). Then

7,1Mm—00
uniformly in [.

We turn now to estimates for the nonlinear quantities (2.29) and (2.30) in the weighted Sobolev
space with asymptotics ICI;)’:(X N). The estimates are given for k > 2 and a subsequent argument
shows how to bridge a remaining gap in the bootstrap argument. Let us start with the first term
on the right hand side of (2.29). Our discussion follows here almost literally the preceding proof

of Theorem 1. For the convenience of the reader, we repeat the basic arguments since we are
(n) _

now concerned with Cauchy sequences instead of single function estimates. We decompose ¢, =

fugn) + wgn), o™ = o™ 4 ™ and ¢§"_1) = vyl_l) + i

% A % 7

ICg’Z(X M. Correspondingly, we decompose the quadratic term

into its components in £}, (X") and

(n—1)

q 9

‘2 = vé"_l) +w

o

with

Ué D= (U]( )> € 8 (X"), and wy i i

2
D = 20 DY 4 (W) e K (X).
Then it follows from Lemmas 1 and 2 that

=0.

lim ‘
K (x)

n,Mm— 00

For the second combination
m )\ L 1) o ek A
(wi —w, ) il € Kg, (X™),

we introduce a cut-off function 7 with suppn C Q and consider first the spaces H**+1=¢(X") for
€ > 0 where we get

IERCT

AT

Yy

lo|<k a1taz=a

< | (™ = wi™
= )

o[l g ﬁ s« oD
X

HEkHLI—e (XA L>(Q)

oo )]

(2

L2(Q HHWCH*&(XA) '
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The uniform boundedness of the factors in L* norm is a consequence of Lemma 1. Similar estimates
can be obtained for the (1 —7)(-) term in H*(R3). The third combination

1
(wgn) — wgm)) m * w(n D ¢ IC@’Z(X/\)
can be handled likewise, except that the L°° terms again require particular attention. Like in the
proof of Theorem 1, we first decompose the Coulomb potential into L2(R?) + L°°(R?) according to
(2.13). According to (2.14), we obtain, by applying Young’s inequality to the Yukawa part of the
potential, the estimate

R i O 23

Kk kA1—e(XA)

The bounded part of the Coulomb can be estimated, according to (2.15), using the other variant of
Young’s inequality

HW * Z?O‘lw("_l)H < Hv(-"_l)‘ ‘w(»n_l)‘ + Hw(-"_l)‘ ’ . (2.32)
q Leo() ~ J ’C];:;I:(X/\) J Ik kt1—e (XN J Ik k=€ (XN
It remains to consider the fourth combination
<’U2(n) _Ui(m)) 1 >kw(n 1)’
[]
which restricts to a bounded domain €2 because of the compact support of the functions vi("). Again,
we perform a Taylor series decomposition of the convolution term
1 B B 1 3, (n—=1)
—*w("l Z C(n1 B—G-W,gn 1), Withcgl 1);:—/Md@/
o e C A"
with formal residuum 1
(n—1) —1 (n—-1) g
W, 2l * w[(]" ) — Z cg w
1BI<k—1
The Taylor expansion converges as a Cauchy sequence
: (n) _  (m) (n—1) 8 _
(0 -o) 5] <
1BI<k—1 /C];'I:(XA)
because the constants cgl_l) are bounded according to the estimates (2.31) and (2.32). Following

(2.17), the derivatives of the residuum W,g"_l) can be estimated

‘x“a\ —k 2

)

)

)

|

st

q

s

ko k+1—e(X 1) ;C’;D};Y(XA) KChok+1—e(XA) JCkok+H1—e (X N)
using an explicit expression for the remainder of the Taylor expansion together with (2.31) and

(2.32). It is sufficient to consider for the residuum the space H**+1=¢(X") where an estimate

[ (o =) i) D Y (LA i
lal<k

Hk,kJrlfe(XA)
analogous to (2.18), demonstrates convergence of the Cauchy sequence.
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The second term on the right hand side of (2.29) can be treated along the lines of the previous
one. Again, we decompose the convolution term

(255_"—1) ((b(") _ ¢(m)> — U(n,m) + w(n,m) with U(n,m) — U](-n_l) (U(") . ’U(m)) e S;oo (X/\)

) ) 7 7

and w™™ = vyl_l) (wgn) - wgm)) + wg»"_l) (v(") - v(m)) + w](-"_l) (wgn) - wgm)) € ICSZ(XA)-
Both parts have separate limits

Jim[Jut|

. =0, and lim Hw("’m)‘
]CP"Y(X/\) n,m—00
k

k,y = 07
Ke, (X?)
which ensures that the right hand side of the estimate (2.31) vanish for n,m — oco. Finally we just

want to mention that the first term on the right hand side of (2.30) reduces to the previous case
using the identity

(¢§m—l)>2 B <¢§n_1))2 _ <¢§m_1) B ¢§n—l)) ¢§m—l) X <¢§m—l) _ ¢§n—l)) ¢§n—1).

All remaining terms in (2.30) are similar to the terms discussed explicitly.

Altogether, this proves the limit (2.28) for IC?;’:(X ) with k& > 2. Tt remains to consider the case
k = 1 which has so far been skipped in our discussion. Going through the proofs of Proposition 3
and Lemma 5 it can be seen that these proofs go through even in the case k = 1 using the additional
regularity from the fact that P};, provides a continous map from K%(X") into K22(X"). This is
sufficient for the remaining steps required for the proof of the limit (2.28) for IC}D’;Y(X M.

So far we have shown that the iterative solutions gbz(") of the level-shifting algorithm converge to
solutions ¢; of the HF equation (1.3) in the weighted Sobolev space with asymptotics IC}’DO;’(X Mie.
" — i

lim
n—oo

=0 forall i =1,N/2.
Ko (X7)

What remains to show is ¢; € SIZOO (X"), which finishes the proof that the solutions are asymptot-
ically well behaved. The proof can be simplified using the trick of Lieb and Simon [8] to represent
the nonlocal HF equations as a system of coupled local equations. For this they introduced the
operator matrix h with entries

hij =0 (Oin + Vir — &) + Ui, with Uy j = — / 7@5'(;/)_% (|y) dy

, (2.33)
by which the HF equations can be written in the form h¢ = 0. It will be shown in the following that
the operator matrix h actually corresponds to an elliptic operator. This means that a parametrix
P and a Green operator G exists from which we obtain the desired result

Ph¢=¢+Gp=0 — ¢ €S} .

It is evident from the properties of the Sobolev space IC;’DOO;V that the short-range behaviour
of the nonlinear potentials in the operator matrix (2.33) is in correspondence with the ellipticity
requirement mentioned in Section 3.2 and we are left with the estimates for the long-range behaviour
(cf. (2.8)),

1 - -
o« [(1 —w)— % (gblqﬁjﬂ ‘ < (1+ |x|)—1—|oe\7 with ¢; = (1 — w)g;.

]

The following propositions enable us to get control on the long-range behaviour of convolutions with
the Coulomb potential.
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Proposition 4. The convolution of a function u € IC;"Y(X/\), with the Coulomb potential can be
expressed through

1 1 1
—xu=—Ppu+ (—1)""— * Pl'u— — * Gpu, (2.34)
] ] ]
with P :=47P, > (—1)'c'Pi, and Gm =G > (—1)'¢"P}
=0 i=0

where P. and G. are the parametriz and Green operator of a shifted Laplacian for weight data
g=(77—2,0) with 3/2 —y € R\Z, v < 3/2 and © = (—00,0], respectively, i.e.

(A—c)P.=1+G. with c> 0. (2.35)

Proof. The existence of a parametrix for a shifted Laplacian A — ¢ with ¢ > 0 is an immediate
consequence of the general theory of elliptic operators, cf. Theorem 8, p. 259 of Ref. [3]. Recursive
application of (2.35) yields

u = AP.oau— cPoau— Gou
= AP — cAP*u+ P?u+ cGPou — Geu

m—1 m—1
= AP Y (- P+ (—1)" P — Ge Y (1) ¢ Plu.
i=0 =0

This Poisson type equation has a unique solution (2.34) obtained through convolution with the
Coulomb potential. Uniqueness follows from the fact that P,u € L?(R?) and therefore belongs to
S’(R3). In S'(R?) the only distributional solutions of Aw = 0 are harmonic polynomials, cf. Ref. [12]
p. 147, which do not belong to L?(R3). O

Proposition 5. Given A € C"(X",g) with n < —s — 3 and s € Zy. For any u € K3 (X"),

which in addition satisfies sup,, |v u(z)| < oo for all |B] > 0, and arbitrary cut-off function w, the
following asymptotic estimate can be derived

09 A(L —w)u| S 1+ [z*)™™, forall |a| < s and m € Zy.
Proof. First we perform a canonical decomposition of A (cf. Ref. [3])

A=A+ A+G with A :=nAgf) and A := (1 —n)A1 (1 —7), (2.36)
for appropriately chosen cut-off functions 77 = 1 on suppn, n = 1 on suppf] and wn = 77, where
Ay corresponds to a pseudo-differential operator on R3 with symbol a(x,€) in the symbol class
S™O(R3 x R3). It is obvious from (2.36) that it is sufficient to consider A;, where we adapt a

standard proof that pseudo-differential operators on R?® map S into S, cf. p. 232ff in Ref. [11].
Following the proof in Ref. [11], we introduce the operator

-1
Le = (1+]al?) " (1= Ag),
which has the obvious property Lgem5 = ¢, Herewith, and setting @ := (1 — w)u, we obtain the
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required estimate

g AL —wul S Y

[ ate o6t di‘

a1tas=«
= Y | memoeignres ds‘
al1toas=a
S k)" Y [|a-ag” e oemie)]]
a1 tas=a
S el Y Y []or erate e o) de
alta2=a B1+62<2m
S RPN [las iy e
B1+B2<2m L L
< QL+ )™, forall m e Zy and |af < s. (2.37)

0

Remark 3. In order to prove the estimate (2.37) it is sufficient that the symbol of the pseudo-
differential operator A belongs to S™(R® x R3), cf. Ref. [11], this corresponds to the class of all
symbols a(z,£&) € CP(R3 x R3) which satisfy the estimates

020 aw, )| < (1+ 1)V,

for all (z,€) € R? x R? and |al,|3] > 0.
Using (2.34), the convolution can be decomposed according to

o (i) = <P (8:d) + M P (1) - TG (Bid) - (239

] ] ]

For |a| < s, m is chosen such that 2m > s+ 3/2. According to Proposition 5 and Lemma 2 it is
sufficient to consider only the first term in (2.38). The problem can be further reduced by performing
a canonical decomposition

P =P 4 P+ Gm with P! .= nPyij and Py, := (1 — n)P1(1 — 1)), (2.39)

for appropriately chosen cut-off functions, i.e. 7 =1 on suppn, n = 1 on supp7n and wi = 7, which
yields

Pm (&z@) = Pnm <<Z~51<Z~53) +Gm (éz&]) :

It remains to show how to express 75m(qz~52<;~53) in such a manner that Proposition 5 can be applied. For
this we use again the paramterix of the linear part of the Fock operator i.e. P; (hyjn — i) = 1+ G,
which yields the following expression for the eigenfunctions

—i = P; (Vidi) + Y Pi Ui ;&) + Gio (2.40)
j

Using a canonical decomposition of the parametrix (2.39) and an appropriately chosen cut-off func-
tion 71, equation (2.40) yields

—6i = PiVudi + Y Pithi ;b5 + Gii, with Vi := (1 =)V, Uiy = (1 — )l . (2.41)
J
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It is easy to see that the functions f/H and LN{Z ,j have bounded derivatives and therefore have been
considered here and in the following as multiplicative pseudo-differential operators with ¢ indepen-
dent symbols in S°(R3), cf. Remark 3. The same holds for the functions &;, with this we get the
expression

o (685) = {Pudi} by =~ {PudiPVia } b = S (PP} b= P (360,) . 242
k

where the terms in curly brackets denote composite operators within the algebra of pseudo-differential
operators on R®. We notice that {P,,;P;Vg} and {P,,P;U; 1.} correspond to pseudo-differential
operators with symbols in S~%(R?). Furthermore, we remark that ¢;G;¢; belongs to S(R?) and
that P,, maps S(R?®) into S(R?). We can now consecutively insert (2.41) into (2.42) generating
pseudo-differential operators of even lower order modulo higher order operators acting on functions
from S(R?). This argument enables us to apply the estimate (2.37) and therefore completes the
proof that the solutions of the HF equation belong to S}H(X"). O

3 Background on the analysis near conical singularities

This section has the character of an appendix on general tools around elliptic operators near conical
singularities or conical exits to infinity.

3.1 Ellipticity and parametrices near conical singularities

In general descriptions it makes things more transparent when we admit the operators to be of
arbitrary order m, not necessarily of order m = 2, since the parametrices are always of opposite
order and the calculus also employs compositions, and, in particular, operators of order zero. Given
a differential operator A in R™™! 5 z with smooth coefficients, polar coordinates z — (r,a) in
R\ {0}, (r,a) € Ry x X, X := 8", transform A into an operator of the form

— mza] < g)j, (3.1)

with coefficients a;(r) € C*°(R,, Diff " 7(X)); here Diff'(X) denotes the space of all differential
operators on X of order | with (in local coordinates) smooth coefficients. Operators of the form
(3.1) are much more general than operators going back to A with smooth coefficients across the origin
in R"*1. In our case we may replace ag(r) by ag(r) + r* for any k € N, which corresponds in the
original operator to an extra potential term |2|~™%* which is singular at |z| = 0 when —m + k < 0.
This is just the situation in equation (2.2) for m = 2 and k = 1 (up to a factor at the potential).
One of the main observations on elliptic equations Au = f in R, x X (= R**!\ {0}) is that the
solvability depends on chosen weights v € R in the spaces H*7(X") (see the formula (1.9)) and
that solutions have asymptotic expansions of the form (1.11) as r — 0, where ¢ € L; C C®(X),
pj € C, 0<k <my, j€N. Here Rp; < "H -, Rp; — —o0 as j — oo. Let us brleﬂy explain the
general mechanism of how such asymptotlcs appear and in which way they depend on the individual
operator. First of all the ellipticity does not only refer to the homogeneous principal symbol of A of
order m which is a smooth function oy (A)(r, o, ,£) on the cotangent bundle of X" > (r, &) minus
the zero section (p,&) = 0, but also on a reduced symbol

Gy(A)(r,a,0,8) =10y (A)(r, a, rto, £),

which is smooth up to » = 0, and in addition on the principal conormal symbol

) :Zaj(())zﬂ' . H¥(X) — H*™(X), (3.2)
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which is operator-valued, depending as a holomorphic function on z € C. It is known that when
Gy(A) # 0 for (0,§) # 0, up to r = 0, the operator function (3.2) is a family of Fredholm operators
on X of index zero, and there is a countable set D = Dy C C, where {¢ < Rz < ¢} N D is finite for
every ¢ < ¢, such that (3.2) consists of isomorphisms for all z € C\ D. Constructing a parametrix
of A close to r = 0 within the so-called cone algebra requires to invert the symbolic components
(o4(A), o0 (A)(2)). The second component ¢y, (A)(z) is a meromorphic operator function with
poles at the points p € D of certain finite multiplicities and Laurent coefficients of the principal
part belonging to finite rank operators on X with kernels in C*°(X x X). The ellipticity of A with
respect to opr(A) and the weight v € R is just the condition that the line {z : Rz = "TH — 7} does
not intersect the set D for n = dim X. A parametrix of A near r = 0 may be found in form of a
Mellin pseudo-differential operator

roply ™2 (h) + M + G, (3.3)

where h(r, z) is a holomorphic function in z, smoothly depending on r up to zero, with values in
classical pseudo-differential operators on X. The notation means

opy (u(r, z) = 1M (T2 ) Mr~u(r, ),

where (T“;f) (ryz) := f(r,z — 0) for any 6 € R and any Mellin symbol f as described before.
Furthermore

= oorz_lvr r an ~19) (r - L r~*g(z)dz
) ()= [t and (M0 )= | (e

are the standard Mellin transform and its inverse, respectively. The operator M is a linear combi-
nation of expressions of the form

. gi—m_n o
wr™op " *(fj)o, jeN,

with cut-off functions w(r),@(r), meromorphic Mellin symbols f;(z) with values in smoothing opera-
tors on X, Schwartz functions in Iz for |3z| — oo, and poles, multiplicities and Laurent coefficients
of a similar kind as described before in connection with o} (A)(z). The weights d; are chosen in
such a way that v —m — j < §; —m < 7 —m and that the line Rz = "TH — (65 — m) does not
intersect the sequence of poles of f;. The operator G in (3.3) is of Green type and maps distribu-
tions in wHS~™7~"(X") to functions in HE}ZC(XA) for some asymptotic type @ (see the notation
in Section 1.2; the loc-notation means HE;’“’(X M) after multiplication by a cut-off function). With

it, the inverse of the conormal symbol has the form

ot (A)(2) = h(0,2) + fo(2).

In order to complete the information to a calculus on X" with conical exit to infinity we have to
focus on what happens for » — oo.

3.2 Ellipticity and parametrices near a conical exit to infinity

Our next objective is to consider operators on Ry x X from the point of view of ellipticity up to
r = 0o. Since the consideration can be localized with respect to the variable on X, the cylinder
R, x U for a coordinate neighbourhood U on X can be identified with a conical subset of R**+1.
The relationship between points on Ry x U > (r,a) and points in R"*\ {0} can be formulated
by passing from U via a diffeomorphism to an open subset V' in the open unit ball B C R", with
y € R", such that V' C B and then identifying (r,a) with (r,7y) where y corresponds to a via
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U — V. Thus setting x = (r,ry), r > 0, we now assume for convenience that our differential
operator A, the ellipticity of which at |x| = co we are considering, is given globally in R**! 3 .
Symbols refer to (x,&), where & is the covariable to = (clearly everything can be rephrased again
in polar coordinates). To understand phenomena it is enough to study ellipticity also across x = 0
which will be cutted out in the final cone calculus on X” and replaced near zero by an operator in
the cone calculus. Within this setting, we denote by S™9(R"! x R"1) the space of all symbols
a(z,€) € C®(R™! x R™*1) which satisfy the estimates

920¢alw,&)] < (1 + 1) (14 Jal) T,

for all (z,&) € R™! x R™! and |a|,|3| > 0. Different types of principal symbols have to be
considered. First, a differential operator

A= Z aq(z) DY,

|laj<m

with coefficients a, € C*°(R"*!) has its standard homogeneous principal symbol

op(A)(@,€) = Y aa(2)™ € CPR™ x (R™\ {0})).

|a|=m

At |x| = co we assume the coefficients a,, to be classical symbols in x of order zero. In particular,
we can form

oe(A)(w,6) == Y od(aa)(@)E" € C((R™\{0}) x R™H), (3.4)
|a|<m
where 60 (a,)(z) denotes the homogeneous principal component of a, of order zero in = # 0. Finally

(3.4) has again a homogeneous principal symbol in & # 0.

ope(A)(@,€) = Y ollaa)(@)e™ € C(R™\ {0}) x (R {0})).

|a|=m
The operator A is said to be elliptic globally in R™*! with respect to the symbolic components
0(A) = (0y(A),0c(A),04.(A)), (3.5)

if 0, (A)(2,€) # 0 for (z,6) € R™1 x (R {0}), 0 (A)(,€) # 0 for (z,€) € (R™1\ {0}) x R™+,
and oy (A)(2,€) # 0 for (z,€) € (R™1\ {0}) x (R**1\ {0}). Simple examples show that these
three conditions are independent. For instance,

A=A —¢c forc>0

is elliptic in that sense (we have m = 2 in this case), while A = A is not. A standard theorem of
that calculus tells us that A is elliptic with respect to (3.5) if and only if

A - HS(RTL+1)—> Hs—m(Rn—l—l)

is a Fredholm operator for any fixed s = sy € R (this entails then the Fredholm property for all
s € R). If A is elliptic, then there is a parametrix P which is a classical pseudo-differential operator
in R, again with a triple of symbols o(P) = (0 (P),0c(P),0yp.(P)), the components of which
are inverse to the ones in (3.5). The operator P satisfies the relation

PA=1+C;, AP=1+C,,

with smoothing operators C; and C, which are integral operators with kernels in S(R"*! x R*+1),
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3.3 The cone calculus

By cone calculus, here on X 5 (r, ) with r — 0 coresponding to a conical singularity, 7 — oo to
a conical exit, we understand a calculus of operators

A=7""wop" 2 (W)& + (1 — w) Ajs(1 — &) + M + G, (36)

where w,®,® are cut-off functions on the half-axis, @ = 1 on suppw, w = 1 on supp @, such that
h(r,z) is C* in r € R, holomorphic in z € C, such that h(r, 3 + ip) is a parameter-dependent
pseudo-differential operator of order m € R on X with parameter g, A;,; is a pseudo-differential
operator of order m on R"*! with exit symbolic structure as explained in the preceding section, M
is as in Section 3.1, while G is a Green operator on X’ with discrete asymptotics for » — 0, that
means
G: K(X") — S&_m(XA) (3.7)

is continuous for every s € R, with some asymptotic type @), and the formal adjoint with respect
to the K%0(X")-scalar product has a similar property. We denote by C™ (X", g), the class of all
operators (3.6) which can be associated to specific weight data g. B

The operators (3.6) belong to the space of classical pseudo-differential operators of order m on
the open C'*° manifold Ry x X with oy (A), the standard homogenous principal symbol of order m.
In this connexion ellipticity also refers to the reduced symbol G,(A) near » = 0, moreover, to the
conormal symbol o/(A)(z), Rz = "TH —~ for a weight v € R, and to the exit symbolic components
0e(A) and 0y (A). This has been explained in the preceding sections. Observe that every operator
(3.6) induces continuous operators

A K3V(XN) — 37 m (XN (3.8)
and
A: ICBPY(X/\) — K5 ™TTMXN),
A SHX") = SN,
for every s € R and every asymptotic type @) with some resulting asymptotic type R (which also
depends on A, more precisely, on the meromorphic structure of the involved Mellin symbols).

Theorem 3. For an operator (3.6) the following conditions are equivalent:

(i) A is elliptic ( with respect to vy what concerns opr(A) ).
(i1) A induces a Fredholm operator (3.8).

Theorem 4. An elliptic operator (3.6) has a parametriz P of analogous structure, of order —m.,
elliptic with respect to the weight v —m, which means

PA=1+G;, AP=1+G,,
with some Green operators Gy, G,. Moreover, Au = f € Kf};)m’ﬁ’_m(X/\) and u € K™Y (X")

entails u € IC‘E’Q;/) (X") for every s € R and every asymptotic type R with a resulting asymptotic type

Q@ ( parentheses mean that such a result is valid also with respect to the spaces without control of
asymptotics ).

Corollary 2. Au =0 entails u € SZQ(XA) for some asymptotic type Q.

Proof. Choose a parametrix P of A and compute PA = 14 G;. Then Au = 0 implies (1+ G;)u = 0;
however, the relation (3.7) gives us u € SgQ(X/\). O
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