The existence and regularity of multiple solutions
for a class of infinitely degenerate elliptic equations *

Hua Chen T Ke Lit

Abstract

Let X = (X1, ...... , Xm) be an infinitely degenerate system of vector fields,
we study the existence and regularity of multiple solutions of Dirichelt prob-
lem for a class of semi-linear infinitely degenerate elliptic operators associated
with the sum of square operator Ax = Z;"Zl X;Xj.

Keywords: degenerate elliptic equations, Logarithmic Sobolev inequality.

1 Introduction

In this paper, we study the existence and regularity of solutions for a class
of semi-linear infinitely degenerate elliptic operators. Consider a system of vector
fields X = (X1, ...... , X ) defined on an open domain Q CRY We suppose that this

system satisfies the following Logarithmic regularity estimates,

[(log A)*ul|720) < C {Z 1|72 () + HUHim)} Y u e C(Q), (1.1)
j=1

where A = (e? 4 |D|?)'/2 = (D). The results of [4, 6, 7, 8, 9] gave some sufficient
conditions for the estimates (1.1). We remark that if s > 1, the estimate (1.1) implies
the hypoellipticity of the infinitely degenerate elliptic operator Ax = Z;nzl XX,

where X7 is the formal adjoint of Xj.

Definition 1.1. If ' is a smooth surfaces of ﬁ, we say that I' is non characteristic
for the system of vector fields X, if for any point zy € I' there exists at least one

vector field in X = (X7, ......X,;,) which is transversal to I" at x.
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Definition 1.2. Let now I' = (J I'; be the union of a family of smooth surface in
jeJ
). We say that I' is non characteristic for X, if for any point xy € I', there exists at

least one vector field of X3, ..., X, which is transversal to I'; at x¢ for all j in which
xo €T,

We say that the vector fields X = (X, ...... , Xn) satisfies the finite type of
Hormander’s condition on an open domain w C Q in RY if the rank of the Lie algebra
generated by the vector fields X = (Xq, ...... , X;n) and its finite times commutators
is equal to the space dimension d at every point in w.

A typical example is the vector fields in R?, i.e. X, = 0., Xo = 0p,, X3 =
exp(—|z1|7Y*)0,, with s > 0. The operator Ay in this example is degenerate
infinitely on I'y = {z; = 0}, and the vector fields X = (X, Xy, X3) satisfies the
finite type of Hormander’s condition in R3\ I'y.

The example with infinitely degeneracy on a union of surfaces I' = |J I'; is
jeJ

the system in R? such that X; = 0,,, Xy = exp(—(z? Sin2(x—7“1))571)8x2, we have

Iy ={x = 1} for j € Z\{0},I'y = {x; = 0}, then X; is transverse to all I';, j € Z,

and X, vanishes infinitely on I' = (J I';. The vector fields X = (X, X,) satisfies
JEZ
the finite type of Hormander’s condition in R*\I".
Related to the systems of vector fields X = (Xi,......X,,), Morimoto and Xu

introduce the following function space (cf.[10]),
HL(Q) = {u € L2(Q), Xju € L¥Q),j = 1, m}

which is a Hilbert space with norm [[ull?, = ||ul7. + [[Xull7., and || Xu|7. =
X

Zl | X;ul|2,. Take Q CC Q2 as a bounded open subset and suppose that 99 is C>
‘7:
and non characteristic for the system of vector fields X, Morimoto and Xu define

the space Hy ,(Q) as a closure of Cg°(2) in H (), which is also a Hilbert space.
If the system of vector fields X satisfies the estimates (1.1), we have the following

Logarithmic Sobolev inequality;

Proposition 1.1. (cf.[10]) Suppose that the system of vector fields X = (X1, ......, Xi,)
verifies the estimates (1.1) for some s > 1/2. Then there exists Cy > 0 such that

o i
/ jof? < Cod SO 0oy + 1ol 0 (12)
j=1

222
for allv € Hy ,(€).
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Using the Logarithmic Sobolev inequality above, Morimoto and Xu [10] have

studied the following semi-linear Dirichlet problems,
Axu = aulog |u| + bu, u|spq = 0, (1.3)
where constant coefficients a,b € R. They have obtained,

Proposition 1.2. (¢f.[10]) We suppose that the system of vector fields X = (X1, ......X)
satisfies the following conditions:
f[-]) 00 is C* and non characteristic for the system of vector fields X;
f]-?) the system of vector fields X satisfies the finite type of Hormander’s condition
on Q except an union of smooth surfaces I' which are non characteristic for X;
f[—é’) the system of vector fields X satisfies the estimate (1.1) for s > 3/2.
Suppose a # 0 in (1.3), then the semi-linear Dirichlet problem (1.3) posses at
least one non trivial weak solution u € H}(,O(Q) N L>*(2). Moreover, if a > 0, we

have u € C*(Q\T)NCOQ\T) and u > 0 for all z € Q\T.
Next, it will be useful for us to introduce following Poincaré’s inequality,

Proposition 1.3. (¢f.[10])) Under the hypotheses H-1), H-2) and H-3), the first
eigenvalue Ay of the operator N\ x is strictly positive, which is equivalent to following

Poincaré's inequality
2 1 2 1
lellzz < )\_IHXQOHL% Ve HX,O<Q)' (1.4)
In this paper, we shall study the following semi-linear Dirichlet problem

—Axu = a(x)uloglu|l + b(x)u+ g(z), inQ, (1.5)
U|8Q = 0. (16)

Our main result is as follows.

Theorem 1.4. Suppose that the system of vector fields X = (X1, ...... X)) satisfies
the following conditions:

H-1) 02 is C*° and non characteristic for the system of vector fields X;

H-2) the system of vector fields X satisfies the finite type of Hormander’s condition
on Q except an union of smooth surfaces I' which are non characteristic for X;
H-3) the system of vector fields X satisfies the estimate (1.1) for s > 5/2;

H-4) a(x),b(x) € L>®(Q), and there exist ag, by € R, such that a(z) > ag, and b(x) >
by, a.e. in 2. Then



1) there exists C' > 0 such that the problem (1.5) and (1.6) has at least two solutions
in H)l(yo(Q), for any g # 0 satisfying ||g|| 12y < C;

2) the problem (1.5) and (1.6) has at least one non-negative solution u € Hy o(9);
furthermore, if g(x) € L>(2), then the non-negative solution u(z) € L>(§2).

3) If a(x),b(x), g(x) € C=(R2), and there exists go > 0 such that g(x) > go, then we
have u € C®(Q\I') N C°(Q\I') and u(x) > 0 for all z € Q\I.

The proof of Theorem 1.4 relies essentially on the Ekeland Variational Principle
(cf.[5]) and on the Mountain Pass Theorem without the Palais-Smale condition,

established by Brezis-Nirenberg [3], namely

Proposition 1.5. (¢f.[5]) Let V be a complete metric space, and F : V — RU{+o0}
a lower semicontinuous function, Z 400, bounded from below. For any € > 0, there

15 some point v € V with

Fv) < ir‘}fF—i-e. (1.7)

VweV, Flw) > F(v)—ed(v,w). (1.8)

Proposition 1.6. (cf.[3]) Let ® be a C' function on a Banach space E. Suppose
there exists a neighborhood U of 0 in E and a constant p such that ®(u) > p for

every u in the boundary of U,
®(0) < p, and P(v) <p for some v ¢ U.
Set

= inf O(w) >
e

where M denotes the class of paths joining 0 to v.

Conclusion: there is a sequence {u;} in E such that

®(u;) — ¢ and ' (u;)) — 0 in E*

2 Auxiliary results

Definition 2.1. We say that u € Hy () is a weak solution of (1.5) and (1.6) if

/ZXqujvd:E—/a(x)uvlog|u|dx—/
Q= Q

b(x)uvdr — / g(x)vdx =0,
Q Q

for all v € C§°(Q).



We define the function J;, Hx 4(©2) = R, 0 <75 < 1 by
m 2
X~u2dm—/a$u2log ul +n dqu/M
/Z( jwide = [ ale)utogul + e + [ L

- /Q b(w)uPdi — 2 /Q o()uds.

A simple calculation shows that as 0 < < 1, J, € C'(Hy((Q),R) and it’s

derivative is given by,

(J(u)v) = 2 / Z(xjm(xjm—z /Q a(z)uv log(|u| + n)dz

N / %d 9 /Q b(x)uvde — 2 /Q g(z)vds,

for all u,v € Hy ().

We have denoted by (-,-) the duality pairing between Hy () and H;(}O(Q),
and Hy () is the dual space of Hy ((Q), i.e. Hy () = (H)(€2))*. We use the
notation — as the weak convergence and the notation — as the strong convergence

in Banach space.

Definition 2.2. If F is a C' functional on some Banach space E and c is a real
number, we say that a sequence {u,} in E is a (PS). sequence of F'if F(u,) — ¢
and F'(u,) — 0 in E*.

Remark: If {u,} is a bounded sequence in H (€2), then there exists a subse-

quence (denote still by {u,}) such that u, — ug in H ((Q), u, — ug in L*(Q).
Lemma 2.1. Let M >0 and let {v;,j € N} be a sequence in Hy (S2), satisfying
2
||Uj||H}1(70(Q) < M.
Then {|v;||log|v;||} is uniformly integrable.
Proof.

1 1
[ telhogt < 51921+ 5 [ o1oglus|da
Q 2 Q

1 1
- 5|Q|—|——/212|log H‘ ’j’| +10g||v]\|L2| dx
Uj

1 |
3162+ [ o210g" LB ajtog o sl o2
0% oy llz

1
5101+ 4Co(| Xv;72 + [lv;172) + 4l Tog [[vj 2 [l vs 72

IN

IA



1 4
= 19+ 4Co(1Xv; 1172 + llosllzz) + 1 og s llze*loslIZ2

1 4
< SlOI+4CM + S [(4e7) + (log M) M]

= M

)

where Cy > 0 is a positive constant given by Proposition 1.1. We use the fact
t(logt)* < llog*l+ (4e71)* for any 0 < ¢ <.

Now, we prove that for any € > 0, there exists 6 > 0 such that if A C 2, the
measure of A, p(A) < 6, then

[ lelogluli <€ v
A
But for any e > 0, there exists tq > €2 such that

1
— <€ YV t>t.
logt

Take now § = €(tglogty) ™!, u(A) < 6 and
Aj = An{ly| <to}, Bj =AN{|v] > to},

then we have,

/ oy Loglus|| < olog tou(4;) < e,

A]
[ ltoglell < [ slhoglu | < et
B; Bj
The proof of Lemma 2.1 is complete.

Lemma 2.2. If a(z) € L*(Q),¢ € C°(Q), [[unlmr @ < M, M is a positive con-
stant independent of n, then there exists a convergent subsequence (denote still by
{un})such that u, — ug in Hy ((Q) and

lim [ a(z)u,Clog(|u,| +1/2")dx = / a(x)upC log(|ug|)dx.
Q

n—oo QO

Proof. We have
[ ta@yunglog(funl + 2Pz < € [ Ju|log(funl + 27"
Q Q
<cf 10 (Jun| + 27 P
{z: |un|+2—7<1}

+ C |, || log(|un| +27™) *da
{z: |un|+2—">1}



IA

C [n| | log(|un])[*de

{z: |un|+2—7<1}

e / o] log (2l 1) P
{z: |up|+2—7>1}

c / ] o (1)) Pz
{z: |un|+2—7<1}

+ C |un|(l0g? 2 + [og(funl)|*)da
{z: |un|+2—">1}

< C’/|un||log(|un|)|2d.r+0(/ |un]2dx+\Q\),
Q Q

since a(x) € L®(),¢ € C5°(R2). By the proof of Lemma 2.1, we know there exists
M, such that

IA

/ la(2)unt||log(un] + 27 Pdz < I
Q

Next, we prove that for any € > 0, there exists 0 > 0 such that if A C Q, u(A) <4,
then

/ la(@)un || log([un] + 27 dz < ¢, ¥ .
A

But for any € > 0, there exists ¢y > e? such that

1
— <€ Y t>t.
logt

Take now 6 = e{an max|C(@)][(fy + 272 + ¢}, u(4) < 6000 = [la(a) oo

and

then we have,

[ tote)undtog(fun] + 2)lds

An

IN

oo max [C ()] / i 08 (fun] + 27|
=19 A,

IN

aromax (€@ [ [l 427 47

oo max [ (x)[[([to] +27)% + e ]u(An)

VAN

A\

€,

/ (@) unc]| 1og(|un] + 277 |dz < ¢ / (@) unc|| 1og(|un + 272z < €T,

n Bn

Similarly, we can prove that



Lemma 2.3. For any fized 0 < n << 1,a(z) € L*(Q),¢ € C5°(), [[unm @) <
M, M 1is a positive constant independent of n, there exists a convergent subsequence
(denote still by {uy}) such that u, — ug in Hy o(Q), and

lim [ a(z)u,Clog(|u,| + n)de = / a(x)upC log(|ug| + n)dx
Q Q

n—oo

Lemma 2.4. For any fited 0 < n << 1,a(z) € L®(Q),u(x) € Hx ¢(Q),un € C5*(Q2)

and |[u, — ul[gy (@) — 0, we have

lim [ a(z)uu,log(|u,| +n)de = / a(x)u?log(|u| + n)dx
Q

n—oo 0

Lemma 2.5. If a(z) € L™(Q),u(z) € Hy((Q), u, € C5°(Q) and |Jun, — ull g1 () —

0, we have
lim [ a(x)uu,log(|u,|)dr = / a(x)u? log(|ul)dz
Similar to Lemma 2.1, we have
Lemma 2.6. Let M >0 and let {v;,j € N} be a sequence in Hy o() satisfying
||Uj||?{}l(’0(9) <M.

Then there exists a convergent sub-sequence {vj,} such that v;, — vy € Hy ((Q) and

Jk—00

i | o5 Ploglo | = | feolfogluol
and

| lhogiual) < €1
where C is a positive constant independent of j.

Proof. Using the fact |tlogt| < t? + 7!, for V ¢ > 0, we have

UA
/Q oy loglu; [P = / |Uj|2|10g”||a|l T log [[oy]| 2P
]

o3

< 2 [ IoPllogr S+ 2l o o oyl
Uj

< 20Xl + usl) + 200 + 71

< 2CoM + 4(M? +e7?)

M,



Cy is a positive constant given by Proposition 1.1. The rest of the proof is similar
to the proof of Lemma 2.1.

Next, we can prove that for any ¢ > 0, there exists 6 > 0, such that if A C
Q, p(A) <4, then

[ lefogluslide <, V.
A
Actually for any € > 0, there exists ¢y, > €2, such that

1
— <€ YV t>t.
logt

Take now § = €(t3 log o + %671)71,,111(14) < ¢ and
Aj=An{ly < to}, B = An{[uy] > to},

then we have,

1 1
/ v;|?| log |v,]|dz < / (talogty + 5671) < (t2logty + §efl)u(Aj) <€,

Aj Aj

[ toPliogluslds < e [ o tog o Pz < et
B; B;
Thus we have

Lemma 2.7. For any fited 0 < n << 1,a(zx) € L>®(Q),u, € Hx ((Q) and [unllm @) <
M, (M is a positive constant independent of n) there exists a convergent subsequence
(denote still by {u,} )such that u, — ug in Hy o(Q) and

lim [ a(z)u,uglog(|u,| + n)dx = / a(x)ug log(|uo| + n)dz.
Q

n—o0 Q

Lemma 2.8. If a(z) € L™(Q), |lun|[g1 (@) < M, M is a positive constant indepen-
dent of n, then there exists a convergent subsequence (denote still by {u,})such that

Un — ug i Hy o() and

lim a(x)ui log(|un| +1/2")dx = / a(:v)ug log(|uol)dz.
Q

n—oo 0



3 The existence of solutions

For any fixed 0 < ¢ < 1, 0 < n << 1 and u € Hy (), by using Young’s

inequality, Proposition 1.1 and Proposition 1.3, we have,

Jp(u) = ||Xu||%2(m—/Qa(x)uQIOg(|u|+77)d:B+/QM—/Qb(:B)Ude

2(ful +n)
- Q/Qg(x)udx

— [ Xulfeey [ alw)elogllul + mde — [ ala)ulog(lul + )z
|u[>n

[ul<n

+ A%_[)b@)ﬁd"@_z/ﬂg@)de

> ||XUH%2(Q) —/ a(m)u210g2|u|dm—log2'r]/l a(r)ude
u|>n

u|<n
L%—Lb(m)ﬁdx—2/ﬂg(x)udm

> Xl g2 [ atoytde— [ a(oplog i +log s
u|>n |u|>n [[wll 2
log 2 / qu:E+/ a(@)ujul /b(x)uzdx Q/g(x)ud:v
P e o2+ Jo ;

2

€ u C
> ||Xu||%2(9) —aoolo,g.{Q/QuZdz—a)/ﬂzflog2 HLHLQ —4—: Qag(:v

— log ||ul|z2 / a(x)u* — aglog 27]/ ulde +
lul>n

- bOO/QUQd:E—/ng(:v)dx—/QuQ(x)d;

Coa?
> [ Xulfg) — anlog2 [ e — (| Xulfs + ulf) ~ 5= [

a(x)u’|ul
— log ||ul| 2/ a(x)UQ—aologQU/ u2da:+/ G\w
t u|>n u|<n q 2(lul +mn)

- boo/Qude—/ng(x)dx—/gu2(x)dx

Ju

A
> (1= Oy Il o — il = log ull /u|>na(x)u2da:
a(x)u?|ul >
- a010g277/ u2dx+/——HgH >
lul<n q 2(|ul +n) )

10



A1 2 2 2
> (L=l @ = Crllelizg) = log llulliy ) a(z)udz

lu|>n
@l o
- aomgzn/° qfdx+t/-———————ngn |
lu|<n o 2(|ul +mn) L@

where C] = ay,log2 + € + %a?)o + b + 1, Cy > 0 is a positive constant given by
Proposition 1.1, ae = ||a||ze, boo = [|b]| Lo

If we set Br = {u € Hx (), ||u||H)1(’O(Q) < R}, the estimate above shows that,
as 7 is small enough, there exist R = R(e) >0, and 6 = 6(R) > 0 such that
Jn(u)|op, = 0 > 0 for all g with ||g||z2) < C. For example, we can take,

R =eo{<h), == /MES,

)\1(1 - 6) 2 1 Cl
)(R)= 7R = —1.
( ) 8(1 + )\1) (6)7 77 < 2 eXp{ _ao}
Define ¢, = ¢,(R) = inf J,(u), then ¢, < J,(0) = 0. The set Bgr becomes a
uEBR

complete metric space with respect to the distance,
dist(u,v) = ||lu— v||H;(70(Q) for any u,v € Bp.

On the other hand, J, is lower semi-continuous and bounded from below on Bg.

So, by Proposition 1.5 (cf. [5] Theorem 1.1), for any positive integer n there exists
{uyn}, satistfying

1
ey < Jyupn) < ¢y + n (3.1)
1 _
Jy(w) > Jp(uyn) — EHUWL — w||H}1(VO(Q) for all w € Bg. (3.2)

We claim that 0 < Hun,nHH}l(YO(Q) < R for any n large enough. Indeed, if
|2 | HY o(9) = R for infinitely many n, we may assume, without loss of generality,
that ||un7n||H)1(’0(Q) = R for all n > 1. It follows that J,(u,,) > ¢ > 0. Combining
this with (3.1) and letting n — oo, we have 0 > ¢,, > ¢ > 0 which is a contradiction.

We now prove that J)(uy,) — 0 as n — oo in Hyy(Q). Indeed, for any u €

0
ltwnnllgL @ + 1 < R, where t > 0 is small enough. From (3.2) we obtain

H 4 (Q) with HuHH}(’O(Q) =1, let w,, = u,,+tu. For a fixed n, we have HwnHH;(’O(Q) <

t
Jn(un,n + tu) > Jn(“nm) - EHUHH}(’O(Q)v

that is
Jn(un,n + tu) — Jn(un,n)

t

1
> _ﬁHuHH}QO(Q) =

11



Letting ¢ \, 0, we deduce that (J}(u,,),u) > —1/n and a similar argument for
t /0 produces |(J)(uyn),u)| < 1/n for any u € Hy o() with [[ullg1 @) = 1. So

1
[Ty (ugn)ll-r =" sup  [(Jy(upn),u)| < — — 0asn — oo. (3.3)
ueHL (Q) n
X,0

u =1
” I|H;{70<Q)

Thus, {u,,} is a (PS).

sequence in H ,(Q), i.e.

Jn(Unn) = ¢y, and J) (unn) = 0 in Hy (). (3.4)

Since |[tynl g1 @) < R, {uyn} is a bounded sequence in Hy (), and passing to
a subsequence (denote still by {u,,}), we may assume that u,, — u,o in Hy ()

for some u, 0 € Hy ((Q). So, by Lemma 2.3, we know that J; (u,0) = 0, i.e.

a(x)uz gvn

2/ Xjun0)(Xjv —2/axu,vlogu,+77dm+/ dx
szl( J 770)( J ) 0 ( ) 7,0 (’ 770’ ) 92(|u77,0|+77)2

— 2/b(x)un,ovdx—Q/g(x)vdx:(),
Q QO

for all v € C§°(Q2).
We know {uyo} is also bounded in H (). For n = = 3, 5 < 3 exp{L},
passing to a subsequence (denote still by {u,,}), we may assume that u,, o — uo in

H ((Q) as i — oo. Now by Lemma 2.2, we have,

/Q é(xjuo)(xjv)— /Q alx)ugv log |uo|dzx — /

Q

b(x)upvdr — / g(z)vdx =0, (3.5)

Q

ug is a weak solution of (1.5) and (1.6).

We can prove that Jy(ug) = ¢o. Actually, we have

1 1
I (Unn) + §HJé(un,n)Hfluun,nHH}(’o(Q) > Jy () — 2 < J;y(un,n)aumn >

_ /a(x)u%n\unn| _/ a($)ug,n|“n,n|77 —/gu
o 2(Jugnl +n) o 4(|uynl +n)? Qo "

Letting n — oo, we know

. >/a(x)u72770’u77’0| _/ CL(I)u%,0|un,0|77 —/gu (3.6)
" Ja 2(Junol +n) o 4(Jugol +n)? Q o '

By Lemma 2.7, we have

0 = <J7’7i(um70),um,0>:2||Xum,0

/ ax)ug, ol olmi
+ 2
a 2(|up.ol +m:)

|%2 —2/a(x)u727i70 log(|um,o +77i)dx
Q

dx — 2/ b(x)uy, gdx — 2/ g(z)uy, odz.
Q Q

12



Therefore

a(x)ugy, olun ol a(@)uy, ol olm
Iy (Ui 0) = /—”“ . dx—/ L (3.7)
e Q 2(’1’6772'70 +77i) Q 4('“%‘70 +77i)2
- /g(x)um’odx.
Q
By (3.5), (3.6) and (3.7), we have:
0>co = inf Jy(u) > lim inf J,, (u) = lim ¢,
uEBR 1—0 yeBpr 1—00

> 5 [ atwyide = [ gla)unds = Tu).

Since ug € Bg, it follows that Jy(ug) = co.
On the other hand, letting @ € Hx (), @l @ = R, and ¢ > 0, we have

J,ta) < Jo(ti) = 3 {HX&H%Q(Q) —logt/Qa(x)ﬂ2 - /Qa(a:)ﬂQ log |

+ % /Q a(z)@® — /Q b(z)a® — 2 /Q g(x)ﬂ/t}

<P [uxauizm) —1ogt/a(x)a2—/a(x)a21og|a|
Q Q

n %/Qa(x)fﬂ—/gb(x)@2+%([292@)"’_/9&2)}'

We can find ¢ >> 1, such that J,(ta) < Jo(ta) < 0 for all ¢t > ¢. Letting @ = ta,
then we have |[af z1 (@) > R and Jy(a) <0.

We put
0= {7 S C([07 1]7 H)l(,O(Q)> : ’V(O) - 077(1) - EN? }7 (38)
Cy = #Iég Suléan(u) (3.9)

For v = {ttu : 0 <t <1}, we have

sup Jy (1) < sup Jofu) = sup (D211 Xl — () 0g(01) [ ala)i?

u€Y0 ucY0

= 7 [ awittolal + - [ oo - @07 [ v - 209 [ oo

U
20 v o2 1 ~2 | 72 9 B
X072 q) + a(z)u” +t* | a(x)u|log|u|| + a(x)a
2e Jq 2 Ja

Q
+ f/g2+t_/ﬂ2.
Q Q

IN
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So there exists a positive constant B (which is independent of 7), satisfying

. < B. (3.10)

It follows from the Proposition 1.6 (cf. [3] Theorem 2.2) that there is a (PS),,
sequence {u,,} of J,(u) such that

Jy(Uprn) = ¢, + o(1) and J,;(unyn) — 0 in H)_(}O(Q).

We have
2 w2
Jn(u)——<J'( ) U>:/Mdl'—/Md —/g(:v)uda:
o 2(|ul +n) A(lul +n)? Q
u? 4
> /a \u| & u2dw——/92da:
o4 \U’ +77 16 ao Jo
U2 2
/ |u| x+/ —a(:p)u [ul dr — @/ wlde — 20 u?dx
|u|>n |u|+77 Ju|<n 4(|u|—|—7}) 16 |u|>n 16 Ju|<n
4
— — [ Jdx
aop Jao
1 2 4
> —/ Mdi—@/ qum—@/ uzda:——/ggdx
4 Jjupsy 2l 16 Jyuj>y 16 Jyuj<y ao Jo
2
Qg 2 agn”|$] 4
> — dr — ———— — — )
fo [ = T ol
So, we have
_ 1 a0|Q|
Cn"‘o(l)"‘5||J1/7(un,n)”—IHUmn”H}(O(Q)+ 6 —|| [
1 ao‘Q‘
> Jy(una) — §<J7/;(U777n)aumn> +— 16 _H ||L2
> — Uy ,dx.
16 Jjuysn "
By (3.10), we have
/|un7n|2dx:/ |un,n|2dx+/ |ty | de
Q |u|>n u<n
16 [_ 1 GO\Q\
< 22 fenet o) + 51l Tl o+ 5 + gl + P10
16 1 ||
< 2|5 o0) + sl o+ 250+ ] + 19
< O+ Oy (upa)ll-lltgnl iy () + 0(1), (3.11)
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where C' is a positive constant which is independent of 7 and n, and dependent of
1Q, [lgll32, ao, and B. Similar to the estimate of .J,(u) at the beginning of this
section, we have (if taking e = %)

_ A1
B+o(1) > & +o(l) = Jy(uyn) = m”un,nui@p — Cillugll7:
Qoo [ty |21 108 [t nll 2] = [191Z20);

%azo + boo + % , to be independent of n and n, and Cjy and

where C] = ay log2 +

A1 are given by Proposition 1.1 and Proposition 1.3 respectively.
Furthermore, using the fact |tlogt| < ¢* + e ! for ¢t > 0, we have
A1

2(1+ A1)

lunallz, < B+o(1) + Cilluyallzz + acollunnllz2|10g unnllz2] + 91Z2 )

1 -
< B+o(1) + Cilluyallzz + Saco(llugallzzl + ¢7) + gl
< C+o(1) + Clluyallzz + Cllug nllz2,

where C' is independent of 7 and n.
By (3.11), we have

||Un,n||§{§(7o <C+o(l)+ CHJ;;(Un,n)H—l”un,n

|H}(Y0(Q) + C”J;;(umn)”2—1”un,n||?{}(’0(9)'

Since J) (upy) — 0 in Hy[y(Q), thus there exists Ny > 0 such that ||u77n||§1,;(0 <
M, if n > Ny, where M is a constant, independent of 1 and n. That means
{un, No+j}jen is a bounded sequence in Hy ((€2). Hence there exists a subsequence
(we still denote by {uy,,}), such that w, , — u,o in Hy o(Q) for some u, o € Hx ,(€2).
By Lemma 2.3, we have J; (u,0) = 0, that is

2 [ 3 (X0 (X0 -2 [ alwhygologllugal +m)de (32
Q= Q
a($)u770|u770|“77 / /
—= dr —2 [ b(x)u,ovde — 2 x)vdr =0,
/Q 2(up,0 +n)? 0 (@)uno Qg< )
for any v € C§°(Q).

Forn=mn =5, % < %exp{_c—alo}, we know {uy, o} is also bounded in Hy ((Q).

. . 1 .
Passing to a subsequence, we may assume that u,, o — u; in Hy () as i — oo.

Now by Lemma 2.2, we have,

/Q é(Xjul)(va)— /Q a(z)urvlog |uy|dz — / b(x)ujvdr  (3.13)

- /ﬂg(az)vdx =0

15



for all v € C§°(§2). That means u; is a weak solution of problem (1.5) and (1.6).

Next, we prove up, o — uy in H ((€). In fact, C5°(Q) is dense in Hx ;(Q), thus
from Lemma 2.4 and Lemma 2.5, we know that (3.12) and (3.13) are also true for
any v € Hy ((Q).

Especially, we have

2 [ 3 (X0 =2 [ al)id g log( o

a(x)uf], oltn: o|m: / ) /
e dr — 2 [ b(x)ul gdz —2 | g(z)uy, odr =0,
/ 2Jug o + 1) | by odr =2 | glr)uo

+;)dz (3.14)

/QZ:?(XM)Z—/Qa(w)ﬁlogluﬂdx—/Qb(:p)u%dx—/Qg(a;)uldxzo. (3.15)

Letting ¢ — oo in (3.14), and from Lemma 2.8 and (3.15), we have
||Xjum,0||L2(Q) — ||Xjul||L2(Q)a i — 00,

which means u,, o — u1 in H (€2).
Now by Proposition 1.6 ([3]), we have

Jo(ul) = llIIl Jm(u%o) =cy>02> J(](U())7

1—00

that means the problem (1.5) and (1.6) has at least two solutions in Hx ,(€2).
If we replace, at the beginning, Bg by B}, = {u € H}QO(Q), ||u||H%(O(Q) <R, u>
0}, thus it is similar to the proof of existence of the solution wug, we can deduce that

the problem (1.5) and (1.6) has a non-negative solution in Hy ,(€2).

4 Boundedness and regularity of weak solutions

Similar to the proof of [10], we can deduce the boundedness and regularity of
weak solutions.

By using the interpolation inequality, the condition H-3) and the Logarithmic
Sobolev inequality (1.2) give that, for any N > 1, there exists Cy such that,

1
[ o iy < Lixolgs + ol (4.)
Q

[v]] 22

for all v € Hy ().
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In order to prove that the solution u € L*(f), it suffices to show that, under

the assumptions of Theorem 1.4, there exists A > 0 such that the estimate
lullr < A (4.2)

holds for any p > 2. In fact, for € > 0, Q. = {z € Q; |u(z)| > A+ €}, it follows from
(4.2) that |Q] < (%)p — 0 (as p — 00) and hence we have ||ul|z~ < A.

We prove the estimate (4.2) by the following three steps. First, for any p > 1,
m € N, we shall use «*~! or u*~!log®”(uP) as test function for the equation (1.5).
Since we do not know if u?~!log®™ (uP) € Hy (), so we replace the function u by
U(r), where k > 1 and upy(z) = u(z) if € {z € Q;|u(z)| < k} and upy(z) =k if
x € {x € Q|u(x)] > k}. Then it is easy to check (see [6] and [7, Theorem 7 and
Theorem 8]) that u?lf)_l long(uz(?k)) € Hx,(Q) for all p > 1, m € N. In the case of
p =1, we use u(log™ u)%k) € Hk () as the test function. To simplify the notation,

we shall drop the subscript and use u??~!log>"(u?) as the test function. We have

Proposition 4.1. Under the hypotheses H-1), H-2), H-3), H-4) of Theorem 1.4,
and g(z) € L=(Q), u € Hx (), u > 0,[Jull2@) # 0 be a weak solution of the
equation (1.5). Suppose that for some py > 1, there exists Ao, A1 such that

0 < Ay <||u||r2e0 < Ap.
Then
[ re@rp s [ g
< 20yt bt b + anllog Aol + (14 [Uguf/A],  (43)

where Ao = ||al|z, boo = ||bl|zc, goo = ||g|lL and the constant Cy is given by (4.1)

and @ = u/||u||z2e0 -
Proof. We have 4 € Hy ((Q), ||t/ 1200 = 1, and @ is a weak solution of equation

g(z)

—Axu = a(z)ulogu + (a(z)log ||ul| 20 + b(z))u + [[ullzro
2P0

(4.4)

Take %?P°~! as the test function, we have

2pg — 1 1
Po - /mww_—/amﬁ%@m
Do Q Po Ja

1
b [l v+ [ g,
“ [ullz2re Jo
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where

1 / —2po—1 900/ —2po—1 —2po—1
g ) 0 S J U P0o + U P0o
[l Jo " AL SR

9oo 92 Joo 92 (1 +[2))goo
S IR Po + Q S I /upo + Q =~ o
o[ wm o < Ge [ = S
Furthermore
1 1 1+ Q) poges
/\Xﬁp°|2 < —/ﬂ2p° 10g2(ﬂp°)+—a§o+poao@]longHpoboo—i-M. (4.5)
Q 2 Q 2 Al
On the other hand, the Logarithmic Sobolev inequality (4.1) gives
2y.2, U™ 1 2 2
() log™( ) < SIX(WP)|z2 + Collu” |72
9 [[uro]] 2
Note that [[u||z2 = [Jul}2, and @ = u/[|u||;200, we have
772P0 o2 (7720 1 700 ||2
a™log™(a™) < g || X (a)|z2 + Co. (4.6)
Q

Adding (4.5) and (4.6), we have the desired estimate (4.3).

Proposition 4.2. We have for any m € N,
/ | X (@) ] log®™ 2 (@) + / a* log®™ (u°) < MZ™P(m, po)(m!)? (4.7)
Q Q

where P(m,po) = pi' if m < \/po, P(m,po) = pa/pT) if ' m > /po, and
My > (2]9] 4 4C5 + 2C4 + 10 + 602, + 8bss + 8aoo| 108 Ag| + 40 (1 + |©2) /A1) 2.

Proof. From the estimate 0 < A; < ||u||p200 < Ap, we have the estimate (4.7)
for m = 1. By induction, we suppose that (4.7) is also hold for m € N, then we need
to prove that (4.7) is hold for m + 1. Here we simplify the notation again, i.e. @
and py would be replaced by u and p in the equation (4.4). We take u?~!log*™ (u?)
as the test function in (4.4) , then

2
10g2m(u7’) + _m/ |Xup|210g2m_1(up)
P Ja

— % a(z ) P log? 1 (uP) —|—/Q(a($) log ||u|z2» + b(z))u? log®™ (uP)

2p 110g2m up )
/ ||u||m ()
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That is
1
/|Xup|210g2m(up) < 5/ |Xup|210g2m(up)+2m2/ |Xup|210g2m_2(up)
Q Q Q
1
4 [ 0g™ ) 4 (@ + paslog Ao + ) [ ulog(u?)
Q

Q
+ ngO/UQp—l IOng(Up>.
Al Jq

Using the fact ' < €'l!, we have

/u2p1 log®™ (uP) :/ u2p110g2m(up)+/ u?P ! log®™ (uP)
Q lu|<1

lu[>1
< 22m(m!)2|9|+/u2p10g2m(up) < (1+1Q)MF™P(m, p)(m!)?,
Q
so that

1
/ | XuP|?log®™ (uP) < 5/(up)2 log®™ 2 (uP) 4 [4m? + 24>, +
0 Q
2(pace|log Ao| + pbec + pgoc(1 + Q) /A ME™ P(m, p)(mh)*. (4.8)

We study now the term [;, u®log”"?(u?). Set @ = Q; JQF UQ; with Q; =
{z € Q;u(zr) <1} and

O ={z€Q; ulx)>1, |log™Wl)| < |u’log™(u)|z2},
Q) ={zx e ux)>1, |log"(ul)| > ||u’log™(uP)| L2}
Then
[ wriogm i) < gi(om+ 12
951

For the second part, (4.3) gives
[ gy < furtog ) [ o og?r)
< (202 + a, + 2pboe + 2pacs| log Ao| + (1 + Q) goe /A1) M™ P(m, p) (m!)?.
Next, for the third part, we use the Logarithmic Sobolev inequality (4.1) for N = 4,

P log™ (uP)
2p 2m+2¢, p D m_ p\2 2 U 10g

u? log uP) < / uP log™ uP)*log*( —

/. ( - o log (w1

IN

1

FIX @ og™ ) + Callu? og™ w3

1

5 | X o) [ X0 P logt™2u)
Q Q

+ 04/u2plog2m(up)
Q

IN

IN

% /Q X ()2 1og®™ (u) + (Cy +m2) MZ™ P(m, p)(m!)>.
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Sum up the three parts above, we get

1
/ ulog™H(u?) < 5 / X @) log™ (u?) + [ ((m + 1)1)?
Q Q
+[2Cy + Oy +m? 4 a2, + 2pbss + 2pass| log Ag|
(1 + [Q) goo/ A ] MT™ P (m, p) (m!)*.

which implies by (4.8),
/ u? log®™? (uf) + / |X (u?)|? log®™ (uP) < [2Q 4 4Cy 4 20, + 10 (4.9)
Q 0

+6a2, + 8boo + 8au|10g Ag| + 290 (1 + Q) /AL MZ™ P(m + 1,p)((m + 1)!)2.

Proposition 4.2 is proved.

Proposition 4.3. Under the hypotheses of Proposition 4.1, if for some pg > 1 and
Ay > e'? we have
[ull z2r0 < Ao,

then for
My > [2]Q] 4 4C, + 2C4 + 10 + 602, + 8beo + 8aso log Ag + 20 (1 + Q) /A1 ]2,
and § = 1/2M,, we have

1
/ u1+0) < g i) (4.10)
Q

Proof. For any § > 0, the estimate (4.7) gives that

(/ |ﬂp0(1+5)|2d1‘>2 — (/ |ﬂp0ﬂ6p0|2dl‘>2 — (/ |ap0€510g(ﬂp°)|2d1;)2
Q

B . 5log(up0 oo (0 log(@™))*™ :
- (S ) <3 ([t

’—p

< id_m 21!7010 m (@) imMum < V%iaM

= Om| g po) < ~ 1)
For § = 1/2M;, we have finally

/U2p0(1+6)d:13 < 4p(2)\/170A3p0(1+5).
Q

Since for any py > 1,
2
4p§\/po _ 462\/;?010ng < (612>2p3
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which implies the estimate (4.10) if Ag > e'?.
We set now for £ € N,

—1/35~k (1 yj/3
pr=po(1+0)F, Ay = Aéﬂ% 2= ) ’
then Proposition 4.3 implies that
/ o0+ / yzmei+d) < g2 )
Q Q
A 1425 T ek )
where § = %M1 and

We have now for § = 1M, < 1/4,

log Ay —1/3 ST R
_ L oso Lo
Tog Aqg o0 (P S 1 ) ()

j=1 j=1

= 14p 3 ()" <1 +4p,PMy < 5M

= L+Dp W_ + 4pg 1 < Oy,
+

where M is independent of k, thus we have proved for any k£ € N,
/u2P0(1+5)k < <A8M1)2P0(1+5)k‘
Q

If we choose Ay = e'2, then the estimate (4.2) holds for A = 501,

The regularity of the solution for the problem (1.5) and (1.6) can be deduced by

following result:

Proposition 4.4. Suppose a(z), b(z), g(x) € C®(Q), and there exist ag, by, go >
0, such that a(z) > ag, b(x) > bo, g(x) > go in Q. Letu € H ((Q), u >0, |jul> #
0 be a weak solution of the problem (1.5) and (1.6), and OS2 is non characteristic.
Then u € C(Q\I) N C°(Q\TD), and u(x) > 0 for all z € Q\T'.

Proof. Suppose xy € Q\I', then there exists a neighborhood Vi C Q\I of zy, for
v € C§° (Vo) we shall prove that v = pu € C®(V}). It follows from equation (1.5)
that,

—Axv = a(z)pulogu + b(z)pu + g(x)p + Z @ Xju+pou = fo+ ZXjfj7

j=1 j=1
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with p; € C*(Vp), fj € L*(Vy), j =0, ......,m. Since the system of vector fields X
satisfies the finitely type Hormander’s condition on V4, the regularity result of [§]
(see also [7, 9]) implies that u € C(Vp) for some € > 0. If we have u(xz) > a > 0 for
x € Vo, then by tlogt € C*(t > «), we can deduce ulogu € C¢(1}), thus we can
prove by recurrence that u € C*(V;). For 7y € 9Q\I', we have also u € C¢(Vy [ Q2),
but we know only ulogu € C°(V5 (), so we can not obtain the C* regularity of
u near to the boundary 0€2. Therefore the Proposition 4.4 will be deduced by the

following Lemma directly.

Lemma 4.5. Suppose a(z),b(x), g(x) satisfy the conditions of Proposition 4.4, and
u € C%Q), u >0 is a non trivial weak solution of the equation (1.5) on an open
set O C Q, then u(x) >0 for all x € Q.

Proof. Suppose that u(zg) = 0 for some xy € €y, then for any ¢ > 0, there
exists a small neighborhood Uy C Q; of gy such that 0 < u(x) < e on Uy. Since g(z)
is continuous on Uy, there exists a > 0 such that g(x) > a on Up.

Choosing € small enough such that in Uy, we have
a(x)ulogu + b(x)u < 0,

and

a(x)ulogu + b(x)u + g(x) > 0.
That is Axu < 0 in Uy. But z¢ is a minimum point of u, the maximum principle of
Bony [10] implies that u = 0 in Uy. That means w is a trivial solution by continuous
of u in €.
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