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1 Introduction

Chemotaxis is a widespread phenomenon in biological systems (cf. [1-9]). Cells or
organisms respond to chemical substance by motion and rearrangement (cf. [1]). They
may move toward the higher concentration of the chemical substance or away from it,
to search for food, to endure starvation conditions, to explore new regions, to repro-
duce or to give each other shelter. For example, the fruiting body cycle begins with the
development of spores which germinate and develop in vegetative growth until starved
of nutrients. In this latter case the vegetative growth aggregates to form a new fruiting
body and to start the cycle once more. The myxobacteria are ubiquitous soil bacteria,
which glide on suitable surfaces or at air-water interfaces. During gliding the myxobac-
teria produce so-call slime trails on which they prefer to glide. When a myxobacterium
glides on bare substrate and encounters another slime trail at a relatively shallow angle,
it will typically glide onto it. Under starvation conditions they tend to glide close to
one another. During gliding they form different patterns and finally they aggregate to
build so-called fruiting bodies (cf. [1, 6, 12]). Inside these fruiting bodies they survive
as dormant myxospores. The mechanisms by which myxobacteria glide on the sub-
strate and aggregate are still not understood and thus theoretical analysis of different
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mechanism is useful.

A chemotaxis process occurs also in the growth of a tumor. The tumor secretes
chemical species that attract the nearby endothelial cells, which form the surface of
capillary blood vessels. In this way new blood vessels sprout towards the tumor and
begin to provide it with additional nourishment. The phenomenon of sprouting of new
blood vessels is called angiogenesis.

Recently, Othmer and Stevens have developed some models [10] to describe these
complicated processes which are far from completely understood. These kinds of models
in generally consist of two main parts: One is called ” master equation ” as defined by

=DV (pV(ln L)),
w
and the other is called the local dynamics for the control species:

887’[: = F(x7t’p7w)7

where p(x,t) is the particle density of a particular species and w(x,t) is the concentra-
tion of the ” active agent ” on some domain Q x (0,7). Recently many authors have
discussed these models ( [11-16] ), and they found that from these models, many pro-
cesses of aggregation, blow-up, as well as collapse can be described. Even though, we
have just obtained very little information about the solutions for these kinds of models.
In these papers, authors have studied the models for which the control species w, from
the second equation, is linear or exponential growth, namely

(1) %2 = Bp — pw, or
(2) 3¢ = (Bp — pw.
In fact, saturation with respect to p in the production of the control species is

certainly more realistic in the biological context. It is also important to investigate the
following model with saturation growth, which appeared in Othmer-Steven [10]:

S =Dv-(pv (1))

forx € Q,t >0,
L) E——
ot ao(t) +as(t)p
v(ln(%))-n:(), for x € 00,1 > 0,
p(x,0) = po(z) >0, ] g

or x € (),
w(z,0) = wo(z) >0,

where «a;(t) (i = 1,2, 3), and p(t) are smooth bounded positive functions, n is the outer
normal of 9€). In this paper, we shall prove the existence of global solutions in section 2,



and the problems for periodic solutions and stability of the solutions will be discussed
in section 3.

2 The existence of global solutions

In this section we consider the following problem:

0
5 =Dv-0v ()
forx € Q,t >0,
ow a1 (t)p
s O
ot aa(t) +as(t)p 51
v(ln(%))-nzo, for x € 9,1 > 0, (2.1)
p(z,0) = po(z) >0, _
for x € Q,
w(z,0) = wo(z) >0,

where «;(t) (i = 1,2,3), and p(t) are all smooth bounded positive functions. Observe
that p(x,t) and w(z,t) are positive solutions in their definition domains. This is be-
cause that the initial data (po(x),wo(x)) is positive, thus there exists 77 > 0 such

t
that p(x,t) > 0 for 0 < t < T;. Because of 5%) = M — p(t)w, we have
t
an(t)pelo s

a(t) + as(t)p
If there exist tg > 0, xg € § such that p(z,t) > 0 for (x,t) € Q and p(zg,to) = 0,

t t
(edo 15y, — , which implies that (edo “%w), > 0 for 0 < t < Ty

t —
then w(z,t) > eifo u(s)dswo(l’) > 0, for (z,t) € Q. So we have that p((xjtt)) >0
w(z,
for (x,t) € Qy, and plao,to) = 0. Thus we can introduce that u(x,t) = p(z;?) , and
w(x0>t0) w(:):,t)
U = b Ewt, then from
woow
p = Dv -(pvln(g)) =D -(p v Inu)
u
o (t)p oy () uw
wp = — et — p(tjw = _ (b,
' as(t) + as(t)p ut) as(t) + as(t)uw uit)
we have
1 u aq (t)uw
=DAu+ D— . _“ _ ot
Uy U+ w(VU}) (Vu) w(az(t)—l-ag(t)uw w(t)w)

a1 (t)u?
as(t) + ag(t)uw’

= DAu+ D () - (Fu) + plt)u -



Thus we know that (p(x,t),w(z,t)) is a solution of the system (2.1), if and only if

(u(x,t),w(z,t)) is the solution of following system:

S 1 oy (t)u? _
i DAu — DE(V“’) (V) — p(t)u + as(t) + az(t)uw ’
ow o (Huw

o,

on

_ po(x)
u(z,0) = up(z) = wo(x)
w(z,0) = wo(x)

We have

forx € Q,t >0,

for x € 0Q,t > 0,

z e, t>0.

(2.2)

Theorem 2.1. There exists a unique global solution for the problem (2.1).

Proof. From the result of [15], the problem (2.1) has a unique local solution
(p(x,t),w(zx,t)) for (z,t) € Qr = {(z,t) | z € Q,t € (0,T)}, where T' > 0 is maximum

existence time. We know

ow ay(t)p
ot as(t) + as(t)p - u(tw,

thus ,
(s)ds —
(efot u(s)dsw) o al(t)pe”fo 3 < ﬂefot u(s)ds’

C () Faz(t)p T ag
where a; = sup;> ;(t) < +00, a; = inf;>0 a;(t) > 0, (7 = 1,2, 3). Thus
t Y t s
eJo 1Oy (3 1) — wy(x) < %/ eJo wlsnds g
Q&3 Jo
So we have, for t > 0,

t — t s
wla 1) < ¢ KO () 1 0L [ ol w0 gy
Q3 Jo

_ . .
< w0($) + ﬁef f(; u(s)ds/ ,u(s)efo M(S1)d31ds
0

Qg
Y t
<wof@) + o (1= el
830
< wo(z) + % < +00
830

where p = inf;>q pu(t) > 0, that implies that w(z,t) is finite in any ¢ > 0.



Secondly

a1 (t)u?
as(t) + as(t)uw

1
w = DAu+ D (7w) - () + u(t)u -
1 Q1 o
> DAu+ D—(yw) - (Vu) + pu — —u’.
w - [67))

Obviously u(x,t) is a super-solution of the following dynamics:

1 _
@—DAU—D—(VM))-(VU)—;w—l—%zﬂzO for z € Q,t >0,
ot w =

@:0, for x € 0Q,t > 0,
on

v(z,0) = min, g ug(x) for x € Q.

Similar to the argument in [16, section 2|, we can prove that the problem above
has a positive global solution v(z,t), and lim;_, ;o v(x,t) = % Thus, by comparison
principle, we can find a positive constant § > 0, such that u(x,t) > v(z,t) > 6 > 0,
which implies that u(x,t) is a strictly positive function. That ensures both functions

p(z,t) and w(z,t) are positive in their definition domains.

Finally we prove that the problem (2.1) has a global solution. Since

oy (t)u?
as(t) + az(t)uw

u = DA+ D (w) - (7w) + u(t)u -
< DAu+ D (s7w) - () + (i),

we know that u(z,t) is a sub-solution of the following problem:

1
g:: — DAv — D—(yw) - (Yv) — p(t)v =0 for z € Q,t >0,
w
@:0 for x € 0Q,t > 0,
on
v(z,0) = Up = max,q uo(z) zecQt>0.

It is easy to check that the function
v(z,t) =v(t) = ﬂoefot”(s)ds < 400
is the unique solution for the problem above. From the comparison principle, we have
u(z,t) <o(t) = aoefot uis)ds

so u(x,t) does not blow up in finite time. Since p(z,t) = u(z,t)w(x,t) and w(x,t) is
bounded above, which implies that the solution of (2.1) is the global solution.

For the problem (2.2), we can prove



Theorem 2.2 . For any pair of positive initial data (u(z,0),w(z,0)) = (ug(x), wo(x)),
there exist positive constants m and M, 0 < m < M < +oo, such that, m < u(x,t) <
M and m < w(zx,t) < M.

Proof For any fixed positive initial data (u(z,0),w(z,0)) = (ug(x),wo(x)), there
exists a unique solution (u(z,t),w(x,t)) of the initial boundary problem which is pos-
itive and global. Let @y = max,.quo(x), and wg = max,qwo(z), for w fixed, we
denote (f(x,t),g(x,t)) as solution of following initial boundary problem:

0 1 o
o DA =D (yw)- (V) 4 uf — —L P
ot w az+asfg for . € Q¢ > 0
@:7a1fg —Mg ’ ’
aat az +aszfg ’
lZQ’ for x € 002, t > 0,
on
f(z,0) = 1o, _

for x € Q.
g(x70) = W

(2.3)
It is obvious that (f(z,t),g(z,t)) is a super-solution for the problem (2.2), hence
0 <u(x,t) < f(z,t) and 0 < w(x,t) < g(z,1t).
Next the problem (2.3) has constant initial data, (f(x,t),g(z,t)) is also a solution
of the initial problem of the ordinary differential system

0 o
87{_”f+a +<le fr=0,
2 3/9 for t > 0,
99 __afg
ot ag+asfg K (2.4)
f(z,0) = 4o,
g(xuo)_wo

From (2.4), we can deduce (fg); = 0, which implies fg = f(0)g(0) = upwy. So
(f(z,t),g(z,t)) is also a solution of the initial problem of the ordinary differential
system

ol =0
2 3
@ ik B for t > 0,
ot as + ask 1 (2'5)
f(z,0) = 1o,
g(,0) = w,

where k = tigwg. It is well known that

, Qs + ask) , ark
1 ) L ————= 1 t) < _
Jm ) = =" Jim 9l = 90) + e e



which implies that there exists a positive constant M > 0, such that f(z,t) < M, g(z,t) <
M. So the solution of the problem (2.2) has a upper bound.
Let (f(t),g(t)) be the solution of the following initial problem:

of

S,
ot @z +asfg fort >0
09 _ ety ’
ot as+asfyg ’ (2.6)
f(iU,O) = Uy,
g(l’,O) = Wy

By the similar argument above, we can get a positive constant m such that 0 < m <
f(t) <u(z,t), and 0 < m < g(t) < w(z,t). The proof is completed.

Since u(z,t) = 22U for the solutions of (2.1) we also have

Corollary 2.1 . For any pair of positive initial data (p(x,0),w(z,0)) = (po(x), wo(x)),
there exist positive constants 0 < m; < M; < +o0o, such that m; < p(z,t) < M; and
my < w(z,t) < M.

3 The systems with positive T-periodic coefficients

We have already proved that the problem (2.1) has a unique global solution. In order
to understand the asymptotic behavior of the solution, we first consider the following
initial-boundary problem:

Ip p
5 =DV (pV(In(2))
w
w a1 (t)p for x € Q,t > 0,
e
ot Oég(t) + Oég(t)p 31
(v () n =0, for & € 99, ¢ >0, (3.1)
p(z,0) = po(z) > 0, _
for x € €,
w(zx,0) = wo(x) > 0,
where a;(t) (i =1,2,3) and u(t) are all positive smooth T-periodic functions.
Let u(z,t) = % en (p(z,t), w(x,t)) is a solution for (3.1) if and only if (u(z,t), w(x,t))



is a solution for the following initial-boundary problem:

2
w ar(t) +as(thuw  p s,

ow aq (t)uw = u(t)w

8t aa(t) +as(uw
@:07 for x € 09Q,t > 0,
on

. _ po(®)

u(,0) = up(z) = wo(z) >0, for x € Q,
w(z,0) = wo(x) > 0,

In order to solve the system (3.2) clearly, we consider following ODE:

w = u(t)u(t) — B(H)a(0), (3.3)

where p(t) and ((t) are positive smooth T-periodic functions.

Lemma 3.1. (1) There exists a unique positive T-periodic solution u*(t) for the ordi-
nary differential equation (3.3);
(2) The positive T-periodic solution u*(t) is monotone decreasing in [3(t).

Proof First, we prove that there exists a positive T-periodic solution for the

equation (3.3). Let M > %,0 <m < %, where

i = sup a(t), 1 = inf (1), = sup (1), and 5 = inf (1)
t>0 t>0 t>0

Denote 69 = m, and g = M, then g is a sub-solution of

ur = p(t)u — B(t)u?, for t > 0,
(3.41)
u(0) = m.
and g is a super-solution of
ug = p(t)u — B(t)u?, for t > 0,
(3.4
u(0) =M
Denote the solutions of the problems (3.4;) and (3.4') by 41, and @ respectively, we

3.4
have 0 < m = do(t) < 41(t) < wi(t) < ap(t) = M for t > 0. Especially we have
m = up(0) = 4o(T) = 41(0) < a1(T) < a1 (T) < @1(0) = up(T) = 1up(0) = M. Denote
the solutions of the following problems by o, and ws:
{ ug = p(t)u — B(t)u?, for t > 0,

(3-42)



and

ug = p(t)u — B(t)u?, for t > 0,

{ (3.42)
)

It is obvious that @(t) < uo(t) < u2(t) < u1(t). Especially we obtain that m <

U1 (T) < 02(T) < a9(T) < u1(T) < M. Denote the solutions of the following problems
by 3, and 3 , respectively:

{ up = p(t)u — B(t)u?, for t > 0,
(3.43)
u(0) = (7))
and
{ up = p(t)u — B(t)u?, for t > 0,
(3.43)
u(0) = (7))

Also we have 41(t) < Uo(t) < as(t) < us(t) < Ug(t) < wi(t), and m < uy(T) <
e(T) < u3(T) <us(T) < ue(T) <y (T) < M.

By using the same technique, we can get a series of solutions: {4;(t)}, {@;(¢)}, such
that

(a) @;(t), @; are solutions for the following problems:

{ ur = p(t)u — B(t)u?, for t > 0,
(3.4;)
and
{ ug = p(t)u — B(t)u?, for t > 0, ,
; (3.4%)

(b) For any i > 0, we have 0 < m < 4;_1(t) < u;(t)
and @1 (T') < 4(T) = 4i+1(0) < Ui42(0) = @1 (T) <
;(0) = u;—1(T) = @;(0) < u;—1(0).

Since {u;(t)} (resp. {@;(t)}) are monotonic increasing (resp. decreasing), bounded,
and smooth, there exists a unique limit function, say u, (resp. u*), which are bounded
and smooth. We can easily check that both u.(t) and u*(¢) satisfy the equation

w = u(t)u(t) — B(E)a(0). (3.3)

Since the coefficients of the equation (3.3) are T-periodic, we have that for any ¢ > 1
and t > 0,

- < @Z(t) < fLi_l(t) <M

i+1(T) < 4(T) = i41(0) <

< IA

i1 (t+T) = (1), i1 (t+T) = u(t).
So we get
us(t+T) = lim @(t+T) = lim Gi(t) = w(t),
uw(t+T) = zlg,—noo w(t+7T) = ll}gloo Uir1(t) = u*(t), for t > 0,



that means wu.(t) and u*(t) are T-periodic functions.
Next, we can prove that the T-periodic solution of (3.3) is unique. In fact if there ex-
ist two positive T-periodic solutions u; (t) and ug(t). Choose 0 < m < r<mn {ur(t), ua(t)}

< Or?taér{ul(t) u2(t)} < M < +o00. By the same method as we used before, we can ob-

tain two positive T-periodic solutions, u.(t) and u*(¢) for the equation (3.3) and

0 <m <u(t) <up(t),us(t) <u*(t) < M < +oo.

*(t
Let A = min {u ( )} > 1, and define the function h(t) = u*(t) — Au.(t), then the
t€[0,7] ux(t)

function h(t) > 0 is a T-periodic function, and h(tp) = 0 for some to € (0,27"). Since
h(t) gets its minimum at the point ¢t = tg € (0,27"), we have h:(tg) = h(to) = 0. So at
the point t = tp, we get

0= hy — ph = A\Bu? — Bu*? = A\3(1 — M\u?

Because of u.(t) # 0,3(tg) # 0, and A > 1, the above equality implies that A = 1. So
we obtain that h(t) = u*(t) — u«(t) > 0, and h(tg) = u*(to) — u«(to) = 0. Notice that
for any t > to, we have

0 = h(t) - p()h() + B (1) — AB(Lu()
= ho(t) — p(OR() + BE(E) - Bty (t)
= ho(t) — p(OR(E) + B () + w(O IR,

and h(to) = h(to + 1) = 0, which leads to h(t) = 0 for any ¢t > t9. Keeping in mind
that h(t) is T-periodic function, we know that h(t) = 0 for all ¢ > 0, which means that
u(t) = u*(t) for all t > 0. Combining with the condition:

0<m < u(t) <up(t),uz(t) <u(t) < M < +o0,
we have
0 <m <u(t) =ui(t) =ua(t) =u(t) < M < +o0.

Thus the T-periodic solution is unique.

(2) In order to prove that the positive T-periodic solution of (3.3) is monotonic
decreasing in [(t), we assume that [2(t) > [1(t) > 0 for all ¢ > 0, and w;(t) (i = 1,
1
2) are corresponding periodic solutions. Since u;(t) > 0, the functions w; = )
U
(¢ = 1,2) are well defined for all t > 0. It is easy to know that w;(¢) is the positive
T-periodic solution of following equation:

(), () + p(t)ws(t) = Bi(t), for t > 0. (3.4)

Let w(t) = wa(t) — wi(t), then w(t) is a T-periodic function, and satisfies the
following equation:

wi(t) + p(t)w(t) = Ga(t) — P1(t) > 0, for t > 0.

10



Suppose that the T-periodic function w(t) get its minimum at a point ¢ = ¢ty > 0, thus
we(to) = 0. Since
p(to)w(to) = B2(to) — Bi(to) = 0,
) > 0, which implies w(t) > 0, for all £ > 0. Hence
t) for all ¢ > 0. The proof is completed.

and u(tp) > 0, we have w(ty
wa(t) > wi(t), and ua(t) < u(

Lemma 3.2. For any positive constant ¢ > 0 the solution u(t) of the initial problem:
up = p(t)u — B(t)u?, fort >0,
u(0) =c¢ >0,

(3.5)

has the asymptotic behavior tlim [u(t)—u*(t)] = 0, where u*(t) is the positive T-periodic
—00
solution for the related ordinary differential equation (3.3).
Proof For ¢t > 0, we choose positive constants m and M satisfying m = min{c, B}

and M = max{c, 3}' Denote 1y by m, and 49 by M. Then iy and g satisfy the

following problems:

tig, < p(t)to — B(t)ad, for t > 0,
(3.51)
and
g, > p(t)io — B(t)ud, for t > 0,
(3.5Y)
i1p(0) = M.

Thus 7y and g are sub- and super-solutions for the systems (3.41) and (3.4') respec-
tively. By using the same method, we can get series of solutions: {4;(t)}, {@;(t)}, and
there exist a unique positive T-periodic solution , say u*(t) as before, such that ;(t)
converges increasingly to u*(t) as i — 400, and 4;(t) converges decreasingly to u*(t)
as i — 4o00. For the solution of (3.5), we also know for i > 1, 4;(t) < u(t) < u;(t), thus

@;(t) — u*(t) Qi (t +1T) — u*(t +1T)
u(t +iT) — u*(t +T)
it +iT) — u*(t +47T)
ﬂi (t) —u* (t)

forallt>0,i>1

AN

Let ¢ — +00, we have
limg oo (u(t) — u*(t)) =0,

which completes the proof.

Consider another ordinary differential equation:
wy = B(t) — p(t)w, for t > 0. (3.6)

By using the same technique, we can also get the following result:

11



Lemma 3.3. For the equation (3.6), there exists a unique positive T-periodic solution

w*(t), which is increasing in [3(t). Furthermore, for every positive initial datum the

corresponding solution w(t) satisfies , ligrn |lw(t) — w*(t)| = 0, which implies w*(t) is a
— T 00

global attractor.

In the following, we want to study the positive T-periodic solution of the ordinary
differential system:

ug = p(t)u — o (B
az(t) + az(t)uw’ for t > 0 (3.7)
vy — aq (t)uw ~ utw 7

as(t) + as(t)uw
and we investigate the asymptotic behavior of the solution for the following initial
problem:

ay (t)u?
up = p(t)u — ! ,
T
u(O) =ky >0,
w(0) = ka > 0.

Let k = k1ko, then it is similar to (2.4), we know that if (u(t),w(t)) is the solution
of the initial problem (3.8), then (u(t),w(t)) is the solution of the following initial
problem:

P10
up = p(t)u (C;Z(t) + as(t)k’ for t > 0
aq(t |
WS ) + sk PO .
u(0) = k1 > 0,
’LU(O) = ko > 0.

It is obvious that we have

Theorem 3.1. (1) For any positive constant k > 0, there exists a unique positive
T-periodic solution (u*(t),w*(t)) for the system (3.7), which satisfies u*(t)w*(t) = k
for all t > 0; and

B o (t)u?
= plt)u = az(t) + as(t)k’
wy = _ ak p(t)w.

ag(t) + Ozg(t)k?
(2) For any initial data (u(0),w(0)) = (k1, k2), there exists a unique solution (u(t),w(t))
of the system (3.8). Furthermore, the solution (u(t), w(t)) has the following asymptotic

behavior:
lim (u(t) —u*(t)) =0,

t—+o00

lim (w(t) —w*(¢)) = 0.

t——+o0

(3.10)

12



For k£ > 0, we know that the problem

2
g;‘ — DAu— DE(Vw) - (Va) = p(t)u — tal(t)“t
v ax(t) + as(tyuw for x € Q,t > 0,
ow aq (t)uw  (w
ot as(t) + az(t)uw AT
ou =0, for x € 09.
on

(3.11)
has a positive T-periodic solution (u*(t),w*(t)) which is spatial independent and satis-
fies u*(t)w*(t) = w*(0)w*(0) = k. How about the positive T-periodic solutions of (3.11)
which depends on the spatial variable? The following result will give us a complete
answer.

Theorem 3.2. There is no spatial dependent positive T-periodic solution for the prob-
lem (3.11).

Proof Assume that the system (3.11) has a positive T-periodic solution (u(z,t), w(z,
which depends on spatial variable. Then there exist some points ; € Q, (i = 1,2), such
that w(x1,0) = ug(x1) = max,cquo(x) = My, w(z2,0) = wo(z2) = max,cqwo(x) =
M>. Suppose that (u(t),w(t)) is the pair of solution for the system (3.11) with the ini-
tial data (u(z,0),w(z,0)) = (My, M2). Then by the maximum principle for parabolic
equations, we obtain that u(z,t) < a(t), w(x,t) < @(t). Also we know that there exists
a unique positive T-periodic solution of the system (3.11), say (u*(¢), w*(t)), such that

oy (t)u*?
as + agutw*
*2
. aq(t)u
= o~ S
2 T a3l M2 for t >0 (3.12)
. o (H)uw* .
wie = *,Lt(t)w
o + asutw
Oél(t)MlMg _
ag + az My Ms

uy = p(t)u*

*

and
lim (a(t) —u*(t)) = lim (w(t) —w*(t)) = 0.

t——+o0 t——+00

Now we can prove that v*(0) > M, w*(0) > M. If not, we can assume u*(0) < My,
then there exists a positive constant, say 6 > 0, such that ©*(0) < M; — 20. Because of
tE-IPoo(ﬂ(t) —u*(t)) = 0, there exists a positive integer N, such that u*(t) —J < a(t) <
u*(t)+ 0, for t > NT. Since u*(t) is a T-periodic function, we have a(NT) < u*(NT) +
§ = u*(0) + 6. Also for x € Q, u(z,0) = u(z, NT) < @(NT) < u*(NT) + 6 = u*(0) + 6.
Furthermore we have

My = u(x1,0) = u(z1, NT) < u*(NT)+0 =u"(0) + 0 < My — 26 + 6 = My — 0,
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which implies ©*(0) > M;. It is similar that we have w*(0) > M.

Since u*(0)w*(0) = MiMs,u*(0) > M, and w*(0) > Mas, we have u*(0)
M, w*(0) = Ms. From the uniqueness of the solution, we can deduce that u(t) =
uw*(t), w(t) = w*(t).

In fact, both solutions (u(x,t),w(z,t)) and (u*(t),w*(t)) are positive T-periodic
functions and u(xy, NT) = v*(NT), w(xe, NT) = w*(NT), for all integers N > 0. Let
h(z,t) = u*(t) —u(z,t), then h(z,t) is spatial dependent, and h(z,t) > 0, h(z1, NT) =
0. Suppose that there exists at least one point x3 € €, such that h(xs3, NT) > 0, thus
from w(z, t)w(z,t) < u*(t)w*(t), we have

Oh 1
5, ~ DAL= D—(Vuw) - (Vh)
B B o (H)u*? ay (t)u®
= pth as(t) + a3(t)2u*w* as(t) + as(t)uw
et au (t)u”
> p(t) as(t) + as(t)u*w*  as(t) + as(t)u*w*
= WY

ag(t) + as(t)uw*
Then h(z,t) satisfies

Oh

DA - D%(Vw) L(Vh) + {— D + )

- N(t)}h 2 O?

ot - as(t) + as(t)u w*
for x € Q,t >0,

@:0, for x € 0Q,t > 0,

on

h(z,0) = u*(0) — ug(x), for z € Q.

Notice that h(x1, NT) = 0 for N = 1,2,3,---, we must have h(xz,t) = 0 for all
x € Q,t > 0, by the strong maximum argument, which contradicts to h(x3, NT) > 0.
Hence, there is no positive T-periodic solution for the system (3.11), which is spatial
dependent.

According to the results above, we know that, for the problem (3.1), even for con-
stant initial data, the asymptotic behavior of the solution would have a lot of changes.
We can not expect stable steady-state solutions for this problem in the general mean-
ing of small perturbation for initial data. In despite of that, we still want to pay more
attention to the problem on the special feature for large t to the positive solutions of
the problem (3.11) which depend on space variable.

Let ¢1(t) = min,cqu(z,t), ¢2(t) = mingcqw(z,t), ¥1(t) = max,cqu(x,t), and
Yo(t) = max,q w(z,t). Denote by A the value of lim ¢1(t)¢2(t), and by B the value

t——+o00

oft@ Y1 (t)h2(t), thus 0 < A < B < 400.
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Theorem 3.3. For the problem (3.1), if at least one of two functions ug(x) and wo(z)
of initial data is not constant, then ¢1(t)p2(t) converges to A increasingly, as t — 400,
and 11 (t)ya(t) converges to B decreasingly, as t — +00.

Proof We divide our proof into several steps. First, we can prove that 11(0)12(0) >
B. This is because if 11(0)12(0) < B, then we can find two positive constants ¢; > 0,
(i = 1,2) such that ¥1(0) < c1, ¥2(0) < c2 and ¥1(0)12(0) < cica < B. Consider
following problem:

o o (t) f?
A ' - a
i — DAf—D— (Vw) (VF)=nt)f as(t) +a3(t)fg forz e Q,t>0
@ _ o (t )fg — u(t) | |
ot as(t) + as(t)fg g
o Y for z € 990.
on
f(SC, 0) =L f © 0
or T .
g(x,O) = C2.

(3.13)
We know that if (3.13) has a solution (f(t),g(t)), then f(t)g(t) = cice, and u(z,t) <
f@#), w(z,t) < g(t) for x € Q, t > 0 thus we have ¥1(t) < f(t), and ¥2(t) < g(t). That

means

Tm g1(0)4a(t) < T f(0)g(t) = cres < B,

t——+00

which contradicts to the definition of B, so we have ¢1(0)y2(0) > B

Secondly, we can prove that i1 (t)e(t) > B for all ¢ > 0. In fact, for any fixed
to > 0, we define functions @(x,t) = u(x,t+1o), w(z,t) = w(x,t+to), (t) = p(t+1to),
and &;(t) = a;(t + to), then f(t), and &;(t) (1 = 1,2,3) are all positive T-periodic
functions, and (@(x,t), w(x,t)) is the solution of the following problem:

. V2
o DA~ D (V) - (Vi) = 1)~ =

_ . v G (t) + () tid for x € Q,t >0,
ow aq (t)uw _ At
ot~ aolt) + ag(tyaw Y
9 =0, for x € 09).
on
a(x,0) = u(x, ty), ~

for x € Q.

11)(3;,0) - U)(l‘,to)

15



By the argument above, we can deduce that

P1(to)a(ty) = max,cqu(z,ty) max,qw(z,to)

= max,q U(z,0) max,q w(z,0)

t——+o00

> lim {max,cq @(z,t) max,cqw(z,t)}
)

= lim {max,cqu(z,t) max,.qw(z,t)}

t—4o00

= B.

Next we can prove that the function v (¢)12(t) is monotonic decreasing in t. Actu-
ally, from the processes above, we only need to prove that 11 (0)12(0) > 1 (t)e(t) for
all t > 0. In fact, let (f(¢),g(t)) be the solution of following problem:

o (t) f?

9F _paf-pt <Vw> (V) = ult)f -

T i as(t) + as(t) fyg forz e Q,t >0
dg fg | |
99 _ - u(t)g,

83,5 as(t) +as(t)fg #tlg

of o for z € 0N.

on

f(fI,',O) = 1/11(0)7
9(x,0) = 2(0).
Then f(t)g(t) = ¢1(0)¥2(0) = B, and f(t) = u(z,t), g(t) = w(z,t). Thus we get
P1(0)12(0) = f(0)g(0) = f(t)g(t)) > i(t)2(t), for t > 0. therefore the function

¥1(t)a(t) is convergent to B as t — +oc.
It is similar to deduce that ¢1(t)¢p2(t) converges to A increasing as t — +o0.

for x € Q.

If all coefficients of the system (3.1) are positive constants, then (3.1) has a trivial

constant solution (pg, —2P2% ) in this case we have
P0> Tag+aspo)n

Theorem 3.4. Assume that all the coefficients of the system (3.1) are positive con-
stants, then for any positive constant ¢; > 0, the positive constant solution (c1,cz) =

) Is asymptotic stable in the space A = {(p,w) : [op(z,0)dz =
e, Jow(z,0)dr = m}
a1C1

——, then near the constant
p(o + aszer)

Proof For any positive constants ci, co =
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solution (p,w) = (c1, c2), the linearized equation with small perturbations is

gﬁ — DAE - DL Ay
5 2 for 2 € Q,t > 0
Ui e5Ye%)

an L for x € 0Q,t >0 (3.14)
on oo
n=0 for x € Q,

+oo
n(x,0) = 3 bnXn()

n=0

where the functions X, (n > 0) are eigenfunctions of the following eigenvalue problem
possessing the n-th positive eigenvalue A = \,,:

—DAu = \u, for x € €,
% =0, for x € 092.
on

We can denote &, n as follows:

+00 too
Elz,t) = Xi(x)Ti(t), n(a,t) =Y Xi(x)Hi(t), for t >0,
=0 =0

In light of the conservation condition, we have ag = bg = 0, and for any ¢ > 1,

Ti(t)Xi(z) = Ti[DAXi(2)] — Hi[DZEAXi(x)] = —N{Ti — 2 Hi} Xi(z),
Q109

From the first equation, we obtain
c1 .
{Ti(t)exp{Aitt} = AigHieAzt

Putting the form of the function 7T;(¢) into the second equation, we can find

, oo , .
{H;eMtY, = 1772 QTie)‘lt + [\ — p]Helit

(Oég + agcl)

a1

. . c .
{Hie Y + [ — A{ Hie '}, — sAi—Hiet =0

(az + 04301) C2
We may assume the solution of the form

Hi(t) = Ak =20t 4 ek =2t

17



where A;, B; are constants and

1 4/\icla1a2
k= {\—pu=+ — )2
7 2{ /’L \/(/J, ) 62(042 + Oé301)2}

When ¢t — 400, then H,(t) tends to 0 if and only if k- — \; < 0, which is equivalent to

4)\7;61(110(2

At > (= X)? + —————,
. \/(M ) ca(ag + azer)?

i.e. clata
100102
> ——————.
ca(an + azer)
. a1
Since ¢y = ,and a; > 0,c1 > 0, we have

(e + agey)

> a2
. oo + ascy Hs
which is always valid for any p > 0, that means kf — A < 0 is true.
Theorem 3.4 is proved.

Next, we have

Theorem 3.5. If at least one of the coefficients for the system (3.1) is non-constant
positive T-periodic function, then the positive T-periodic solution of (3.1) is stable, but
non-asymptotic stable.

Proof By Theorem 3.2, the positive T-periodic solution (p*,w*(t)) of (3.1) is
spatial independent. In order to investigate the asymptotic behavior of the solution,
we consider the following linearized equation at the point (p(z,t), w(zx,t)) = (p*, w*(t))

& — DAE=—D f*t An
w(t) for z € Q,t >0
n = al(t)QQ(t) 5_ N(t)n
o [+ as(OpT
%:izo for z € 9Q,t >0
(z,0) = a(x)
for x € Q
n(z,0) = b(z)
We can write
+00 too
f(m,t) = Z fn(t)Xn(x)a 77(33715) = Z gn(t)Xn(x)7
n=0 n=0

18



where X,,(z) is eigenfunctions for the following eigenvalue problem possessing the n-th
positive eigenvalue A,,:

—DAX(z) = A\X(2) for z € Q
9x =0 for x € 09).
on

In light of the conservation condition, we get fo(t) = 0, and

{ g(t) + p(t)go(t) =0, fort >0,
90(0) = bo,
and
P+ M al®) = du )
o ailte (;)” L for t > 0
9nlt) = 1 ()Jrag(t)p*]zfn( ) = 1(t)gn(?) (3.15)
fn(o = Qnp
gn(o) - bn
forn=1,2,3,---, where
+00 too
x) = Z an X, (x), b(x) = Z b X ()
n=0 n=0

We know that the solution (p*,w*(t)) is asymptotic stable if and only if for any initial
data (a(z),b(z)), we have the limits

l}+m &(z,t) =0, tl}inoon(ac,t) =0, for z € Q.

So if the solution (p*,w*(t)) is asymptotic stable, then for any n = 1,2,---, we have

tl}—ri-n fn( ) =0, tlg'_noogn(t) =0.

In order to prove our statement on the non-asymptotic stable of the solution (p*, w*(t)),
We need only to show that for some integer ng , we can choose functions a(z) =

Z frn(0) X5 (x) and b(z) = Z 9n(0) X, () such that the solution of the ordinary dif-
ferentlal equations (3.15) (f. () n(t)) does not tend to 0 as t — +o0.

It is obvious that th? go(t) = 0 because p(t) is a positive, T-periodic smooth
— 100

function. We need only to consider the case n > 0. According to the theory on the
structure of the solutions for the linear ordinary differential equations with T-periodic
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smooth coefficients, we know that for each integer n fixed, the solution (fy(t), gn(t)) of
(3.15) would be as follows:

fult) = aFy ()P + bEy(t)et, gn(t) = cG1(t)ePrt + dGy(t)eP?,

where a, b, ¢, and d are any constants, F;(t), G;(t) (i = 1,2) are all T-periodic smooth
functions, and 3; (i = 1, 2) are eigenvalues for the matrix K = (hi(t), ho(t)) where h;(t)
is the solution of the following systems:

S48 4 Mfalt) = Mn—L g (t)

w*(t)
RO ()
In(t) = Toald) + a3 (D)p" ]an() p(t)gn(t),

with the initial data f,(0) = 1, g,,(0) = 0 and f,,(0) = 0, g,,(0) = 1 respectively. Now we
can point out that at least one of the eigenvalues of the matrix K has non-negative real
part. That implies that the trivial solution (f(t),g(t)) = (0,0) of the systems (3.15) is
not asymptotic stable, which implies that the solution (p*,w*(t)) for the systems (3.1)
is not asymptotic stable, which is what we want to obtain.

Assume that it is false, then the real parts of both eigenvalues are negative. We
can suppose that the real part of 3, is negative and is not smaller than the real part of
another eigenvalue 2. Thus, for every pair of initial function (a(x),b(z)) there exists
some positive constant M > 0 such that

fort>0

Ifn (O]l < MeBReBt g (1) < MeReSE for ¢ > 0. (3.16)

Also, from the first equation of the system (3.15), we have

Ant\! __ p* Ant
(fn(t)e t) _>\nw (t)gne

that means .
Fa()e" = fn(0) + Anp* Hp(2), (3.17)

- t 1
where H,(t) = / Wgn(s)e%sds. Putting that equation into the second equation
0 w*(s
of the system (3.15), we obtain that

Ant\/ o (t)az(t) B At
(92 = TR FaD 4 (A = (1)1
Notice that (w*) = o (t)p” — p(t)w*, we can deduce that

(%) (t) + a3 (t)p*

gn(t)e)\nt / Oq(t)p* _ gn(t)e/\nt
Gt M e roermen M e
= [fn(o) + )‘np*f{n(t)]

ay(t)as(t)
(a2 (t) + as(t)p*)?w* ()
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It means that FIn(t) must be the solution for the following system:

5 " _ o1 (t)p* Ancry (t)a2 (t)p* ¥
TH T o 0+ a0 02(1) + oy (Dp () )

_ ay(t)aa(t) .
(aa(t) + as(t)p*)2w*(t) fn(0) fort>0

) Ha (1) +

(3.18)

* Oég(t) .
fn(0), then there exists constant gy > 0

p
Choose 0 < ——=¢g,(0) <
w*(O)gn( ) as(t) + as(t)p*
such that for every 0 < € < ¢¢, we have

5:(0) ai(t) a )
w(0) " (alt) + asp)wr (6) w (0)

and

9n(0) 1(t)9n(0) P An as(t) _
Ew*(o) ’ (@2(t) + a3(t)p*)w*(t) w*(0) (/\n —eag(t) + az(t)p* D<0.

9n(0)

m[e()\nis)t — 1], then we have
n — Ejw

Let H,(t) =

aq (t)p* I aq (t)ag(t) A\pp*
(a2(t) + as(t)p*)?w* (1)

Hy(t)

ai(t)p* ) gn(0)
(aa(t) + as(t)p*)w*(t) " w*(0)
]

aq (t)ag(t) \pp* gn(0)
(aa(t) + a3(t)p*)*w*(t) (An — €)w*(0)
a1 (t)as(t) fn(0)
(aa(t) + g (t)p*)?w*(t)
e 9n(0) a1 (t)p” 91.(0)
w*(0)  (a2(t) + as(t)p*)w*(t) w*(0)
a1 (t)as(t) An p*

—~

_|_
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9n(0) a1(t)gn(0) p* ( An () _1)]6(/\71*6)7&

= [aw*(O) (qa(t) + as(t)p*)w*(t) w*(0) " Ap — € az(t) + as(t)p*
e S U0~ 5 000

= [532((0)) (o (0)+g?n)(0)) 0 )wf:())()\:\;5@2(0)aj(aoi(0)p*—1)]
+<g ((()(;Hc(x;(m(i ((()»[f”( )_/\;—ewf(O)gn(O)] o

: ngZ(o) * a0 T o000 w0~ 50 1 asp O

since the function defined by

9n(0) 1(t)gn(0) p* An as(t) _)lePeot
0 ©) " (aalt) + asOp)wr 0 w'(0) A, —c aald) +as@p T

O[l(t)QQ(t) Ay D
o2 + ot 2o @0 T 3wy O

is monotonic decreasing in ¢, notice that H,(0) — H,(0) = 0, H,(0) — H' (0) = 0, and
Hy/(0) — H/(0)

< 0.

< M /t 6()\n+Reﬂl)sd8
0

——y
m1i1Tw()

M
— (n+Rep)t _ 4
o+ Red) I

=
5
g
=

That implies that
gn(o) [1 _ ef(Anfs)t]

[e(s-i—Reﬁl)t _ 6_0\"_8)].

IN

oD, w* () (An + Refh)
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Let t — +o0, since Ref; < 0, it must be

9n(0)
O =@ ="

However this is impossible. The result leads to that at least one of the real parts for the
eigenvalues of the matrix K is non-negative, which implies that the solution (p*,w*(t))
of the system (3.1) is not asymptotic stable. The result is proved.

Comparing with Theorem 3.4 and Theorem 3.5, we know that the different choice
for the coefficients will change the asymptotic behavior of the solution, i.e. the solution

1€

will tend to the constant solution (cy, ) or T-periodic solution (p*,w*(t)).

oo + a3cy
It means that these kinds of mathematical models are very unstable. So it is not so

strange that the biological systems have different behavior even they have many same
biological action.
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