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1 Introduction

Chemotaxis is a widespread phenomenon in biological systems (cf. [1-9]). Cells or
organisms respond to chemical substance by motion and rearrangement (cf. [1]). They
may move toward the higher concentration of the chemical substance or away from it,
to search for food, to endure starvation conditions, to explore new regions, to repro-
duce or to give each other shelter. For example, the fruiting body cycle begins with the
development of spores which germinate and develop in vegetative growth until starved
of nutrients. In this latter case the vegetative growth aggregates to form a new fruiting
body and to start the cycle once more. The myxobacteria are ubiquitous soil bacteria,
which glide on suitable surfaces or at air-water interfaces. During gliding the myxobac-
teria produce so-call slime trails on which they prefer to glide. When a myxobacterium
glides on bare substrate and encounters another slime trail at a relatively shallow angle,
it will typically glide onto it. Under starvation conditions they tend to glide close to
one another. During gliding they form different patterns and finally they aggregate to
build so-called fruiting bodies (cf. [1, 6, 12]). Inside these fruiting bodies they survive
as dormant myxospores. The mechanisms by which myxobacteria glide on the sub-
strate and aggregate are still not understood and thus theoretical analysis of different
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mechanism is useful.

A chemotaxis process occurs also in the growth of a tumor. The tumor secretes
chemical species that attract the nearby endothelial cells, which form the surface of
capillary blood vessels. In this way new blood vessels sprout towards the tumor and
begin to provide it with additional nourishment. The phenomenon of sprouting of new
blood vessels is called angiogenesis.

Recently, Othmer and Stevens have developed some models [10] to describe these
complicated processes which are far from completely understood. These kinds of models
in generally consist of two main parts: One is called ” master equation ” as defined by

∂p

∂t
= D∇ · (p∇(ln

p

w
)),

and the other is called the local dynamics for the control species:

∂w

∂t
= F (x, t, p, w),

where p(x, t) is the particle density of a particular species and w(x, t) is the concentra-
tion of the ” active agent ” on some domain Ω × (0, T ). Recently many authors have
discussed these models ( [11-16] ), and they found that from these models, many pro-
cesses of aggregation, blow-up, as well as collapse can be described. Even though, we
have just obtained very little information about the solutions for these kinds of models.
In these papers, authors have studied the models for which the control species w, from
the second equation, is linear or exponential growth, namely

(1) ∂w
∂t = βp− µw, or

(2) ∂w
∂t = (βp− µ)w.

In fact, saturation with respect to p in the production of the control species is
certainly more realistic in the biological context. It is also important to investigate the
following model with saturation growth, which appeared in Othmer-Steven [10]:





∂p

∂t
= D5 ·(p5 (ln(

p

w
)))

∂w

∂t
=

α1(t)p
α2(t) + α3(t)p

− µ(t)w
for x ∈ Ω, t > 0,

5 (ln(
p

w
)) · n = 0, for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0,

w(x, 0) = w0(x) > 0,
for x ∈ Ω̄,

where αi(t) (i = 1, 2, 3), and µ(t) are smooth bounded positive functions, n is the outer
normal of ∂Ω. In this paper, we shall prove the existence of global solutions in section 2,
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and the problems for periodic solutions and stability of the solutions will be discussed
in section 3.

2 The existence of global solutions

In this section we consider the following problem:




∂p

∂t
= D5 ·(p5 (ln(

p

w
)))

∂w

∂t
=

α1(t)p
α2(t) + α3(t)p

− µ(t)w
for x ∈ Ω, t > 0,

5 (ln(
p

w
)) · n = 0, for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0,

w(x, 0) = w0(x) > 0,
for x ∈ Ω̄,

(2.1)

where αi(t) (i = 1, 2, 3), and µ(t) are all smooth bounded positive functions. Observe
that p(x, t) and w(x, t) are positive solutions in their definition domains. This is be-
cause that the initial data (p0(x), w0(x)) is positive, thus there exists T1 > 0 such

that p(x, t) > 0 for 0 < t < T1. Because of
∂w

∂t
=

α1(t)p
α2(t) + α3(t)p

− µ(t)w, we have

(e
∫ t

0
µ(s)dsw)t =

α1(t)pe
∫ t

0
µ(s)ds

α2(t) + α3(t)p
, which implies that (e

∫ t

0
µ(s)dsw)t > 0 for 0 < t < T1.

If there exist t0 > 0, x0 ∈ Ω̄ such that p(x, t) > 0 for (x, t) ∈ Qt0 and p(x0, t0) = 0,

then w(x, t) > e−
∫ t

0
µ(s)dsw0(x) > 0, for (x, t) ∈ Q̄t0 . So we have that

p(x, t)
w(x, t)

> 0

for (x, t) ∈ Qt0 and
p(x0, t0)
w(x0, t0)

= 0. Thus we can introduce that u(x, t) =
p(x, t)
w(x, t)

, and

ut =
pt

w
− u

w
wt, then from

pt = D5 ·(p5 ln(
p

w
)) = D5 ·(p5 lnu)

= D5 ·(p5u

u
) = D5 ·(w5 u) = Dw∆u + D(5w) · (5u),

wt =
α1(t)p

α2(t) + α3(t)p
− µ(t)w =

α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

we have

ut = D∆u + D
1
w

(5w) · (5u)− u

w
(

α1(t)uw

α2(t) + α3(t)uw
− µ(t)w)

= D∆u + D
1
w

(5w) · (5u) + µ(t)u− α1(t)u2

α2(t) + α3(t)uw
.
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Thus we know that (p(x, t), w(x, t)) is a solution of the system (2.1), if and only if
(u(x, t), w(x, t)) is the solution of following system:





∂u

∂t
−D∆u−D

1
w

(5w) · (5u)− µ(t)u +
α1(t)u2

α2(t) + α3(t)uw
= 0

∂w

∂t
=

α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) =
p0(x)
w0(x)

w(x, 0) = w0(x)
x ∈ Ω̄, t > 0.

(2.2)
We have

Theorem 2.1. There exists a unique global solution for the problem (2.1).

Proof. From the result of [15], the problem (2.1) has a unique local solution
(p(x, t), w(x, t)) for (x, t) ∈ QT = {(x, t) | x ∈ Ω, t ∈ (0, T )}, where T > 0 is maximum
existence time. We know

∂w

∂t
=

α1(t)p
α2(t) + α3(t)p

− µ(t)w,

thus

(e
∫ t

0
µ(s)dsw)t =

α1(t)pe
∫ t

0
µ(s)ds

α2(t) + α3(t)p
≤ ᾱ1

α3

e
∫ t

0
µ(s)ds,

where ᾱi = supt≥0 αi(t) < +∞, αi = inft≥0 αi(t) > 0, (i = 1, 2, 3). Thus

e
∫ t

0
µ(s)dsw(x, t)− w0(x) ≤ ᾱ1

α3

∫ t

0
e
∫ s

0
µ(s1)ds1ds.

So we have, for t > 0,

w(x, t) ≤ e−
∫ t

0
µ(s)ds(w0(x) +

ᾱ1

α3

∫ t

0
e
∫ s

0
µ(s1)ds1ds)

≤ w0(x) +
ᾱ1

α3µ
e−

∫ t

0
µ(s)ds

∫ t

0
µ(s)e

∫ s

0
µ(s1)ds1ds

≤ w0(x) +
ᾱ1

α3µ
(1− e−

∫ t

0
µ(s)ds)

≤ w0(x) +
ᾱ1

α3µ
< +∞

where µ = inft≥0 µ(t) > 0, that implies that w(x, t) is finite in any t > 0.
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Secondly

ut = D∆u + D
1
w

(5w) · (5u) + µ(t)u− α1(t)u2

α2(t) + α3(t)uw

≥ D∆u + D
1
w

(5w) · (5u) + µu− ᾱ1

α2

u2.

Obviously u(x, t) is a super-solution of the following dynamics:




∂v

∂t
−D∆v −D

1
w

(5w) · (5v)− µv +
ᾱ1

α2

v2 = 0 for x ∈ Ω, t > 0,

∂v

∂n
= 0, for x ∈ ∂Ω, t > 0,

v(x, 0) = minx∈Ω̄ u0(x) for x ∈ Ω̄.

Similar to the argument in [16, section 2], we can prove that the problem above
has a positive global solution v(x, t), and limt→+∞ v(x, t) =

µα2

α1
. Thus, by comparison

principle, we can find a positive constant δ > 0, such that u(x, t) ≥ v(x, t) ≥ δ > 0,
which implies that u(x, t) is a strictly positive function. That ensures both functions
p(x, t) and w(x, t) are positive in their definition domains.

Finally we prove that the problem (2.1) has a global solution. Since

ut = D∆u + D
1
w

(5w) · (5u) + µ(t)u− α1(t)u2

α2(t) + α3(t)uw

< D∆u + D
1
w

(5w) · (5u) + µ(t)u,

we know that u(x, t) is a sub-solution of the following problem:




∂v

∂t
−D∆v −D

1
w

(5w) · (5v)− µ(t)v = 0 for x ∈ Ω, t > 0,

∂v

∂n
= 0 for x ∈ ∂Ω, t > 0,

v(x, 0) = u0 = maxx∈Ω̄ u0(x) x ∈ Ω̄, t > 0.

It is easy to check that the function

v(x, t) = v(t) = ū0e
∫ t

0
µ(s)ds < +∞

is the unique solution for the problem above. From the comparison principle, we have

u(x, t) < v(t) = ū0e
∫ t

0
µ(s)ds,

so u(x, t) does not blow up in finite time. Since p(x, t) = u(x, t)w(x, t) and w(x, t) is
bounded above, which implies that the solution of (2.1) is the global solution.

For the problem (2.2), we can prove
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Theorem 2.2 . For any pair of positive initial data (u(x, 0), w(x, 0)) = (u0(x), w0(x)),
there exist positive constants m and M , 0 < m < M < +∞, such that, m ≤ u(x, t) ≤
M and m ≤ w(x, t) ≤ M.

Proof For any fixed positive initial data (u(x, 0), w(x, 0)) = (u0(x), w0(x)), there
exists a unique solution (u(x, t), w(x, t)) of the initial boundary problem which is pos-
itive and global. Let ū0 = maxx∈Ω̄ u0(x), and w̄0 = maxx∈Ω̄ w0(x), for w fixed, we
denote (f(x, t), g(x, t)) as solution of following initial boundary problem:





∂f

∂t
= D∆f −D

1
w

(5w) · (5f) + µf − α1

α2 + α3fg
f2,

∂g

∂t
=

α1fg

α2 + α3fg
− µg,

for x ∈ Ω, t > 0,

∂f

∂n
= 0, for x ∈ ∂Ω, t > 0,

f(x, 0) = ū0,

g(x, 0) = w̄0

for x ∈ Ω̄.

(2.3)
It is obvious that (f(x, t), g(x, t)) is a super-solution for the problem (2.2), hence

0 < u(x, t) ≤ f(x, t) and 0 < w(x, t) ≤ g(x, t).
Next the problem (2.3) has constant initial data, (f(x, t), g(x, t)) is also a solution

of the initial problem of the ordinary differential system




∂f

∂t
− µf +

α1

α2 + α3fg
f2 = 0,

∂g

∂t
=

α1fg

α2 + α3fg
− µg,

for t > 0,

f(x, 0) = ū0,

g(x, 0) = w̄0.

(2.4)

From (2.4), we can deduce (fg)t = 0, which implies fg = f(0)g(0) = ū0w̄0. So
(f(x, t), g(x, t)) is also a solution of the initial problem of the ordinary differential
system 




∂f

∂t
− µf +

α1

α2 + α3k
f2 = 0,

∂g

∂t
=

α1k

α2 + α3k
− µg,

for t > 0,

f(x, 0) = ū0,

g(x, 0) = w̄0,

(2.5)

where k = ū0w̄0. It is well known that

lim
t→+∞ f(t) ≤ µ̄(ᾱ2 + ᾱ3k)

α1

, lim
t→+∞ g(t) ≤ g(0) +

ᾱ1k

µ(α2 + α3k)
,
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which implies that there exists a positive constant M > 0, such that f(x, t) ≤ M, g(x, t) ≤
M. So the solution of the problem (2.2) has a upper bound.

Let (f̂(t), ĝ(t)) be the solution of the following initial problem:





∂f

∂t
− µ +

α1

α2 + α3fg
f2 = 0,

∂g

∂t
=

α1fg

α2 + α3fg
− µg,

for t > 0,

f(x, 0) = u0,

g(x, 0) = w0

(2.6)

By the similar argument above, we can get a positive constant m such that 0 < m <
f̂(t) < u(x, t), and 0 < m < ĝ(t) < w(x, t). The proof is completed.

Since u(x, t) = p(x,t)
w(x,t) , for the solutions of (2.1) we also have

Corollary 2.1 . For any pair of positive initial data (p(x, 0), w(x, 0)) = (p0(x), w0(x)),
there exist positive constants 0 < m1 < M1 < +∞, such that m1 ≤ p(x, t) ≤ M1 and
m1 ≤ w(x, t) ≤ M1.

3 The systems with positive T -periodic coefficients

We have already proved that the problem (2.1) has a unique global solution. In order
to understand the asymptotic behavior of the solution, we first consider the following
initial-boundary problem:





∂p

∂t
= D∇ ·

(
p∇( ln(

p

w
))

)

∂w

∂t
=

α1(t)p
α2(t) + α3(t)p

− µ(t)w,

for x ∈ Ω, t > 0,

(p∇( ln(
p

w
))) · n = 0, for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0,

w(x, 0) = w0(x) > 0,
for x ∈ Ω̄,

(3.1)

where αi(t) (i = 1, 2, 3) and µ(t) are all positive smooth T -periodic functions.
Let u(x, t) =

p

w
, then (p(x, t), w(x, t)) is a solution for (3.1) if and only if (u(x, t), w(x, t))
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is a solution for the following initial-boundary problem:




∂u

∂t
−D4u−D

1
w

(∇w) · (∇u) = µ(t)u− α1(t)u2

α2(t) + α3(t)uw
∂w

∂t
=

α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

for x ∈ Ω, t > 0,

∂u

∂n
= 0, for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) =
p0(x)
w0(x)

> 0,

w(x, 0) = w0(x) > 0,

for x ∈ Ω̄,

(3.2)
In order to solve the system (3.2) clearly, we consider following ODE:

ut = µ(t)u(t)− β(t)u2(t), (3.3)

where µ(t) and β(t) are positive smooth T -periodic functions.

Lemma 3.1. (1) There exists a unique positive T -periodic solution u∗(t) for the ordi-
nary differential equation (3.3);
(2) The positive T -periodic solution u∗(t) is monotone decreasing in β(t).

Proof First, we prove that there exists a positive T -periodic solution for the

equation (3.3). Let M ≥ µ̄

β
, 0 < m ≤ µ

β̄
, where

µ = sup
t≥0

µ(t), µ = inf
t≥0

µ(t), β = sup
t≥0

β(t), and β = inf
t≥0

β(t).

Denote û0 = m, and ũ0 = M, then û0 is a sub-solution of




ut = µ(t)u− β(t)u2, for t > 0,

u(0) = m.
(3.41)

and ũ0 is a super-solution of




ut = µ(t)u− β(t)u2, for t > 0,

u(0) = M.
(3.41)

Denote the solutions of the problems (3.41) and (3.41) by û1, and ũ1 respectively, we
have 0 < m = û0(t) ≤ û1(t) ≤ ũ1(t) ≤ ũ0(t) = M for t ≥ 0. Especially we have
m = û0(0) = û0(T ) = û1(0) ≤ û1(T ) ≤ ũ1(T ) ≤ ũ1(0) = ũ0(T ) = ũ0(0) = M. Denote
the solutions of the following problems by û2, and ũ2:





ut = µ(t)u− β(t)u2, for t > 0,

u(0) = û1(T ).
(3.42)
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and 



ut = µ(t)u− β(t)u2, for t > 0,

u(0) = ũ1(T ).
(3.42)

It is obvious that û1(t) ≤ û2(t) ≤ ũ2(t) ≤ ũ1(t). Especially we obtain that m ≤
û1(T ) ≤ û2(T ) ≤ ũ2(T ) ≤ ũ1(T ) ≤ M . Denote the solutions of the following problems
by û3, and ũ3 , respectively:





ut = µ(t)u− β(t)u2, for t > 0,

u(0) = û2(T ).
(3.43)

and 



ut = µ(t)u− β(t)u2, for t > 0,

u(0) = ũ2(T ).
(3.43)

Also we have û1(t) ≤ û2(t) ≤ û3(t) ≤ ũ3(t) ≤ ũ2(t) ≤ ũ1(t), and m ≤ û1(T ) ≤
û2(T ) ≤ û3(T ) ≤ ũ3(T ) ≤ ũ2(T ) ≤ ũ1(T ) ≤ M .

By using the same technique, we can get a series of solutions: {ûi(t)}, {ũi(t)}, such
that

(a) ûi(t), ũi are solutions for the following problems:




ut = µ(t)u− β(t)u2, for t > 0,

u(0) = ûi−1(T ).
(3.4i)

and 



ut = µ(t)u− β(t)u2, for t > 0,

u(0) = ũi−1(T ).
; (3.4i)

(b) For any i > 0, we have 0 < m ≤ ûi−1(t) ≤ ûi(t) ≤ · · · ≤ ũi(t) ≤ ũi−1(t) ≤ M
and ûi−1(T ) ≤ ûi(T ) = ûi+1(0) ≤ ûi+2(0) = ûi+1(T ) ≤ ũi+1(T ) ≤ ũi(T ) = ũi+1(0) ≤
ũi(0) = ũi−1(T ) = ũi(0) ≤ ũi−1(0).

Since {ûi(t)} (resp. {ũi(t)}) are monotonic increasing (resp. decreasing), bounded,
and smooth, there exists a unique limit function, say u∗ (resp. u∗), which are bounded
and smooth. We can easily check that both u∗(t) and u∗(t) satisfy the equation

ut = µ(t)u(t)− β(t)u2(t). (3.3)

Since the coefficients of the equation (3.3) are T -periodic, we have that for any i > 1
and t > 0,

ûi−1(t + T ) = ûi(t), ũi−1(t + T ) = ũi(t).

So we get

u∗(t + T ) = lim
i→+∞

ûi(t + T ) = lim
i→+∞

ûi+1(t) = u∗(t),

u∗(t + T ) = lim
i→+∞

ũi(t + T ) = lim
i→+∞

ũi+1(t) = u∗(t), for t > 0,
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that means u∗(t) and u∗(t) are T -periodic functions.
Next, we can prove that the T -periodic solution of (3.3) is unique. In fact if there ex-

ist two positive T -periodic solutions u1(t) and u2(t). Choose 0 < m ≤ min
0≤t≤T

{u1(t), u2(t)}
≤ max

0≤t≤T
{u1(t), u2(t)} ≤ M < +∞. By the same method as we used before, we can ob-

tain two positive T -periodic solutions, u∗(t) and u∗(t) for the equation (3.3) and

0 < m ≤ u∗(t) ≤ u1(t), u2(t) ≤ u∗(t) ≤ M < +∞.

Let λ = min
t∈[0,T ]

{u∗(t)
u∗(t)

} ≥ 1, and define the function h(t) = u∗(t) − λu∗(t), then the

function h(t) ≥ 0 is a T -periodic function, and h(t0) = 0 for some t0 ∈ (0, 2T ). Since
h(t) gets its minimum at the point t = t0 ∈ (0, 2T ), we have ht(t0) = h(t0) = 0. So at
the point t = t0, we get

0 = ht − µh = λβu2
∗ − βu∗2 = λβ(1− λ)u2

∗.

Because of u∗(t) 6= 0, β(t0) 6= 0, and λ ≥ 1, the above equality implies that λ = 1. So
we obtain that h(t) = u∗(t) − u∗(t) ≥ 0, and h(t0) = u∗(t0) − u∗(t0) = 0. Notice that
for any t > t0, we have

0 = ht(t)− µ(t)h(t) + β(t)u∗2(t)− λβ(t)u∗2(t)

= ht(t)− µ(t)h(t) + β(t)u∗2(t)− β(t)u∗2(t)

= ht(t)− µ(t)h(t) + β(t){u∗(t) + u∗(t)}h(t),

and h(t0) = h(t0 + T ) = 0, which leads to h(t) = 0 for any t ≥ t0. Keeping in mind
that h(t) is T -periodic function, we know that h(t) = 0 for all t ≥ 0, which means that
u∗(t) = u∗(t) for all t ≥ 0. Combining with the condition:

0 < m ≤ u∗(t) ≤ u1(t), u2(t) ≤ u∗(t) ≤ M < +∞,

we have
0 < m ≤ u∗(t) = u1(t) = u2(t) = u∗(t) ≤ M < +∞.

Thus the T -periodic solution is unique.

(2) In order to prove that the positive T -periodic solution of (3.3) is monotonic
decreasing in β(t), we assume that β2(t) ≥ β1(t) > 0 for all t ≥ 0, and ui(t) (i = 1,

2) are corresponding periodic solutions. Since ui(t) > 0, the functions wi =
1

ui(t)
(i = 1, 2) are well defined for all t ≥ 0. It is easy to know that wi(t) is the positive
T -periodic solution of following equation:

(wi)t(t) + µ(t)wi(t) = βi(t), for t > 0. (3.4)

Let w(t) = w2(t) − w1(t), then w(t) is a T -periodic function, and satisfies the
following equation:

wt(t) + µ(t)w(t) = β2(t)− β1(t) ≥ 0, for t > 0.
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Suppose that the T -periodic function w(t) get its minimum at a point t = t0 > 0, thus
wt(t0) = 0. Since

µ(t0)w(t0) = β2(t0)− β1(t0) ≥ 0,

and µ(t0) > 0, we have w(t0) ≥ 0, which implies w(t) ≥ 0, for all t ≥ 0. Hence
w2(t) ≥ w1(t), and u2(t) ≤ u1(t) for all t ≥ 0. The proof is completed.

Lemma 3.2. For any positive constant c > 0 the solution u(t) of the initial problem:




ut = µ(t)u− β(t)u2, for t > 0,

u(0) = c > 0,
(3.5)

has the asymptotic behavior lim
t→∞[u(t)−u∗(t)] = 0, where u∗(t) is the positive T-periodic

solution for the related ordinary differential equation (3.3).

Proof For t > 0, we choose positive constants m and M satisfying m = min{c, µ

β
}

and M = max{c, µ
β}. Denote û0 by m, and ũ0 by M . Then û0 and ũ0 satisfy the

following problems:




û0t ≤ µ(t)û0 − β(t)û2
0, for t > 0,

û0(0) = m.
(3.51)

and 



ũ0t ≥ µ(t)ũ0 − β(t)ũ2
0, for t > 0,

û0(0) = M.
(3.51)

Thus û0 and ũ0 are sub- and super-solutions for the systems (3.41) and (3.41) respec-
tively. By using the same method, we can get series of solutions: {ûi(t)}, {ũi(t)}, and
there exist a unique positive T -periodic solution , say u∗(t) as before, such that ûi(t)
converges increasingly to u∗(t) as i → +∞, and ũi(t) converges decreasingly to u∗(t)
as i → +∞. For the solution of (3.5), we also know for i ≥ 1, ûi(t) ≤ u(t) ≤ ũi(t), thus

ûi(t)− u∗(t) = ûi(t + iT )− u∗(t + iT )
≤ u(t + iT )− u∗(t + iT )
≤ ũi(t + iT )− u∗(t + iT )
= ũi(t)− u∗(t).

for all t ≥ 0, i ≥ 1

Let i → +∞, we have

limt→+∞(u(t)− u∗(t)) = 0,

which completes the proof.

Consider another ordinary differential equation:

wt = β(t)− µ(t)w, for t > 0. (3.6)

By using the same technique, we can also get the following result:
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Lemma 3.3. For the equation (3.6), there exists a unique positive T -periodic solution
w∗(t), which is increasing in β(t). Furthermore, for every positive initial datum the
corresponding solution w(t) satisfies lim

t→+∞ |w(t)− w∗(t)| = 0, which implies w∗(t) is a

global attractor.

In the following, we want to study the positive T -periodic solution of the ordinary
differential system:





ut = µ(t)u− α1(t)u2

α2(t) + α3(t)uw
,

wt =
α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

for t > 0, (3.7)

and we investigate the asymptotic behavior of the solution for the following initial
problem: 




ut = µ(t)u− α1(t)u2

α2(t) + α3(t)uw
,

wt =
α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

for t > 0,

u(0) = k1 > 0,
w(0) = k2 > 0.

(3.8)

Let k = k1k2, then it is similar to (2.4), we know that if (u(t), w(t)) is the solution
of the initial problem (3.8), then (u(t), w(t)) is the solution of the following initial
problem: 




ut = µ(t)u− α1(t)u2

α2(t) + α3(t)k
,

wt =
α1(t)k

α2(t) + α3(t)k
− µ(t)w,

for t > 0,

u(0) = k1 > 0,
w(0) = k2 > 0.

(3.9)

It is obvious that we have

Theorem 3.1. (1) For any positive constant k > 0, there exists a unique positive
T -periodic solution (u∗(t), w∗(t)) for the system (3.7), which satisfies u∗(t)w∗(t) = k
for all t ≥ 0; and 




ut = µ(t)u− α1(t)u2

α2(t) + α3(t)k
,

wt =
α1(t)k

α2(t) + α3(t)k
− µ(t)w.

(2) For any initial data (u(0), w(0)) = (k1, k2), there exists a unique solution (u(t), w(t))
of the system (3.8). Furthermore, the solution (u(t), w(t)) has the following asymptotic
behavior: 




lim
t→+∞(u(t)− u∗(t)) = 0,

lim
t→+∞(w(t)− w∗(t)) = 0.

(3.10)
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For k > 0, we know that the problem




∂u

∂t
−D4u−D

1
w

(∇w) · (∇u) = µ(t)u− α1(t)u2

α2(t) + α3(t)uw
∂w

∂t
=

α1(t)uw

α2(t) + α3(t)uw
− µ(t)w,

for x ∈ Ω, t > 0,

∂u

∂n
= 0, for x ∈ ∂Ω.

(3.11)
has a positive T -periodic solution (u∗(t), w∗(t)) which is spatial independent and satis-
fies u∗(t)w∗(t) = u∗(0)w∗(0) = k. How about the positive T -periodic solutions of (3.11)
which depends on the spatial variable? The following result will give us a complete
answer.

Theorem 3.2. There is no spatial dependent positive T -periodic solution for the prob-
lem (3.11).

Proof Assume that the system (3.11) has a positive T -periodic solution (u(x, t), w(x, t))
which depends on spatial variable. Then there exist some points xi ∈ Ω̄, (i = 1, 2), such
that u(x1, 0) = u0(x1) = maxt∈Ω̄ u0(x) = M1, w(x2, 0) = w0(x2) = maxt∈Ω̄ w0(x) =
M2. Suppose that (ũ(t), w̃(t)) is the pair of solution for the system (3.11) with the ini-
tial data (u(x, 0), w(x, 0)) = (M1,M2). Then by the maximum principle for parabolic
equations, we obtain that u(x, t) ≤ ũ(t), w(x, t) ≤ w̃(t). Also we know that there exists
a unique positive T -periodic solution of the system (3.11), say (u∗(t), w∗(t)), such that





u∗t = µ(t)u∗ − α1(t)u∗2

α2 + α3u
∗w∗

= µ(t)u∗ − α1(t)u∗2

α2 + α3M1M2
,

w∗t =
α1(t)u∗w∗

α2 + α3u
∗w∗

− µ(t)w∗

=
α1(t)M1M2

α2 + α3M1M2
− µw∗

for t > 0 (3.12)

and
lim

t→+∞(ũ(t)− u∗(t)) = lim
t→+∞(w̃(t)− w∗(t)) = 0.

Now we can prove that u∗(0) ≥ M1, w∗(0) ≥ M2. If not, we can assume u∗(0) < M1,
then there exists a positive constant, say δ > 0, such that u∗(0) < M1 − 2δ. Because of
lim

t→+∞(ũ(t)− u∗(t)) = 0, there exists a positive integer N , such that u∗(t)− δ < ũ(t) <

u∗(t)+ δ, for t ≥ NT. Since u∗(t) is a T -periodic function, we have ũ(NT ) < u∗(NT )+
δ = u∗(0) + δ. Also for x ∈ Ω̄, u(x, 0) = u(x,NT ) ≤ ũ(NT ) < u∗(NT ) + δ = u∗(0) + δ.
Furthermore we have

M1 = u(x1, 0) = u(x1, NT ) < u∗(NT ) + δ = u∗(0) + δ < M1 − 2δ + δ = M1 − δ,
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which implies u∗(0) ≥ M1. It is similar that we have w∗(0) ≥ M2.

Since u∗(0)w∗(0) = M1M2, u
∗(0) ≥ M1, and w∗(0) ≥ M2, we have u∗(0) =

M1, w
∗(0) = M2. From the uniqueness of the solution, we can deduce that ũ(t) =

u∗(t), w̃(t) = w∗(t).
In fact, both solutions (u(x, t), w(x, t)) and (u∗(t), w∗(t)) are positive T -periodic

functions and u(x1, NT ) = u∗(NT ), w(x2, NT ) = w∗(NT ), for all integers N ≥ 0. Let
h(x, t) = u∗(t)−u(x, t), then h(x, t) is spatial dependent, and h(x, t) ≥ 0, h(x1, NT ) =
0. Suppose that there exists at least one point x3 ∈ Ω̄, such that h(x3, NT ) > 0, thus
from u(x, t)w(x, t) ≤ u∗(t)w∗(t), we have

∂h

∂t
−D4h−D

1
w

(∇w) · (∇h)

= µ(t)h− α1(t)u∗2

α2(t) + α3(t)u∗w∗
+

α1(t)u2

α2(t) + α3(t)uw

≥ µ(t)h− α1(t)u∗2

α2(t) + α3(t)u∗w∗
+

α1(t)u2

α2(t) + α3(t)u∗w∗

= µ(t)h +
α1(t)(u∗ + u)

α2(t) + α3(t)u∗w∗
(−h).

Then h(x, t) satisfies




∂h

∂t
−D4h−D

1
w

(∇w) · (∇h) + { α1(t)(u∗ + u)
α2(t) + α3(t)u∗w∗

− µ(t)}h ≥ 0,

for x ∈ Ω̄, t > 0,

∂h

∂n
= 0, for x ∈ ∂Ω, t > 0,

h(x, 0) = u∗(0)− u0(x), for x ∈ Ω̄.

Notice that h(x1, NT ) = 0 for N = 1, 2, 3, · · · , we must have h(x, t) = 0 for all
x ∈ Ω̄, t > 0, by the strong maximum argument, which contradicts to h(x3, NT ) > 0.
Hence, there is no positive T -periodic solution for the system (3.11), which is spatial
dependent.

According to the results above, we know that, for the problem (3.1), even for con-
stant initial data, the asymptotic behavior of the solution would have a lot of changes.
We can not expect stable steady-state solutions for this problem in the general mean-
ing of small perturbation for initial data. In despite of that, we still want to pay more
attention to the problem on the special feature for large t to the positive solutions of
the problem (3.11) which depend on space variable.

Let φ1(t) = minx∈Ω̄ u(x, t), φ2(t) = minx∈Ω̄ w(x, t), ψ1(t) = maxx∈Ω̄ u(x, t), and
ψ2(t) = maxx∈Ω̄ w(x, t). Denote by A the value of lim

t→+∞
φ1(t)φ2(t), and by B the value

of lim
t→+∞ψ1(t)ψ2(t), thus 0 < A ≤ B < +∞.
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Theorem 3.3. For the problem (3.1), if at least one of two functions u0(x) and w0(x)
of initial data is not constant, then φ1(t)φ2(t) converges to A increasingly, as t → +∞,
and ψ1(t)ψ2(t) converges to B decreasingly, as t → +∞.

Proof We divide our proof into several steps. First, we can prove that ψ1(0)ψ2(0) ≥
B. This is because if ψ1(0)ψ2(0) < B, then we can find two positive constants ci > 0,
(i = 1, 2) such that ψ1(0) < c1, ψ2(0) < c2 and ψ1(0)ψ2(0) < c1c2 < B. Consider
following problem:





∂f

∂t
−D4f −D

1
w

(∇w) · (∇f) = µ(t)f − α1(t)f2

α2(t) + α3(t)fg
∂g

∂t
=

α1(t)fg

α2(t) + α3(t)fg
− µ(t)g,

for x ∈ Ω, t > 0,

∂f

∂n
= 0, for x ∈ ∂Ω.

f(x, 0) = c1,

g(x, 0) = c2.
for x ∈ Ω̄.

(3.13)
We know that if (3.13) has a solution (f(t), g(t)), then f(t)g(t) = c1c2, and u(x, t) ≤
f(t), w(x, t) ≤ g(t) for x ∈ Ω̄, t > 0 thus we have ψ1(t) ≤ f(t), and ψ2(t) ≤ g(t). That
means

lim
t→+∞ψ1(t)ψ2(t) ≤ lim

t→+∞ f(t)g(t) ≡ c1c2 < B,

which contradicts to the definition of B, so we have ψ1(0)ψ2(0) ≥ B.
Secondly, we can prove that ψ1(t)ψ2(t) ≥ B for all t > 0. In fact, for any fixed

t0 > 0, we define functions ǔ(x, t) = u(x, t+ t0), w̌(x, t) = w(x, t+ t0), µ̌(t) = µ(t+ t0),
and α̌i(t) = αi(t + t0), then µ̌(t), and α̌i(t) (i = 1, 2, 3) are all positive T -periodic
functions, and (ǔ(x, t), w̌(x, t)) is the solution of the following problem:





∂ǔ

∂t
−D4ǔ−D

1
w̌

(∇w̌) · (∇ǔ) = µ̌(t)ǔ− α̌1(t)ǔ2

α̌2(t) + α̌3(t)ǔw̌
∂w̌

∂t
=

α̌1(t)ǔw̌

α̌2(t) + α̌3(t)ǔw̌
− µ̌(t)w̌,

for x ∈ Ω, t > 0,

∂ǔ

∂n
= 0, for x ∈ ∂Ω.

ǔ(x, 0) = u(x, t0),

w̌(x, 0) = w(x, t0).
for x ∈ Ω̄.
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By the argument above, we can deduce that

ψ1(t0)ψ2(t0) = maxx∈Ω̄ u(x, t0)maxx∈Ω̄ w(x, t0)

= maxx∈Ω̄ ǔ(x, 0)maxx∈Ω̄ w̌(x, 0)

≥ lim
t→+∞{maxx∈Ω̄ ǔ(x, t)maxx∈Ω̄ w̌(x, t)}

= lim
t→+∞{maxx∈Ω̄ u(x, t)maxx∈Ω̄ w(x, t)}

= B.

Next we can prove that the function ψ1(t)ψ2(t) is monotonic decreasing in t. Actu-
ally, from the processes above, we only need to prove that ψ1(0)ψ2(0) ≥ ψ1(t)ψ2(t) for
all t > 0. In fact, let (f(t), g(t)) be the solution of following problem:





∂f

∂t
−D4f −D

1
w

(∇w) · (∇f) = µ(t)f − α1(t)f2

α2(t) + α3(t)fg
∂g

∂t
=

α1(t)fg

α2(t) + α3(t)fg
− µ(t)g,

for x ∈ Ω, t > 0,

∂f

∂n
= 0, for x ∈ ∂Ω.

f(x, 0) = ψ1(0),

g(x, 0) = ψ2(0).
for x ∈ Ω̄.

Then f(t)g(t) ≡ ψ1(0)ψ2(0) ≥ B, and f(t) ≥ u(x, t), g(t) ≥ w(x, t). Thus we get
ψ1(0)ψ2(0) = f(0)g(0) = f(t)g(t)) ≥ ψ1(t)ψ2(t), for t > 0. therefore the function
ψ1(t)ψ2(t) is convergent to B as t → +∞.

It is similar to deduce that φ1(t)φ2(t) converges to A increasing as t → +∞.

If all coefficients of the system (3.1) are positive constants, then (3.1) has a trivial
constant solution (p0,

α1p0

(α2+α3p0)µ), in this case we have

Theorem 3.4. Assume that all the coefficients of the system (3.1) are positive con-
stants, then for any positive constant c1 > 0, the positive constant solution (c1, c2) =
(c1,

α1c1

µ(α2 + α3c1)
) is asymptotic stable in the space Λ = {(p, w) :

∫
Ω p(x, 0)dx =

c1,
∫
Ω w(x, 0)dx = α1c1

µ(α2+α3c1)}.

Proof For any positive constants c1, c2 =
α1c1

µ(α2 + α3c1)
, then near the constant
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solution (p, w) = (c1, c2), the linearized equation with small perturbations is




∂ξ

∂t
= D4ξ −D

c1

c2
4η

∂η

∂t
=

α1α2

(α2 + α3c1)2
ξ − µη

for x ∈ Ω, t > 0

∂ξ

∂n
= 0,

∂η

∂n
= 0

for x ∈ ∂Ω, t > 0

ξ(x, 0) =
+∞∑
n=0

anXn(x)

η(x, 0) =
+∞∑
n=0

bnXn(x)
for x ∈ Ω,

(3.14)

where the functions Xn (n ≥ 0) are eigenfunctions of the following eigenvalue problem
possessing the n-th positive eigenvalue λ = λn:





−D4u = λnu, for x ∈ Ω,

∂u

∂n
= 0, for x ∈ ∂Ω.

We can denote ξ, η as follows:

ξ(x, t) =
+∞∑

i=0

Xi(x)Ti(t), η(x, t) =
+∞∑

i=0

Xi(x)Hi(t), for t > 0.

In light of the conservation condition, we have a0 = b0 = 0, and for any i ≥ 1,





T ′i (t)Xi(x) = Ti[D4Xi(x)]−Hi[D c1
c2
4Xi(x)] = −λi{Ti − c1

c2
Hi}Xi(x),

H ′
i(t)Xi(x) =

α1α2

(α2 + α3c1)2
TiXi(x)− µHiXi(x).

From the first equation, we obtain

{Ti(t)exp{λit}}t = λi
c1

c2
Hie

λit

Putting the form of the function Ti(t) into the second equation, we can find

{Hie
λit}t =

α1α2

(α2 + α3c1)2
Tie

λit + [λi − µ]Hie
λit

{Hie
λit}tt + [µ− λi]{Hie

λit}t − α1α2

(α2 + α3c1)2
λi

c1

c2
Hie

λit = 0

We may assume the solution of the form

Hi(t) = Aie
(k+

i −λi)t + Bie
(k−i −λi)t,
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where Ai, Bi are constants and

k±i =
1
2
{λi − µ±

√
(µ− λi)2 +

4λic1α1α2

c2(α2 + α3c1)2
}.

When t → +∞, then Hi(t) tends to 0 if and only if k+
i − λi < 0, which is equivalent to

λi + µ >

√
(µ− λi)2 +

4λic1α1α2

c2(α2 + α3c1)2
,

i.e.
µ >

c1α1α2

c2(α2 + α3c1)2
.

Since c2 =
α1c1

µ(α2 + α3c1)
, and αi > 0, c1 > 0, we have

µ >
α2

α2 + α3c1
µ,

which is always valid for any µ > 0, that means k+
i − λi < 0 is true.

Theorem 3.4 is proved.

Next, we have

Theorem 3.5. If at least one of the coefficients for the system (3.1) is non-constant
positive T -periodic function, then the positive T -periodic solution of (3.1) is stable, but
non-asymptotic stable.

Proof By Theorem 3.2, the positive T -periodic solution (p∗, w∗(t)) of (3.1) is
spatial independent. In order to investigate the asymptotic behavior of the solution,
we consider the following linearized equation at the point (p(x, t), w(x, t)) = (p∗, w∗(t))





ξt −D∆ξ = −D
p∗

w∗(t)
∆η

ηt =
α1(t)α2(t)

[α2(t) + α3(t)p∗]2
ξ − µ(t)η

for x ∈ Ω, t > 0

∂ξ

∂n
=

∂η

∂n
= 0 for x ∈ ∂Ω, t > 0

ξ(x, 0) = a(x)

η(x, 0) = b(x)
for x ∈ Ω

We can write

ξ(x, t) =
+∞∑

n=0

fn(t)Xn(x), η(x, t) =
+∞∑

n=0

gn(t)Xn(x),
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where Xn(x) is eigenfunctions for the following eigenvalue problem possessing the n-th
positive eigenvalue λn:





−D∆X(x) = λX(x) for x ∈ Ω

∂X

∂n
= 0 for x ∈ ∂Ω.

In light of the conservation condition, we get f0(t) = 0, and
{

g′0(t) + µ(t)g0(t) = 0, for t > 0,
g0(0) = b0,

and




f ′n(t) + λnfn(t) = λn
p∗

w∗(t)
gn(t)

g′n(t) =
α1(t)α2(t)

[α2(t) + α3(t)p∗]2
fn(t)− µ(t)gn(t)

for t > 0

fn(0) = an

gn(0) = bn

(3.15)

for n = 1, 2, 3, · · · , where

a(x) =
+∞∑

n=0

anXn(x), b(x) =
+∞∑

n=0

bnXn(x).

We know that the solution (p∗, w∗(t)) is asymptotic stable if and only if for any initial
data (a(x), b(x)), we have the limits

lim
t→+∞ ξ(x, t) = 0, lim

t→+∞ η(x, t) = 0, for x ∈ Ω̄.

So if the solution (p∗, w∗(t)) is asymptotic stable, then for any n = 1, 2, · · · , we have

lim
t→+∞ fn(t) = 0, lim

t→+∞ gn(t) = 0.

In order to prove our statement on the non-asymptotic stable of the solution (p∗, w∗(t)),
we need only to show that for some integer n0 , we can choose functions a(x) =
+∞∑
n=1

fn(0)Xn(x) and b(x) =
+∞∑
n=1

gn(0)Xn(x) such that the solution of the ordinary dif-

ferential equations (3.15) (fn(t), gn(t)) does not tend to 0 as t → +∞.

It is obvious that lim
t→+∞ g0(t) = 0 because µ(t) is a positive, T -periodic smooth

function. We need only to consider the case n > 0. According to the theory on the
structure of the solutions for the linear ordinary differential equations with T -periodic
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smooth coefficients, we know that for each integer n fixed, the solution (fn(t), gn(t)) of
(3.15) would be as follows:

fn(t) = aF1(t)eβ1t + bF2(t)eβ2t, gn(t) = cG1(t)eβ1t + dG2(t)eβ2t,

where a, b, c, and d are any constants, Fi(t), Gi(t) (i = 1, 2) are all T -periodic smooth
functions, and βi (i = 1, 2) are eigenvalues for the matrix K = (h1(t), h2(t)) where hi(t)
is the solution of the following systems:





f ′n(t) + λnfn(t) = λn
p∗

w∗(t)
gn(t)

g′n(t) =
α1(t)α2(t)

[α2(t) + α3(t)p∗]2
fn(t)− µ(t)gn(t),

for t > 0

with the initial data fn(0) = 1, gn(0) = 0 and fn(0) = 0, gn(0) = 1 respectively. Now we
can point out that at least one of the eigenvalues of the matrix K has non-negative real
part. That implies that the trivial solution (f(t), g(t)) = (0, 0) of the systems (3.15) is
not asymptotic stable, which implies that the solution (p∗, w∗(t)) for the systems (3.1)
is not asymptotic stable, which is what we want to obtain.

Assume that it is false, then the real parts of both eigenvalues are negative. We
can suppose that the real part of β1 is negative and is not smaller than the real part of
another eigenvalue β2. Thus, for every pair of initial function (a(x), b(x)) there exists
some positive constant M > 0 such that

‖fn(t)‖ ≤ MeReβ1t, ‖gn(t)‖ ≤ MeReβ1t for t > 0. (3.16)

Also, from the first equation of the system (3.15), we have

(fn(t)eλnt)′ = λn
p∗

w∗(t)
gneλnt,

that means
fn(t)eλnt = fn(0) + λnp∗H̃n(t), (3.17)

where H̃n(t) =
∫ t

0

1
w∗(s)

gn(s)eλnsds. Putting that equation into the second equation

of the system (3.15), we obtain that

(gneλnt)′ =
α1(t)α2(t)

(α2(t) + α3(t)p∗)2
fn(t)eλnt + (λn − µ(t))gn(t)eλnt

Notice that (w∗)′ =
α1(t)p∗

α2(t) + α3(t)p∗
− µ(t)w∗, we can deduce that

(
gn(t)eλnt

w∗(t)
)′ + [

α1(t)p∗

(α2(t) + α3(t)p∗)w∗(t)
− λn]

gn(t)eλnt

w∗(t)

=
α1(t)α2(t)

(α2(t) + α3(t)p∗)2w∗(t)
[fn(0) + λnp∗H̃n(t)].
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It means that H̃n(t) must be the solution for the following system:




−H̃n(t)′′ + (λn − α1(t)p∗

(α2(t) + α3(t)p∗)w∗
)H̃n(t)′ +

λnα1(t)α2(t)p∗

[α2(t) + α3(t)p∗]2w∗(t)
H̃n(t)

= − α1(t)α2(t)
(α2(t) + α3(t)p∗)2w∗(t)

fn(0) for t > 0

H̃n(0) = 0

H̃ ′
n(0) =

gn(0)
w∗(0)

.

(3.18)

Choose 0 <
p∗

w∗(0)
gn(0) <

α2(t)
α2(t) + α3(t)p∗

fn(0), then there exists constant ε0 > 0

such that for every 0 < ε < ε0, we have

ε
gn(0)
w∗(0)

+
α1(t)

(α2(t) + α3(t)p∗)w∗(t)
[

p∗

w∗(0)
gn(0)− α2(t)

α2(t) + α3(t)p∗
fn(0)] ≤ 0,

and

ε
gn(0)
w∗(0)

+
α1(t)gn(0)

(α2(t) + α3(t)p∗)w∗(t)
p∗

w∗(0)
(

λn

λn − ε

α2(t)
α2(t) + α3(t)p∗

− 1) ≤ 0.

Let Hn(t) =
gn(0)

(λn − ε)w∗(0)
[e(λn−ε)t − 1], then we have

−H ′′
n(t) + (λn − α1(t)p∗

(α2(t) + α3(t)p∗)w∗(t)
)H ′

n(t) +
α1(t)α2(t)λnp∗

(α2(t) + α3(t)p∗)2w∗(t)
Hn(t)

+
α1(t)α2(t)

(α2(t) + α3(t)p∗)2w∗(t)
fn(0)

= [−(λn − ε)
gn(0)
w∗(0)

+ (λn − α1(t)p∗

(α2(t) + α3(t)p∗)w∗(t)
)
gn(0)
w∗(0)

+
α1(t)α2(t)λnp∗

(α2(t) + α3(t)p∗)2w∗(t)
gn(0)

(λn − ε)w∗(0)
]e(λn−ε)t

− α1(t)α2(t)λnp∗

(α2(t) + α3(t)p∗)2w∗(t)
gn(0)

(λn − ε)w∗(0)

+
α1(t)α2(t)fn(0)

(α2(t) + α3(t)p∗)2w∗(t)

= [ε
gn(0)
w∗(0)

− α1(t)p∗

(α2(t) + α3(t)p∗)w∗(t)
gn(0)
w∗(0)

+
α1(t)α2(t)

(α2(t) + α3(t)p∗)2w∗(t)
λn

(λn − ε)
p∗

w∗(0)
gn(0)]e(λn−ε)t

+
α1(t)α2(t)

(α2(t) + α3(t)p∗)2w∗(t)
[fn(0)− λn

λn − ε

p∗

w∗(0)
gn(0)]
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= [ε
gn(0)
w∗(0)

+
α1(t)gn(0)

(α2(t) + α3(t)p∗)w∗(t)
p∗

w∗(0)
(

λn

λn − ε

α2(t)
α2(t) + α3(t)p∗

− 1)]e(λn−ε)t

+
α1(t)α2(t)

(α2(t) + α3(t)p∗)2w∗(t)
[fn(0)− λn

λn − ε

p∗

w∗(0)
gn(0)]

≤ [ε
gn(0)
w∗(0)

+
α1(0)gn(0)

(α2(0) + α3(0)p∗)w∗(0)
p∗

w∗(0)
(

λn

λn − ε

α2(0)
α2(0) + α3(0)p∗

− 1)]

+
α1(0)α2(0)

(α2(0) + α3(0)p∗)2w∗(0)
[fn(0)− λn

λn − ε

p∗

w∗(0)
gn(0)]

= ε
gn(0)
w∗(0)

+
α1(0)

(α2(0) + α3(0)p∗)w∗(0)
[

p∗

w∗(0)
gn(0)− α2(0)

α2(0) + α3(0)p∗
fn(0)]

≤ 0,

since the function defined by

[ε
gn(0)
w∗(0)

+
α1(t)gn(0)

(α2(t) + α3(t)p∗)w∗(t)
p∗

w∗(0)
(

λn

λn − ε

α2(t)
α2(t) + α3(t)p∗

− 1)]e(λn−ε)t+

α1(t)α2(t)
(α2(t) + α3(t)p∗)2w∗(t)

[fn(0)− λn

λn − ε

p∗

w∗(0)
gn(0)],

is monotonic decreasing in t, notice that Hn(0)− H̃n(0) = 0, H ′
n(0)− H̃ ′

n(0) = 0, and

H ′′
n(0)− H̃ ′′

n(0)

= (λn − ε)
gn(0)
w∗(0)

+ [
α1(0)p∗

(α2(0) + α3(0)p∗)w∗(0)
− λn]

gn(0)
w∗(0)

−
α1(0)α2(0)

(α2(0) + α3(0)p∗)2w∗(0)
fn(0)

= −ε
gn(0)
w∗(0)

+
α1(0)

(α2(0) + α3(0)p∗)w∗(0)
[

p∗

w∗(0)
gn(0)− α2(0)

α2(0) + α3(0)p∗
fn(0)]

< 0.

We can get the result: Hn(t) ≤ H̃n(t). Therefore we have

gn(0)
(λn − ε)w∗(0)

[e(λn−ε)t − 1]

≤
∫ t

0

gn(s)
w∗(s)

eλnsds

≤ M

min
0≤t≤T

w∗(t)

∫ t

0
e(λn+Reβ1)sds

=
M

min
0≤t≤T

w∗(t)(λn + Reβ1)
[e(λn+Reβ1)t − 1].

That implies that

0 <
gn(0)

(λn − ε)w∗(0)
[1− e−(λn−ε)t]

≤ M

min
0≤t≤T

w∗(t)(λn + Reβ1)
[e(ε+Reβ1)t − e−(λn−ε)].
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Let t → +∞, since Reβ1 < 0, it must be

gn(0)
(λn − ε)w∗(0)

≤ 0.

However this is impossible. The result leads to that at least one of the real parts for the
eigenvalues of the matrix K is non-negative, which implies that the solution (p∗, w∗(t))
of the system (3.1) is not asymptotic stable. The result is proved.

Comparing with Theorem 3.4 and Theorem 3.5, we know that the different choice
for the coefficients will change the asymptotic behavior of the solution, i.e. the solution
will tend to the constant solution (c1,

α1c1

α2 + α3c1
) or T -periodic solution (p∗, w∗(t)).

It means that these kinds of mathematical models are very unstable. So it is not so
strange that the biological systems have different behavior even they have many same
biological action.
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