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Abstract

Let X = (X1, ......, Xm) be an infinitely degenerate system of vector fields,
we study the existence and regularity of multiple solutions of Dirichelt prob-
lem for a class of semi-linear infinitely degenerate elliptic operators associated
with the sum of square operator ∆X =

∑m
j=1 X∗

j Xj .
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1 Introduction

In this paper, we study the existence and regularity of solutions for a class

of semi-linear infinitely degenerate elliptic operators. Consider a system of vector

fields X = (X1, ......, Xm) defined on an open domain Ω̃ ⊂ Rd. We suppose that this

system satisfies the following Logarithmic regularity estimates,

‖(log Λ)su‖2
L2(Ω) ≤ C

{
m∑

j=1

‖Xju‖2
L2(Ω) + ‖u‖2

L2(Ω)

}
,∀ u ∈ C∞

0 (Ω̃), (1.1)

where Λ = (e2 + |D|2)1/2 = 〈D〉. The results of [4, 6, 7, 8, 9] gave some sufficient

conditions for the estimates (1.1). We remark that if s > 1, the estimate (1.1) implies

the hypoellipticity of the infinitely degenerate elliptic operator ∆X =
∑m

j=1 X∗
j Xj,

where X∗
j is the formal adjoint of Xj.

Definition 1.1. If Γ is a smooth surfaces of Ω̃, we say that Γ is non characteristic

for the system of vector fields X, if for any point x0 ∈ Γ there exists at least one

vector field in X = (X1, ......Xm) which is transversal to Γ at x0.
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Definition 1.2. Let now Γ =
⋃
j∈J

Γj be the union of a family of smooth surface in

Ω̃. We say that Γ is non characteristic for X, if for any point x0 ∈ Γ, there exists at

least one vector field of X1, ..., Xm which is transversal to Γj at x0 for all j in which

x0 ∈ Γj.

We say that the vector fields X = (X1, ......, Xm) satisfies the finite type of

Hörmander’s condition on an open domain ω ⊂ Ω̃ in Rd if the rank of the Lie algebra

generated by the vector fields X = (X1, ......, Xm) and its finite times commutators

is equal to the space dimension d at every point in ω.

A typical example is the vector fields in R3, i.e. X1 = ∂x1 , X2 = ∂x2 , X3 =

exp(−|x1|−1/s)∂x3 with s > 0. The operator ∆X in this example is degenerate

infinitely on Γ0 = {x1 = 0}, and the vector fields X = (X1, X2, X3) satisfies the

finite type of Hörmander’s condition in R3�Γ0.

The example with infinitely degeneracy on a union of surfaces Γ =
⋃
j∈J

Γj is

the system in R2 such that X1 = ∂x1 , X2 = exp(−(x2
1 sin2( π

x1
))
−1
2s )∂x2 , we have

Γj = {x1 = 1
j
} for j ∈ Z�{0}, Γ0 = {x1 = 0}, then X1 is transverse to all Γj, j ∈ Z,

and X2 vanishes infinitely on Γ =
⋃
j∈Z

Γj. The vector fields X = (X1, X2) satisfies

the finite type of Hörmander’s condition in R2�Γ.

Related to the systems of vector fields X = (X1, ......Xm), Morimoto and Xu

introduce the following function space (cf.[10]),

H1
X(Ω̃) =

{
u ∈ L2(Ω̃), Xju ∈ L2(Ω̃), j = 1, ..., m

}
,

which is a Hilbert space with norm ‖u‖2
H1

X
= ‖u‖2

L2 + ‖Xu‖2
L2 , and ‖Xu‖2

L2 =
m∑

j=1

‖Xju‖2
L2 . Take Ω ⊂⊂ Ω̃ as a bounded open subset and suppose that ∂Ω is C∞

and non characteristic for the system of vector fields X, Morimoto and Xu define

the space H1
X,0(Ω) as a closure of C∞

0 (Ω) in H1
X(Ω), which is also a Hilbert space.

If the system of vector fields X satisfies the estimates (1.1), we have the following

Logarithmic Sobolev inequality;

Proposition 1.1. (cf.[10]) Suppose that the system of vector fields X = (X1, ......, Xm)

verifies the estimates (1.1) for some s > 1/2. Then there exists C0 > 0 such that

∫

Ω

|v|2
∣∣∣∣log(

|v|
‖v‖L2(Ω)

)

∣∣∣∣
2s−1

≤ C0

{
m∑

j=1

‖Xjv‖2
L2(Ω) + ‖v‖2

L2(Ω)

}
, (1.2)

for all v ∈ H1
X,0(Ω).
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Using the Logarithmic Sobolev inequality above, Morimoto and Xu [10] have

studied the following semi-linear Dirichlet problems,

4Xu = au log |u|+ bu, u|∂Ω = 0, (1.3)

where constant coefficients a, b ∈ R. They have obtained,

Proposition 1.2. (cf.[10]) We suppose that the system of vector fields X = (X1, ......Xm)

satisfies the following conditions:

H̃-1) ∂Ω is C∞ and non characteristic for the system of vector fields X;

H̃-2) the system of vector fields X satisfies the finite type of Hörmander’s condition

on Ω̃ except an union of smooth surfaces Γ which are non characteristic for X;

H̃-3) the system of vector fields X satisfies the estimate (1.1) for s > 3/2.

Suppose a 6= 0 in (1.3), then the semi-linear Dirichlet problem (1.3) posses at

least one non trivial weak solution u ∈ H1
X,0(Ω) ∩ L∞(Ω). Moreover, if a > 0, we

have u ∈ C∞(Ω \ Γ)
⋂

C0(Ω \ Γ) and u > 0 for all x ∈ Ω \ Γ.

Next, it will be useful for us to introduce following Poincaré′s inequality,

Proposition 1.3. (cf.[10]) Under the hypotheses H̃-1), H̃-2) and H̃-3), the first

eigenvalue λ1 of the operator 4X is strictly positive, which is equivalent to following

Poincaré′s inequality

‖ϕ‖2
L2 ≤ 1

λ1

‖Xϕ‖2
L2 , ∀ ϕ ∈ H1

X,0(Ω). (1.4)

In this paper, we shall study the following semi-linear Dirichlet problem

−4Xu = a(x)u log |u|+ b(x)u + g(x), in Ω, (1.5)

u|∂Ω = 0. (1.6)

Our main result is as follows.

Theorem 1.4. Suppose that the system of vector fields X = (X1, ......Xm) satisfies

the following conditions:

H-1) ∂Ω is C∞ and non characteristic for the system of vector fields X;

H-2) the system of vector fields X satisfies the finite type of Hörmander’s condition

on Ω̃ except an union of smooth surfaces Γ which are non characteristic for X;

H-3) the system of vector fields X satisfies the estimate (1.1) for s ≥ 5/2;

H-4) a(x), b(x) ∈ L∞(Ω), and there exist a0, b0 ∈ R+, such that a(x) ≥ a0, and b(x) ≥
b0, a.e. in Ω. Then
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1) there exists C > 0 such that the problem (1.5) and (1.6) has at least two solutions

in H1
X,0(Ω), for any g 6≡ 0 satisfying ‖g‖L2(Ω)) < C;

2) the problem (1.5) and (1.6) has at least one non-negative solution u ∈ H1
X,0(Ω);

furthermore, if g(x) ∈ L∞(Ω), then the non-negative solution u(x) ∈ L∞(Ω).

3) If a(x), b(x), g(x) ∈ C∞(Ω), and there exists g0 > 0 such that g(x) ≥ g0, then we

have u ∈ C∞(Ω\Γ)
⋂

C0(Ω̄\Γ) and u(x) > 0 for all x ∈ Ω\Γ.

The proof of Theorem 1.4 relies essentially on the Ekeland Variational Principle

(cf.[5]) and on the Mountain Pass Theorem without the Palais-Smale condition,

established by Brezis-Nirenberg [3], namely

Proposition 1.5. (cf.[5]) Let V be a complete metric space, and F : V → R∪{+∞}
a lower semicontinuous function, 6≡ +∞, bounded from below. For any ε > 0, there

is some point v ∈ V with

F (v) ≤ inf
V

F + ε. (1.7)

∀ w ∈ V, F (w) ≥ F (v)− εd(v, w). (1.8)

Proposition 1.6. (cf.[3]) Let Φ be a C1 function on a Banach space E. Suppose

there exists a neighborhood U of 0 in E and a constant ρ such that Φ(u) ≥ ρ for

every u in the boundary of U,

Φ(0) < ρ, and Φ(v) < ρ for some v /∈ U.

Set

c = inf
P∈M

max
W∈P

Φ(w) ≥ ρ,

where M denotes the class of paths joining 0 to v.

Conclusion: there is a sequence {ui} in E such that

Φ(ui) → c and Φ′(ui) → 0 in E*.

2 Auxiliary results

Definition 2.1. We say that u ∈ H1
X,0(Ω) is a weak solution of (1.5) and (1.6) if

∫

Ω

m∑
j=1

XjuXjvdx−
∫

Ω

a(x)uv log |u|dx−
∫

Ω

b(x)uvdx−
∫

Ω

g(x)vdx = 0,

for all v ∈ C∞
0 (Ω).
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We define the function Jη, H
1
X,0(Ω) → R, 0 ≤ η < 1 by

Jη(u) =

∫

Ω

m∑
j=1

(Xju)2dx−
∫

Ω

a(x)u2 log(|u|+ η)dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

−
∫

Ω

b(x)u2dx− 2

∫

Ω

g(x)udx.

A simple calculation shows that as 0 < η < 1, Jη ∈ C1(H1
X,0(Ω),R) and it’s

derivative is given by,

〈J ′η(u), v〉 = 2

∫

Ω

m∑
j=1

(Xju)(Xjv)− 2

∫

Ω

a(x)uv log(|u|+ η)dx

+

∫

Ω

a(x)u|u|vη

2(|u|+ η)2
dx− 2

∫

Ω

b(x)uvdx− 2

∫

Ω

g(x)vdx,

for all u, v ∈ H1
X,0(Ω).

We have denoted by 〈·, ·〉 the duality pairing between H1
X,0(Ω) and H−1

X,0(Ω),

and H−1
X,0(Ω) is the dual space of H1

X,0(Ω), i.e. H−1
X,0(Ω) = (H1

X,0(Ω))∗. We use the

notation ⇀ as the weak convergence and the notation → as the strong convergence

in Banach space.

Definition 2.2. If F is a C1 functional on some Banach space E and c is a real

number, we say that a sequence {un} in E is a (PS)c sequence of F if F (un) → c

and F ′(un) → 0 in E∗.

Remark: If {un} is a bounded sequence in H1
X,0(Ω), then there exists a subse-

quence (denote still by {un}) such that un ⇀ u0 in H1
X,0(Ω), un → u0 in L2(Ω).

Lemma 2.1. Let M > 0 and let {vj, j ∈ N} be a sequence in H1
X,0(Ω), satisfying

‖vj‖2
H1

X,0(Ω) ≤ M.

Then {|vj||log|vj||} is uniformly integrable.

Proof. ∫

Ω

|vj||log|vj||2 ≤ 1

2
|Ω|+ 1

2

∫

Ω

v2
j | log |vj||4dx

=
1

2
|Ω|+ 1

2

∫

Ω

v2
j | log

|vj|
‖vj‖L2

+ log ‖vj‖L2 |4dx

≤ 1

2
|Ω|+ 4

∫

Ω

v2
j log4 |vj|

‖vj‖L2

+ 4| log ‖vj‖L2|4‖vj‖2
L2

≤ 1

2
|Ω|+ 4C0(‖Xvj‖2

L2 + ‖vj‖2
L2) + 4| log ‖vj‖L2|4‖vj‖2

L2
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=
1

2
|Ω|+ 4C0(‖Xvj‖2

L2 + ‖vj‖2
L2) +

4

24
| log ‖vj‖2

L2|4‖vj‖2
L2

≤ 1

2
|Ω|+ 4C0M +

4

24
[(4e−1)4 + (log M)4M ]

= M̃,

where C0 > 0 is a positive constant given by Proposition 1.1. We use the fact

t(log t)4 ≤ l log4 l + (4e−1)4 for any 0 ≤ t ≤ l.

Now, we prove that for any ε > 0, there exists δ > 0 such that if A ⊂ Ω, the

measure of A, µ(A) < δ, then
∫

A

|vj||log|vj|| < ε, ∀ j.

But for any ε > 0, there exists t0 > e2 such that

1

log t
< ε, ∀ t ≥ t0.

Take now δ = ε(t0 log t0)
−1, µ(A) < δ and

Aj = A ∩ {|vj| ≤ t0}, Bj = A ∩ {|vj| > t0},

then we have,
∫

Aj

|vj||log|vj|| ≤ t0 log t0µ(Aj) < ε,

∫

Bj

|vj||log|vj|| ≤ ε

∫

Bj

|vj||log|vj||2 < εM̃.

The proof of Lemma 2.1 is complete.

Lemma 2.2. If a(x) ∈ L∞(Ω), ζ ∈ C∞
0 (Ω), ‖un‖H1

X,0(Ω) < M, M is a positive con-

stant independent of n, then there exists a convergent subsequence (denote still by

{un})such that un ⇀ u0 in H1
X,0(Ω) and

lim
n→∞

∫

Ω

a(x)unζ log(|un|+ 1/2n)dx =

∫

Ω

a(x)u0ζ log(|u0|)dx.

Proof. We have
∫

Ω

|a(x)unζ|| log(|un|+ 2−n)|2dx ≤ C

∫

Ω

|un|| log(|un|+ 2−n)|2dx

≤ C

∫

{x: |un|+2−n≤1}
|un|| log(|un|+ 2−n)|2dx

+ C

∫

{x: |un|+2−n≥1}
|un|| log(|un|+ 2−n)|2dx

6



≤ C

∫

{x: |un|+2−n≤1}
|un|| log(|un|)|2dx

+ C

∫

{x: |un|+2−n≥1}
|un|| log(2|un|)|2dx

≤ C

∫

{x: |un|+2−n≤1}
|un|| log(|un|)|2dx

+ C

∫

{x: |un|+2−n≥1}
|un|(log2 2 + | log(|un|)|2)dx

≤ C

∫

Ω

|un|| log(|un|)|2dx + C(

∫

Ω

|un|2dx + |Ω|),

since a(x) ∈ L∞(Ω), ζ ∈ C∞
0 (Ω). By the proof of Lemma 2.1, we know there exists

M̃ , such that
∫

Ω

|a(x)unξ|| log(|un|+ 2−n)|2dx ≤ M̃.

Next, we prove that for any ε > 0, there exists δ > 0 such that if A ⊂ Ω, µ(A) < δ,

then ∫

A

|a(x)unζ|| log(|un|+ 2−n)|dx < ε, ∀ n.

But for any ε > 0, there exists t0 > e2 such that

1

log t
< ε, ∀ t ≥ t0.

Take now δ = ε{a∞ max
x∈Ω

|ζ(x)|[(t0 + 2−1)2 + e−1]}−1, µ(A) < δ, a∞ = ‖a(x)‖L∞(Ω)

and

An = A ∩ {|un| ≤ t0}, Bn = A ∩ {|un| > t0},
then we have,

∫

An

|a(x)unζ|| log(|un|+ 2−n)|dx

≤ a∞ max
x∈Ω

|ζ(x)|
∫

An

|un|| log(|un|+ 2−n)|dx

≤ a∞ max
x∈Ω

|ζ(x)|
∫

An

[(|un|+ 2−n)2 + e−1]

≤ a∞ max
x∈Ω

|ζ(x)|[(|t0|+ 2−1)2 + e−1]µ(An)

< ε,

∫

Bn

|a(x)unζ|| log(|un|+ 2−n)|dx < ε

∫

Bn

|a(x)unζ|| log(|un|+ 2−n)|2dx < εM̃.

Similarly, we can prove that

7



Lemma 2.3. For any fixed 0 < η << 1, a(x) ∈ L∞(Ω), ζ ∈ C∞
0 (Ω), ‖un‖H1

X,0(Ω) <

M,M is a positive constant independent of n, there exists a convergent subsequence

(denote still by {un}) such that un ⇀ u0 in H1
X,0(Ω), and

lim
n→∞

∫

Ω

a(x)unζ log(|un|+ η)dx =

∫

Ω

a(x)u0ζ log(|u0|+ η)dx.

Lemma 2.4. For any fixed 0 < η << 1, a(x) ∈ L∞(Ω), u(x) ∈ H1
X,0(Ω), un ∈ C∞

0 (Ω)

and ‖un − u‖H1
X,0(Ω) → 0, we have

lim
n→∞

∫

Ω

a(x)uun log(|un|+ η)dx =

∫

Ω

a(x)u2 log(|u|+ η)dx.

Lemma 2.5. If a(x) ∈ L∞(Ω), u(x) ∈ H1
X,0(Ω), un ∈ C∞

0 (Ω) and ‖un−u‖H1
X,0(Ω) →

0, we have

lim
n→∞

∫

Ω

a(x)uun log(|un|)dx =

∫

Ω

a(x)u2 log(|u|)dx.

Similar to Lemma 2.1, we have

Lemma 2.6. Let M > 0 and let {vj, j ∈ N} be a sequence in H1
X,0(Ω) satisfying

‖vj‖2
H1

X,0(Ω) ≤ M.

Then there exists a convergent sub-sequence {vjk
} such that vjk

⇀ v0 ∈ H1
X,0(Ω) and

lim
jk→∞

∫

Ω

|vjk
|2|log|vjk

|| =
∫

Ω

|v0|2|log|v0||,

and
∫

Ω

|v0|2|log|v0|| ≤ CM,

where C is a positive constant independent of j.

Proof. Using the fact |t log t| ≤ t2 + e−1, for ∀ t > 0, we have

∫

Ω

|vj|2|log|vj||2 =

∫

Ω

|vj|2|log
|vj|
‖vj‖L2

+ log ‖vj‖L2 |2

≤ 2

∫

Ω

|vj|2|log
|vj|
‖vj‖L2

|2 + 2‖vj‖2
L2(Ω)| log ‖vj‖L2|2

≤ 2C0(‖Xvj‖2
L2 + ‖vj‖2

L2) + 2(M + e−1)2

≤ 2C0M + 4(M2 + e−2)

= M̃,

8



C0 is a positive constant given by Proposition 1.1. The rest of the proof is similar

to the proof of Lemma 2.1.

Next, we can prove that for any ε > 0, there exists δ > 0, such that if A ⊂
Ω, µ(A) < δ, then

∫

A

|vj|2| log |vj||dx < ε, ∀ j.

Actually for any ε > 0, there exists t0 > e2, such that

1

log t
< ε, ∀ t ≥ t0.

Take now δ = ε(t20 log t0 + 1
2
e−1)

−1
, µ(A) < δ and

Aj = A ∩ {|vj| ≤ t0}, Bj = A ∩ {|vj| > t0},

then we have,

∫

Aj

|vj|2| log |vj||dx ≤
∫

Aj

(t20 log t0 +
1

2
e−1) < (t20 log t0 +

1

2
e−1)µ(Aj) < ε,

∫

Bj

|vj|2| log |vj||dx ≤ ε

∫

Bj

|vj|2| log |vj||2dx < εM̃.

Thus we have

Lemma 2.7. For any fixed 0 < η << 1, a(x) ∈ L∞(Ω), un ∈ H1
X,0(Ω) and ‖un‖H1

X,0(Ω) <

M, (M is a positive constant independent of n) there exists a convergent subsequence

(denote still by {un})such that un ⇀ u0 in H1
X,0(Ω) and

lim
n→∞

∫

Ω

a(x)unu0 log(|un|+ η)dx =

∫

Ω

a(x)u2
0 log(|u0|+ η)dx.

Lemma 2.8. If a(x) ∈ L∞(Ω), ‖un‖H1
X,0(Ω) < M, M is a positive constant indepen-

dent of n, then there exists a convergent subsequence (denote still by {un})such that

un ⇀ u0 in H1
X,0(Ω) and

lim
n→∞

∫

Ω

a(x)u2
n log(|un|+ 1/2n)dx =

∫

Ω

a(x)u2
0 log(|u0|)dx.
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3 The existence of solutions

For any fixed 0 < ε < 1, 0 < η << 1 and u ∈ H1
X,0(Ω), by using Young’s

inequality, Proposition 1.1 and Proposition 1.3, we have,

Jη(u) = ‖Xu‖2
L2(Ω) −

∫

Ω

a(x)u2 log(|u|+ η)dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

−
∫

Ω

b(x)u2dx

− 2

∫

Ω

g(x)udx

= ‖Xu‖2
L2(Ω) −

∫

|u|>η

a(x)u2 log(|u|+ η)dx−
∫

|u|≤η

a(x)u2 log(|u|+ η)dx

+

∫

Ω

a(x)u2|u|
2(|u|+ η)

−
∫

Ω

b(x)u2dx− 2

∫

Ω

g(x)udx

≥ ‖Xu‖2
L2(Ω) −

∫

|u|>η

a(x)u2 log 2|u|dx− log 2η

∫

|u|≤η

a(x)u2dx

+

∫

Ω

a(x)u2|u|
2(|u|+ η)

−
∫

Ω

b(x)u2dx− 2

∫

Ω

g(x)udx

≥ ‖Xu‖2
L2(Ω) − log 2

∫

|u|>η

a(x)u2dx−
∫

|u|>η

a(x)u2(log
|u|
‖u‖L2

+ log ‖u‖L2)dx

− a0 log 2η

∫

|u|≤η

u2dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

−
∫

Ω

b(x)u2dx− 2

∫

Ω

g(x)udx

> ‖Xu‖2
L2(Ω) − a∞ log 2

∫

Ω

u2dx− ε

C0

∫

Ω

u2 log2 |u|
‖u‖L2

− C0

4ε

∫

Ω

a2(x)u2

− log ‖u‖L2

∫

|u|>η

a(x)u2 − a0 log 2η

∫

|u|≤η

u2dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

− b∞

∫

Ω

u2dx−
∫

Ω

g2(x)dx−
∫

Ω

u2(x)dx

> ‖Xu‖2
L2(Ω) − a∞ log 2

∫

Ω

u2dx− ε(‖Xu‖2
L2 + ‖u‖2

L2)− C0a
2
∞

4ε

∫

Ω

u2

− log ‖u‖L2

∫

|u|>η

a(x)u2 − a0 log 2η

∫

|u|≤η

u2dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

− b∞

∫

Ω

u2dx−
∫

Ω

g2(x)dx−
∫

Ω

u2(x)dx

> (1− ε)
λ1

1 + λ1

‖u‖2
H1

X,0(Ω) − C1‖u‖2
L2(Ω) − log ‖u‖L2

∫

|u|>η

a(x)u2dx

− a0 log 2η

∫

|u|≤η

u2dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

− ‖g‖2
L2(Ω)
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> (1− ε)
λ1

1 + λ1

‖u‖2
H1

X,0(Ω) − C1‖u‖2
L2(Ω) − log ‖u‖H1

X,0(Ω)

∫

|u|>η

a(x)u2dx

− a0 log 2η

∫

|u|≤η

u2dx +

∫

Ω

a(x)u2|u|
2(|u|+ η)

− ‖g‖2
L2(Ω),

where C1 = a∞ log 2 + ε + C0

4ε
a2
∞ + b∞ + 1, C0 > 0 is a positive constant given by

Proposition 1.1, a∞ = ‖a‖L∞ , b∞ = ‖b‖L∞ .

If we set BR = {u ∈ H1
X,0(Ω), ‖u‖H1

X,0(Ω) < R}, the estimate above shows that,

as η is small enough, there exist R = R(ε) >0, and δ = δ(R) > 0 such that

Jη(u)|∂BR
≥ δ > 0 for all g with ‖g‖L2(Ω) ≤ C. For example, we can take,

R(ε) = exp{ C1

−a0

}, C = C(ε) =
R

2

√
λ1(1− ε)

1 + λ1

,

δ(R) =
λ1(1− ε)

8(1 + λ1)
R2(ε), η <

1

2
exp{ C1

−a0

}.

Define cη = cη(R) = inf
u∈B̄R

Jη(u), then cη ≤ Jη(0) = 0. The set B̄R becomes a

complete metric space with respect to the distance,

dist(u, v) = ‖u− v‖H1
X,0(Ω) for any u, v ∈ B̄R.

On the other hand, Jη is lower semi-continuous and bounded from below on B̄R.

So, by Proposition 1.5 (cf. [5] Theorem 1.1), for any positive integer n there exists

{uη,n}, satisfying

cη ≤ Jη(uη,n) ≤ cη +
1

n
(3.1)

Jη(w) ≥ Jη(uη,n)− 1

n
‖uη,n − w‖H1

X,0(Ω) for all w ∈ B̄R. (3.2)

We claim that 0 < ‖uη,n‖H1
X,0(Ω) < R for any n large enough. Indeed, if

‖uη,n‖H1
X,0(Ω) = R for infinitely many n, we may assume, without loss of generality,

that ‖uη,n‖H1
X,0(Ω) = R for all n ≥ 1. It follows that Jη(uη,n) ≥ δ > 0. Combining

this with (3.1) and letting n →∞, we have 0 ≥ cη ≥ δ > 0 which is a contradiction.

We now prove that J ′η(uη,n) → 0 as n → ∞ in H−1
X,0(Ω). Indeed, for any u ∈

H−1
X,0(Ω) with ‖u‖H1

X,0(Ω) = 1, let wn = uη,n+tu. For a fixed n, we have ‖wn‖H1
X,0(Ω) ≤

‖uη,n‖H1
X,0(Ω) + t < R, where t > 0 is small enough. From (3.2) we obtain

Jη(uη,n + tu) ≥ Jη(uη,n)− t

n
‖u‖H1

X,0(Ω),

that is
Jη(uη,n + tu)− Jη(uη,n)

t
≥ − 1

n
‖u‖H1

X,0(Ω) = − 1

n
.
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Letting t ↘ 0, we deduce that 〈J ′η(uη,n), u〉 ≥ −1/n and a similar argument for

t ↗ 0 produces |〈J ′η(uη,n), u〉| ≤ 1/n for any u ∈ H1
X,0(Ω) with ‖u‖H1

X,0(Ω) = 1. So

‖J ′η(uη,n)‖−1 = sup
u∈H1

X,0
(Ω)

‖u‖
H1

X,0
(Ω)

=1

|〈J ′η(uη,n), u〉| ≤ 1

n
→ 0 as n →∞. (3.3)

Thus, {uη,n} is a (PS)cη sequence in H1
X,0(Ω), i.e.

Jη(uη,n) → cη, and J ′η(uη,n) ⇀ 0 in H−1
X,0(Ω). (3.4)

Since ‖uη,n‖H1
X,0(Ω) ≤ R, {uη,n} is a bounded sequence in H1

X,0(Ω), and passing to

a subsequence (denote still by {uη,n}), we may assume that uη,n ⇀ uη,0 in H1
X,0(Ω)

for some uη,0 ∈ H1
X,0(Ω). So, by Lemma 2.3, we know that J ′η(uη,0) = 0, i.e.

2

∫

Ω

m∑
j=1

(Xjuη,0)(Xjv) − 2

∫

Ω

a(x)uη,0v log(|uη,0|+ η)dx +

∫

Ω

a(x)u2
η,0vη

2(|uη,0|+ η)2
dx

− 2

∫

Ω

b(x)uη,0vdx− 2

∫

Ω

g(x)vdx = 0,

for all v ∈ C∞
0 (Ω).

We know {uη,0} is also bounded in H1
X,0(Ω). For η = ηi = 1

2i ,
1
2i < 1

2
exp{ C1

−a0
},

passing to a subsequence (denote still by {uη,n}), we may assume that uηi,0 ⇀ u0 in

H1
X,0(Ω) as i →∞. Now by Lemma 2.2, we have,

∫

Ω

m∑
j=1

(Xju0)(Xjv)−
∫

Ω

a(x)u0v log |u0|dx−
∫

Ω

b(x)u0vdx−
∫

Ω

g(x)vdx = 0, (3.5)

u0 is a weak solution of (1.5) and (1.6).

We can prove that J0(u0) = c0. Actually, we have

Jη(uη,n) +
1

2
‖J ′η(uη,n)‖−1‖uη,n‖H1

X,0(Ω) ≥ Jη(uη,n)− 1

2
< J ′η(uη,n), uη,n >

=

∫

Ω

a(x)u2
η,n|uη,n|

2(|uη,n|+ η)
−

∫

Ω

a(x)u2
η,n|uη,n|η

4(|uη,n|+ η)2
−

∫

Ω

guη,n.

Letting n →∞, we know

cη ≥
∫

Ω

a(x)u2
η,0|uη,0|

2(|uη,0|+ η)
−

∫

Ω

a(x)u2
η,0|uη,0|η

4(|uη,0|+ η)2
−

∫

Ω

guη,0. (3.6)

By Lemma 2.7, we have

0 = 〈J ′ηi
(uηi,0), uηi,0〉 = 2‖Xuηi,0‖2

L2 − 2

∫

Ω

a(x)u2
ηi,0

log(|uηi,0|+ ηi)dx

+

∫

Ω

a(x)u2
ηi,0
|uηi,0|ηi

2(|uηi,0|+ ηi)2
dx− 2

∫

Ω

b(x)u2
ηi,0

dx− 2

∫

Ω

g(x)uηi,0dx.
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Therefore

Jηi
(uηi,0) =

∫

Ω

a(x)u2
ηi,0
|uηi,0|

2(|uηi,0|+ ηi)
dx−

∫

Ω

a(x)u2
ηi,0
|uηi,0|ηi

4(|uηi,0|+ ηi)2
dx (3.7)

−
∫

Ω

g(x)uηi,0dx.

By (3.5), (3.6) and (3.7), we have:

0 ≥ c0 = inf
u∈B̄R

J0(u) ≥ lim
i→∞

inf
u∈B̄R

Jηi
(u) = lim

i→∞
cηi

≥ 1

2

∫

Ω

a(x)u2
0dx−

∫

Ω

g(x)u0dx = J0(u0).

Since u0 ∈ B̄R, it follows that J0(u0) = c0.

On the other hand, letting ũ ∈ H1
X,0(Ω), ‖ũ‖H1

X,0(Ω) = R, and t > 0, we have

Jη(tũ) < J0(tũ) = t2
[
‖Xũ‖2

L2(Ω) − log t

∫

Ω

a(x)ũ2 −
∫

Ω

a(x)ũ2 log |ũ|

+
1

2

∫

Ω

a(x)ũ2 −
∫

Ω

b(x)ũ2 − 2

∫

Ω

g(x)ũ/t

]

< t2
[
‖Xũ‖2

L2(Ω) − log t

∫

Ω

a(x)ũ2 −
∫

Ω

a(x)ũ2 log |ũ|

+
1

2

∫

Ω

a(x)ũ2 −
∫

Ω

b(x)ũ2 +
1

t
(

∫

Ω

g2(x) +

∫

Ω

ũ2)

]
.

We can find t̄ >> 1, such that Jη(tũ) < J0(tũ) < 0 for all t ≥ t̄. Letting ū = t̄ũ,

then we have ‖ū‖H1
X,0(Ω) > R and Jη(ū) < 0.

We put

% = {γ ∈ C([0, 1], H1
X,0(Ω)) : γ(0) = 0, γ(1) = t̄ũ, }, (3.8)

c̄η = inf
γ∈%

sup
u∈γ

Jη(u). (3.9)

For γ0 = {tt̄ũ : 0 ≤ t ≤ 1}, we have

sup
u∈γ0

Jη(u) ≤ sup
u∈γ0

J0(u) = sup
0≤t≤1

[
(tt̄)2‖Xũ‖2

L2(Ω) − (tt̄)2 log(tt̄)

∫

Ω

a(x)ũ2

− (tt̄)2

∫

Ω

a(x)ũ2 log |ũ|+ (tt̄)2

2

∫

Ω

a(x)ũ2 − (tt̄)2

∫

Ω

b(x)ũ2 − 2(tt̄)

∫

Ω

g(x)ũ
]

≤ t̄2‖Xũ‖2
L2(Ω) +

1

2e

∫

Ω

a(x)ũ2 + t̄2
∫

Ω

a(x)ũ2| log |ũ||+ t̄2

2

∫

Ω

a(x)ũ2

+ t̄

∫

Ω

g2 + t̄

∫

Ω

ũ2.
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So there exists a positive constant B (which is independent of η), satisfying

c̄η ≤ B. (3.10)

It follows from the Proposition 1.6 (cf. [3] Theorem 2.2) that there is a (PS)cη

sequence {uη,n} of Jη(u) such that

Jη(uη,n) = c̄η + o(1) and J ′η(uη,n) → 0 in H−1
X,0(Ω).

We have

Jη(u)− 1

2
< J ′η(u), u >=

∫

Ω

a(x)u2|u|
2(|u|+ η)

dx−
∫

Ω

a(x)u2|u|η
4(|u|+ η)2

dx−
∫

Ω

g(x)udx

>

∫

Ω

a(x)u2|u|
4(|u|+ η)

dx− a0

16

∫

Ω

u2dx− 4

a0

∫

Ω

g2dx

=

∫

|u|>η

a(x)u2|u|
4(|u|+ η)

dx +

∫

|u|≤η

a(x)u2|u|
4(|u|+ η)

dx− a0

16

∫

|u|>η

u2dx− a0

16

∫

|u|≤η

u2dx

− 4

a0

∫

Ω

g2dx

>
1

4

∫

|u|>η

a(x)u2|u|
2|u| dx− a0

16

∫

|u|>η

u2dx− a0

16

∫

|u|≤η

u2dx− 4

a0

∫

Ω

g2dx

>
a0

16

∫

|u|>η

u2dx− a0η
2|Ω|

16
− 4

a0

‖g‖2
L2 .

So, we have

c̄η + o(1) +
1

2
‖J ′η(uη,n)‖−1‖uη,n‖H1

X,0(Ω) +
a0|Ω|
16

+
4

a0

‖g‖2
L2

≥ Jη(uη,n)− 1

2
〈J ′η(uη,n), uη,n〉+

a0|Ω|
16

+
4

a0

‖g‖2
L2

>
a0

16

∫

|u|>η

u2
η,ndx.

By (3.10), we have

∫

Ω

|uη,n|2dx =

∫

|u|>η

|uη,n|2dx +

∫

u≤η

|uη,n|2dx

<
16

a0

[
c̄η + o(1) +

1

2
‖J ′η(uη,n)‖−1‖uη,n‖H1

X,0(Ω) + +
a0|Ω|
16

+
4

a0

‖g‖2
L2

]
+ η2|Ω|

<
16

a0

[
B + o(1) +

1

2
‖J ′η(uη,n)‖−1‖uη,n‖H1

X,0(Ω) +
a0|Ω|
16

+
4

a0

‖g‖2
L2

]
+ |Ω|

< C + C‖J ′η(uη,n)‖−1‖uη,n‖H1
X,0(Ω) + o(1), (3.11)
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where C is a positive constant which is independent of η and n, and dependent of

|Ω|, ‖g‖2
L2 , a0, and B. Similar to the estimate of Jη(u) at the beginning of this

section, we have (if taking ε = 1
2
)

B + o(1) > c̄η + o(1) = Jη(uη,n) ≥ λ1

2(1 + λ1)
‖uη,n‖2

H1
X,0
− C1‖uη,n‖2

L2

− a∞‖uη,n‖2
L2| log ‖uη,n‖L2| − ‖g‖2

L2(Ω),

where C1 = a∞ log 2 + C0

2
a2
∞ + b∞ + 3

2
, to be independent of η and n, and C0 and

λ1 are given by Proposition 1.1 and Proposition 1.3 respectively.

Furthermore, using the fact |t log t| ≤ t2 + e−1 for t ≥ 0, we have

λ1

2(1 + λ1)
‖uη,n‖2

H1
X,0

≤ B + o(1) + C1‖uη,n‖2
L2 + a∞|‖uη,n‖2

L2| log ‖uη,n‖L2|+ ‖g‖2
L2(Ω)

≤ B + o(1) + C1‖uη,n‖2
L2 +

1

2
a∞(‖uη,n‖4

L2|+ e−1) + ‖g‖2
L2(Ω)

< C + o(1) + C‖uη,n‖2
L2 + C‖uη,n‖4

L2 ,

where C is independent of η and n.

By (3.11), we have

‖uη,n‖2
H1

X,0
≤ C + o(1) + C‖J ′η(uη,n)‖−1‖uη,n‖H1

X,0(Ω) + C‖J ′η(uη,n)‖2
−1‖uη,n‖2

H1
X,0(Ω).

Since J ′η(uη,n) → 0 in H−1
X,0(Ω), thus there exists N0 > 0 such that ‖uη,n‖2

H1
X,0
≤

M , if n > N0, where M is a constant, independent of η and n. That means

{uη, N0+j}j∈N is a bounded sequence in H1
X,0(Ω). Hence there exists a subsequence

(we still denote by {uη,n}), such that uη,n ⇀ uη,0 in H1
X,0(Ω) for some uη,0 ∈ H1

X,0(Ω).

By Lemma 2.3, we have J ′η(uη,0) = 0, that is

2

∫

Ω

m∑
j=1

(Xjuη,0)(Xjv)− 2

∫

Ω

a(x)uη,0v log(|uη,0|+ η)dx (3.12)

+

∫

Ω

a(x)uη,0|uη,0|vη

2(uη,0 + η)2
dx− 2

∫

Ω

b(x)uη,0vdx− 2

∫

Ω

g(x)vdx = 0,

for any v ∈ C∞
0 (Ω).

For η = ηi = 1
2i ,

1
2i < 1

2
exp{ C1

−a0
}, we know {uηi,0} is also bounded in H1

X,0(Ω).

Passing to a subsequence, we may assume that uηi,0 ⇀ u1 in H1
X,0(Ω) as i → ∞.

Now by Lemma 2.2, we have,
∫

Ω

m∑
j=1

(Xju1)(Xjv)−
∫

Ω

a(x)u1v log |u1|dx−
∫

Ω

b(x)u1vdx (3.13)

−
∫

Ω

g(x)vdx = 0
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for all v ∈ C∞
0 (Ω). That means u1 is a weak solution of problem (1.5) and (1.6).

Next, we prove uηi,0 → u1 in H1
X,0(Ω). In fact, C∞

0 (Ω) is dense in H1
X,0(Ω), thus

from Lemma 2.4 and Lemma 2.5, we know that (3.12) and (3.13) are also true for

any v ∈ H1
X,0(Ω).

Especially, we have

2

∫

Ω

m∑
j=1

(Xjuηi,0)
2 − 2

∫

Ω

a(x)u2
ηi,0

log(|uηi,0|+ ηi)dx (3.14)

+

∫

Ω

a(x)u2
ηi,0
|uηi,0|ηi

2(|uηi,0|+ ηi)2
dx− 2

∫

Ω

b(x)u2
ηi,0

dx− 2

∫

Ω

g(x)uηi,0dx = 0,

∫

Ω

m∑
j=1

(Xju1)
2 −

∫

Ω

a(x)u2
1 log |u1|dx−

∫

Ω

b(x)u2
1dx−

∫

Ω

g(x)u1dx = 0. (3.15)

Letting i →∞ in (3.14), and from Lemma 2.8 and (3.15), we have

‖Xjuηi,0‖L2(Ω) → ‖Xju1‖L2(Ω), i →∞,

which means uηi,0 → u1 in H1
X,0(Ω).

Now by Proposition 1.6 ([3]), we have

J0(u1) = lim
i→∞

Jηi
(uηi,0) = c̄0 > 0 ≥ J0(u0),

that means the problem (1.5) and (1.6) has at least two solutions in H1
X,0(Ω).

If we replace, at the beginning, BR by B+
R = {u ∈ H1

X,0(Ω), ‖u‖H1
X,0(Ω) < R, u ≥

0}, thus it is similar to the proof of existence of the solution u0, we can deduce that

the problem (1.5) and (1.6) has a non-negative solution in H1
X,0(Ω).

4 Boundedness and regularity of weak solutions

Similar to the proof of [10], we can deduce the boundedness and regularity of

weak solutions.

By using the interpolation inequality, the condition H-3) and the Logarithmic

Sobolev inequality (1.2) give that, for any N ≥ 1, there exists CN such that,

∫

Ω

v2 log2(
|v|
‖v‖L2

) ≤ 1

N
‖Xv‖2

L2 + CN‖v‖2
L2 , (4.1)

for all v ∈ H1
X,0(Ω).

16



In order to prove that the solution u ∈ L∞(Ω), it suffices to show that, under

the assumptions of Theorem 1.4, there exists A > 0 such that the estimate

‖u‖Lp ≤ A (4.2)

holds for any p ≥ 2. In fact, for ε > 0, Ωε = {x ∈ Ω; |u(x)| ≥ A + ε}, it follows from

(4.2) that |Ωε| ≤ ( A
A+ε

)p → 0 (as p →∞) and hence we have ‖u‖L∞ ≤ A.

We prove the estimate (4.2) by the following three steps. First, for any p ≥ 1,

m ∈ N, we shall use u2p−1 or u2p−1 log2m(up) as test function for the equation (1.5).

Since we do not know if u2p−1 log2m(up) ∈ H1
X,0(Ω), so we replace the function u by

u(k), where k > 1 and u(k)(x) = u(x) if x ∈ {x ∈ Ω; |u(x)| < k} and u(k)(x) = k if

x ∈ {x ∈ Ω; |u(x)| ≥ k}. Then it is easy to check (see [6] and [7, Theorem 7 and

Theorem 8]) that u2p−1
(k) log2m(up

(k)) ∈ H1
X,0(Ω) for all p > 1, m ∈ N. In the case of

p = 1, we use u(logm u)2
(k) ∈ H1

X,0(Ω) as the test function. To simplify the notation,

we shall drop the subscript and use u2p−1 log2m(up) as the test function. We have

Proposition 4.1. Under the hypotheses H-1), H-2), H-3), H-4) of Theorem 1.4,

and g(x) ∈ L∞(Ω), u ∈ H1
X,0(Ω), u ≥ 0, ‖u‖L2(Ω) 6= 0 be a weak solution of the

equation (1.5). Suppose that for some p0 ≥ 1, there exists A0, A1 such that

0 < A1 ≤ ‖u‖L2p0 ≤ A0.

Then
∫

Ω

|X(ū)p0|2 +

∫

Ω

(ū)2p0 log2(ūp0)

≤ 2C2 + a2
∞ + 2p0[b∞ + a∞| log A0|+ (1 + |Ω|)g∞/A1], (4.3)

where a∞ = ‖a‖L∞ , b∞ = ‖b‖L∞ , g∞ = ‖g‖L∞ and the constant C2 is given by (4.1)

and ū = u/‖u‖L2p0 .

Proof. We have ū ∈ H1
X,0(Ω), ‖ū‖L2p0 = 1, and ū is a weak solution of equation

−4X ū = a(x)ū log ū + (a(x) log ‖u‖L2p0 + b(x))ū +
g(x)

‖u‖L2p0

. (4.4)

Take ū2p0−1 as the test function, we have

2p0 − 1

p2
0

∫

Ω

|Xūp0|2 =
1

p0

∫

Ω

a(x)ū2p0 log ūp0

+

∫

Ω

(a(x) log ‖u‖L2p0 + b(x))ū2p0 +
1

‖u‖L2p0

∫

Ω

g(x)ū2p0−1,
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where

1

‖u‖L2p0

∫

Ω

g(x)ū2p0−1 ≤ g∞
A1

[

∫

ū>1

|ū2p0−1|+
∫

ū≤1

|ū2p0−1|]

≤ g∞
A1

(

∫

ū>1

ū2p0 + |Ω|) ≤ g∞
A1

(

∫

Ω

ū2p0 + |Ω|) =
(1 + |Ω|)g∞

A1

.

Furthermore
∫

Ω

|Xūp0|2 ≤ 1

2

∫

Ω

ū2p0 log2(ūp0)+
1

2
a2
∞+p0a∞| log A0|+p0b∞+

(1 + |Ω|)p0g∞
A1

. (4.5)

On the other hand, the Logarithmic Sobolev inequality (4.1) gives

∫

Ω

(up0)2 log2(
|up0 |
‖up0‖L2

) ≤ 1

2
‖X(up0)‖2

L2 + C2‖up0‖2
L2 .

Note that ‖up0‖L2 = ‖u‖p0

L2p0
and ū = u/‖u‖L2p0 , we have

∫

Ω

ū2p0 log2(ūp0) ≤ 1

2
‖X(ūp0)‖2

L2 + C2. (4.6)

Adding (4.5) and (4.6), we have the desired estimate (4.3).

Proposition 4.2. We have for any m ∈ N,

∫

Ω

|X(ūp0)|2 log2m−2(ūp0) +

∫

Ω

ū2p0 log2m(ūp0) ≤ M2m
1 P (m, p0)(m!)2 (4.7)

where P (m, p0) = pm
0 if m ≤ √

p0, P (m, p0) = p
√

p0

0 if m >
√

p0, and

M1 ≥ (2|Ω|+ 4C2 + 2C4 + 10 + 6a2
∞ + 8b∞ + 8a∞| log A0|+ 4g∞(1 + |Ω|)/A1)

1
2 .

Proof. From the estimate 0 < A1 ≤ ‖u‖L2p0 ≤ A0, we have the estimate (4.7)

for m = 1. By induction, we suppose that (4.7) is also hold for m ∈ N, then we need

to prove that (4.7) is hold for m + 1. Here we simplify the notation again, i.e. ū

and p0 would be replaced by u and p in the equation (4.4). We take u2p−1 log2m(up)

as the test function in (4.4) , then

2p− 1

p2

∫

Ω

|Xup|2 log2m(up) +
2m

p

∫

Ω

|Xup|2 log2m−1(up)

=
1

p

∫

Ω

a(x)u2p log2m+1(up) +

∫

Ω

(a(x) log ‖u‖L2p + b(x))u2p log2m(up)

+

∫

Ω

g(x)

‖u‖L2p

u2p−1 log2m(up).
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That is ∫

Ω

|Xup|2 log2m(up) ≤ 1

2

∫

Ω

|Xup|2 log2m(up) + 2m2

∫

Ω

|Xup|2 log2m−2(up)

+
1

4

∫

Ω

u2p log2m+2(up) + (a2
∞ + pa∞ log A0 + pb∞)

∫

Ω

u2p log2m(up)

+
pg∞
A1

∫

Ω

u2p−1 log2m(up).

Using the fact ll ≤ ell!, we have∫

Ω

u2p−1 log2m(up) =

∫

|u|<1

u2p−1 log2m(up) +

∫

|u|≥1

u2p−1 log2m(up)

≤ 22m(m!)2|Ω|+
∫

Ω

u2p log2m(up) < (1 + |Ω|)M2m
1 P (m, p)(m!)2,

so that ∫

Ω

|Xup|2 log2m(up) ≤ 1

2

∫

Ω

(up)2 log2m+2(up) + [4m2 + 2a2
∞ +

2(pa∞| log A0|+ pb∞ + pg∞(1 + |Ω|)/A1)]M
2m
1 P (m, p)(m!)2. (4.8)

We study now the term
∫

Ω
u2p log2m+2(up). Set Ω = Ω1

⋃
Ω+

2

⋃
Ω−

2 with Ω1 =

{x ∈ Ω; u(x) ≤ 1} and

Ω+
2 = {x ∈ Ω; u(x) > 1, | logm(up)| ≤ ‖up logm(up)‖L2},

Ω−
2 = {x ∈ Ω; u(x) > 1, | logm(up)| > ‖up logm(up)‖L2}.

Then ∫

Ω1

u2p log2m+2(up) ≤ |Ω|((m + 1)!)2.

For the second part, (4.3) gives∫

Ω+
2

u2p log2m+2(up) ≤ ‖up logm(up)‖2
L2

∫

Ω

u2p log2(up)

≤ (2C2 + a2
∞ + 2pb∞ + 2pa∞| log A0|+ (1 + |Ω|)g∞/A1)M

2m
1 P (m, p)(m!)2.

Next, for the third part, we use the Logarithmic Sobolev inequality (4.1) for N = 4,
∫

Ω−2

u2p log2m+2(up) ≤
∫

Ω−2

(up logm up)2 log2(
up logm(up)

‖up logm(up)‖L2

)

≤ 1

4
‖X(up logm up)‖2

L2 + C4‖up logm up‖2
L2

≤ 1

2

∫

Ω

|X(up)|2 log2m(up) + m2

∫

Ω

|X(up)|2 log2m−2(up)

+ C4

∫

Ω

u2p log2m(up)

≤ 1

2

∫

Ω

|X(up)|2 log2m(up) + (C4 + m2)M2m
1 P (m, p)(m!)2.
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Sum up the three parts above, we get
∫

Ω

u2p log2m+2(up) ≤ 1

2

∫

Ω

|X(up)|2 log2m(up) + |Ω|((m + 1)!)2

+[2C2 + C4 + m2 + a2
∞ + 2pb∞ + 2pa∞| log A0|

+(1 + |Ω|)g∞/A1]M
2m
1 P (m, p)(m!)2.

which implies by (4.8),
∫

Ω

u2p log2m+2(up) +

∫

Ω

|X(up)|2 log2m(up) ≤ [2Ω + 4C2 + 2C4 + 10 (4.9)

+6a2
∞ + 8b∞ + 8a∞| log A0|+ 2g∞(1 + |Ω|)/A1]M

2m
1 P (m + 1, p)((m + 1)!)2.

Proposition 4.2 is proved.

Proposition 4.3. Under the hypotheses of Proposition 4.1, if for some p0 ≥ 1 and

A0 ≥ e12 we have

‖u‖L2p0 ≤ A0,

then for

M1 ≥ [2|Ω|+ 4C2 + 2C4 + 10 + 6a2
∞ + 8b∞ + 8a∞ log A0 + 2g∞(1 + |Ω|)/A1]

1
2 ,

and δ = 1/2M1, we have

∫

Ω

u2p0(1+δ) ≤ A
2p0(1+δ)(1+( 1

p0(1+δ)
)
1
3 )

0 (4.10)

Proof. For any δ > 0, the estimate (4.7) gives that

(∫

Ω

|ūp0(1+δ)|2dx

) 1
2

=

(∫

Ω

|ūp0ūδp0|2dx

) 1
2

=

(∫

Ω

|ūp0eδ log(ūp0 )|2dx

) 1
2

=

(∫

Ω

|ūp0

∞∑
m=0

(δ log(ūp0))m

m!
|2dx

) 1
2

≤
∞∑

m=0

(∫

Ω

ū2p0
(δ log(ūp0))2m

(m!)2
dx

) 1
2

≤
∞∑

m=0

δm

m!

(∫

Ω

ū2p0 log2m(ūp0)dx

) 1
2

≤
∞∑

m=0

δmMm
1 P (m, p0) ≤ p

√
p0

0

∞∑
m=0

(δM1)
m.

For δ = 1/2M1, we have finally
∫

Ω

u2p0(1+δ)dx ≤ 4p
2
√

p0

0 A
2p0(1+δ)
0 .

Since for any p0 > 1,

4p
2
√

p0

0 = 4e2
√

p0 log p0 ≤ (e12)2p
2
3
0 ,
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which implies the estimate (4.10) if A0 ≥ e12.

We set now for k ∈ N,

pk = p0(1 + δ)k, Ak = A
1+p

−1/3
0

Pk
j=1( 1

1+δ
)j/3

0 ,

then Proposition 4.3 implies that
∫

Ω

u2p0(1+δ)k+1

=

∫

Ω

u2pk(1+δ) ≤ A
2pk(1+δ)(1+( 1

pk(1+δ)
)1/3)

k

≤ A
2p0(1+δ)k+1(1+p

−1/3
0

Pk+1
j=1 ( 1

1+δ
)j/3)

0 ,

where δ = 1
2
M1 and

M1 ≥ [2|Ω|+4C2+2C4+10+6a2
∞+8b∞+8a∞| log Ak|+2g∞(1 + |Ω|)/A1]

1/2. (4.11)

We have now for δ = 1
2
M1 ≤ 1/4,

log Ak

log A0

= 1 + p
−1/3
0

k∑
j=1

(
1

1 + δ
)j/3 ≤ 1 + p

−1/3
0

∞∑
j=1

(
1

1 + δ
)j/3

= 1 + p
−1/3
0

( 1
1+δ

)1/3

1− ( 1
1+δ

)1/3
≤ 1 + 4p

−1/3
0 M1 ≤ 5M1,

where M1 is independent of k, thus we have proved for any k ∈ N,
∫

Ω

u2p0(1+δ)k ≤ (A5M1
0 )2p0(1+δ)k

.

If we choose A0 = e12, then the estimate (4.2) holds for Ā = e60M1 .

The regularity of the solution for the problem (1.5) and (1.6) can be deduced by

following result:

Proposition 4.4. Suppose a(x), b(x), g(x) ∈ C∞(Ω), and there exist a0, b0, g0 >

0, such that a(x) ≥ a0, b(x) ≥ b0, g(x) ≥ g0 in Ω. Let u ∈ H1
X,0(Ω), u ≥ 0, ‖u‖L2 6=

0 be a weak solution of the problem (1.5) and (1.6), and ∂Ω is non characteristic.

Then u ∈ C∞(Ω\Γ)
⋂

C0(Ω\Γ), and u(x) > 0 for all x ∈ Ω\Γ.

Proof. Suppose x0 ∈ Ω\Γ, then there exists a neighborhood V0 ⊂ Ω\Γ of x0, for

ϕ ∈ C∞
0 (V0) we shall prove that v = ϕu ∈ C∞(V0). It follows from equation (1.5)

that,

−∆Xv = a(x)ϕu log u + b(x)ϕu + g(x)ϕ +
m∑

j=1

ϕjXju + ϕ0u = f0 +
m∑

j=1

Xjfj,
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with ϕj ∈ C∞(V0), fj ∈ L∞(V0), j = 0, ......, m. Since the system of vector fields X

satisfies the finitely type Hörmander’s condition on V0, the regularity result of [8]

(see also [7, 9]) implies that u ∈ Cε(V0) for some ε > 0. If we have u(x) ≥ α > 0 for

x ∈ V0, then by t log t ∈ C∞(t ≥ α), we can deduce u log u ∈ Cε(V0), thus we can

prove by recurrence that u ∈ C∞(V0). For x0 ∈ ∂Ω\Γ, we have also u ∈ Cε(V0

⋂
Ω̄),

but we know only u log u ∈ C0(V0

⋂
Ω̄), so we can not obtain the C∞ regularity of

u near to the boundary ∂Ω. Therefore the Proposition 4.4 will be deduced by the

following Lemma directly.

Lemma 4.5. Suppose a(x), b(x), g(x) satisfy the conditions of Proposition 4.4, and

u ∈ C0(Ω1), u ≥ 0 is a non trivial weak solution of the equation (1.5) on an open

set Ω1 ⊂ Ω, then u(x) > 0 for all x ∈ Ω1.

Proof. Suppose that u(x0) = 0 for some x0 ∈ Ω1, then for any ε > 0, there

exists a small neighborhood U0 ⊂ Ω1 of x0 such that 0 ≤ u(x) ≤ ε on Ū0. Since g(x)

is continuous on Ū0, there exists α > 0 such that g(x) ≥ α on Ū0.

Choosing ε small enough such that in U0, we have

a(x)u log u + b(x)u < 0,

and

a(x)u log u + b(x)u + g(x) ≥ 0.

That is ∆Xu ≤ 0 in U0. But x0 is a minimum point of u, the maximum principle of

Bony [10] implies that u ≡ 0 in U0. That means u is a trivial solution by continuous

of u in Ω1.
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