
FORMAL POINCARÉ LEMMA

A. SHLAPUNOV AND N. TARKHANOV

Abstract. We show how the multiple application of the formal Cauchy-
Kovalevskaya theorem leads to the main result of the formal theory of overde-

termined systems of partial differential equations. Namely, any sufficiently
regular system Au = f with smooth coefficients on an open set U ⊂ Rn ad-

mits a solution in smooth sections of a bundle of formal power series, provided

that f satisfies a compatibility condition in U .
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1. Introduction

In this paper we deal with formal theory of overdetermined equations, although
the case of determined equations is not excluded. By an overdetermined operator
is meant any map A : U → V for which there exists a non-zero map B : V → W
with the property that BA = 0. Then for the inhomogeneous equation Au = f
to be solvable it is necessary that Bf = 0. The formal theory of overdetermined
equations consists in constructing a “smallest” map B with this property, i.e., any
other map C : V → Z satisfying CA = 0 should act through B. This means,
C = QB for some map Q : W → Z. If exists, such a map B is called compatibility
operator for A.

The existence of a compatibility operator for A is by no means obvious. If
exists, B is not unique, for the composition C = QB with any invertible map
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Q : W → Z is a compatibility operator for A. The proper algebraic framework
for constructing a compatibility operator is given by the concept of a resolution
of a module in homological algebra. While every module possesses a resolution by
free modules, these latter need not be finitely generated, cf. [ML63]. Hence, the
compatibility operator B guaranteed by homological algebra may be very crude. For
linear differential equations Au = f this approach gives satisfactory results only in
two cases. The first of the two is the case of operators A with constant coefficients,
where the question is settled by the Hilbert syzygy theorem. The second one is the
case of operators A with real analytic coefficients, where the module is Noetherian,
cf. [Bjo93].

In the case of differential operators A with smooth coefficients the formal theory
was developed in the framework of differential topology, mostly due to the coho-
mological approach of Spencer, cf. [Spe69]. A central concept of this theory is
the notion of sufficiently regular system of differential equations. Although the
sufficient regularity property is verified within linear algebra, it is awkward. Each
sufficiently regular system possesses a compatibility operator, which is a partial dif-
ferential operator with smooth coefficients constructed in the framework of linear
algebra, see [Spe69], [Pom78], [Tar95], etc.

Having granted a suitable compatibility operator for A, the question arises
whether the condition Bf = 0 is not only necessary but also sufficient for the
solvability of Au = f . The ∂̄ -problem in complex analysis shows that it is not
the case in general. The solvability fails to take place even modulo finite dimen-
sional subspaces of V unless the manifold is strictly pseudoconvex. However, for
local operators A we can localise the problem, thus using the advantage of formal
solvability.

By the formal solvability is actually meant the solvability in smooth sections
of the infinite dimensional bundle of formal power series. Spencer and his school
used for thus purpose the bundles of finite order jets, perhaps to not leave the
standard setting of classical analysis, see [Spe69]. The bundle of formal power series
has much in common with very popular nowadays deformation quantisation, cf.
[Fed96]. In particular, the differential geometry of this bundle is essentially raised
by a connection whose meaning is very transparent. Namely, this connection vanish
if and only if the section of the formal series bundle comes from a section of the
vector bundle in question. This crucial property readily yields that the connection
commutes with every differential operator on the bundle of formal power series.
This way the formal analysis of the inhomogeneous equation Au = f readily leads
to what is known as Spencer’s first resolution of a sufficiently regular differential
operator A.

Spencer’s first resolution can be actually written for an inhomogeneous system
Au = f with arbitrary differential operator A, which is not necessarily sufficiently
regular. Since the connection on the bundle of formal power series is flat, i.e., its
curvature is zero, Spencer’s first resolution is a complex. Its cohomology bears
information on the solvability of Au = f , which is well understood in the case
of sufficiently regular systems. If the system fails to be sufficiently regular, the
complex in question lacks crucial regularity properties. Still the construction of a
homotopy operator for Spencer’s first resolution remains of central interest in the
theory of overdetermined systems.
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This work was intended as an attempt at motivating the role that is played
by the homotopy operator for the existence theory, i.e., the local solvability of
overdetermined systems.

2. The bundle of formal power series

Let X be a smooth manifold of dimension n. Given a smooth vector bundle
E over X and an open set U ⊂ X , we write E(U,E) for the space of all smooth
sections of E over U .

Sections u, v ∈ E(U,E) are called equivalent at a point p ∈ U if the difference
u − v vanishes up to the infinite order at p. The classes of equivalent sections of
E at p form a vector space which is denoted by Jp(E). If E ∼= U × Ck is trivial
over U and x = x(p) are local coordinates in U , then u and v are equivalent at p
if and only if ∂α(u− v) = 0 at x for all multi-indices α ∈ Nn

0 . Here, N0 stands for
N ∪ {0}, and

∂α =
( ∂

∂x1

)α1

. . .
( ∂

∂xn

)αn

.

We can thus identify the equivalence class of a section u ∈ E(U,E) at p with the
sequence

(uα(x))α∈Nn
0

where uα(x) = ∂αu(x)/α!. If y = y(p) is another local chart about p, then the
equivalence class of u at p is represented by (uα(y))α∈Nn

0
where uα(y) = ∂αu(y)/α!.

By chain rule,
uα(y) =

∑
|β|≤|α|

tα,β(y)uβ(x) (2.1)

where tα,β(y) is an infinite lower triangle matrix whose entries are monomials of
∂γ

y x1, . . . , ∂
γ
y xn with |γ| ≤ |α| − |β|+ 1. Under the change of local frame in E the

representation of the equivalence class of u ∈ E(U,E) at p transforms similarly to
(2.1), with tα,β(y) being derivatives of the transition matrix of E of order |α| − |β|.
We have thus given the structure of smooth vector bundle of infinite rank over X
to the disjoint union

J(E) :=
⊔

p∈X
Jp(E).

The bundle J(E) is said to be the bundle of formal power series with coefficients
in E over X . It just amounts to the bundle of infinite order jets of sections of the
bundle E over X , denoted by J∞(E). The formal theory of [Spe69] makes use of
the bundles Js(E) of jets of finite order s ∈ N0 rather than of J∞(E). The bundle
J0(E) is identified with E.

If U is a coordinate neighbourhood in X , such that E is trivial over U , then any
section u of Js(E) has representation

u(x, z) =
∑
|α|≤s

uα(x)zα (2.2)

in U , where x ∈ U , z ∈ Cn and uα are functions in U with values in C`. The
variable z is invariantly interpreted as a vector of the complexified tangent space
for X at the point x. By the very definition, u is smooth if all the uα are smooth
for some family {U} covering X .
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For r ≤ s, we denote by πr,s the natural projection πr,s : Js(E) → Jr(E). In
local coordinates we get

πr,s
( ∑
|α|≤s

uα(x)zα
)

=
( ∑
|α|≤r

uα(x)zα
)
.

The map js : E(X , E)→ E(X , Js(E)) that associates with a section u ∈ E(X , E)
its s -jet is a differential operator on X . In a coordinate neighbourhood U in X ,
over which E is trivial, it has the form

jsu (x, z) =
∑
|α|≤s

∂αu(x)
α!

zα

for (x, z) ∈ U × Cn. Also in the case s = ∞ this operator is local, i.e., satisfies
supp jsu ⊂ suppu for all u ∈ E(X , E).

3. Compatibility operators

Given any smooth vector bundles E and F over X , we write Diffa(X ;E,F )
for the space of all linear partial differential operators A of order ≤ a mapping
sections of E to those of F . For any coordinate neighbourhood U with coordinates
x = (x1, . . . , xn) in X , such that both E and F are trivial over U , such an operator
takes the form

A =
∑
|α|≤a

Aα(x)∂α (3.1)

where Aα are (`× k)-matrices of smooth functions on U , k, ` being the ranks of E
and F , respectively.

The operator A is said to be overdetermined if there exists a non-zero operator
B ∈ Diffb(X ;F,G) satisfying B ◦A ≡ 0.

Definition 3.1. An operator B ∈ Diffb(X ;F,G) is called a compatibility operator
for A if B ◦ A ≡ 0 and for each operator C ∈ Diffc(X ;F,H) with C ◦ A ≡ 0 there
is an operator Q ∈ Diffq(X ;G, H), such that C = Q ◦B.

In order to treat the compatibility operator for A we invoke the theory of D -
modules, see [Mal04], [Bjo93].

Denote by E(X )[D] the ring of scalar differential operators with smooth coeffi-
cients on X . By the product of two operators in E(X )[D] is meant their composition,
which is certainly non-commutative.

Write E(X )[D]` for the free finitely generated right E(X )[D] -module with the
standard addition ‘+’ and multiplication ‘·’ by elements of E(X )[D] from the right.
More precisely, we interpret the elements of E(X )[D]` as ` -columns with entries in
E(X )[D] and set  a1

...
a`

 · a :=

 a1 ◦ a
...

a` ◦ a


for all a ∈ E(X )[D]. It is easy to see that

e · (b · a) = e ◦ (b ◦ a)
= (e ◦ b) ◦ a

= (e · b) · a
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for all e ∈ E(X )[D]` and a, b ∈ E(X )[D], and the distributivity axioms are obviously
satisfied.

To construct a global compatibility operator for A it suffices to paste together
local compatibility operators by using a partition of unity on X . Hence, there is
no loss of generality in assuming that both E ∼= X × Ck and F ∼= X × C` are
trivial. Then A ∈ Diffa(X ;E,F ) is given by an (`× k) -matrix of scalar differential
operators on X . We write AT for the transposed matrix, which does not involve
any additional manipulations with entries. Then, AT induces a map of free finitely
generated right E(X )[D] -modules

E(X )[D]k h1← E(X )[D]`,

where we define h1(e) = AT ◦ e for e ∈ E(X )[D]`.
Obviously, M = E(X )[D]k/ im h1 bears the structure of a right E(X )[D] -module.

Indeed, given an equivalence class [m] ∈ M , we define [m] · a = [m · a] for all
a ∈ E(X )[D]. Since

(m + AT ◦ e) ◦ a = m · a + AT ◦ (e · a)

for all e ∈ E(X )[D]`, it follows that the definition is correct, i.e., it does not depend
on the particular choice of representative m ∈ [m].

It is well known that each module admits a free resolution, i.e., there exists a
(possibly infinite) exact sequence

0←M ← F0 ← F1 ← . . . ,

where F0, F1, . . . are free right E(X )[D] -modules. More precisely, M is the quotient
F0/H0 of a free E(X )[D] -module F0 over a submodule H0, H0 is the quotient F1/H1

of a free E(X )[D] -module F1 over a submodule H1, and so on, see for instance
[ML63].

Of course, such a sequence is not unique. However, it is unique modulo homotopy
equivalence. We note that im h1 = E(X )[D]`/ ker h1. Since H1 = kerh1 is a right
E(X )[D] -module, it is the quotient F2/H2 of a free E(X )[D] -module F2 over a
submodule H2, and so on. Denote by h0 the canonical projection E(X )[D]k →M .
Then we arrive at a free resolution

0← M
h0← E(X )[D]k h1← E(X )[D]` h2← F2 ← . . . (3.2)

of M = E(X )[D]k/ATE(X )[D]`.
If F2 is finitely generated, i.e., F2 = E(X )[D]m, then we easily see that h2 is

induced by some differential operator B ∈ Diffb(X ;F,G) via h2(e) = BT ◦ e for
e ∈ E(X )[D]m. This readily gives a compatibility operator B for A, for the sequence
(3.2) is exact. However, the ring E(X )[D] is not Noetherian and hence we can not
guarantee in general that the module F2 is finitely generated. If {ei}i∈I is a basis
for F2, with some index set I, then we consider h

(i)
2 = h2(ei) ∈ E(X )[D]`, thus

obtaining
B = {h(i)

2
T }i∈I .

Quillen proved that if the operator A is ‘sufficiently regular’ then all the modules
F2, F3, . . . can be chosen to be finitely generated and, moreover, the resolution (3.2)
is of finite length, cf. [Spe69].

Let us clarify this. For each operator A ∈ Diffa(X ;E,F ) there is a bundle
homomorphism h(A) : Ja(E) → F , such that A = h(A) ◦ ja. In fact, in a coordi-
nate neighbourhood U in X where A has representation (3.1) and u ∈ Ja(E) has
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representation (2.2) we may set

h(A)u (x) =
∑
|α|≤a

Aα(x) α!uα(x)

for x ∈ U . It follows from the bundle structure of Ja(E) that this actually defines
a global bundle homomorphism h(A) with the desired property.

For s ≥ a, we consider a family of vector spaces

Rs(p) = ker
(
h(js−aA) : Js

p(E)→ Js−a
p (F )

)
parametrised by the points p ∈ X . It is easy to see that the restriction of πr,s to
Rs(p) takes its values in Rr(p).

Definition 3.2. A differential operator A ∈ Diffa(X ;E,F ) is said to be sufficiently
regular if:

1) The dimensions of vector spaces Rs(p) with s ≥ a do not depend on p ∈ X .
2) For all a ≤ r ≤ s the rank of the map πr,s : Rs(p) → Rr(p) does not

depend on p ∈ X .

The condition 1) means that, for all s ≥ a, the family

Rs =
⋃

p∈X
Rs(p)

is a vector bundle over X (regularity).
The condition 2) is more subtle and says that πr,s (Rs) is a vector subbundle of

Jr(E) for all a ≤ r ≤ s.
The concept of sufficient regularity plays a crucial role in Spencer’s theory, cf.

[Spe69]. Although being within linear algebra, the conditions 1) and 2) are too
awkward to be efficiently verified in the general case. Nevertheless the regularity
is very important for a compatibility operator to exist in the class of differential
operators.

Example 3.3. Let X = R and a ∈ E(R) satisfy a(x) > 0 for x > 0 and a(x) = 0 for
x ≤ 0. Define Au (x) = a(x)u(x) for u ∈ E(R). The operator A is differential of zero
order and A is well known to be not sufficiently regular, see for instance Example
1.3.5 in [Tar95]. Moreover, A has no compatibility operator in the class of usual
differential operators, i.e., the module F2 in (3.2) can not be chosen to be finitely
generated. Indeed, AT = A, and so kerh1 consists of all differential operators with
smooth coefficients vanishing for x ≥ 0. Each compatibility operator for A in the
class of differential operators has the form

Bf (x) =
b∑

j=0

Bj(x)f (j)(x),

where Bj is an m -column of smooth functions on R satisfying Bj(x) = 0 for all
x ≥ 0. Obviously, we may restrict our attention to those B which have order zero,
i.e.,

B =

 b1(x)
...

bm(x)


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where bi ∈ E(R) vanish for x ≥ 0. When specified in the ring E(R)[D], the family
{bi} should be linearly independent over E(R)[D]. We now observe that the zero
order differential operator Cf (x) = (b1(x)/x) f(x) has smooth coefficients and
satisfies CA ≡ 0. If there is a row Q = (Q1, . . . , Qm) of scalar differential operators
with smooth coefficients satisfying C = QB, then b1(x) = xQB on R. Since
b1 = (1, 0, . . . , 0)B and the family {bi} is linearly independent over E(R)[D], it
follows xQ1 = 1 and Qj = 0 for j > 1. This is impossible if the coefficients of Q are
smooth. Hence, A does not possess any compatibility differential operator. Take
now a Hamel basis {ei}i∈I for the vector space consisting of all functions e ∈ E(R)
vanishing for x ≥ 0. By the above, the E(R)[D] -module F2 just amounts to the
free submodule of E(R)[D] generated by the system {ei}i∈I , and all the modules
F3, F4, . . . are zero. We thus arrive at the free resolution of the E(R)[D] -module
M := E(R)[D]/ATE(R)[D]

0← M
h0← E(R)[D] h1← E(R)[D] h2← F2 ← 0

where h1(e) = AT e and h2(e) = e, the element e being thought of as that of
E(R)[D].

It is worth pointing out that the compatibility operator B = {ei}i∈I obtained
in the framework of E(R)[D] -modules does not give “proper” solvability conditions
for the equation Au = f in smooth functions. Indeed, the condition Bf = 0 yields
only that f(x) = 0 for x ≤ 0. However, for the existence of a smooth solution to
the equation Au = f it is necessary and sufficient that f(x) = 0 for x ≤ 0 and the
limit

lim
x→0+

( d

dx

)j f(x)
a(x)

exists for each j = 0, 1, . . ..
With any short complex of differential operators

E(X , E) A→ E(X , F ) B→ E(X , G) (3.3)

we associate the family of complexes of linear maps of finite dimensional vector
spaces

Js+b+a
p (E)

h(js+bA)→ Js+b
p (F )

h(jsB)→ Js
p(G) (3.4)

parametrised by points p ∈ X of the underlying manifold and s = 0, 1, . . .. The
complex (3.3) is said to be formally exact if the complex (3.4) is exact for all p ∈ X
and s ∈ N0. For a long complex on X , the formal exactness means formal exactness
of any short subcomplex.

Lemma 3.4. Each formally exact complex of differential operators is a compati-
bility complex for the initial operator A.

Proof. See for instance Proposition 1.3.11 in [Tar95]. �

It is worth pointing out that not any compatibility complex for a differential
operator is formally exact.

If A ∈ Diffa(X ;E,F ) is a sufficiently regular differential operator, then the
families of vector spaces Rs(p) parametrised by p ∈ X behave properly to be
filtered as Rs(p) ↪→ Rr(p) for all a ≤ r ≤ s, the embeddings being of constant
ranks. Under this condition a compatibility complex for A can be constructed
purely within linear algebra.
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Theorem 3.5. For each sufficiently regular operator A on X one can construct in
finitely many steps a formally exact complex {Ai}i=0,1,...,N of differential operators
on X , such that A0 = A.

Proof. See [Qui64], [Gol67] or Theorem 3.3.9 in [Tar95]. �

4. Formal solutions to Hans Lewy’s equation

Suppose that the system Au = f has a sufficiently smooth solution u in a neigh-
bourhood of a point p ∈ U . Write

u(x) =
∑
|α|≤s

∂αu(p)
α!

(x− p)α + o(|x− p|s),

f(x) =
∑

|α|≤s−a

∂αf(p)
α!

(x− p)α + o(|x− p|s−a)

and

A =
∑
|β|≤a

( ∑
|α|≤s−a

∂αAβ(p)
α!

(x− p)α + o(|x− p|s−a)
)
∂β

near p. On substituting these expansions into the equality Au = f and equating
the coefficients of the same powers (x − p)α with |α| ≤ s − a on both sides of the
equality we get ∑

|α|≤s−a

∂α(Au)(p)
α!

(x− p)α =
∑

|α|≤s−a

∂αf(p)
α!

(x− p)α,

i.e., js−a
p (Au) = js−a

p f for all s ≥ a.
Since js−aA = h(js−aA) ◦ js, where h(js−aA) is the bundle homomorphism

Js(E)→ Js−a(F ) defined above, we deduce that for the local solvability of Au = f
about a point p it is necessary that the system would possess a formal solution at
p in the sense h(js−aA) js

pu = js−a
p f .

The extreme case s = ∞ corresponds to formal power series solutions at the
point p. Homological algebra gives an efficient tool to examine this, for the ring
of scalar differential operators whose coefficients are formal power series at p is
Noetherian. Write F(p)[D] for this ring. As the coefficients of A are smooth, we
may expand them as formal power series at p, thus specifying A as (`× k) -matrix
with entries in F(p)[D]. This gives rise to a mapping of free finitely generated
F(p)[D] -modules

F(p)[D]k AT

← F(p)[D]`.

As the ring F(p)[D] is Noetherian, we get a finite free resolution

0← M
h0← F(p)[D]k h1← F(p)[D]` h2← F(p)[D]m ← . . . (4.1)

of M = F(p)[D]k/ATF(p)[D]`.
In this way we get an (` × m) -matrix h2 of scalar differential operators with

coefficients being formal power series at p. The transposed matrix B for h2 provides
us with a compatibility operator in the class of formal power series at p. It is clear
that the coefficients of the operator B need not depend continuously on the point
p ∈ X . However, this can be the case even in very involved situations.
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Example 4.1. Consider the operator A of Example 3.3. Obviously, for x ≤ 0 each
formal power series u at p satisfies the equation Au = f , if f vanishes for x ≤ 0.
Since there are no divisors of zero in the ring of formal power series, we deduce that
the solution to Au = f is unique for x > 0. More precisely, given a formal power
series

f(x, z) =
∞∑

j=0

fj(x)zj

at x > 0, choose a smooth function g in a neighbourhood of x, such that
1
j!

g(j)(x) = fj(x)

for all j = 0, 1, . . .. Then the formal power series

u(x, z) =
∞∑

j=0

1
j!

(g

a

)(j)

(x) zj

satisfies Au = f for x > 0. It is clear that the coefficients of u are independent
on the particular choice of g. Hence, we can take as B the formal power series of
any function b ∈ E(R) satisfying b(x) > 0 for x < 0 and b(x) = 0 for x ≥ 0. Note
that the coefficients of u(x, z) need not depend smoothly on x, even if fj(x) do so.
In order that there be a formal power series u with smooth coefficients satisfying
Au = f for x in a neighbourhood of 0, it is necessary and sufficient that each
derivative (g

a

)(j)

(x)

would have finite limit when x→ 0+.

We now turn to the equation of Hans Lewy, see [Lew57]. Let X = R3 = Cz×Rt,
where z = x1 + ıx2 and t = x3. The operator of Hans Lewy is A = ∂̄z + ız∂t.
This operator is known to be sufficiently regular, and its compatibility operator
is B = 0. The inhomogeneous equation Au = f is locally solvable for any real
analytic function f . However, it fails in general to have any local solution if f is
merely C∞.

This shows that the ring E(X )[D] of scalar differential operators with smooth
coefficients is not a good choice for constructing a compatibility operator in the
category of smooth functions. It is conceivable that D -modules may not be the
right tool here.

Fix any x0 = (z0, t0) in X . When using the ring F(x0)[D] we get jx0(B) = 0,
for there are no divisors of zero in this ring.

Write
A = ∂̄z + ı(z − z0)∂t + ız0∂t,

then for any monomial (z − z0)α1(z̄ − z̄0)α2(t− t0)α3 we obtain

A (z − z0)α1(z̄ − z̄0)α2+1(t− t0)α3 = (α2 + 1) (z − z0)α1(z̄ − z̄0)α2(t− t0)α3

+ ıα3 (z − z0)α1+1(z̄ − z̄0)α2+1(t− t0)α3−1

+ ıα3z0 (z − z0)α1(z̄ − z̄0)α2+1(t− t0)α3−1.

(4.2)

If α3 = 0 then the last two terms on the right-hand side of (4.2) vanish, i.e., we
have

A (z − z0)α1(z̄ − z̄0)α2+1 = (α2 + 1) (z − z0)α1(z̄ − z̄0)α2 .
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Using (4.2) and induction in α3 we immediately conclude that for every monomial
(z − z0)α1(z̄ − z̄0)α2(t− t0)α3 there exists a polynomial ℘α(z − z0, z̄ − z̄0, t− t0) of
degree α1 +α2 +2α3 +1, whose coefficients are polynomials with respect to z0 and
rational functions with respect to α, such that

A ℘α(z − z0, z̄ − z̄0, t− t0) = (z − z0)α1(z̄ − z̄0)α2(t− t0)α3 .

On writing this in coordinates x = (x1, x2, x3) we see that for any formal power
series

f(x, z) =
∑

α∈Z3
0

fα(x)zα

at x ∈ R3 there exists a formal power series

u(x, z) =
∑

α∈Z3
0

uα(x)zα

satisfying Au = f . Moreover, the coefficients uα(x) can be chosen to smoothly
depend on x, if the coefficients fα(x) do so. The solution u(x, z) is certainly not
unique, because the jet of any holomorphic function of z independent of t satisfies
Au = 0.

5. Connection on the bundle of formal power series

Let U be a coordinate neighbourhood in X over which the bundles E and F are
trivial, and let x = (x1, . . . , xn) be coordinates in U .

Throughout the section we assume s ∈ N0 ∪ {∞}. In the case s = ∞ we set
s− a =∞ for any finite a.

Any section u of the bundle Js(E) has local representation

u(x, z) =
∑
|α|≤s

uα(x)zα

over U , where (x, z) ∈ U × Cn. By definition, u is smooth if all the coefficients uα

are smooth functions U → Ck for some family {U} covering X (then it is true for
all families {U}).

Our next objective is to introduce first order differential operators ds on X , which
map sections of Js(E) to sections of Js−1(E)⊗Λ1, where Λq := ΛqT ∗X stands for
the bundle of exterior forms of degree 0 ≤ q ≤ n over X . These operators play a
key role in Spencer’s theory and are actually induced by a connection d := d∞ on
the bundle of formal power series with coefficients in E over X . It will cause no
confusion if we suppress in notation the dependence of ds on E, for the genuine
bundle is always clear from context. On the other hand, ds are of universal character
and hardly depend on E.

More precisely, we set

(dsu) (x, z) =
∑

|α|≤s−1

(
duα(x)−

n∑
j=1

(αj + 1)uα+ej (x)dxj

)
zα (5.1)

in local coordinates, where ej is the multi-index of length 1 in Nn
0 whose k th

component is 1, if k = j, and 0 otherwise. If s is finite, then (5.1) actually defines
a global differential operator ds ∈ Diff1(X ; Js(E), Js−1(E) ⊗ Λ1), see [Spe69]. If
s =∞, this is no longer the case, for the bundle J∞(E) is of infinite rank.
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Lemma 5.1. As defined above, d is a connection on the bundle of formal power
series with coefficients in E over X .

Proof. It suffices to show that d fulfills the Leibniz formula d(fu) = df u + fdu for
all u ∈ E(X , J(E)) and f ∈ E(X ). Since this formula is of local character, it suffices
to verify it in each coordinate neighbourhood U in X . This easily follows by using
the explicit formula (5.1). �

A section u ∈ E(U, Js(E)) is said to be flat in U if dsu = 0 in U . It is easily seen
that dsu = 0 in U if and only if

uα(x) =
1
α!

∂αu0(x)

for all x ∈ U and all |α| ≤ s. In other words, each flat section u ∈ E(U, Js(E))
stems from a smooth section u0 ∈ E(U,E) by

u(x, z) = jsu0 (x, z)

=
∑
|α|≤s

∂αu0(x)
α!

zα

for (x, z) ∈ U × Cn.
As usual, for each 0 ≤ q ≤ n, the operator d raises a sequence of first order differ-

ential operators dq on X mapping sections of J(E)⊗Λq to sections of J(E)⊗Λq+1.
The operators dq are uniquely determined by requiring the generalised Leibniz for-
mula

dq(fu) = df u + (−1)qfdu (5.2)

for all u ∈ E(X , J(E)) and f ∈ Ωq(X ).
Actually, for each pair 0 ≤ q ≤ n and s, there exists a first order differential

operator ds,q on X which maps sections of Js(E)⊗Λq to sections of Js−1(E)⊗Λq+1

and satisfies a suitably modified equation (5.2). The operator ds,q is defined locally
in the following way. Each section u ∈ E(X , Js(E) ⊗ Λq) has in U local represen-
tation

u(x, z) =
∑

#I=q

′( ∑
|α|≤s

uI,α(x)zα
)
dxI

for (x, z) ∈ U ×Cn, where uI,α are smooth functions on U with values in Ck. The
prime on the summation symbol means that the sum is over all increasing multi-
indices I = (i1, . . . , iq) of integers 1 ≤ i1 < . . . < iq ≤ n, and dxI = dxi1 ∧ . . .∧dxiq

.
Then we set

(ds,qu) (x, z) =
∑

#I=q

′( ∑
|α|≤s−1

(
duI,α(x)−

n∑
j=1

(αj + 1)uI,α+ej
(x)dxj

)
zα

)
∧ dxI ,

(5.3)
cf. (5.1).

Obviously, ds,0 = ds. Similarly to the exterior derivative we will write ds,q simply
ds also for q > 0, when no confusion can arise.

The elements of
Ωq(X , Js(E)) := E(X , Js(E)⊗ Λq),

will be referred to as differential forms of degree q with coefficients in the bundle
Js(E) on X .
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It is easy to check that

(dsu)(x, z) = πs−1,s d u(x, z − x), if s <∞,
(dsu)(x, z) = d u(x, z − x), if s =∞,

for all u ∈ Ωq(X , Js(E)), the exterior derivative d acting in the variable x. Hence
it follows that ds−1ds = 0 for finite s. For s =∞ we get

dq+1dq = lim
s→∞

ds−1,q+1ds,q

= 0,

meaning that the resulting infinite sum is formal. Assuming s ≥ n we thus arrive
at the complex

0→ E(X , E)
js

→ E(X , Js(E)) ds

→ Ω1(X , Js−1(E)) ds−1

→ . . .
ds−n+1

→ Ωn(X , Js−n(E))→ 0.
(5.4)

Lemma 5.2. Suppose that s ≥ n. As defined above, complex (5.4) is exact at each
step.

Proof. The exactness at step 0 is obvious. Since flat jets stem from smooth sections
of E, the exactness of (5.4) at step 1 is also clear. It remains to prove the exactness
at steps ≥ 2.

Let U be a coordinate neighbourhood in X over which the bundle E is trivial.
We next prove that the complex

E(U, Js(E)) ds

→ Ω1(U, Js−1(E)) ds−1

→ . . .
ds−n+1

→ Ωn(U, Js−n(E))→ 0

is exact at each term Ωq(U, Js−q(E)) for q = 1, . . . , n.
For r = 0, 1, . . ., we denote by Σ r := Σ rT ∗X the r -fold symmetric product

of the cotangent bundle of X . Any section u ∈ Ωq(X , E ⊗ Σ r−q) has in U local
representation

u(x, z) =
∑

#I=q

′( ∑
|α|=r−q

uI,α(x)zα
)
dxI ,

uI,α being smooth functions on U with values in Ck. These bundles naturally occur
in the complex

0→ E(U,E ⊗ Σ r) δ→ Ω1(U,E ⊗ Σ r−1) δ→ . . .
δ→ Ωn(U,E ⊗ Σ r−n)→ 0, (5.5)

where

δu (x, z) =
∑

#I=q

′( ∑
|α|=r−q−1

( n∑
j=1

(αj + 1)uI,α+ej (x)dxj

)
zα

)
∧ dxI

for u ∈ Ωq(U,E ⊗ Σ r−q).
As is noted in [Spe69], δ actually acts as exterior derivative applied in z ∈ Rn

to the form ∑
#I=q

′( ∑
|α|=r−q

uI,α(x)zα
)
dzI ,

hence the complex (5.5) is exact.
We proceed to show that (5.4) is exact over U . Suppose f ∈ Ωq(U, Js−q(E)) is

of the form
f(x, z) =

∑
#I=q

′( ∑
|α|≤s−q

fI,α(x)zα
)
dxI ,
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where 1 ≤ q ≤ n and fI,α are smooth functions on U with values in Ck. For
0 ≤ p ≤ s− q, we introduce

fp(x, z) =
∑

#I=q

′( ∑
|α|=p

fI,α(x)zα
)
dxI .

From the construction (5.3) of ds it follows immediately that dsf = 0 if and only
if dfp − δfp+1 = 0 in U for all p = 0, 1, . . . , s− q − 1. We are looking for a section
u ∈ Ωq−1(U, Js−q+1(E)) satisfying dsu = f in U . Obviously, this is equivalent to
the system

dup − δup+1 = fp,

for 0 ≤ p ≤ s− q, in U , where

up(x, z) =
∑

#I=q−1

′( ∑
|α|=p

uI,α(x)zα
)
dxI .

We may choose {uI,0}#I=q−1 arbitrarily in E(U,E), for instance, uI,0 ≡ 0 in U .
This determines u0.

The above system is thus reduced to the system

δup+1 = dup − fp (5.6)

in U , for p = 0, 1, . . . , s− q. As the complex (5.5) is exact, all we have to check is
that δ applied to the right-hand side of (5.6) is equal to zero, i.e., δ (dup − fp) = 0
in U , whenever p = 0, 1, . . . , s− q.

Now we argue by induction. For p = 0 the equality holds automatically. Assume
that δ (dup − fp) = 0 is fulfilled for some 1 ≤ p < s − q. Then there is a form
up+1 ∈ Ωq−1(U,E ⊗ Σp+1) satisfying δup+1 = dup − fp in U . Using the equality
δd + dδ = 0, we get

δ (dup+1 − fp+1) = −dδup+1 − δfp+1

= −d (dup − fp)− δfp+1

= dfp − δfp+1

= 0,

which completes the induction. We have thus established that the cohomology of
(5.4) over U is zero.

It follows that the complex of sheaves associated to (5.4) is exact at each step.
Hence, it gives a fine resolution of the sheaf E(·, E) over X defined by U 7→ E(U,E)
for open sets U in X . By the abstract de Rham theorem, the cohomology of (5.4) at
Ωq(X , Js−q(E)) is isomorphic to Hq(X , E(·, E)) for all q = 1, . . . , n, see for instance
Theorem 5.2.13 in [Tar95]. Since the sheaf E(·, E) is fine, its global cohomology is
zero at positive steps, see Corollary 5.2.3 ibid. This shows that the cohomology of
(5.4) at steps ≥ 2 is zero, as desired. �

For s ≥ a, the differential operator js−a ◦ A ∈ Diffs(X ;E, Js−a(F )) is called
the (s − a) th prolongation of A. Prolongations of a differential operator A bring
information on all possible differential consequences of the inhomogeneous system
Au = f . We have js−aA = h(js−aA) ◦ js, where h(js−aA) is a bundle homo-
morphism Js(E)→ Js−a(F ) uniquely determined by js−aA. Of course, h(js−aA)
acts on the sections of Js(E) by linear transformations in fibres Js

p(E) smoothly
depending on p ∈ X . In particular, it induces a homomorphism of E(X ) -modules
E(X , Js(E)) → E(X , Js−a(E)), for which we use the same notation. For s = ∞,
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the bundle J∞(E) coincides with the bundle of formal power series with coeffi-
cients in E over X . Thus, h(j∞A) is a homomorphism of infinite rank vector
bundles J(E)→ J(F ) over X .

If u ∈ E(X , Js(E)) has local representation u(x, z) =
∑
|α|≤s

uα(x)zα over U , then

we get

h(js−aA)u (x, z) =
∑

|α|≤s−a

( ∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x)
)
zα (5.7)

for (x, z) ∈ U × Cn. This shows that the bundle homomorphism h(j∞A) is given
by an infinite matrix whose entries are supported below a secondary diagonal de-
termined by the order of A.

Lemma 5.3. For any A ∈ Diffa(X ;E,F ), B ∈ Diffb(X ;F,G) and s ≥ a + b, we
have

h(js−a−b ◦BA) = h(js−a−b ◦B) h(js−a ◦A).

Proof. For finite s the equality is well known, cf. Corollary 1.3.2 in [Tar95]. We
restrict ourselves to s =∞.

Let s ∈ Jp(E), where p ∈ X . Choose a section u ∈ E(X , E), such that j∞p u = s.
By definition,

h(j∞ ◦BA)s = h(j∞ ◦BA)j∞p u

= j∞p (B(Au)).

On the other hand,

j∞p (B(Au)) = h(j∞ ◦B) j∞p (Au)

= h(j∞ ◦B)h(j∞ ◦A) j∞p u

= h(j∞ ◦B)h(j∞ ◦A)s,

as desired. �

In particular, we have du = du− h(j∞d)u for all u ∈ Ωq(X , J(E)), the exterior
derivative acting in x.

Lemma 5.4. For any integers s and q with s− (q + 1) ≥ a, the following diagram
is commutative:

Ωq(X , Js−q(E)) ds−q

→ Ωq+1(X , Js−q−1(E))
| |

h(js−q−aA)⊗I h(js−q−1−aA)⊗I

↓ ↓
Ωq(X , Js−q−a(F )) ds−q−a

→ Ωq+1(X , Js−q−1−a(F ))

Proof. Since the mappings entering into the diagram are local, it suffices to prove
the commutativity of the diagram in any coordinate neighbourhood U in X over
which both E and F are trivial. Then we can use local representations of ds and
h(js−aA).
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Let u ∈ Ωq(X , Js−q(E)). Then(
h(js−q−1−aA)⊗ I

)
ds−qu (x, z) =

∑
#I=q

′ ∑
|α|≤s−q−1−a

zα

×
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
duI,γ(x)−

n∑
j=1

(γj + 1)uI,γ+ej
(x)dxj

)
∧ dxI

(5.8)

for all (x, z) ∈ U × Cn. Similarly,

ds−q−a
(
h(js−q−aA)⊗ I

)
u (x, z) =

∑
#I=q

′ ∑
|α|≤s−q−1−a

zα

×
(
d(h(js−q−aA)uI)α(x)−

n∑
j=1

(αj + 1)(h(js−q−aA)uI)α+ej
(x)dxj

)
∧ dxI ,

(5.9)

where uI(x, z) =
∑

|α|≤s−q

uI,α(x)zα.

An easy computation shows that

(h(js−q−aA)uI)α+ej (x) =
∑
|β|≤a

β−ej≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

(γ + ej)!
(γ + ej − β)!

uI,γ+ej (x)

and

d(h(js−q−aA)uI)α(x)

=
n∑

j=1

∑
|β|≤a

β−ej≤γ≤α+β−ej

∂α+β−γAβ(x)
(α + β − γ − ej)!

(γ + ej)!
(γ + ej − β)!

uI,γ+ej
(x)dxj

+
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

duI,γ(x).

Using the fact that αj + βj = γj + 1, provided γ = α + β − ej , we immediately
obtain

d(h(js−q−aA)uI)α(x)−
n∑

j=1

(αj + 1)(h(js−q−aA)uI)α+ej
(x)dxj

=
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
duI,γ(x)−

n∑
j=1

(γj + 1)uI,γ+ej (x)dxj

)

for x ∈ U .
Hence it follows that the right-hand sides of (5.8) and (5.9) coincide, which

establishes the lemma. �
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6. Spencer’s complex

Definition 6.1. A differential operator A ∈ Diffa(X ;E,F ) is said to be formally
integrable if:

1) The operator A is sufficiently regular.
2) For each p ∈ X , the map πs−1,s : Rs(p) → Rs−1(p) is surjective whenever

s > a.

Formal integrability of an operator A of order a means that, for any s > a,
all differential consequences of order s of the system Au = 0 (i.e., consequences
extracted by means of differentiations of any orders, equating mixed derivatives,
and application of linear algebra for each x ∈ X ) may be obtained by way of
differentiation of order no more than s − a, and application of linear algebra. A
sufficiently regular differential operator need not be formally integrable, see for
instance Example 1.3.17 in [Tar95]. However, each sufficiently regular differential
operator can be transformed to a formally integrable operator by using homotopy
equivalence.

Two differential operators AE of type E0 → E1 and AF of type F 0 → F 1 on
X are called equivalent if there exist differential operators Mi of type F i → Ei

and M−1
i of type Ei → F i, for i = 0, 1, and differential operators hE

1 of type
E1 → E0 and hF

1 of type F 1 → F 0, with the property that the following conditions
are fulfilled:

1) M1AF −AEM0 = 0, 2) M−1
0 M0 = I − hF

1 AF ,
M−1

1 AE −AF M−1
0 = 0; M0M

−1
0 = I − hE

1 AE ,

cf. the diagram

E(X , F 0)
AF

�
hF

1

E(X , F 1)yM0

xM−1
0

yM1

xM1
−1

E(X , E0)
AE

�
hE

1

E(X , E1).

(6.1)

The following lemma clarifies the role of the concept of homotopy equivalence in
constructing a compatibility operator.

Lemma 6.2. Let AE and AF be equivalent differential operators on X . If for AF

there exists a compatibility complex then there exists a compatibility complex for
AE, too.

Proof. See for instance Proposition 1.2.7 in [Tar95]. �

Our next objective is to explain how to transform any sufficiently regular differ-
ential operator to a formally integrable operator.

Lemma 6.3. Let A ∈ Diffa(X ;E,F ) be a sufficiently regular operator. Then there
is a differential operator D, which can be constructed in finitely many steps, such
that:

1) The operator DA is formally integrable.
2) A section u ∈ E(U,E) satisfies DAu = 0 in U if and only if Au = 0 in U .
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3) The operators A and DA are equivalent.

Proof. A formally integrable differential operator Ã equivalent to A can be con-
structed from A by completely writing differential consequences of the equation
Au = 0. The sufficient regularity of A guarantees that this procedure terminates in
finitely many steps. The operator Ã obtained this way has the form Ã = (I⊕D)◦A
for some differential operator D. Obviously, local solutions to the homogeneous
equations Ãu = 0 and Au = 0 are the same. Moreover, a trivial verification shows
that Ã and A are equivalent, see for instance Example 1.2.6 in [Tar95]. �

For s ≥ a and p ∈ X , we denote by σs(p) the kernel of the bundle homomorphism
πs−1,s : Rs(p)→ Rs−1(p). If the operator A is sufficiently regular and s > a, then
σs is a vector bundle over X .

Often σs is called the symbolic bundle of the (s − a) th prolongation js−a ◦ A
of A because it may be identified with the kernel of the bundle homomorphism
E⊗Σ s → E⊗Σ s−a induced by h(js−aA). One can easily verify that the restriction
of the formal exterior derivative operator δ to σs−q ⊗ Λq maps to σs−q−1 ⊗ Λq+1

for any s and q with s − q − 1 ≥ a. This gives rise to the complex of bundle
homomorphisms

0→ σs δ→ σs−1 ⊗ Λ1 δ→ σs−2 ⊗ Λ2 δ→ . . .
δ→ σs−n ⊗ Λn → 0 (6.2)

that is known as δ -complex of Spencer. It is not necessarily exact at all steps but
is so at the steps 0 and 1.

One of possible definitions of involutive differential operators reads that a differ-
ential operator A is called involutive if the complex (6.2) is exact for all s ≥ a.

Theorem 6.4. For each sufficiently regular differential operator A on X there
exists an integer s0 ≥ a, such that the complex (6.2) is exact for all s ≥ s0.

Proof. See for instance 4.1 of [Pom78, Ch. 3]. �

For a vector bundle E over X it will be convenient to denote by SE the sheaf
of germs of differentiable sections of E. Thus, SE(U) = E(U,E) for each open set
U ⊂ X .

If A ∈ Diffa(X ;E,F ) is sufficiently regular then we have a suitable compatibility
complex of sheaves

SE
A→ SF

B→ SG, (6.3)
the pair {A,B} being sometimes referred to as an overdetermined operator. The
basic question of the existence theory of overdetermined systems consists of finding
reasonable conditions on A which guarantee the exactness of (6.3). This means, for
any point p ∈ X and any f ∈ E(U,F ) satisfying Bf = 0 in a neighbourhood U of
p, there should exist a possibly smaller neighbourhood V ⊂ U of p and a section
u ∈ E(V,E), such that Au = f in V . The well-known examples of Lewy [Lew57]
and Mizohata [Miz61] show that the sufficient regularity of A is not sufficient for
the exactness of (6.3).

To study the cohomology of (6.3), Spencer introduced the following complex,
see his survey [Spe69]. By Lemma 5.4, the operator ds−q maps Ωq(U,Rs−q) to
Ωq+1(U,Rs−q−1) for any open set U ⊂ X , provided that s − (q + 1) ≥ a. Since
ds−q has zero curvature, we arrive at the complex of sheaves

0→ Sker A
js

→ SRs
ds

→ SRs−1⊗Λ1
ds−1

→ . . .
ds−n+1

→ SRs−n⊗Λn → 0 (6.4)



18 A. SHLAPUNOV AND N. TARKHANOV

over X , Sker A being the sheaf of germs of smooth solutions to Au = 0 over X ,
cf. (5.4). This differential complex is called the first sequence of Spencer for the
operator A.

Lemma 6.5. The cohomology of (6.4) is independent of s, provided s ≥ s0 +n−1,
where s0 is the number from Theorem 6.4.

Proof. See [Spe69, p. 196]. �

We say that s ∈ N0 is in the stable range if it is large enough for the cohomology
of (6.4) to be stable.

Theorem 6.6. Let A ∈ Diffa(X ;E,F ) be sufficiently regular and {Ai}i=0,1,... be
a formally exact complex of differential operators on X with A0 = A. Then the
cohomologies of the complexes

0 → Sker A(X )
js

→ E(X ,Rs) ds

→ Ω1(X ,Rs−1) ds−1

→ . . .
ds−n+1

→ Ωn(X ,Rs−n) → 0,

0 → Sker A(X ) ↪→→ E(X , E0) A0

→ E(X , E1) A1

→ . . .
An−1

→ E(X , En) → . . .

are the same, if s ∈ N0 is in the stable range.

As is mentioned in [Spe69], this result is contained in the unpublished thesis of
Quillen [Qui64].

Proof. The relationship between the complexes in question is expressed by the
commutative diagram

0 0 0
↓ ↓ ↓

0 → Sker A(X)
js

→ E(X ,Rs) ds

→ Ω1(X ,Rs−1) ds−1

→ . . .
| | |

↪→ ↪→ ↪→

↓ ↓ ↓
0 → E(X , E0)

js

→ E(X , Js(E0)) ds

→ Ω1(X , Js−1(E0)) ds−1

→ . . .
| | |

A0 h(js−a0A0) h(js−1−a0A0)⊗I

↓ ↓ ↓

0 → E(X , E1)
js−a0

→ E(X , Js−a0(E1)) ds−a0
→ Ω1(X , Js−1−a0(E1)) ds−1−a0

→ . . .
| | |

A1 h(js−a0−a1A1) h(js−1−a0−a1A1)⊗I

↓ ↓ ↓
. . . . . . . . .

(6.5)
where s is large. Since the complex {Ai}i=0,1,... is formally exact and the first
Spencer sequence for the trivial operator is exact, the diagram is exact except
possibly for the first row and first column. Thus by diagram chasing the cohomol-
ogy of the first column is the same as the stable cohomology of the first Spencer
sequence. �

We will not discuss here the so-called second sequence of Spencer which has
better formal properties than the first one, see [Spe69].
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7. Normalised operators

In this section we describe an explicit local construction of a compatibility oper-
ator for A. In this way we also obtain additional information on the local structure
of sufficiently regular operators.

Definition 7.1. A differential operator A ∈ Diffa(X ;E,F ) is said to be normalised
if:

1) The order of A is equal to 1, i.e., a = 1.
2) The operator A is formally integrable.
3) The operator A is involutive.
4) The principal symbol map σ(A) : E ⊗ T ∗X → F is surjective.

The principal symbol map is defined by σ(A)u = h(A)u for u ∈ E⊗T ∗X , where
E ⊗ T ∗X is identified within J1(E).

The first three conditions have already been discussed. The last condition 4)
actually means that among the equations Au = 0 there are no purely algebraic
equations for components u1, . . . , uk of u. If such equations occur, one can exclude
them by canceling a number of the functions u1, . . . , uk. Obviously, the transformed
operator is equivalent to the initial one.

Theorem 7.2. Each sufficiently regular operator A ∈ Diffa(X ;E,F ) on X can
be transformed in finitely many steps within the framework of differentiations and
linear algebra in fibers of the bundles into an equivalent normalised differential
operator.

Proof. See Theorem 1.3.24 of [Tar95]. �

Two complexes of differential operators Ai
E of type Ei → Ei+1 and Ai

F of type
F i → F i+1 on X are called homotopy equivalent if there exist differential operators
Mi of type F i → Ei and M−1

i of type Ei → F i, for i = 0, 1, . . ., and differential
operators hE

i of type Ei → Ei−1 and hF
i of type F i → F i−1, for i = 1, 2, . . ., such

that:

1) Mi+1A
i
F −Ai

EMi = 0, 2) M−1
i Mi = I − hF

i+1A
i
F −Ai−1

F hF
i ,

M−1
i+1A

i
E −Ai

F M−1
i = 0; MiM

−1
i = I − hE

i+1A
i
E −Ai−1

E hE
i

for i = 0, 1, . . ., cf. the diagram

E(X , F i−1)
Ai−1

F

�
hF

i

E(X , F i)
Ai

F

�
hF

i+1

E(X , F i+1)yMi−1

xM−1
i−1

yMi

xM−1
i

yMi+1

xM−1
i+1

E(X , Ei−1)
Ai−1

E

�
hE

i

E(X , Ei)
Ai

E

�
hE

i+1

E(X , Ei+1).

(7.1)

Lemma 7.3. Let {Ai
E}i=0,1,...,N and {Ai

F }i=0,1,...,N be compatibility complexes for
differential operators AE and AF , respectively, i.e., A0

E = AE and A0
F = AF .

Then, if the operators AE and AF are equivalent, the compatibility complexes are
homotopy equivalent.
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Proof. This is actually a result of homological algebra. For a proof, see for instance
Proposition 1.2.8 of [Tar95]. �

Let A ∈ Diff1(X ;E,F ) be a sufficiently regular first order operator. We choose a
coordinate neighbourhood U in X , over which the bundles E and F are trivial, with
coordinates x = (x1, . . . , xn). The coordinate xn is assumed to be chosen so that
the derivative ∂n appears in the local expression of A. Then one can decompose
the fibers E and F over U into direct sums Ck = Ck1 ⊕Ck2 and C` = C`1 ⊕C`2 in
such a way that k1 = `2 and, after a suitable isomorphism between Ck1 and C`2 ,
the operator A is written in the form

Au =
(

M (1) M (2)

∂n + T (1) T (2)

)(
u(1)

u(2)

)
, (7.2)

where the differential operators M (1), M (2) and T (1) do not contain the derivative
∂n.

The following definition is of crucial importance in the local construction of a
compatibility operator.

Definition 7.4. Commutativity relations are said to hold in (7.2) if, for some
differential operator S(1) in U which does not contain differentiation with respect
to xn, we have

M (1)
(
∂n + T (1)

)
=

(
∂n + S(1)

)
M (1),

M (1)T (2) =
(
∂n + S(1)

)
M (2) (7.3)

in U .

The importance of commutativity relations was first understood by Guillemin
[Gui68].

Lemma 7.5. Let commutativity relations hold in (7.2), and N be a compatibility
operator for (M (1),M (2)). Then

Bf =
( N 0

∂n + S(1) −M (1)

)(
f (1)

f (2)

)
, (7.4)

is a compatibility operator for A in U , where f = f (1) ⊕ f (2) is a decomposition of
f ∈ E(U)` in accordance with the decomposition of F .

Proof. A trivial verification shows that BA = 0 in U . The proof of the fact that B
is a “smallest” operator with this property is cumbersome. We refer the reader to
[Sam81]. �

In order to possess a local representation (7.2) with commutativity relations
fulfilled, the differential operator A should be of generic form. Let us discuss this
in more details. A covector ξ0 ∈ T ∗pX is said to be quasiregular for A at a point
p ∈ X , if

dim kerσ(A)(p, ξ0) = min
ξ∈T∗pX\{0}

dim kerσ(A)(p, ξ).

For instance, each non-characteristic covector ξ0 ∈ T ∗pX for a differential operator
A is quasiregular.

Lemma 7.6. Let A be an involutive formally integrable first order differential op-
erator and x = (x1, . . . , xn) a coordinate system in U , such that the covector dxn

is quasiregular for A at each point p ∈ U . Then commutativity relations hold in
(7.2).
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Proof. See [Sam81]. �

Assuming the coefficients of the operator S(1) to be undetermined, we obtain
from (7.3) a system of linear algebraic equations for the coefficients.

In this way we actually get an inductive procedure for constructing a compati-
bility operator.

Theorem 7.7. Let A be a normalised differential operator of type E → F on
X , and U ⊂ X be a coordinate neighbourhood over which the bundles E and F
are trivial. Then, for an everywhere dense open set of coordinate systems x =
(x1, . . . , xn) in U :

1) The bundles E |U and F |U may be decomposed into direct sums

E |U = E(1) ⊕ . . .⊕ E(n+1),
F |U = F (1) ⊕ . . .⊕ F (n)

in such a way that A = A1 ⊕ . . .⊕An in U , where

Aju = ∂j

(
u(1) ⊕ . . .⊕ u(j)

)
+ T

(1)
j (x, ∂1, . . . , ∂j−1)

(
u(1) ⊕ . . .⊕ u(j)

)
+ T

(2)
j (x, ∂1, . . . , ∂j)

(
u(j+1) ⊕ . . .⊕ u(n+1)

)
;

2) For every 1 ≤ j ≤ n, the operator A1⊕ . . .⊕Aj (which contains the variables
(xj+1, . . . , xn) as parameters) is normalised, and the covector dxj is quasiregular
for it at each point p ∈ U .

Proof. See [Sam81]. �

The representation of a normalised operator A, as in 1), 2) of Theorem 7.7, is
called the normal form of (E.) Cartan.

Corollary 7.8. For each normalised differential operator A on X one can construct
in a finitely many steps a formally exact complex {Ai}i=0,1,...,N of normalised dif-
ferential operators on X , such that A0 = A.

Proof. See [Sam81]. �

8. Overdetermined systems of ODE’s

Consider a first order system of ordinary differential operators on an open interval
X ⊂ R,

a1,1∂u1 + . . . + a1,k∂uk + b1,1u1 + . . . + b1,kuk = f1,
. . . . . .

a`,1∂u1 + . . . + a`,k∂uk + b`,1u1 + . . . + b`,kuk = f`,
(8.1)

where ai,j and bi,j are (`× k) -matrices of differentiable functions on X , and fi an
` -column of differentiable functions on X .

Our goal is to find conditions on the right-hand side fi both necessary and
sufficient for the local solvability of (8.1). To this end, we pick a point x0 ∈ X and
look for a solution uj to (8.1) in a neighbourhood of x0. We now apply the Gauß
algorithm to (8.1).
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Keeping the coefficients at x0 we first apply the Gauß algorithm to the variables
∂u1, . . . , ∂uk, obtaining

a1,1∂u1 + . . . + a1,m∂um + . . . + a1,k∂uk + b1,1u1 + . . . + b1,kuk = f1,
. . . . . .

am,m∂um + . . . + am,k∂uk + bm,1u1 + . . . + bm,kuk = fm,
bm+1,1u1 + . . . + bm+1,kuk = fm+1,

. . .
b`,1u1 + . . . + b`,kuk = f`

(8.2)
with some new coefficients ai,j and bi,j , the right-hand side fi, and possibly rein-
dexed unknown functions uj . Note that m just amounts to the rank of the matrix
ai,j at x0, i.e.,

m = rank (ai,j(x0)) i=1,...,`
j=1,...,k

. (8.3)

We now proceed by applying the Gauß algorithm to the variables u1, . . . , uk in the
last ` −m equations (8.2). Since the Gauß algorithm includes possible reindexing
of the variables, the triangle structure of the first m equations may be violated.
However, the property (8.3) obviously survives under such transformations. We
thus get

a1,1∂u1 + . . .+ a1,k∂uk + b1,1u1 + . . .+ b1,nun + . . .+ b1,kuk =f1,
. . . . . . . . .

am,1∂u1 + . . .+am,k∂uk + bm,1u1 + . . .+ bm,nun + . . .+ bm,kuk =fm,
bm+1,1u1 + . . .+ bm+1,nun + . . .+ bm+1,kuk =fm+1,

. . .
bm+n,nun + . . .+bm+n,kuk =fm+n,

0=fm+n+1,
...

0=f`,
(8.4)

with some new coefficients ai,j and bi,j , the right-hand side fi, possibly reindexed
unknown functions uj , and

n = rank (bi,j(x0)) i=m+1,...,`
j=1,...,k

. (8.5)

Obviously, the ranks m and n do not depend on each other, for we can start
with a system (8.2) of arbitrary form. Both m and n are ≤ k and m + n ≤ `.

From (8.4) we readily deduce that for the local solvability of (8.1) near x0 it is
necessary that

fm+n+1(x0) = 0,
...

f`(x0) = 0.
(8.6)

The case n = 0 is not excluded. In this case the conditions fm+1 = . . . = f` = 0
near x0 are necessary and sufficient for the existence of a solution to (8.1) in a
neighbourhood of x0, provided that a non-degeneracy conditions for the coefficients
is fulfilled. Indeed, it is sufficient to fix arbitrary um+1, . . . , uk and to solve the
initial problem for the first m equations in (8.2) with data at x0, which is possible
by the Peano theorem.
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If n ≥ 1, the task is to solve the subsystem of (8.4) that contains the unknown
functions u1, . . . , uk only. This gives

u1 = fm+1/bm+1,1 + c1,n+1un+1 + . . .+ c1,kuk,
. . .

un =fm+n/bm+n,n +cn,n+1un+1 + . . .+cn,kuk,
(8.7)

and so the number of unknown functions is diminished. Substituting (8.7) into the
first m equations of (8.4) yields

a1,n+1∂un+1 + . . . + a1,k∂uk + b1,n+1un+1 + . . . + b1,kuk = a1(x0, ∂)f,
. . . . . .

am,n+1∂un+1 + . . . + am,k∂uk + bm,n+1un+1 + . . . + bm,kuk = am(x0, ∂)f,
(8.8)

where

ai(x0, ∂)f = fi −
n∑

j=1

ai,j∂ (fm+j/bm+j,j)−
n∑

j=1

bi,j (fm+j/bm+j,j)

for i = 1, . . . ,m.
The system (8.8) is actually of the same form as (8.1), but the number of un-

known functions in (8.8) is n less than that in (8.1). Moreover, the right-hand side
of (8.8) contains the derivatives of f1, . . . , fm+n. Hence, we can apply the Gauß
algorithm once again, thus obtaining necessary conditions for solvability of (8.8) in
the form

ao+p+1f (x0) = 0,
...

amf (x0) = 0
(8.9)

along with a new system of the form (8.1) containing a smaller number of unknown
functions.

This process terminates giving conditions on the right-hand side f of (8.1) which
are necessary and sufficient for the solvability of this system in a neighbourhood of
x0 ∈ X . By (8.6) and (8.9), they are of the form

A0f = 0,
A1f = 0,

...
AQf = 0,

(8.10)

where Ai is a matrix of linear differential operator of order i near x0. The construc-
tion shows that Ai contains mi−1 − (mi + ni) rows and ` columns, with m−1 = `.
Thus, (8.10) contains ` − n0 − . . . − nQ −mQ equations, which suggests that the
compatibility operator for this system is zero. Note that the order of (8.10) does
not exceed `− 2.

It remains to make explicit the non-degeneracy condition for the coefficients of
(8.1) which is used in the construction. We started by applying the Gauß algo-
rithm to the matrix (ai,j) at x0 obtaining m linearly independent rows. Since
the coefficients ai,j are continuous functions, the rang of the matrix is a lower
semicontinuous function. Hence there is a neighbourhood U of x0, such that
rank(ai,j(x)) ≥ rank(ai,j(x0)) for all x ∈ U . If there is a point x ∈ U , such
that rank(ai,j(x)) > rank(ai,j(x0)), then the Gauß algorithm at x gives more than
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m linearly independent rows. However, these destroyed at the point x0, thus re-
sulting in singularities of the resolution operator. To avoid such a situation which
should require special study we assume that the rang of (ai,j) is constant in a
neighbourhood of x0, i.e.,

m = rank (ai,j(x)) i=1,...,`
j=1,...,k

. (8.11)

for all x ∈ U , cf. (8.3).
The same remains true concerning the Gauß algorithm applied to the matrix

(bi,j) i=m+1,...,`
j=1,...,k

. We require

n = rank (bi,j(x)) i=m+1,...,`
j=1,...,k

(8.12)

for all x ∈ U , otherwise we don’t get any regular resolution operator on all of U .
The question arises whether (8.12) can be formulated in a more invariant way

which is independent of the splitting of (bi,j) caused by the transformation of (ai,j).
The answer seems to be negative, i.e., in these terms the non-degeneracy condition
cannot be improved.

The same reasoning applies to (8.8), where the matrix (ai,j) is constructed from
the genuine matrices (ai,j) and (bi,j) of (8.1) by linear algebra. On the other hand,
the matrix (bi,j) in (8.8) is constructed not only from the elements of matrices (ai,j)
and (bi,j) in (8.1), but also from their derivatives. The matrix (bi,j) occurring this
way at the last step is constructed from the derivatives of the genuine matrices
(ai,j) and (bi,j) up to at most order l − 1.

Summarising, we conclude that the non-degeneracy condition in question for
the coefficients of (8.1) consists of constant rank assumptions for some matrices
explicitly constructed from the coefficients of the system (8.1) and their derivatives
up to order l − 1.

9. A formal Cauchy-Kovalevskaya theorem

In this section we discuss a version of the Cauchy-Kovalevskaya theorem in the
class of smooth sections of jet bundles over X . For this purpose, given a multi-
index α = (α1, . . . , αn), we set α′ = (α1, . . . , αn−1). This enables us to write the
components of jets as uα = uα′,αn

.

Theorem 9.1. Suppose rank E = rankF , A(0,a) = I and s ∈ N0 ∪ {∞} satisfies
s ≥ a. Then, given any

f ∈ E(U, Js−a(F )),
u(j) ∈ E(U, Js−j(E)), j = 0, 1, . . . , a− 1,

there exists a unique u ∈ E(U, Js(E)) satisfying

h(js−aA)u (x, z) = f(x, z),
h(js−j∂j

n)u (x, (z′, 0)) = u(j)(x, (z′, 0)), j = 0, 1, . . . , a− 1,
(9.1)

for all (x, z) ∈ U × Cn.
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Proof. Fix x ∈ U . Using (5.7) we conclude that (9.1) is equivalent to the system of
linear algebraic equations

A(0,a)(x)(αn+a)uα+aen
(x) +

∑
|β|≤a

β 6=aen
β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x) = fα(x),

u(α′,j)(x) = u
(j)
(α′,0)(x),

(9.2)
for |α| ≤ s− a and for j = 0, 1, . . . , a− 1 and |α′| ≤ s− j.

We now argue by induction in αn ∈ N0. Indeed, the second part of equations
in (9.2) implies readily that the coefficients u(α′,j) are uniquely determined for all
j = 0, 1, . . . , a− 1 and |α′| ≤ s− j. By the very setting, these coefficients belong to
E(E,U).

Let r be an integer with a ≤ r < s. Suppose that all the coefficients u(α′,j) with
0 ≤ j ≤ r and |α′| ≤ s − j are uniquely defined and belong to E(U,E). Then the
first equations in (9.2) implies that

u(α′,r+1)(x) =
1

r + 1

(
f(α′,r+1−a)(x)−

∑
|β|≤a

β 6=aen
β≤γ≤(α′,r+1−a)+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x)
)

(9.3)
for all αn = r + 1− a and |α′| ≤ s− (r + 1− a).

It is clear that γn ≤ r + 1 − a + βn ≤ r on the right-hand side of (9.3), i.e.,
all the coefficients uγ are already uniquely determined any belong to E(U,E) by
assumption. Therefore, the coefficients u(α′,r+1) with |α′| ≤ s− (r+1) are uniquely
defined, too, and belong to E(U,E).

Thus, we have proved that there exists a unique u ∈ E(U, Js(E)) satisfying (9.2)
for all x ∈ U , as desired. �

For an increasing multi-index J = (j1, . . . , jk) with 1 ≤ j1 < . . . < jm ≤ n, we
choose a group of variables x(J) = (xj1 , . . . , xjm). Write ds

x(J) for the “connection”
acting in x(J), i.e.,(

ds
x(J)u

)
(x, z) =

∑
|α|≤s−1

( ∑
j∈J

(
∂xj uα(x)− (αj + 1)uα+ej (x)

)
dxj

)
zα

cf. (5.1).

Lemma 9.2. Under the hypothesis of Theorem 9.1, if moreover n 6∈ J and

ds−a
x(J)f = 0,

ds−j
x(J)u

(j) = 0, j = 0, 1, . . . , a− 1,

in U , then ds
x(J)u = 0 in U .

Proof. Since n 6∈ J , Lemma 5.4 yields(
h(js−1−aA)⊗ I

)
ds

x(J)u (x, z) = ds−a
x(J)h(js−aA)u (x, z)

= ds−a
x(J)f (x, z)

= 0
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and (
h(js−1−j∂j

n)⊗ I
)
ds

x(J)u (x, (z′, 0)) = ds−j
x(J)h(js−j∂j

n)u (x, (z′, 0))

= ds−j
x(J)u

(j) (x, (z′, 0))
= 0

for all j = 0, 1, . . . , a − 1. Using Theorem 9.1 we deduce that ds
x(J)u = 0 in U , as

desired. �

As defined above, the actions of A and h(j∞A)u on sections of the formal series
bundle J(E) ∼= J∞(E) coincide. Hence we will write h(j∞A) simply A when no
confusion can arise.

Lemma 9.3. Let ` ≥ k and rank A(0,a)(x) = k for all x ∈ U . If u ∈ E(U, J∞(E))
satisfies Au = 0 and u(α′,j) = 0 for all α′ ∈ Nn−1

0 and 0 ≤ j ≤ a− 1, then u = 0.

Proof. From h(j∞A)u = 0 we conclude that∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x) = 0 (9.4)

in U for all α ∈ Nn
0 .

We argue by induction with respect to αn ∈ N0. Setting αn = 0 in (9.4) yields
β ≤ γ ≤ (α′, 0) + β whence γn = βn. Since |β| ≤ a, we get γn ≤ a. By assumption,
u(γ′,j) = 0 for all γ′ and 0 ≤ j ≤ a − 1. Hence it follows for all multi-indices
α′ ∈ Nn−1

0 that ∑
γ′≤α′

∂(α′−γ′,0)A(0,a)(x)
(α′ − γ′)!

a!u(γ′,a)(x) = 0

in U .
Substituting α′ = 0 into this equality gives A(0,a)(x)u(0,a)(x) = 0 at each point

x ∈ U . Since the rank of A(0,a) is equal to k in U , we conclude that u(0,a) vanishes
in U . Substituting α′ = e′j for 1 ≤ j ≤ n − 1 yields A(0,a)(x)u(α′,a)(x) = 0 for all
x ∈ U , and so u(α′,a) = 0 in U for all α′ ∈ Nn−1

0 with |α′| = 1, and so on. We
can now proceed in this manner obtaining u(α′,a) = 0 in U for all multi-indices
α′ ∈ Nn−1

0 .
If now u(γ′,j) = 0 for all γ′ and 0 ≤ j ≤ s, where s ≥ a, we apply the same

reasoning again, with αn = 0 replaced by αn = s− (a− 1), to obtain u(α′,s+1) = 0
in U for all multi-indices α′ ∈ Nn−1

0 .
We have thus proved that uα = 0 for all multi-indices α ∈ Nn

0 , i.e., u = 0 in U ,
as desired.

�

10. Cohomology of formal power series

Throughout this section we assume that A ∈ Diffa(X ;E,F ) is a sufficiently
regular operator on X .

Lemma 10.1. Let AE and AF be equivalent differential operators of type E0 → E1

and F 0 → F 1 on X , respectively, and BE and BF be their compatibility operators
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of type E1 → E2 and F 1 → F 2. Then the complexes

E(X , J(E0)) AE→ E(X , J(E1)) BE→ E(X , J(E2))
E(X , J(F 0)) AF→ E(X , J(F 1)) BF→ E(X , J(F 2))

are homotopy equivalent.

Proof. By Lemma 7.3, the complexes {AE , BE} and {AF , BF } are homotopy equiv-
alent. This means, there exist differential operators Mi of type F i → Ei and M−1

i

of type Ei → F i, for i = 0, 1, 2, and differential operators hE
i of type Ei → Ei−1

and hF
i of type F i → F i−1, for i = 1, 2, with the property that the following

conditions are fulfilled:

1) Mi+1A
i
F −Ai

EMi = 0, 2) M−1
i Mi = I − hF

i+1A
i
F −Ai−1

F hF
i ,

M−1
i+1A

i
E −Ai

F M−1
i = 0; MiM

−1
i = I − hE

i+1A
i
E −Ai−1

E hE
i

for i = 0, 1, where A0
E = AE , A1

E = BE and A0
F = AF , A1

F = BF . We now apply
Lemma 5.3 to obtain

1) h(j∞Mi+1)h(j∞Ai
F )− h(j∞Ai

E)h(j∞Mi) = 0,
h(j∞M−1

i+1)h(j∞Ai
E)− h(j∞Ai

F )h(j∞M−1
i ) = 0;

2) h(j∞M−1
i )h(j∞Mi) = I − h(j∞hF

i+1)h(j∞Ai
F )− h(j∞Ai−1

F )h(j∞hF
i ),

h(j∞Mi)h(j∞M−1
i ) = I − h(j∞hE

i+1)h(j∞Ai
E)− h(j∞Ai−1

E )h(j∞hE
i )

for i = 0, 1. This shows immediately that the complexes of bundle homomorphisms
{h(j∞AE), h(j∞BE)} and {h(j∞AF ), h(j∞BF )} are homotopy equivalent, which
is the desired conclusion. �

In particular, both the complexes have the same cohomology, see for instance
Corollary 1.1.14 in [Tar95].

We next extend Theorem 6.6 to the case s = ∞. The proof given above does
not go in the case s =∞, for in no way it is obvious that the columns in (6.5) are
exact.

Theorem 10.2. Let A be a sufficiently regular differential operator on X and B a
compatibility operator for A. Then, if U is sufficiently small, for each formal power
series f ∈ E(U, J(F )) satisfying Bf = 0 in U there exists a formal power series
u ∈ E(U, J(E)) with Au = f .

Proof. In view of Theorem 7.2 and Lemmas 7.3 and 10.1 we may assume without
loss of generality that:

1) U is a coordinate neighbourhood in X over which the bundles E and F are
trivial.

2) A is a normalised operator of the form (7.2).
3) Commutativity relations hold in (7.2) for coordinates x = (x1, . . . , xn) in

U .
4) The compatibility operator B for A is given by (7.4).

Write

A =
n∑

j=1

Aj(x)∂j + A0(x),
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for x ∈ U . We now invoke induction in m ∈ {1, . . . , n}, the number of non-zero
coefficients Aj(x). We can assume, by renumbering the coefficients if necessary,
that the non-zero coefficients are An−m+1(x), . . . , An(x).

If m = 1, then we argue as follows. By Definition 7.1, the system Au = 0 does
not contain purely algebraic relations between components (u1, . . . , uk) of u. More
precisely, A has the form

Au =
(
∂n + T (1)(x)

)
u(1) + T (2)(x, ∂n)u(2)

for u ∈ E(U,E), cf. (7.2).
Since both M (1) and M (2) vanish for m = 1, we see that B = 0 in this case.

Hence, the desired result follows immediately from Theorem 9.1. Indeed, choose
u(2) ∈ E(U, J(Ck2)) and the data u

(1,0)
α′ ∈ E(U, Ck1), for α′ ∈ Nn−1

0 , in an arbi-
trary way. Then we apply Theorem 9.1 to the operator D = ∂n + T (1)(x), when
considering the Cauchy problem

h(j∞D)u(1) (x, z) = f(x, z)− h(j∞T (2))u(2) (x, z),
u

(1)
(α′,0)(x) = u

(1,0)
α′ (x), α′ ∈ Nn−1

0 ,

for x ∈ U , cf. (9.1). As a result we get a unique solution u(1) ∈ E(U, J(Ck1)) of
this problem. By the very construction, u = u(1) ⊕ u(2) belongs to E(U, J(E)) and
satisfies Au = f .

For m > 1, the operator M = (M (1),M (2)) of (7.2) contains the derivatives
in xn−m+1, . . . , xn−1 only. The inductive hypothesis allows us to assume that the
complex {M,N} is exact on the level of formal power series over U . More pre-
cisely, let f ∈ E(U, J(F )) satisfy h(j∞B)f = 0. When writing f = f (1) ⊕ f (2)

with components f (i) ∈ E(U, J(C`i)), i = 1, 2, we obtain h(j∞N)f (1) = 0 in U .
Hence, there exists a formal power series v ∈ E(U, J(E)) with the property that
h(j∞M)v = f (1).

We now write v = v(1) ⊕ v(2) in accordance with the bundle decomposition
Ep
∼= Ck1 ⊕ Ck2 over U . Denote by D the differential operator in the lower left

corner of A, i.e.,

D = ∂n + T (1)(x, ∂n−m+1, . . . , ∂n−1).

By Theorem 9.1, there is a unique formal power series u(1) ∈ E(U, J(Ck1)) solving
the Cauchy problem

h(j∞D)u(1) (x, z) = f (2)(x, z)− h(j∞T (2))v(2) (x, z),
u

(1)
(α′,0)(x) = v

(1)
α′ (x), α′ ∈ Nn−1

0 ,

for x ∈ U , cf. (9.1). Set u(2) = v(2). By construction, the sum u = u(1) ⊕ u(2) is in
E(U, J(E)) and satisfies (∂n + T (1))u(1) + T (2)u(2) = f (2).

Our next claim is that Mu = f (1), the action of M being identified with that of
h(j∞M). To prove this, we observe that commutativity relations (7.3) just amount
to

(∂n + S(1))Mu = M (1)((∂n + T (1))u(1) + T (2)u(2))
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for all u ∈ E(U, J(E)). Since Bf = 0 in U , we get (∂n + S(1))f (1) = M (1)f (2), and
so

(∂n + S(1))(Mu− f (1)) = (∂n + S(1))Mu− (∂n + S(1))f (1)

= M (1)((∂n + T (1))u(1) + T (2)u(2))−M (1)f (2)

= 0.

By construction, the coefficients (u(1)−v(1))(α′,0) vanish in U for all multi-indices
α′ ∈ Nn−1

0 . Moreover, from u(2) = v(2) it follows that

(Mu− f (1))(α′,0) = (Mu−Mv)(α′,0)
= (M (1)(u(1) − v(1)))(α′,0). (10.1)

Since the operator M (1) contains the derivatives in xn−m+1, . . . , xn−1 only, we
deduce from (10.1) that

(Mu− f (1))(α′,0) = 0

for all α′ ∈ Nn−1
0 .

Finally, the solution of the Cauchy problem for the operator ∂n + S(1) in the
class of formal power series is unique, which is due to Theorem 9.1. Therefore,
Mu− f (1) = 0 in U , as desired. �

If the coefficients of the operator A and the right-hand side f are real analytic
in U then among the formal solutions of Au = f in U constructed in Theorem
10.2 there are also real analytic ones, see for instance Theorem 1.3.40 of [Tar95].
To construct such a solution, one has to choose “proper” real analytic data for the
Cauchy problem and use the Cauchy-Kovalevskaya theorem instead of its formal
version given by Theorem 9.1.

Lemma 10.3. Let s ∈ N0 ∪ {∞} satisfy s ≥ a. Assume that u ∈ E(X , Js(E)),
f ∈ E(X , Js−a(F )) and h(js−aA)u = f . Then f is (s − a) -jet of some section in
E(X , F ) if and only if

(h(js−1−aA)⊗ I)dsu = 0.

Proof. Indeed, under the hypothesis of the lemma, Lemma 5.4 implies that

(h(js−1−aA)⊗ I)dsu = ds−a h(js−aA)u
= ds−af.

Since f stems from some section in E(X , F ) if and only if ds−af = 0, the lemma
follows. �

When combined with Lemma 10.3, Theorem 10.2 implies that the cohomology
of (6.3) depends on the structure of the space of solutions to the homogeneous
equation h(j∞A)u = 0. Indeed, if f is a formal power series of some section in
E(U,F ) satisfying Bf = 0, then the solution u ∈ E(U, J(E)) given by Theorem
10.2 is not arbitrary. Namely, the image du of u by the connection proves to belong
to Ω1(U,R∞).

Recall that by R∞ is meant the null-space of the vector bundle homomorphism
h(j∞A) : J(E) → J(F ). This fibre space over X need not behave well unless
A is a sufficiently regular differential operator. In the latter case R∞ is a vector
subbundle of generically infinite rank in J(E). We are now in a position to extend
Theorem 6.6 to the case s =∞.
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Theorem 10.4. Let A ∈ Diffa(X ;E,F ) be a sufficiently regular differential oper-
ator and {Ai}i=0,1,... a compatibility complex for A. Then the cohomologies of the
complexes

0 → Sker A(U)
j∞→ E(U,R∞) d→ Ω1(U,R∞) d→ . . .

d→ Ωn(U,R∞) → 0,

0 → Sker A(U) ↪→→ E(U,E0) A0

→ E(U,E1) A1

→ . . .
An−1

→ E(U,En) → . . .

are the same, provided that U is small enough.

Proof. The relationship between the complexes in question is expressed by the
diagram

0 0 0
↓ ↓ ↓

0 → Sker A(X)
j∞→ E(U,R∞) d→ Ω1(U,R∞) d→ . . .

| | |
↪→ ↪→ ↪→

↓ ↓ ↓
0 → E(U,E0)

j∞→ E(U, J(E0)) d→ Ω1(U, J(E0)) d→ . . .
| | |

A0 h(j∞A0) h(j∞A0)⊗I

↓ ↓ ↓
0 → E(U,E1)

j∞→ E(U, J(E1)) d→ Ω1(U, J(E1)) d→ . . .
| | |

A1 h(j∞A1) h(j∞A1)⊗I

↓ ↓ ↓
. . . . . . . . .

(10.2)

which commutes. From the exactness of the first Spencer sequence for the trivial
operator and Theorem 10.2 we deduce that the rows and columns in the diagram
are exact except possibly for the first row and first column. Thus by diagram
chasing the cohomology of the first row is the same as the cohomology of the first
column. �

One may ask whether Theorem 10.4 is still true if U = X but we will not develop
this point here.

Similarly to (6.4) we get the complex of sheaves

0→ Sker A
j∞→ SR∞

d→ SR∞⊗Λ1
d→ . . .

d→ SR∞⊗Λn → 0 (10.3)

over X , which will be referred to as the limit first sequence of Spencer for the
operator A.

Corollary 10.5. Let Ai ∈ Diffai(X ;Ei, Ei+1), i = 0, 1, . . ., be a compatibility
complex for a sufficiently regular differential operator A = A0. Then the cohomology
of the complex

0→ Sker A
↪→→ SE0

A→ SE1
A→ . . .

A→ SEn → . . .

coincides with the cohomology of the limit first sequence of Spencer for A.

Proof. This is an immediate consequence of Theorem 10.4. �
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We have thus reduced the problem on solvability of an overdetermined system
of differential equations with smooth coefficients to the following one. Under what
conditions does a connection d of zero curvature on a vector bundle R of infinite
rank give rise to Fredholm complexes of differential forms with coefficients in the
bundle R?

Of course, we can consider the limit first sequence of Spencer also for those
differential operators which possess no regularity property. However, in this case
this sequence need not bear any information about the cohomology of the initial
complex.

Example 10.6. Let Au := au be the operator of Example 3.3 and U = R. Then
u ∈ E(U,R∞) if and only if

α∑
γ=0

a(α−γ)(x)
(α− γ)!

uγ(x) = 0

in U for all α ∈ N0. Obviously, this holds if and only if a(x)uγ(x) = 0 for all
x ∈ U and γ ∈ N0, i.e., uγ ∈ Sker A(U). Thus, we can identify E(U,R∞) with the
product of countably many copies of Sker A(U). Now we easily see that the limit
first sequence of Spencer for the operator A

0→ Sker A(U)
j∞→ E(U,R∞) d→ Ω1(U,R∞)→ 0

is exact over U . Indeed, the exactness at steps 0 and 1 has already been discussed.
As to exactness at step 2, we note that each f ∈ Ω1(U,R∞) has the form

f(x, z) =
( ∑

α∈N0

fα(x)zα
)
dx

in U . Take
u0 = 0,
uα = u′α−1 − fα−1

for α ≥ 1. Since u′α−1 belongs to Sker A(U) if so does uα−1, we conclude that
u ∈ E(U,R∞) and du = f , as desired. On the other hand, the operator A itself
does not admit a compatibility complex on the level of sheaves of germs of smooth
functions over U at all.

11. Holonomic systems

In this section we treat overdetermined systems maximally closed to the system
du = f for an unknown function u : X → C.

Definition 11.1. A differential operator A of type E → F on X is said to be
holonomic if:

1) A is sufficiently regular.
2) There is Q ∈ N0 such that, for each u ∈ E(U, J(E)) satisfying h(j∞A)u = 0,

we have uα = 0 in U for all α ∈ Zn
0 with Q + 1 ≤ |α| ≤ Q + a.

Roughly speaking, a holonomic system is a highly overdetermined system, such
that the solutions locally form a vector space of finite dimension, instead of the
expected dependence on some arbitrary function. Such systems have been applied,
for example, to the Riemann-Hilbert problem in higher dimensions, and to quantum
field theory, cf. [Kas75, Kas78].
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Corollary 11.2. Let A be holonomic and U be a simply connected small domain.
Then for each f ∈ E(U,F ) satisfying Bf = 0 in U there exists u ∈ E(U,E) with
Au = f .

Another way of stating this corollary is to say: a C∞ Poincaré lemma holds for
holonomic systems.

Proof. Indeed, since h(j∞B)j∞f = 0, Theorem 10.2 implies that there is a formal
power series v ∈ E(U, J(E)) with h(j∞A)v = j∞f . On applying Lemma 10.3 we
conclude that (h(j∞A)⊗ I)dv = 0 in U .

Since A is holonomic, the bundle homomorphism (h(j∞A) ⊗ I) is holonomic,
too. This means that there is Q ∈ N0, such that

∂jvα = (αj + 1) vα+ej
(11.1)

for all α ∈ Nn
0 with Q + 1 ≤ |α| ≤ Q + a and j = 1, . . . , n. Moreover, for all α ∈ Zn

0

and j = 1, . . . , n, we get∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
∂jvγ(x)− (γj + 1)vγ+ej

(x)
)

= 0 (11.2)

in U . Choosing |α| ≤ Q forces |γ| ≤ Q + a here, i.e., the corresponding equations
include ∂jvγ − (γj + 1)vγ+ej with |γ| ≤ Q only.

Let w ∈ E(U, J(E)) satisfy h(j∞A)w = 0 in U . Since the system is holonomic,
it follows that wα = 0 in U for all α ∈ Zn

0 with Q + 1 ≤ |α| ≤ Q + a. And for all
α ∈ Zn

0 with |α| ≤ Q we have∑
|β|≤a

β≤γ≤α+β
|γ|≤Q

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

wγ(x) = 0 (11.3)

in U .
At each point x ∈ U the system (11.3) is actually a system of linear algebraic

equations with N = N(n, k,Q) unknowns wi,γ , where wi,γ stands for the i th com-
ponent of the vector wγ . The matrix of this system we denote by M(x). Since the
operator A is sufficiently regular, the rank r = r(x) of M(x) does not depend on
x ∈ U .

If r = N , then system (11.3) has only trivial solutions in U . If r < N , then we
choose N − r “free parameters” as follows. For fixed γ and 1 ≤ i ≤ k, consider the
system

∂jwi,γ = (γj + 1)wi,γ+ej + ∂jvi,γ − (γj + 1)vi,γ+ej , (11.4)

where j = 1, . . . , n.
We begin with indices γ ∈ Zn

0 satisfying |γ| = Q. Since |γ| = Q and the operator
A is holonomic, we see that wi,γ+ej

= 0. Moreover, (11.1) implies that

∂k

(
∂jvi,γ − (γj + 1)vi,γ+ej

)
= ∂k∂jvi,γ − (γj + 1)(γk + 1)vi,γ+ej+ek

= ∂j∂kvi,γ − (γk + 1)(γj + 1)vi,γ+ek+ej

= ∂j (∂kvi,γ − (γk + 1)vi,γ+ek
)

whenever j 6= k. Therefore, system (11.4) has a smooth solution wi,γ in U , provided
that |γ| = Q.
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If it is not enough, we can proceed for |γ| = Q − 1 and so on, because we can
argue by induction. Namely, if we have constructed smooth solutions wi,γ in U for
all γ ∈ Nn

0 with |γ| = Q′ ≤ Q, then, for |γ| = Q′ − 1,

∂k

(
(γj + 1)wi,γ+ej

+ ∂jvi,γ − (γj + 1)vi,γ+ej

)
= ∂k∂jvi,γ + (γj + 1)∂k

(
wi,γ+ej

− vi,γ+ej

)
= ∂j∂kvi,γ + (γj + 1)(γk + 1)

(
wi,γ+ej+ek

− vi,γ+ej+ek

)
= ∂j ((γk + 1)wi,γ+ek

+ ∂kvi,γ − (γk + 1)vi,γ+ek
)

whenever j 6= k. Hence, system (11.4) has smooth solutions wi,γ in U for so many
indices |γ| ≤ Q and i = 1, . . . , k, as we need. The index set corresponding to these
“free parameters” we denote by I.

The other r unknown functions will be uniquely defined as linear combinations
of N − r “free parameters” from the system

∑
|β|≤a

β≤γ≤α+β
|γ|≤Q

γ 6∈I

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

wγ(x) = −
∑
|β|≤a

β≤γ≤α+β
|γ|≤Q

γ∈I

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

wγ(x),

(11.5)
where |α| ≤ Q.

It should be noted that, by construction, the matrix of system (11.5) is a non-
degenerate (r × r) -matrix in U .

Set u = πQ+a,∞(v − w). Then obviously

h(jQA)u = jQf (11.6)

in U . From (11.1) and (11.4) it follows that

∂juγ = (γj + 1) uγ+ej
(11.7)

for all γ ∈ Nn
0 with Q + 1 ≤ |γ| ≤ Q + a and j = 1, . . . , n, and for all γ ∈ I.

Moreover, combining (11.7) and (11.2) yields

∑
|β|≤a

β≤γ≤α+β
|γ|≤Q

γ 6∈I

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
∂juγ(x)− (γj + 1)uγ+ej

(x)
)

= 0

for all α ∈ Zn
0 with |α| ≤ Q and j = 1, . . . , n.

Finally, we see that this is a homogeneous system of linear algebraic equations
with unknowns ∂juγ(x)−(γj+1)uγ+ej

(x), where |γ| ≤ Q. As mentioned, the matrix
of this system is quadratic and non-degenerate. Hence it follows that equalities
(11.7) hold also for all γ ∈ Zn

0 with |γ| ≤ Q and γ 6∈ I, i.e., dQ+au = 0 in U . In
particular, this means that u = jQ+au0, u0(x) being the initial coefficient of u(x, z).
Taking into account (11.6), we readily deduce that Au0 = f in U , and the theorem
follows. �
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12. A homotopy operator

Buttin [But67] constructed a formal (sic!) homotopy operator h for the complex
(10.3), namely

(hqu)(x, z) = 0, if q = 0,

(hqu)(x, z) =
∑

#I=q

′( ∑
|α|≤s

cI,α(x)zα
)
ι(X)dxI , if q ≥ 1,

for (x, z) ∈ U × Cn, where

cI,α(x) =
∫ 1

0

tq−1
( ∑

β∈Zn
0

(1−t)|β|
xβ

β!
uI,α+β(tx)

)
dt

and

ι(X)dxI =
q∑

k=1

(−1)k−1xik
dxI [ik]

stands for the interior product of the differential form dxI by the vector field
X = x1∂1 + . . . + xn∂n, where dxI [ik] is the exterior product of the differentials
dxi1 , . . . , dxiq

with the exception of dxik
.

She proved that hu makes sense if the components of the jet u are real analytic
and satisfy the Cauchy inequality in U , i.e., if u corresponds to a real analytic solu-
tion to the equation Au0 = 0 in U . Moreover, the operator h obeys the structure of
Ωq(U,R∞), at least formally. Spencer [Spe69] illustrates how the formal homotopy
operator h may be used to obtain an easy proof of the analytic Poincaré lemma
for formally exact complexes of differential operators with real analytic coefficients
and a C∞ Poincaré lemma for elliptic complexes of such operators. We wish to
extend this to the C∞ case. To this end, we test the homotopy operator on s -jets
of differential forms in Ωq(U,E).

Let s ∈ N0 ∪ {∞}. For u ∈ Ωq(U, Js(E)) we introduce

(Hs,qu)(x, z) = 0, if q = 0,

(Hs,qu)(x, z) =
1
q

∑
#I=q

′( ∑
|α|≤s

uI,α(x)zα
)
ι(X)dxI , if q ≥ 1,

for (x, z) ∈ U × Cn.
Thus, Hs,q maps Ωq(U, Js(E)) to Ωq−1(U, Js(E)), which is an improper action

in the first sequence of Spencer, unless s =∞. By the very construction, we obtain
Hs,q−1 ◦Hs,q = 0.

It is easy to check that hqj∞u = H∞,qj∞u for all u ∈ Ωq(U,E) which are real
analytic in U .

Lemma 12.1. Suppose that s ∈ N0 ∪ {∞} and q ≥ 1. Then, for all u ∈ Ωq(U,E),
we have

Hs−1,q+1ds,q jsu + ds,q−1Hs,q jsu = js−1u (12.1)

in U . Moreover, if s ≥ a and u ∈ Ωq(U,Rs), then the jet Hs,qu belongs to
Ωq−1(U,Rs).

Proof. Since Hs,q and ds,q are linear, we need to establish the formula only for
forms u of the form u = uIdxI , where uI ∈ E(U,E).
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By definition, we readily deduce that ds,q ◦ js = 0, hence the equality (12.1)
actually reduces to

ds,q−1Hs,q jsu = js−1u

for all u ∈ Ωq(U,E).
An easy computation shows that

ds,q−1Hs,q jsu = ds,q−1 1
q

q∑
k=1

(−1)k−1
( ∑
|α|≤s

xik

∂αuI(x)
α!

zα
)
dxI [ik]

which transforms to
n∑

j=1

1
q

q∑
k=1

(−1)k−1
∑

|α|≤s−1

(
∂j(xik

∂αuI(x)
α!

)− (αj +1)xik

∂α+ej uI(x)
(α+ej)!

)
zαdxj ∧ dxI [ik]

=
n∑

j=1

1
q

q∑
k=1

(−1)k−1
( ∑
|α|≤s−1

δj,ik

∂αuI(x)
α!

zα
)
dxj ∧ dxI [ik]

+
n∑

j=1

1
q

q∑
k=1

(−1)k−1xik

∑
|α|≤s−1

(∂α+ej uI(x)
α!

− ∂α+ej uI(x)
α!

)
zαdxj ∧ dxI [ik].

The first term on the right-hand side just amounts to

1
q

q∑
k=1

(−1)k−1
( ∑
|α|≤s−1

∂αuI(x)
α!

zα
)
dxik

∧ dxI [ik] = js−1u,

and the second term vanishes. This establishes (12.1).
Finally, if u = uIdxI lies in Ωq(U,Rs), then

(h(js−aA)⊗ I)Hs,q u (x, z) = h(js−aA)uI ι(X)dxI (x, z)
= 0,

i.e., Hs,q u belongs to Ωq−1(U,Rs) for all u ∈ Ωq(U,Rs), as desired. �

Unfortunately, unlike the analytic case, this operator H does not help much
in proving the C∞ Poincaré lemma for complexes of operators with smooth coeffi-
cients. However, it essentially reduces the first sequence of Spencer. More precisely,
set

Ωq(U,Qs) :=
Ωq(U,Rs)

js(Sker A(U)⊗ Ωq(U))
.

For a class [u] ∈ Ωq(U,Qs), we define ds,q[u] = [ds,qu], where u ∈ Ωq(U,Rs) is
a representative of [u]. It is easy to check that ds,q is actually independent on the
particular choice of u.

Obviously, ds−1,q+1 ◦ ds,q ≡ 0, and so the spaces Ωq(U,Qs) fit together to form
a complex

0 → E(X ,Qs) ds

→ Ω1(X ,Qs−1) ds−1

→ . . .
ds−n+1

→ Ωn(X ,Qs−n) → 0. (12.2)

Corollary 12.2. Let s =∞. Suppose {Ai}i=0,1,... is a compatibility complex for a
sufficiently regular differential operator A = A0 on X . Then the cohomology of the
complex

0 → E(U,E0) A0

→ E(U,E1) A1

→ . . .
An−1

→ E(U,En) → . . .

coincide with that of (12.2), provided that U is small enough.
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Proof. By definition, the cohomology of (12.2) at step 0 just amounts to Sker A(U).
By (12.1), the cohomology of (12.2) at any step i > 0 coincides with the cohomology
of limit first sequence of Spencer. The desired conclusion now follows from Theorem
10.4. �
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