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Abstract

Differential and pseudo-differential operators on a manifold with
(regular) geometric singularities can be studied within a calculus, in-
spired by the concept of classical pseudo-differential operators on a
C∞ manifold. In the singular case the operators form an algebra with
a principal symbolic hierarchy σ = (σj)0≤j≤k, with k being the order
of the singularity and σk operator-valued for k ≥ 1. The symbols de-
termine ellipticity and the nature of parametrices. It is typical in this
theory that, similarly as in boundary value problems (which are special
edge problems, where the edge is just the boundary), there are trace,
potential and Green operators, associated with the various strata of
the configuration. The operators, obtained from the symbols by var-
ious quantisations, act in weighted distribution spaces with multiple
weights. We outline some essential elements of this calculus, give ex-
amples and also comment on new challenges and interesting problems
of the recent development.
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Introduction

The analysis on manifolds with singularities (certain stratified spaces in our
terminology, for instance, with conical, edge, or corner singularities) is moti-
vated by models of physics or the applied sciences, and also by structures of
geometry and topology.

These lectures give an introduction and a survey on some new develop-
ments in this field. We consider ellipticity of operators referring to a principal
symbolic hierarchy, with components contributed by the various strata of the
configuration M . For instance, if M is an open C∞ manifold, then the el-
lipticity of a (classical pseudo-)differential operator A is the standard one,
namely, non-vanishing of the homogeneous principal symbol σψ(A), given on
T ∗M \ 0 (the cotangent bundle of M minus the zero-section). If M is a C∞

manifold with boundary, then M is the disjoint union of two strata, namely,
Y 0 := intM and Y 1 := ∂M , and we have the interior symbol σψ(A) asso-
ciated with Y 0 and the boundary symbol σ∂(A) associated with Y 1. The
latter one is operator-valued and a kind of semi-quantised object contain-
ing σψ(A), frozen at the boundary. At the same time, ellipticity requires
boundary conditions, formulated as additional entries in a block matrix of
boundary symbols, with σ∂(A) in the upper left corner, and other entries
representing trace conditions (for instance, Dirichlet) and potential data (for
instance, double layer potentials, occurring in parametrices). In addition,
compositions and parametrix constructions generate Green symbols in the
upper left corners; those constitute (together with an ‘interior parametrix’)
what is known in classical cases as Green’s function of a boundary value
problem.

If M has conical singularities Y 1 := {v1, . . . , vN} ⊂ M or smooth edges
Y 1 ⊂ M of any codimension, then M \ Y 1 =: Y 0 is smooth, and again,
from the disjoint union M = Y 0 ∪ Y 1 of strata, we expect two principal
symbolic components, in this case σψ(A) on Y 0 as before and σc(A) at Y 1 in
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the conical and σ∧(A) in the edge case, called the (principal) conormal and
edge symbol, respectively (see the formulas (10) and (22) below). The latter
ones are again operator-valued.

In higher singularities of order k ∈ N the space M is a disjoint union of
C∞ manifolds

M =
k⋃
j=0

Y j, (1)

where (of course) some extra conditions specify the way of how they are
connected with each other, and operators A on M have a principal symbolic
hierarchy

σ(A) = (σj(A))j=0,...,k, (2)

where σ0(A) := σψ(A), σ1(A) := σ∧(A) (or = σc(A)), etc. In the edge case
which is a generalisation of the case with boundary, there are again block
matrix edge symbols belonging to operators of trace and potential type, plus
Green (and Mellin) symbols in the upper left corner. On the level of opera-
tors they contribute an adequate extra information from the edge. A similar
block matrix structure with additional trace, potential and Green (+ Mellin)
data along the lower-dimensional strata is to be expected for higher singular-
ities. This is a very satisfying concept, iteratively organised, which admits to
understand a large variety of concrete problems from the above-mentioned
areas, and with new beautiful and challenging problems. Nevertheless, as we
shall see, in the elliptic case the effect of such data of trace and potential type
can often be formulated in terms of extra operators (smoothing over Y but
not compact) in the upper left corner, without loss of information from the
point of view of the index. It is important to specify the nature of operators
that are recognised as the ‘natural ones’ on a manifold M with singularities.
For instance, if M has a boundary (6= ∅), then a problem is to distinguish
operators with or without the transmission property (the latter is a subcase
of the edge calculus). In geometric singularities, e.g., when we consider a
wedge

X∆ × Ω,

where X∆ := (R+ × X)/({0} × X) is a cone with C∞ base X and Ω ⊆ Rq

open, then the Laplace-Beltrami operator belonging to a wedge metric on
R+ ×X × Ω 3 (r, x, y)

dr2 + r2gX(r, y) + dy2,

where gX(r, y) is family of Riemannian metrics on X, smoothly depending
on (r, y) up to r = 0, should belong to the calculus. Such operators (for any
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order µ ∈ N, not necessarily of second order) have the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r
∂

∂r
)j(rDy)

α (3)

with coefficients ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)) (here Diffν(·) denotes
the space of all differential operators of order ν on the smooth manifold in
parentheses). Operators of the form (3) are degenerate at r = 0 in a typical
way, and we call them edge-degenerate. In the case q = dim Ω = 0 the y-
variable does not occur; the corresponding operators on the open stretched
cone X∧ := R+ ×X will be called of Fuchs type.

On manifolds M with higher singularities we also have a specific choice of
typical differential operators A which are corner degenerate in stretched co-
ordinates, with symbols (2), ellipticity, and the construction of parametrices.
Those are expected to belong to corresponding pseudo-differential operator
algebras with similar symbolic hierarchies. Here we outline some elements of
such a calculus, where the iterative structure of the approach is one of the
essential points. We assume that things are done up to the singularity order
k − 1, k ≥ 2, and then pass to the case k.

What concerns conical singularities and smooth edges, i.e., the case k = 1,
the material may be found in [71], [72], [75], [16], [19], [20], [90], [13], [10],
[42], [85]. The calculus for corner singularities of order k = 2 is studied
under different aspects in [71], [70], [77], [73], [88], [78], [80], [40], [88], [39],
[45], [7], [8], [27], see also the monograph [28] (in preparation), moreover,
[12] and [47]. The theory is voluminous, already for case k = 1, and by no
means complete (for instance, in respect to an analogue of the index theory).
The structures for higher singularities are much more involved and subject of
current research. In the present paper we content ourselves with describing
the main ideas of our calculus. Many other authors studied operators on
manifolds with singularities from different point of views. Ideas, approaches
and priorities are contributed by wide fields of applied mathematics, analysis
of partial differential operators, mathematical physics, index theory, geome-
try and topology. Let us give a few references here, in particular, [92], [93],
[51], [53], [54], [55], [60], [52], [50], [52], [57], [58], [59], [56], [3]. A more
complete survey on aspects of the recent development and also of historical
background and sources of ideas is given in [80].
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1 Differential operators on manifolds with higher

singularities

1.1 Conical singularities

Definition 1.1 A manifold M with conical singularity {v} is a topological
space with a chosen point v ∈M such that

(i) M \ {v} is a C∞ manifold,

(ii) there is a C∞ manifold X and a C∞ manifold M with boundary ∂M ∼=
X such that M is the image under a continuous map π : M → M ,
defined by π(m) = v for all m ∈ ∂M, and π|M\∂M : M \ ∂M→M \ {v}
is a diffeomorphism.

In a similar manner we can define manifolds with finitely many conical
singularities {v1, . . . , vN}. For simplicity we mainly consider the case N = 1.

The space M is called the stretched manifold associated with M .
Here and in future, when we speak about topological spaces in connection

with the definition of singular spaces, we assume (for convenience) that the
spaces are countable unions of compact sets. In particular, our C∞ mani-
folds are assumed to be of that kind (and also oriented). Let M0 denote the
category of C∞ manifolds where isomorphisms (morphisms) are the diffeo-
morphisms (differentiable maps).

Remark 1.2 Let Mcone denote the system of all manifolds M with conical
singularities. We interpret Mcone as a category, where the isomorphisms
(morphisms) β : M → M̃ are homeomorphisms (continuous maps) which
map conical points to conical points and for which there is a diffeomorphism
(differentiable map) b : M→ M̃ of the associated stretched manifolds as C∞

manifolds with boundary, such that β ◦ π = π̃ ◦ b (where π̃ : M̃ → M̃ is of
analogous meaning as the above-mentioned π).

Example 1.3 Let M be defined to be the set M := {x̃ := (r, x) ∈ R1+n : x̃ =
0 or r > 0, x/r ∈ X for some closed compact
C∞ manifold X embedded in Sn}.

Here Sn is the unit sphere in Rn+1 3 x̃. For the stretched manifold we
obtain the cylinder

M = {x̃ = (r, x) ∈ R1+n : r ∈ R+, x ∈ X},

and π : M→M can be realised as π(r, x) = (r, rx).
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Remark 1.4 Operators on a manifold with conical singularities are inter-
esting for many reasons; for instance, it may be natural in a boundary value
problem to assume that the boundary has conical singularities (see Kondratyev
[32]). For our purposes conical singularities are crucial to forming manifolds
with higher singularities, for instance, cones, where the base X already has
singularities.

In a second step we can pass to a wedge, i.e., the Cartesian product of
that cone with a smooth manifold (see Section 1.2) and then iterate the
construction (see Section 1.3).

By Hs(Rn) we denote the standard Sobolev space in Rn of smoothness
s ∈ R. On a C∞ manifold X we have the spaces Hs

comp(X) of Sobolev distri-
butions with compact support andHs

loc(X) ⊂ D′(X) defined by the condition
ϕHs

loc(X) ⊂ Hs
comp(X) for every ϕ ∈ C∞

0 (X). If X is closed and compact,
both spaces coincide, and we simply write Hs(X) instead of Hs

comp(X).
Recall that Hs(Rn) can be characterised as the completion of C∞

0 (Rn)
with respect to the norm {∫

〈ξ〉2s|Fu(ξ)|2dξ
} 1

2
,

where F is the Fourier transform in Rn. Replacing Rn by R+ × Rn 3 (r, x)
and taking the Mellin transform on R+,

(Mu)(w) :=

∫ ∞

0

rw−1u(r)dr,

w ∈ C, we obtain the weighted Sobolev space Hs,γ(R+ × Rn), defined to be
the completion of C∞

0 (R+ × Rn) with respect to the norm{∫
Rn

1

2πi

∫
Γn+1

2 −γ

〈Re w, ξ〉2s|(MFu)(w, ξ)|2dwdξ
}1/2

;

here Γβ := {w ∈ C : Re w = β}. If X is a closed compact C∞ manifold,
we then define Hs,γ(X∧) for X∧ = R+ ×X 3 (r, x) by means of finite sums
over contributions supported in R+ × U for a coordinate neighbourhood U
(using a partition of unity on X), where the local terms are pull backs of
elements of Hs,γ(R+ × Rn) under charts R+ × U to corresponding conical
subsets of R1+n

+ = {(r, x) : r > 0, x ∈ Rn}, where the charts commute with
the canonical R+-actions on R+ × U and R1+n

+ , respectively. An alternative
definition of Hs,γ(X∧) (in the notation of Remark 1.6) is given below in
Theorem 3.12 (ii).
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In the sequel, by a cut-off function ω on the half-axis we understand an
ω ∈ C∞

0 (R+) that is equal to 1 in a neighbourhood of 0.
In an infinite (stretched) cone with closed compact base X there is also

another species of weighted spaces, namely,

Ks,γ(X∧) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)}. (4)

For purposes below we also define the spaces

Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧) (5)

or any s, γ, g ∈ R.
Here, for X = Sn the space Hs

cone(X
∧) is defined to be the subspace of

all u ∈ Hs
loc(R × X)|R+×X such that (1 − ω)u in the Euclidean coordinates

of R1+n
x̃ (where (r, x) ∈ R+×X are polar coordinates in R1+n

x̃ \ {0}) belongs
to Hs(R1+n). If X is an arbitrary closed compact C∞ manifold, we define
Hs

cone(X
∧) to be the set of all u ∈ Hs

loc(R × X)
∣∣
R+×X

such that (1 − ω)ϕu

is the pull back of an element in Hs(R1+n
x̃ ), for any ϕ ∈ C∞

0 (U) for an
arbitrary coordinate neighbourhood U on X, where the pull back refers to a
diffeomorphism R+×U → Γ for a conical set Γ ⊂ R1+n

x̃ which commutes with
the canonical R+-actions on R+×U and R1+n

+ , respectively (the one in R1+n
+

is x̃→ λx̃, the multiplication by λ ∈ R+). Concerning more observations on
the spaces Hs

cone, see Remark 2.20 and Theorem 3.13 below.

Remark 1.5 The spaces Ks,γ;g(X∧) are Hilbert spaces in a natural way.
They can be endowed with a family of isomorphisms κgλ : Ks,γ;g(X∧) →
Ks,γ;g(X∧), u(r, x)→ λ

n+1
2

+gu(λr, x), λ ∈ R+.
In general, if H is a Hilbert space and κ = {κλ}λ∈R+ a group of isomor-

phisms
κλ : H → H, λ ∈ R+,

κλκν = κλν for arbitrary λ, ν ∈ R, and if λ→ κλh defines a continuous map
R+ → H for every h ∈ H (i.e., κ is strongly continuous), then we say that
H is endowed with a group action.

Remark 1.6 Later on, in order to point out the cone X∆ itself instead
of the open stretched cone X∧, we often write Hs

cone(X
∆) := Hs

cone(X
∧),

Hs,γ(X∆) := Hs,γ(X∧), and

Ks,γ;g(X∆) := Ks,γ;g(X∧), Ks,γ(X∆) := Ks,γ;s−γ(X∧). (6)

Nevertheless all those spaces are distribution spaces overX∧ = X∆\ {tip of the cone}.
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Finally, if M is a compact manifold with conical singularity {v}, we de-
fine the space Hs,γ(M) to be the subspace of all u ∈ Hs

loc(M \ {v}) such that
ωu ∈ Hs,γ(X∧) for any continuous function ω on M supported in a small
neighbourhood of v such that ω|M\{v} is C∞ and ω ≡ 1 in another neigh-
bourhood of v. The meaning of X is as in Definition 1.1, and the condition
on ωu refers to the splitting of variables (r, x) ∈ X∧ in M \ {v} close to the
point v.

An A ∈ Diffµ(M\{v}) is said to be of Fuchs type, written A ∈ Diffµdeg(M),
if A locally near v in the splitting of variables (r, x) ∈ X∧ close to v has the
form

A = r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
with coefficients aj ∈ C∞(R+,Diffµ−j(X)).

Observe that when M is compact, every A ∈ Diffµdeg(M) induces contin-
uous operators

A : Hs,γ(M)→ Hs−µ,γ−µ(M) (7)

for all s, γ ∈ R.
For any A ∈ Diffµdeg(M) we define

σ(A) := (σψ(A), σc(A)). (8)

The first component is the homogeneous principal symbol

σψ(A) := σψ(A|M\{v}).

Observe that locally close to v in the splitting of variables (r, x) ∈ X∧ with
the covariables (%, ξ) the symbol σψ(A) has the form

σψ(A)(r, x, %, ξ) = r−µσ̃ψ(A)(r, x, r%, ξ) (9)

for a σ̃ψ(A)(r, x, %, ξ) which is smooth up to r = 0. The second component
is the principal conormal symbol

σc(A)(w) :=

µ∑
j=0

aj(0)w
j,

interpreted as a family of differential operators on

σc(A)(w) : Hs(X)→ Hs−µ(X), (10)

parametrised by w ∈ Γn+1
2
−γ for any fixed γ.
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Definition 1.7 An operator A ∈ Diffµdeg(M) is said to be elliptic (with respect
to a given weight γ) if

(i) A is σψ-elliptic, i.e., σψ(A) 6= 0 on T ∗(M \ {v}) \ 0 and in addition
σ̃ψ(A) 6= 0 for (%, ξ) 6= 0, up to r = 0;

(ii) the operators (10), w ∈ Γn+1
2
−γ, define a family of isomorphisms for

some s = s0 ∈ R.

Remark 1.8 Let A ∈ Diffµdeg(M) be σψ-elliptic. Then there is a discrete set
D ⊂ C (i.e., D is countable and K ∩D finite for every compact set K ⊂ C)
such that the operators (10) are isomorphisms for all w ∈ C \ D for every
s ∈ R. This property determines all γ ∈ R where Definition 1.7 is satisfied,
namely, when D ∩ Γn+1

2
−γ = ∅.

Theorem 1.9 For an operator A ∈ Diffµdeg(M) the following conditions are
equivalent:

(i) A is elliptic (with respect to a weight γ);

(ii) the operator (7) is Fredholm for some s0 = s ∈ R.

If A satisfies the condition (i), then (7) is Fredholm for all s ∈ R; moreover
V = kerA ⊂ H∞,γ(M) is independent of s, and there is a subspace W ⊂
H∞,γ−µ(M) of finite dimension such that W ∩ imA = {0}, and

W + imA = Hs−µ,γ−µ(M)

for every s ∈ R.

The problem of expressing parametrices of elliptic operators in Diffµ(M)
gives rise to what we call the cone algebra on M . By that we understand
a specific pseudo-differential calculus, consisting of subspaces Aµ(M, (γ, γ −
µ)) ⊂ Lµcl(M \ {v}) (see Sections 2.1, 2.2, 3.1 below) of operators A with a
principal symbolic structure of the form (6). Every A ∈ Aµ(M, (γ, γ − µ))
induces continuous operators (5). Below we shall develop some ingredients
of the cone algebra. More details may be found in various papers and mono-
graphs of the author, see [69], [72], [74], and other references mentioned in
the introduction.

An essential element is the elliptic regularity of solutions.

Theorem 1.10 Let A ∈ Aµ(M, (γ, γ−µ)), µ ∈ R, be elliptic (in the pseudo-
differential set-up, similarly defined as in Definition 1.7). Then there is a
parametrix B ∈ A−µ(M, (γ − µ, γ)) such that 1− BA and 1− AB belong to
A−∞(M, (γ, γ)) and A−∞(M, (γ − µ, γ − µ)), respectively.
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Here the spaces A−∞ consist of smoothing operators which are compact
in the respective weighted spaces (when M is compact) and with specific
mapping properties referring to asymptotics close the conical points, see the
considerations below. A consequence is that

Au = f ∈ Hs−µ,γ−µ(M), u ∈ H−∞,γ(M)

implies u ∈ Hs,γ(M), for every s ∈ R.
The result follows from BAu = Bf ∈ Hs,γ(M) and BAu = u − Gu,

Gu ∈ H−∞,γ(M).
The precise definition of A−∞(M, (γ, γ−µ)) 3 G consists of requiring the

continuity property
G : Hs,γ(M)→ H∞,γ−µ

P (M) (11)

for all s ∈ R, with a so-called asymptotic type P

P = {(pj,mj, Lj)}j∈N.

A similar condition is asked for G∗, the formal adjoint with respect to the
H0,0(M)-scalar product. The definition of Hs,γ

P (M) is as follows. By discrete
asymptotics of a function u ∈ Ks,γ(X∆) of type P for r → 0 we understand
the property that for every β > 0 there exists an N = N(β) ∈ N such that
for any cut-off function ω

vN(r, x) := u(r, x)− ω(r)
N∑
j=0

mj∑
k=0

cjk(x)r
−pj logk r ∈ Ks,β(X∆)

with pj ∈ C, Re pj <
n+1

2
− γ, Re pj → −∞ as N → ∞ (when there are

infinitely many pj), k ∈ N, and coefficients cjk belonging to finite-dimensional
subspaces Lj ⊂ C∞(X). We usually assume the ‘shadow condition’ which
means (p,m,L) ∈ P ⇒ (p− j,m, L) ∈ P for all j ∈ N.

The space Ks,γ
P (X∆) is Fréchet with a semi-norm system consisting of

u → ‖vN‖Ks,β(X∆) for every β > 0 and u → ‖cN‖CL(N) , N = N(β), with
cN = cN(u) being the (unique) sequence of coefficients (cjk)0≤k≤mj ,0≤j≤N ∈
⊕Nj=1Lj, where the latter space is identified with CL(N) for L(N) =

∑N
j=0(mj+

1) dimLj. Flatness of order Θ relative to the weight γ is measured by func-
tions in the Fréchet space

Ks,γ
Θ (X∆) := lim←−

k∈N
Ks,γ−ϑ−(k+1)−1

(X∆),

here Θ represents the half-open ‘weight interval’ Θ = (−ϑ, 0], −∞ ≤ ϑ < 0,
The (non-direct) sum

Ks,γ
PΘ

(X∆) := Ks,γ
P (X∆) +Ks,γ

Θ (X∆) (12)
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gives us a notion of finite asymptotic expansions of the respective u(r, x),
(when ϑ > −∞) with pj belonging to the weight strip {n+1

2
− γ + ϑ <

Rew < n+1
2
− γ}, n = dimX. Observe that ω(r)r−p logk rc(x) ∈ Ks,γΘ (X∆)

for every p ∈ C with Re p ≤ n+1
2
− γ + ϑ, k ∈ N, c ∈ C∞(X).

Now if M is a manifold with conical singularity {v}, we fix (as an addi-
tional datum) a splitting of variables (r, x) ∈ R+ ×X close to {v}. Then we
can identify ωu ∈ Ks,γ

P (X∆) for a cut-off function ω with a corresponding
element in Hs,γ(M), and we then denote by Hs,γ

P (M) the subspace of all
u ∈ Hs,γ(M) that localise near v to such a function with asymptotics of type
P .

Remark 1.11 Given an elliptic (with respect to a weight γ ∈ R) operator
A ∈ Diffµdeg(M) then

Au = f ∈ Hs−µ,γ−µ
Q (M), u ∈ H−∞,γ(M)

implies u ∈ Hs,γ
P (M) for every discrete asymptotic type Q with a result-

ing discrete asymptotic type P . The components of P are determined by Q
and by σc(A)−1(w) which is a meromorphic Fredholm family, with poles of
finite multiplicity and finite rank Laurent coefficients at the principal part
of the Laurent expansion. A similar result is true of elliptic operators A ∈
Aµ(M, (γ, γ − µ)) in general.

Remark 1.12 The latter statement refers to the cone algebra with discrete
asymptotics. In the edge and the higher corner calculus below we prefer to
generalise the notion of asymptotics as continuous asymptotics.

The essential aspect is to rephrase the singular functions of asymptotics
in terms of analytic functionals in the complex plane of the Mellin covariable
w. Examples of such functionals are linear combinations

ζN : h→
N∑
j=0

mj∑
k=0

ljk
dk

dwk
h(w)|w=pj

(13)

with (in the scalar case) coefficients ljk ∈ C, h ∈ A(C). (Here A(U) for
any open U ⊂ C denotes the space of all holomorphic functions in U , in
the (nuclear) Fréchet topology of uniform convergence on compact subsets;
moreover, if F is a Fréchet space, then A(U, F ) denotes the space of all
holomorphic F -valued functions in U in the topology of the projective tensor
product A(U)⊗̂πF ).

More generally, if K ⊂ C is a compact set and C a (say, smooth) compact
curve clockwise surrounding K (such that the winding number with respect
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to every point of K is equal to 1), then every f ∈ A(C \K) determines an
analytic functional

ζ : h→ 1

2πi

∫
C

h(w)f(w)dw. (14)

For f in (13) we can take a meromorphic function with poles at the pj ∈ C
of multiplicity mj + 1 and suitable Laurent coefficients. Taking h(w) = r−w

we obtain

〈ζN , r−w〉 =
N∑
j=0

mj∑
k=0

cjkr
−pj logk r

for cjk = k!(−1)kljk. This shows that discrete asymptotics of a function u(r)
in Ks,γ

P (R+) can be expressed by the condition that

u− ω(r)〈ζN , r−w〉 (15)

belongs to Ks,β(R+), for every β > 0 with a suitable ζN of the kind (13),
N = N(β) ∈ N.

The generalisation to an arbitrary base X of the cone is evident. In (13)
it suffices to assume ljk ∈ Lj, 0 ≤ k ≤ mj, i.e., to talk about C∞(X)-
valued analytic functionals. In (14) in this generalisation we would take
f ∈ A(C \ K,C∞(X)). Let A′(K,C∞(X)) denote the (nuclear Fréchet)
space of C∞(X)-valued analytic functionals carried by K.

Let P ⊂ C be a closed set such that P ⊂ {Rew < n+1
2
− γ}, P ∩ {c0 <

Rew < c1} compact for every c0 < c1, and w0, w1 ∈ P , Rew0 = Rew1 ⇒
(1 − λ)w0 + λw1 ∈ P for every 0 ≤ λ ≤ 1. We then call P a continuous
asymptotic type associated with the weight data (γ,Θ), Θ = (−∞, 0]. If
w ∈ P ⇒ w − j ∈ P for every j ∈ N, we say that P satisfies the shadow
condition (this will be tacitly assumed in the sequel).

Definition 1.13 We define Ks,γ
P (X∆) to be the subspace of all u ∈ Ks,γ(X∆)

such that for every β > 0 there is an N ∈ N and a ζN ∈ A′(P∩{Rew ≥ n+1
2
−

2β}, C∞(X)), such that the remainder (15) belongs to Ks,β(X∆). Similarly
as (12) we can form spaces with continuous asymptotics in a finite weight
interval Θ = (−ϑ, 0] relative to γ.

The spaces Ks,γ
P (X∆) are Fréchet in a natural way; then also (12) is

Fréchet in the topology of the non-direct sum.
Similarly as in the discrete case we can form (Fréchet) spaces Hs,γ

P (M) of
weighted distributions with continuous asymptotics of type P on a manifold
M with conical singularity v (and also Hs,γ

PΘ
(M) for arbitrary Θ). This gives

rise to a more general notion of Green operators (11) in the cone algebra,
namely, Green operators with continuous asymptotics.
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1.2 Boundaries and edges

Definition 1.14 A manifold M with edge is a topological space with a subset
Y ⊂M , the edge, such that

(i) M \ Y and Y are C∞ manifolds;

(ii) there is a C∞ manifold X and a C∞ manifold M with boundary ∂M
such that ∂M has the structure of an X-bundle over Y , and M is the
image under a continuous map π : M → M , where π|∂M is the bundle
projection ∂M→ Y , and π|M\∂M : M\∂M→M\Y is a diffeomorphism.

The space M is called the stretched manifold associated with M .
For simplicity we assume that Y has only one connected component,

dimY = q. The case q = 0 corresponds to a conical singularity. In a similar
manner we can consider the case of finitely many connected components of
different dimension.

Remark 1.15 Let M1 denote the system of all manifolds M with edge sin-
gularity. We interpret M1 as a category, where the isomorphisms (mor-

phisms) β : M → M̃ are homeomorphisms (continuous maps) which restrict

to diffeomorphisms (differentiable maps) Y → Ỹ between the respective edges

and for which there is a diffeomorphism (differentiable map) b : M → M̃
of the associated stretched manifolds as C∞ manifolds with boundary, such
that β ◦ π = π̃ ◦ b (where π̃ : M̃ → M̃ is of analogous meaning as the
above-mentioned π), and b restricts to a bundle isomorphism (morphism)

∂M→ ∂M̃ of the X bundle over Y to the respective X̃ bundle over Ỹ .

Note that Mcone is a subcategory of M1.

Example 1.16 (i) Let X be a C∞ manifold and X∆ = (R+ ×X)/({0} ×
X) the infinite cone with base X, interpreted as an element of Mcone

with R+ ×X as the associated stretched manifold. Then, if Ω ⊆ Rq is
an open set, the wedge

M := X∆ × Ω

is a manifold with edge Ω. The associated stretched manifold is equal
to

M = R+ ×X × Ω.

The boundary ∂M in this case is the trivial X-bundle X × Ω.

(ii) Let M be a C∞ manifold with boundary. Then the boundary can be
interpreted as an edge Y , and the C∞ manifold X in Definition 1.14
is of dimension 0. In this case M is equal to its stretched manifold M.

13



Remark 1.17 From Definition 1.14 it follows that when M is a manifold
with edge Y , every y ∈ Y has a neighbourhood V ∈M1 such that there is an
isomorphism

χ : V → X∆ × Ω

in M1 for an open set Ω ⊆ Rq, q = dimY ; in particular, χ is associated with
a diffeomorphism

V→ R+ ×X × Ω (16)

between the associated stretched manifolds. In addition χ restricts to diffeo-
morphisms

V \ Y → X∧ × Ω and V ∩ Y → Ω. (17)

The manifold X will also be called the base of the (local) model cone X∆

of M . If M is a manifold with C∞ boundary, then we may write V = V ,
and (16) corresponds to the transformation of a neighbourhood V of a point
y ∈ ∂M to the half-space R+ × Ω.

According to these observations to any point of the edge we fix such a
neighbourhood V and tacitly identify V \ {edge} with the open stretched
wedge X∧ × Ω in the splitting of variables (r, x, y).

LetM be a manifold with edge Y , and letX be the base of the model cone.
An A ∈ Diffµ(M \ Y ) is said to be edge-degenerate, written A ∈ Diffµdeg(M),
if locally near any point of Y in the splitting of variables (r, x, y) ∈ X∧ × Ω
the operator A has the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r ∂

∂r

)j
(rDy)

α (18)

with coefficients ajα ∈ C∞(R+×Ω,Diffµ−(j+|α|)(X)). For any A ∈ Diffµdeg(M)
we define

σ(A) := (σψ(A), σ∧(A)). (19)

The first component is the homogeneous principal symbol σψ(A) := σψ(A|M\Y ).
Observe that locally close to the edge in the splitting of variables (r, x, y) ∈

X∧ × Ω with the covariables (%, ξ, η) the symbol σψ(A) has the form

σψ(A)(r, x, y, %, ξ, η) = r−µσ̃ψ(A)(r, x, y, r%, ξ, rη) (20)

for a σ̃ψ(A)(r, x, y, %, ξ, η) which is smooth up to r = 0.
The second component of (19) is the homogeneous principal edge symbol

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(
− r ∂

∂r

)j
(rη)α, (21)

considered for (y, η) ∈ Ω× (Rq \ {0}).

14



Proposition 1.18 Let X in Definition 1.14 be a closed compact C∞ man-
ifold; then the principal edge symbol of A ∈ Diffµdeg(M) defines a family of
continuous operators

σ∧(A)(y, η) : Ks,γ;g(X∆)→ Ks−µ,γ−µ;g(X∆) (22)

for every s, g, γ ∈ R, smoothly depending on y, η.

Remark 1.19 We have

σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ for all λ ∈ R+ (23)

(see Remark 1.20). This property is also referred to as twisted homogeneity.

Remark 1.20 Observe that the operators σ∧(A)(y, η) for every fixed y and
η 6= 0 represent an element of Diffµdeg(X

∆), (see the notation in Section
1.1). Therefore, we have the ‘subordinate’ symbols from (8), especially, the
conormal symbol

σcσ∧(A)(y, w) =

µ∑
j=0

aj0(0, y)w
j : Hs(X)→ Hs−µ(X). (24)

Definition 1.21 An operator A = Diffµdeg(M) is said to be σψ-elliptic, if
σψ(A) 6= 0 on T ∗(M \ Y ) \ 0 and if in addition σ̃ψ(A) 6= 0 for (%, ξ, η) 6= 0,
up to r = 0 for any wedge neighbourhood V of a point the edge.

Remark 1.22 If A ∈ Diffµdeg(M) is σψ-elliptic, then for every fixed y and

η 6= 0 the operator σ∧(A)(y, η) ∈ Diffµdeg(X
∆) is σψ-elliptic in the sense of

Definition 1.7 (i). Moreover, according to Remark 1.8 for every y ∈ Ω there
is a discrete set D(y) ⊂ C such that the operators (24) are isomorphisms for
all w ∈ Γn+1

2
−γ when D(y) ∩ Γn+1

2
−γ = ∅, for every s ∈ R.

Theorem 1.23 Let M be a manifold with edge, X compact, and let A ∈
Diffµdeg(M) be σψ-elliptic. Then the operators (22) are Fredholm for all y ∈ Ω,
η 6= 0, and all γ = γ(y) ∈ R where D(y) ∩ Γn+1

2
−γ = ∅; this holds for all

s, g ∈ R. For γ = γ(y) we have V = kerσ∧(A)(y, η) ⊂ K∞,γ;∞(X∧) which
is independent of s, and there is a subspace W ⊂ K∞,γ−µ;∞(X∆) of finite
dimension such that W ∩ imσ∧(A)(y, η) = {0} and W + imσ∧(A)(y, η) =
Ks−µ,γ−µ;g(X∆) for every s, g ∈ R, η 6= 0.

We shall return to the nature of edge symbols as operators on an infinite
cone, in the context of conical exits to infinity, see Theorem 2.21 below.

Let us now make a few remarks on the case when M is a C∞ manifold
with boundary. As noted in the introduction (and as everybody knows) the
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ellipticity of operators is usually combined with the ellipticity of boundary
conditions.

The local model of a manifold with boundary is the half-space R+×Ω 3
(r, y), Ω ⊆ Rq open, i.e., a wedge X∆ × Ω with dimX = 0. In ‘standard’
boundary value problems the natural differential operators are usually not
assumed to be of the form (18) but

A =
∑

j+|α|≤µ

bjα(r, y)D
j
rD

α
y (25)

with bjα ∈ C∞(R+ × Ω). Clearly we can easily transform (25) into the form
(18), but the class of edge-degenerate operators is much larger than the class
of operators (21). For simplicity, in order to avoid ‘comp’ or ‘loc’ Sobolev
spaces, we assume Ω = Rq and bjα(r, y) independent of (r, y) for |r, y| > C
for some C > 0. Then (25) is continuous as an operator

A : Hs(R1+q
+ )→ Hs−µ(R1+q

+ ), (26)

Hs(R1+q
+ ) = Hs(R1+q)

∣∣
R1+q

+
, R1+q

+ = {(r, y) ∈ R1+q : r > 0, y ∈ Rq}. As be-

fore, the operatorA has its principal symbol σψ(A)(r, y, %, η) =
∑

j+|α|=µ bjα(r, y)%
jηα,

and an analogue of the principal edge symbol (21) is the principal boundary
symbol

σ∂(A)(y, η) := σψ(A)(0, y,Dr, η) : Hs(R+)→ Hs−µ(R+) (27)

acting between standard Sobolev spaces on the half-axis, η 6= 0.
The spaces Hs(R+) are Hilbert spaces with group action (κλu)(r) :=

λ
1
2u(λr), λ ∈ R+, and the homogeneity of the boundary symbol is similar to

(23), namely,
σ∂(A)(y, λη) = λµκλσ∂(A)(y, η)κ−1

λ

for all λ ∈ R+.

Remark 1.24 Let (25) be elliptic, i.e., σψ(A)(r, y, %, η) 6= 0 for (%, η) 6= 0;
then (27) is a surjective family of Fredholm operators for every η 6= 0 and
s > µ− 1

2
.

Example 1.25 Consider the Laplacian ∆ = ∂2

∂r2
+

∑q
j=1

∂2

∂y2j
. Then

σψ(∆)(%, η) = −|%|2 − |η|2 and σ∂(∆)(η) =
∂2

∂r2
− |η|2,

and we have kerσ∂(∆)(η) = {ce−|η|r : c ∈ C}.
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A boundary value problem for an elliptic operator A consists of the task
to solve the equations

Au = f in the domain, Tu = g on the boundary,

for instance, in the half-space R1+q
+ with boundary Rq, with given right hand

sides f, g and a so-called trace operator T that represents the boundary
conditions. T may be given as a vector of operators of the form u → r′Bu,
where B is a differential operator and r′ the operator of restriction to the
boundary. We then have the boundary symbol σ∂(T )(y, η) consisting of the
vector of operators r′σψ(B)(0, y,Dr, η) : Hs(R+) → C; in this case r′ is the
restriction to r = 0 and s > 1

2
sufficiently large.

An example is B ≡ 1 and T = r′; this operator represents Dirichlet con-
ditions. For A = ∆, see Example 1.25, we obtain a family of isomorphisms.

t
(
σ∂(∆)(η) σ∂(r

′)
)

: Hs(R+)→ Hs−2(R+)⊕ C

for all η 6= 0, s− 2 > −1
2
.

In general, if we have finitely many trace operators T = t(T1, . . . , Tj+),
in elliptic boundary value problems, the role of σ∂(T )(y, η) is to fill up the
family of Fredholm operators (27) to a family of isomorphisms

t
(
σ∂(A)(y, η) σ∂(T )(y, η)

)
: Hs(R+)→ Hs−µ(R+)⊕ Cj+

for η 6= 0. If we want to complete the calculus by passing to parametrices
of operators A = t(A T ), we have to invert such isomorphisms and to find
associated operators P := (P K), now being of row matrix from and with
pseudo-differential operators P with the ‘right’ behaviour at the boundary.
This is possible within the calculus of boundary value problems for operators
with the so-called transmission property at the boundary, see [6] or several
monographs, e.g., [63], [25], [75], or [31]. The operator K is called a potential
operator.

In this calculus we can compose operator block matrices as soon as the
image of the first factor fits to the range of the second one. In addition it
turns out that, in order to fill up the boundary symbol of such a pseudo-
differential operator to a family of isomorphisms, in general we need trace
and potential entries at the same time. This gives rise to 2×2 block matrices
of ‘boundary value problems’

A =

(
A K
T Q

)
(28)

with a principal symbolic tuple σ(A) = (σψ(A), σ∂(A)).
Before we return to the edge case we want to rephrase the Sobolev spaces

occurring in (26) as edge spaces.
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Definition 1.26 [71] Let H be a Hilbert space with group action κ = {κλ}λ∈R+.
Then the abstract edge space Ws(Rq, H) of smoothness s ∈ R is defined to be
the completion of S(Rq, H) with respect to the norm

‖u‖Ws(Rq ,H) =
{∫
〈η〉2s‖κ−1

〈η〉û(η)‖
2
Hdη

}1/2

(with û = Fu being the Fourier transform in Rq and κλ acting on the values
of û(η) in H).

Useful functional analytic results on these so-called abstract edge spaces
may be found in [72], [75], [29], [31]. Apart from our calculus on singular
manifolds, edge spaces in several variants have been also applied in [2] and
[15].

Example 1.27 For H = Hs(R+) with (κλu)(r) = λ1/2u(λr), λ ∈ R+, we
have

Hs(R1+q
+ ) =Ws(Rq, Hs(R+)).

Remark 1.28 Given a Fréchet space E written as a projective limit of Hilbert
spaces Ej, j ∈ N, with continuous embeddings . . . ↪→ Ej+1 ↪→ Ej ↪→ . . . ↪→
E0, we say that E is endowed with a group action κ, if κ is a group action
on E0 and κ|Ej a group action on Ej for every j. In that case we can form
the spaces Ws(Rq, Ej), and we set

Ws(Rq, E) := lim←−
j∈N
Ws(Rq, Ej).

Example 1.29 (i) Let H := Ks,γ(X∆) be endowed with the group action
as in Remark 1.8 for g = s − γ, see also the notation (6). We then
have the spaces

Ws(Rq, Ks,γ(X∆))

for every s, γ ∈ R.

(ii) Let E = Ks,γ
P (X∆) for a discrete or continuous asymptotic type P ,

written as a projective limit of Hilbert spaces with the group action as
in (i) (which is always possible). Then we obtain Ws(Rq, Ks,γ

P (X∆))
which is an edge space with asymptotics.

Definition 1.30 (i) Let M be a manifold with edge Y . Then Hs,γ
[loc)(M)

denotes the subspace of all u ∈ Hs
loc(M \ Y ) such that the push forward

of u|V \Y under V \ Y → X∧ × Rq, multiplied by any ϕ ∈ C∞
0 (R+ ×

Rq), belongs to Ws(Rq, Ks,γ(X∆)). This is required for every V as in
Remark 1.17, with Rq instead of Ω, see the formula (17).
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(ii) Replacing in the latter condition Ks,γ(X∆) by Ks,γ
P (X∆) for a (continu-

ous) asymptotic type P (satisfying the shadow condition) we obtain the
space Hs,γ

[loc),P (M). Similarly, Hs,γ
[comp)(M) and Hs,γ

[comp),P (M) are defined

to be the subspaces of the corresponding ‘[loc)’-versions of elements with
compact support.

If M itself is compact, we omit ‘[comp)’ and ‘[loc)’ and simply write

Hs,γ(M) and Hs,γ
P (M),

respectively.
The notation also makes sense for the case dimY = 0, i.e., conical sin-

gularities.

Proposition 1.31 An operator A ∈ Diffµdeg(M), M ∈M1 compact, induces
continuous operators

A : Hs,γ(M)→ Hs−µ,γ−µ(M) (29)

and

A : Hs,γ
P (M)→ Hs−µ,γ−µ

Q (M) (30)

for all s, γ ∈ R and every asymptotic type P with some resulting asymptotic
type Q.

Assuming now that A ∈ Diffµdeg(M) is σψ-elliptic in the sense of Definition
1.21, it is a natural question, whether the operator (29) can be seen as the
‘upper left corner’ of a Fredholm operator

A =

(
A K
T Q

)
:
Hs,γ(M)
⊕

Hs(Y, J−)
→

Hs−µ,γ−µ(M)
⊕

Hs−µ(Y, J+)
(31)

for suitable J± ∈ Vect(Y ) (Vect(·) means the set of all smooth complex
vector bundles over the manifold in parentheses). In simplest cases we may
imagine trivial bundles J± = Y × Cj± for suitable j± ∈ N, also denoted by
Cj± .

Answers are given within the pseudo-differential edge algebra, first devel-
oped in this generality in [71] and then more and more completed in several
papers and monographs, see the references in the introduction and also the
comments in [80]. Note, in particular, that the calculus of [71] contains in-
formation from [64] which is a variant of the edge calculus when the base of
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the model cone is of dimension 0 (i.e., a calculus of boundary value prob-
lems without the transmission property at the boundary) and from [65], [66],
[68], [67]. A later investigation of Mazzeo [49] on edge-degenerate operators
employed rather different techniques. Trace and potential operators on the
edge are not considered there.

In Section 3 below we will develop more details on the structure of cone
and edge algebras.

1.3 Higher singularities

We now turn to categories Mk of manifolds of singularity order k ≥ 1. The
definition will be inductive. The categories M0 and M1 are introduced in
Section 1.1 and 1.2. By induction assumption, in future referred to as (IA),
we employ the categories Ml for all 0 ≤ l ≤ k− 1, k ≥ 2, and then pass from
k − 1 to k. The information feeded in by (IA) is that

X ∈Ml ⇒ X × Ω ∈Ml

for any open C∞ manifold Ω. This allows us to form X∧ = R+ ×X ∈ Ml,
and we can define (locally trivial)

X − bundles or X∧-bundles.

General notions and constructions on fibre bundle over a C∞ manifold can
easily be adapted to the case of such fibres, by systematically using that
by (IA) we know not only the objects in Ml but also isomorphisms and
morphisms in that category.

Let M∧
l (R×Ml) denote the subcategory of all spaces of the formX∧ (R×

X) for X ∈Ml. Moreover, define the category

R+ ×M := {R+ ×X : X ∈Ml} (32)

where an isomorphism (morphism)

R+ ×X → R+ × X̃ (33)

in (32) is a homeomorphism (continuous map) such that there is an isomor-
phism (morphism)

R×X → R× X̃

in R×Ml which restricts to isomorphisms (morphisms) {0}×X → {0}× X̃
and R+ × X → R+ × X in Ml and M∧

l , respectively (clearly {0} × X is
identified with X).
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We then define the category M∆
l of cones X∆ = (R+ × X)/({0} × X),

where an isomorphism (morphism) X∆ → X∆ is the quotient map of some
isomorphism (morphism) (33) in R+×Ml with respect to the map {0}×X →
{0} × X̃ between the corresponding subspaces.

This allows us to form (locally trivial) X∆-bundles L and (R+ × X)-
bundles L over a C∞ manifold Y . Such an L contains an X-bundle Lsing and
an X∧-bundle Lreg as subbundles, where

L = Lsing ∪ Lreg (34)

(disjoint union), and there is a map π : L → L to an X∆-bundle over Y by
fibrewise applying the quotient map R+ × X → (R+ × X)/({0} × X). For
instance, if L = R+×X ×Ω, then Lsing = {0}×X ×Ω, Lreg = R+×X ×Ω,
and L = X∆ × Ω.

Remark 1.32 By (IA) we know that X-, X∧- and R × X-bundles over
a smooth manifold Y for X ∈ Ml, 0 ≤ l ≤ k − 1, also belong to Ml.
However, our X∆-bundles L over Y will already be of singularity order k
when X ∈Mk−1. This is a part of Definition 1.33 below.

A simple consideration then shows that X- and X∧-bundles as well as
(R × X)-bundles for X ∈ Ml, 0 ≤ l ≤ k − 1, are objects in corresponding
categories with isomorphisms (morphisms) referring to the bundle structure,
including the compatibility with the respective bundle projections. This gives
rise also to a category of X∆-bundles when we employ the quotient spaces
fibrewise and the above-mentioned (iso)morphisms between them.

By construction, L as an R+ × X-bundle, is a subbundle of an R × X-
bundle that we denote by 2L (the double).

Definition 1.33 A topological space M is said to be a manifold of singularity
order k ≥ 1, written M ∈Mk, if

(i) there is chosen a subspace Y ⊂M , Y ∈M0, such that M \ Y ∈Mk−1;

(ii) Y has a neighbourhood U in M which has the structure of a (locally
trivial) cone bundle L over Y with fibre X∆ for some X ∈Mk−1, i.e.,
U ∼= L (in the sense of isomorphy of such cone bundles).

We call Y the minimal stratum of M .

Denoting the manifold Y in Definition 1.33 for the moment by Y k, for
M \ Y k ∈ Mk−1 we have again a minimal stratum Y k−1 ∈ M0 such that
(M \ Y k) \ Y k−1 ∈ Mk−2, and so on. In this way we obtain a sequence of
C∞ manifolds Y k, Y k−1, . . . , Y 1, Y 0, such that M can be written as a disjoint
union (1). Let us call Y 0 the maximal stratum ofM and set dimM = dimY 0.
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Remark 1.34 With every M ∈Mk we can associate its stretched manifold
M by invariantly attaching the X-bundle Using to M \ Y k; here, similarly
as (34), for U ∼= L we form U ∼= L in the sense of R+ × X-bundles, and
U = Using ∪ Ureg. We then write

M = Msing ∪Mreg

for Msing := Using and Mreg := M \Msing
∼= M \ Y k. From this construction

we obtain a continuous map π : M → M such that π|Msing
: Msing → Y k is

the bundle projection of the respective X-bundle over Y k and π|Mreg : Mreg →
M \ Y k an isomorphism in Mk−1. By gluing together two copies of M along
Using we obtain the double 2M of M; then 2M ∈Mk−1.

Remark 1.35 We interpret Mk as a category, where the isomorphisms (mor-

phisms) β : M → M̃ are homeomorphisms (continuous maps) which re-

strict to isomorphisms (morphisms) M \ Y k → M \ Ỹ k in Mk−1 and dif-

feomorphisms (differentiable maps) Y k → Ỹ k, such that there is an iso-

morphism (morphism) 2M → 2M̃ in Mk−1 of the doubles of the associated

stretched spaces, such that its restriction b : M → M̃ satisfies the condition
β ◦ π = π̃ ◦ b (where π̃ : M̃ → M̃ is of analogous meaning as the above-
mentioned π : M→M), and b restricts to a bundle isomorphism (morphism)

Msing → M̃sing of the X-bundle over Y k to the respective X̃-bundle over Ỹ k.

Now the constructions at the beginning of this section in connection with
the categories M∧

l , R ×Ml, R+ ×Ml, M∆
l , and bundles L,L, 2L etc, can

easily be performed up to l = k. This allows us to formulate an analogue of
Definition 1.33 for k + 1 instead of k.

Theorem 1.36 M ∈Mk, N ∈Ml implies M×N ∈Mk+l for every k, l ∈ N.

We now turn to spaces of differential operators on Mk and their symbolic
structures.

By (IA) we have the spaces Diffµdeg(X) for every X ∈ Ml for 0 ≤ l ≤
k− 1, and those spaces are Fréchet in a natural way. Moreover, we have the
principal symbolic hierarchy

σ(A) := (σj(A))0≤j≤l

for A ∈ Diffµdeg(X), X ∈Ml. Furthermore, by (IA) we know that an isomor-
phism

ϕ : X → X̃

in Ml induces an isomorphism

ϕ∗ : Diffµdeg(X)→ Diffµdeg(X̃)

of the corresponding spaces of operators.
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Definition 1.37 Let M ∈Mk, k ≥ 1, and Y k ⊂M the minimal stratum of
M . Then an operator A ∈ Diffµdeg(M \ Y k) (the latter space known by (IA))
is said to belong to Diffµdeg(M), if

(i) in the case dimY k = 0 the operator has close to Y k in the splitting of
variables (t, x) ∈ R+ ×Xk−1, Xk−1 ∈Mk−1, the form

A = t−µ
µ∑
j=0

aj(t)(−t
∂

∂t
)j

with coefficients aj ∈ C∞(R+,Diffµ−jdeg (Xk−1));

(ii) in the case dimY k =: qk > 0 the operator has close to Y k in the splitting
of variables (t, x, z) ∈ R+×X ×Ωk, Xk−1 ∈Mk−1, Ωk ⊆ Rqk open, the
form

A = t−µ
∑

j+|α|≤µ

ajα(t, z)
(
− t ∂

∂t

)j
(tDz)

α (35)

with coefficients ajα ∈ C∞(R+ × Ωk,Diff
µ−(j+|α|)
deg (Xk−1)).

Remark 1.38 Applying Definition 1.33 for k ≥ 2 once again to X ∈Mk−1,
i.e., to a minimal stratum Y ⊂ X, Y ∈ M0, and taking into account that
X \ Y ∈Mk−2, we see that every y ∈ Y has a neighbourhood V in X, where
V \ Y admits a local splitting of variables into (r, x, y) ∈ R+ ×Xk−2 ×Ωk−1,
Ωk−1 ⊆ Rqk−1 open, Xk−2 ∈Mk−2. Then (35) takes the local form

A = t−µr−µ
∑

j+|α|+l+|β|≤µ

ajα,lβ(t, r, y, z)
(
−r ∂

∂r

)l
(rDy)

β
(
−rt ∂

∂t

)j
(rtDz)

α

with coefficients

ajα,lβ ∈ C∞(R+ × R+ × Ωk−1 × Ωk,Diff
µ−(j+|α|+l+|β|
deg (Xk−2)).

Example 1.39 Let X ∈ M0 be equipped with a Riemannian metric gX .
Then, as noted in the introduction, the Laplace-Beltrami operator belonging
to the wedge metric

dr2 + r2gX + dy2

on W := R+ × X × Ω 3 (r, x, y), Ω1 ⊆ Rq1 open, is edge-degenerate and
of order 2. Taking W as the cone of another wedge V := R+ ×W × Ω2 3
(t, (r, x, y), z) for Ω2 ⊆ Rq2 open, we can form the corner metric

dt2 + t2(dr2 + r2gX + dy2) + dz2.
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The associated Laplace-Beltrami operator is then of the form (35) for µ = 2.
The process of iteratively forming higher wedge metrics can be continued,
and then, if k is the corresponding singularity order, the associated Laplace-
Beltrami operator belongs to Diff2

deg over that higher wedge.

Definition 1.40 Let M ∈Mk, Y
k ⊂M its minimal stratum (see Definition

1.33), and let A ∈ Diffµdeg(M). We then set

σ(A) := (σ(A|M\Y k), σk(A)), (36)

where σ(A|M\Z) := (σ0(A), . . . , σk−1(A)) is known by (IA) from M \ Y k ∈
Mk−1, and

σk(A)(w) :=

µ∑
j=0

aj(0)w
j for dimY k = 0 (37)

as a w-depending family of operators in Diffµdeg(X), w ∈ C,

σk(A)(z, ζ) := t−µ
∑

j+|α|≤µ

ajα(0, z)
(
−t ∂
∂t

)j
(tζ)α for dimY k > 0, (38)

as a (z, ζ)-depending family of operators in Diffµdeg(X
∧), (z, ζ) ∈ Ωk × (Rqk \

{0}).

Theorem 1.41 A ∈ Diffµdeg(M), B ∈ Diffνdeg(M) implies AB ∈ Diffµ+ν
deg (M),

and we have σ(AB) = σ(A)σ(B), with componentwise composition of an the
right hand side (and the rule σk(AB) = (T νσk(A))σ(B) when the dimension
of the minimal stratum is zero; recall that (T βf)(w) = f(w + β)).

The proof is simple when we employ (IA) for the operators realised on
M \Y k ∈Mk−1 and then compute the rule for the k-th symbolic component
directly.

Remark 1.42 By repeatedly applying Definition 1.33 locally near neighbour-
hoods of minimal strata, first near any point of Y (where Y denotes again the
minimal stratum of M) in a trivialisation of Ureg over a coordinate neigh-
bourhood Ωk on Y , i.e., Ureg|Ωk

∼= R+ × Xk−1 × Ωk 3 (rk, xk−1, yk) (here in
modified notation compared to the one before), then similarly near the mini-
mal stratum of X ∈Mk−1 in a local splitting of variables, (rk−1, xk−2, yk−1) ∈
R+ ×Xk−2 ×Ωk−1, and so on, we can introduce locally close to Y on M co-
ordinates

(r1, . . . , rk, x, y1, . . . , yk) ∈ (R+)k × Σ×
k∏
j=1

Ωj,
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Ωj ⊆ Rqj open, Σ ⊆ Rn open, yj ∈ Ωj, x ∈ Σ, where an operator A ∈
Diffµdeg(M) has the form A = r−µ1 . . . r−µk A0, and A0 is a polynomial in the
vector fields

r1
∂

∂r1
, r1r2

∂

∂r2
, . . . , r1 . . . r2

∂

∂rk
,

∂

∂x1

, . . . ,
∂

∂xn
, r1

∂

∂y1,i

, i = 1, . . . , q1,

r1r2
∂

∂y2,i

, i = 1, . . . , q2, . . . , r1 . . . rk
∂

∂yk,i
, i = 1, . . . qk,

with coefficients in C∞(
(R+)k × Σ×

∏k
j=1 Ωj

)
.

Remark 1.43 We do not study here operators of ‘multi-Fuchs type’, defined
in terms of vector fields rj

∂
∂rj

, see [60], [59], [57], [58], and the references

there. The resulting calculus is simpler than ours.
More generally, if we are given a space of ‘typical’ differential operators

on the maximal stratum Y 0 of a corner manifold M which are polynomials
in vector fields of a prescribed ‘degenerate’ behaviour at M \ Y 0 (together
with the coefficients), it may be an interesting task to establish a pseudo-
differential calculus that extends the space of those differential operators to
an algebra, closed under the construction of parametrices of elliptic elements
(whatever ‘ellipticity’ means). In any case the result will depend on the vector
fields in a specific way. What we do in the present paper is to treat operators
in Diffµdeg(M) in the sense of Definition 1.37, cf. also Remark 1.42.
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2 Pseudo-differential operators with param-

eters and conical exits to infinity

2.1 Classical operators with parameters

Standard material on pseudo-differential operators may be found in any text-
book on this topic, see, for instance, Kumano-go [41], or Treves [94]. In the
first part of this section we recall a few facts, mainly in order to fix our
notation.

Parametrices of elliptic differential operators on a C∞ manifold X exist
in the class of classical pseudo-differential operators of opposite order. In
local variables x ∈ Σ, Σ ⊆ Rn open, with the covariables ξ ∈ Rn, the pseudo-
differential operators of order µ ∈ R are given as

Au(x) = Op(a)u(x) + Cu(x) (39)

where a(x, ξ) is an amplitude function (or symbol) in C∞(Σ×Rn), and C an
operator with kernel in C∞(Σ×Σ). Concerning a(x, ξ) we ask the symbolic
estimates

sup
x∈K
|Dα

xD
β
ξ a(x, ξ)| ≤ c〈ξ〉µ−|β| (40)

for all ξ ∈ Rn, multi-indices α, β and compact subsets K ⊂ Σ; here 〈ξ〉 :=
(1 + |ξ|2)1/2, c = c(α, β,K) > 0.

The corresponding space of such symbols is denoted here by Sµ(Σ×Rn)
(and the subspace of x-independent elements by Sµ(Rn)). By admitting the
dimension of ξ-variables independent of the dimension of x we can also define
spaces Sµ(Σ×Rn+l

ξ,λ ), where (ξ, λ) ∈ Rn+l plays the role of covariables in the
symbolic estimates.

The notation Op(a)u in (39) (also written Opx(a)u) means
∫∫

ei(x−x
′)ξa(x, ξ)

u(x′)dxd̄ξ, d̄ξ = (2π)−ndξ, interpreted in the well-known oscillatory integral
set-up. Globally on X we define Lµ(X), the space of pseudo-differential op-
erators of order µ as the set of of all A0 +C where A0 is an arbitrary locally
finite sum of operators the form ϕ(χ−1)∗ Op(a)ψ, for any ϕ, ψ ∈ C∞

0 (U),
and any chart χ : U → Σ on X, where (χ−1)∗ means the push forward of
operators from Σ to U under χ−1, and C a globally smoothing operator. The
space L−∞(X) is identified with C∞(X×X) via a Riemannian metric on X.
Let Lµcl(X) denote the subspace of all elements of Lµ(X) where the symbols
a(x, ξ) are classical, i.e., locally in (x, ξ) ∈ Σ× Rn there exist C∞ functions
a(µ−j)(x, ξ) in Σ×(Rn\{0}), j ∈ N, such that a(µ−j)(x, λξ) = λµ−ja(µ−j)(x, ξ)

for λ ∈ R+ and a(x, ξ) − χ(ξ)
∑N

j=0 a(µ−j)(x, ξ) ∈ Sµ−(N+1)(Σ × Rn) for any
excision function χ(ξ) (i.e., χ ∈ C∞(Rn), χ(ξ) = 0 for |ξ| < c0, χ(ξ) = 1
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for |ξ| > c1 for some constants 0 < c0 < c1). The space of those symbols
is denoted by Sµcl(Σ × Rn) (and the subspace of x-independent elements by
Sµcl(Rn); later on we employ this space with its nuclear Fréchet topology). In
a similar manner we define Sµcl(Σ×Rn+l

ξ,λ ). If a consideration is valid both in
the classical and the general case; we often write subscript ‘(cl)’.

Setting L−∞(X; Rl) = S(Rl, L−∞(X)) we can define the space Lµ(cl)(X; Rl)
of all parameter-dependent pseudo-differential operators on X which are of
the form A0(λ) + C(λ), where A0(λ) is defined similarly as A0, now with
symbols a(x, ξ, λ) ∈ Sµ(cl)(Σ× Rn+l) and C(λ) ∈ L−∞(X; Rl) where A0(λ) is

defined in a similar manner as A0, now with symbols a(x, ξ, λ) ∈ Sµ(cl)(Σ ×
Rn+l), and C(λ) ∈ L−∞(X; Rl).

Every A ∈ Lµcl(X; Rl) has a parameter-dependent homogeneous principal
symbol σψ(A), locally depending on the variables (x, ξ, λ) ∈ Σ× (Rn+l \ {0})
and homogeneous in (ξ, λ) of order µ and invariantly defined as a C∞ function
on T ∗X × Rl \ 0.

An A ∈ Lµ(X; Rl) is said to be properly supported, if the support Sλ of
the distributional kernel of A(λ) in D′(X×X) has the property that the sets
Sλ ∩ {(x, x′) : x′ ∈ K ′} and Sλ ∩ {(x, x′) : x ∈ K} are compact in X × X
for arbitrary compact sets K,K ′ in X; this is required for all λ ∈ Rl. It can
be proved that every A ∈ Lµ(X; Rl) has a properly supported representative
A1 modulo some L−∞(X; Rl), where the support of the kernel of A1(λ) is
contained in a fixed proper subset of X ×X for all λ.

For simplicity we now concentrate on classical operators and X compact.
A ∈ Lµcl(X; Rl), B ∈ Lνcl(X; Rl) and A or B properly supported entails
AB ∈ Lµ+ν

cl (X; Rl), and we have σψ(AB) = σψ(A)σψ(B).

Definition 2.1 An operator A ∈ Lµcl(X; Rl) is said to be parameter-dependent
elliptic, if σψ(A)(x, ξ, λ) 6= 0 on T ∗X ×Rl \ 0 (for l = 0 we simply talk about
ellipticity).

Theorem 2.2 Let A ∈ Lµcl(X; Rl) be (parameter-dependent) elliptic. Then
there is a properly supported parametrix P in the sense 1 − PA, 1 − AP ∈
L−∞(X; Rl) (with 1 being the identity operator).

Theorem 2.3 Let A ∈ Lµcl(X; Rl) be parameter-dependent elliptic, X com-
pact. Then the associated operators

A(λ) : Hs(X)→ Hs−µ(X) (41)

are Fredholm for all λ ∈ Rl, s ∈ R. They are of index 0 when l > 0; there is
then a C > 0 such that the operators (41) are isomorphisms for all |λ| ≥ C.
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The following material belongs to the basics of the pseudo-differential
cone and edge algebras, see [72].

Definition 2.4 Let Mµ
O(X; Rq) for µ ∈ R, q ∈ N, denote the space of all

entire functions h(w) in C with values in Lµcl(X; Rq
η) such that h(β+ i%, η) ∈

Lµcl(X; R1+q
%,η ) for every β ∈ R, uniformly in compact β-intervals. For q = 0

we simply write Mµ
O(X).

Theorem 2.5 Let f(w, η) ∈ Lµcl(X; Γβ×Rq) be a parameter-dependent family
with parameter (Imw, η) ∈ R1+q, w ∈ Γβ, for some fixed β ∈ R. Then there
exists an h(w, η) ∈Mµ

O(X; Rq) such that

h(w, η)
∣∣
Γβ×Rq − f(w, η) ∈ L−∞(X; Γβ × Rq).

Moreover, if f(w, η) is parameter-dependent elliptic with parameter (w, η) ∈
Γβ ×Rq, then h(w, η)

∣∣
Γα×Rq is also parameter-dependent elliptic with param-

eter (w, η) ∈ Γα × Rq, for every α ∈ R, uniformly in compact α-intervals.

Let X be compact. A set of triples

R = {(pj,mj, Lj)}j∈Z,

where pj ∈ C,mj ∈ N and finite-dimensional subspaces Lj ⊂ L−∞(X) of
operators of finite rank, is called a discrete asymptotic type of Mellin symbols,
if the set πCR = {pj}j∈Z intersects every strip {c0 ≤ Rew ≤ c1} in a finite set.
Let M−∞

R (X) for such an R denote the set of all f ∈ A(C \ πCR, L−∞(X))
which are meromorphic with poles at the points pj of multiplicity mj +1 and
Laurent coefficients at (w − pj)−(k+1) belongong to Lj(X), 0 ≤ k ≤ mj. We
then set

Mµ
R(X) := Mµ

O(X) +M−∞
R (X). (42)

Theorem 2.6 Let X be compact, let h ∈ Mµ
R(X) be written as h = h0 + l

according to (42), h0 ∈ Mµ
O(X), l ∈ M−∞

R (X), and let h0

∣∣
Γβ

be parameter-

dependent elliptic with parameter w ∈ Γβ, for some fixed β ∈ R. Then there
exists an h−1 ∈ Mµ

S (X) for a suitable discrete asymptotic type S of Mellin
symbols such that hh−1 = h−1h = 1 (in the sense of pointwise composition of
meromorphic operator functions).

Remark 2.7 Functional analytic properties of meromorphic Fredholm func-
tions are studied in [21] and [22], [23]. A beautiful factorisation result for
meromorhic pseudo-differential families is obtained in [95]; concerning fac-
torisations in a more ‘abstract’ set-up, see [24]. Meromorphic Fredholm fam-
ilies of corner operators are investigated in [78], [46], [26], see also [11] and
[61] for the case of boundary value probems.
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2.2 Corner-degenerate operators

Let M ∈M1, and let Y ⊂M denote its minimal stratum. We then introduce
Lµdeg(M) to be the subspace of all A1 +C ∈ Lµcl(M \Y ) for any C ∈ L−∞(M \
Y ) such that locally near Y in the splitting of variables (r, x, y) ∈ R+×X×Ω,
X ∈M0, Ω ⊆ Rq open, the operator A1 has the form

r−µ Opy Opr(a),

for an operator-valued amplitude function

a(r, y, %, η) := ã(r, y, r%, rη),

ã(r, y, %̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X; R1+q
%̃,η̃ )),

and C ∈ L−∞(M \ Y ). More generally, by

Lµdeg(M ; Rl) (43)

we denote the subspace of all A = A1 + C ∈ Lµcl(M \ Y ; Rl) for arbitrary
C ∈ L−∞(M \ Y ; Rl), where A1 is locally near Y of the form

r−µ Opy Opr(a)(λ)

for
a(r, y, %, η, λ) := ã(r, y, r%, rη, rλ),

ã(r, y, %̃, η̃, λ̃) ∈ C∞(R+ × Ω, Lµ(cl)(X; R1+q1+l

%̃,η̃,λ̃
)).

By (IA) we know the spaces (43) for arbitrary M ∈ Ml, 0 ≤ l ≤ k − 1,
including the fact that they are Fréchet spaces in a natural way.

Definition 2.8 Let M ∈Mk and Y k its minimal and Y 0 its maximal stra-
tum. Then

Lµdeg(M ; Rl),

µ ∈ R, l ∈ N, denotes the space of all operator families

A = A1 + C

for arbitrary C ∈ L−∞(Y 0; Rl) where A1 is locally near Y k in the splitting of
variables (r, x, y) ∈ R+ × Xk−1 × Ωk, Xk−1 ∈ Mk−1, Ωk ⊆ Rqk open, of the
form

r−µ Opy Opr(a)(λ),

where
a(r, y, %, η, λ) := ã(r, y, r%, rη, rλ)

for an ã(r, y, %̃, η̃, λ̃) ∈ C∞(R+ × Ωk, L
µ
deg(M \ Y k; R1+qk+l

%̃,η̃,λ̃
)).

The operators A ∈ Lµdeg(M ; Rl) are called (parameter-dependent) corner-
degenerate.
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Remark 2.9 With the notation of Definition 2.8 we have

Lµdeg(M ; Rl) ⊂ Lµcl(Y
0; Rl). (44)

Moreover, every A ∈ Lµcl(M ; Rl) has a properly supported representative in

Lµdeg(M ; Rl) mod L−∞(Y 0; Rl).

According to the relation (44) every A ∈ Lµdeg(M ; Rl) has a parameter-

dependent homogeneous principal symbol σψ(A) ∈ C∞(T ∗Y 0 × Rl \ 0). Lo-
cally in the splitting of variables (r1, . . . , rk, x, y1, . . . yk) near Y k mentioned
in Remark 2.9 and with the respective covariables (including the parameter)
(%1, . . . , %k, ξ, η1, . . . ηk, λ) (and in modified notation with (r, y) and (%, η) re-
placed by (rk, yk) and (%k, ηk), respectively) we have

σ̃ψ(A)(r, y, %, ξ, η, λ) := rµ1 . . . r
µ
kσψ(r, x, y, r−1

1 %1, . . . ,

r−1
1 . . . r−1

k %k, ξ, r
−1
1 η1, . . . , r

−1
1 . . . r−1

k ηk, r
−1
1 . . . r−1

k λ)
(45)

for a function σ̃ψ(r, x, y, %̃, ξ, η̃, λ̃) which is smooth in r ∈ (R+)k up to r =
(0, . . . , 0). We employed the abbreviation

r = (r1, . . . , rk), y = (y1, . . . , yk)

%̃ = (%̃1, . . . , %̃k), η̃ = (η̃1 . . . , η̃k), λ̃ = (λ̃1, . . . , λ̃l).

Theorem 2.10 Let A ∈ Lµdeg(M ; Rl), B ∈ Lνdeg(M ; Rl), and let A or B

be properly supported. Then we have AB ∈ Lµ+ν
deg (M ; Rl) and σψ(AB) =

σψ(A)σψ(B).

Definition 2.11 An operator A ∈ Lµdeg(M ; Rl) is said to be parameter-

dependent σψ−elliptic, if σψ(A) 6= 0 on T ∗Y 0×Rl \0, moreover, if A
∣∣
M\Y k ∈

Lµdeg(M \Y k; Rl) is parameter-dependent σψ-elliptic on M \Y k ∈Mk−1 (this
notion is known by (IA)), and if in the above-mentioned splitting of vari-
ables near Y k the function σ̃ψ(A) is non-vanishing in (%̃, ξ, η̃, λ̃) 6= 0 up to
r = (0, . . . , 0). (For l = 0 we simply speak about σψ-ellipticity.)

Theorem 2.12 Let M ∈ Mk and let A ∈ Lµdeg(M ; Rl) be (parameter-
dependent) σψ-elliptic. Then there is a properly supported parametrix P ∈
L−µdeg(M ; Rl) in the sense that 1− PA, 1− AP ∈ L−∞(Y 0; Rl).
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2.3 Symbols with twisted homogeneity

If M ∈ Mk, k ≥ 1, has a minimal statum Y of dimension q > 0, then
the operators in the local model X∆ × Ω of M close to Y , Ω ⊆ Rq open,
X ∈ Mk−1, will be pseudo-differential operators on Ω with operator-valued
amplitude functions, operating in distribution spaces over (the main stratum
of) X∆ and also over lower-dimensional strata. An important aspect in this
connection is the twisted homogeneity (see Remark 1.5).

Definition 2.13 Let H and H̃ be Hilbert spaces, equipped with group ac-
tions κ = {κλ}λ∈R+ and κ̃ = {κ̃λ}λ∈R+, respectively. Then S(µ)(Ω × (Rq \
{0});H, H̃), µ ∈ R, is defined to be the subspace of all a(y, η) ∈ C∞(Ω ×
(Rq \ {0}),L(H, H̃)) such that

a(µ)(y, λη) = λµκ̃λa(µ)(y, η)κ
−1
λ

for all λ ∈ R+. Here L(H, H̃) is the space of linear continuous operators

H → H̃ in the operator norm topology.

Let χ(η) be an excision function in Rq
η. Then, if a(µ)(y, η) is as in Defini-

tion 2.13, the function a(y, η) := χ(η)a(µ)(y, η) which belongs to

C∞(Ω× Rq,L(H, H̃)) (46)

has the property that

sup
y∈K
η∈Rq

〈η〉−µ+β|‖κ̃−1
〈η̃〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H, eH) (47)

is finite for every α, β ∈ Nq and K b Ω. Let

Sµ(Ω× Rq;H, H̃) (48)

denote the set of all a(y, η) in the space (46) with that property. Moreover,
let

Sµcl(Ω× Rq;H, H̃) (49)

denote the subspace of those a(y, η) in the space (46) such that there are

elements a(µ−j)(y, η) ∈ S(µ−j)(Ω× (Rq \ {0});H, H̃), j ∈ N, with

a(y, η)−
N∑
j=0

χ(η)a(µ−j)(y, η) ∈ Sµ−(N+1)(Ω× Rq;H, H̃)
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for all N ∈ N. The functions in (48) are called (operator-valued) symbols,
those in (49) classical symbols, and the a(µ−j)(y, η), j ∈ N, the homogeneous
components of a(y, η). If a consideration refers to classical or general symbols,

we also write as subscript ‘(cl)’. In particular, Sµ(cl)(R
q;H, H̃) denotes the

space of symbols that are independent of y.

Example 2.14 (i) The operatorMϕ of multiplication by ϕ(r) ∈ C∞
0 (R+),

represents an element in S0(Rq;Ks,γ(X∆), Ks,γ(X∆)) for every s, γ ∈
R.

(ii) If A = r−µ
∑

j+|α|≤µ ajα(r, y)(−r∂r)j(rDy)
α is an edge-degenerate oper-

ator on X∆×Ω where the coefficients ajα ∈ C∞(R+×Ω, Diffµ−(j+|α|)(X))
are independent of r for r ≥ C for some C > 0, then we have

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ(X∆), Ks−µ,γ−µ(X∆))

for every s, γ ∈ R. If all ajα are independent of r, the symbol a(y, η) is
classical. In that case we have a(µ)(y, η) = σ∧(A)(y, η).

Forming Op(a)u(y) =
∫∫

ei(y−y
′)ηa(y, η)u(y′)dy′d̄η, d̄η = (2π)−qdη, for

every a(y, η) in (48) we obtain a continuous operator

Op(a) : C∞
0 (Ω, H)→ C∞(Ω, H̃). (50)

Instead of Op(·) we also write Opy(·).

Theorem 2.15 Let a(y, η) ∈ Sµ(Ω×Rq, H, H̃); then (50) extends to contin-
uous operators

Op(a) :Ws
comp(Ω, H)→Ws−µ

loc (Ω, H̃)

for all s ∈ R.

This theorem has been proved (under very general assumptions on the
symbols) in [89], generalising the approach of [30] in the scalar case. For the
concrete contexts of the edge calculus it was known before; a proof under
some mild additional assumptions may be found, e.g., in [72], see also [14].

2.4 Conical exits to infinity

As we see in the example of edge symbols (see Proposition 1.18 or the formula
(38)), edge-degenerate operators give rise to operators on an infinite coneX∆,
where (apart from the interesting behaviour near the tip) we should refer to
some background information at infinity. Although freezing of coefficients at
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the edge, say in the expression for σ∧(A)(y, η), η 6= 0, shows an automatic
behaviour at infinity which is completely determined by the behaviour of the
operator close to the edge, it is worth to notice a connection to aspects of the
(pseudo-differential) calculus on a manifold with conical exit to infinity. This
is remarkable even when X smooth; however, if X itself has singularities, the
various strata of X∆ (except for the tip of the cone) also have conical exits
to infinity, i.e., the geometric singularities are ‘travelling’ to infinity and do
something specific in respect to the details of the calculus.

To illustrate things we consider the Euclidean space Rm 3 x interpreted
as a cone (Sm−1)∆ with conical exit |x| → ∞. The symbols of the calculus
in this case are required to satisfy the estimates

|Dα
xD

β
ξ a(x, ξ)| ≤ c〈x〉ν−|α|〈ξ〉µ−β

for all x, ξ ∈ Rm, α, β ∈ Nm, c = c(α, β) > 0.
Given a pair of orders (µ, ν) ∈ R2 we obtain in this way a space of

symbols Sµ;ν(Rm×Rm), see [91], [62], [9]. The associated pseudo-differential
operators in Rm act in weighted Sobolev spaces Hs;g(Rm) := 〈x〉−gHs(Rm)
as continuous operators

Opx(a) : Hs;g(Rm)→ Hs−µ;g−ν(Rm) (51)

for every s, g ∈ R. In particular, we obtain a continuous operator S(Rm)→
S(Rm) in the Schwartz space. By virtue of 〈x〉−νSµ;ν(Rm×Rm) = Sµ;0(Rm×
Rm) the order ν at x = ∞ is not very essential in this context. Therefore,
we often may assume ν = 0.

It can be proved that Op(·) defines a bijection

Op : Sµ;ν(Rm × Rm)→ {Op(a) : a(x, ξ) ∈ Sµ;ν(Rm × Rm)} =: Lµ;ν(Rm)

to the space of associated pseudo-differential operators, and that

L−∞;−∞(Rm) :=
⋂
µ,ν∈R

Lµ;ν(Rm)

coincides with the space of all integral operators with kernels in S(Rm×Rm).
An operator A = Op(a) ∈ Lµ;ν(Rm) is said to be elliptic, if there exists a

p(x, ξ) ∈ S−µ;−ν(Rm × Rm) such that

1− p(x, ξ)a(x, ξ) ∈ S−1;−1(Rm × Rm).

Theorem 2.16 The following conditions are equivalent:

(i) A ist elliptic;
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(ii) the operator (51) is Fredholm for some fixed (s, g) = (s0, g0).

An elliptic operator A ∈ Lµ;ν(Rm) has a parametrix P ∈ L−µ;−ν(Rm), and
(51) is Fredholm for all s, g ∈ R. Moreover, V := kerA ⊂ S(Rm) is inde-
pendent of s, g, and there is a subspace W ⊂ S(Rm) of finite dimension such
that W ∩ imA = {0}, W + imA = Hs−µ;g−ν(Rm), for all s, g.

Remark 2.17 Let A ∈ Lµ;ν(Rm) induce an isomorphism (51) for some
(s, g) = (s0, g0), then (51) is an isomorphism for all s, g ∈ R, and we have
A−1 ∈ L−µ;−ν(Rm).

There is also an analogue of classical symbols, including the variable x.
Using Sµcl(Rm) with its nuclear Fréchet topology, we can set

Sµ;ν
clξ;x

(Rm × Rm) := Sµclξ(R
m)⊗̂πSνclx(R

m
x )

(⊗̂π denotes the projective tensor product of Fréchet spaces).
There is a straightforward generalisation of these considerations to the

case of a C∞ manifold M with conical exit to infinity. That means, M can
be written as a union

M = M0 ∪M∞

where M0 is C∞ and M∞ is identified with an infinite cylinder (ε,∞) × X
for some 0 < ε < 1 and a (for simplicity) closed compact C∞ manifold X,
such that M∞ ∩M0 = (ε, δ) × X for a δ with 0 < ε < δ < 1 (i.e., M0 is
a kind of bottle with a neck, containing the cylinder (ε, δ) ×X, and M∞ is
connected with M0 along this cylinder). In addition on M∞ we fix an atlas
of charts χ : (ε,∞) × U → Γ for coordinate neighbourhoods U on X and a
set Γ ⊂ Rn+1 (for n = dimX) of the form Γ = {(x0, x) ∈ Rn+1 : x0 ∈ (ε,∞),
x/x0 ∈ B for an open bounded set B ⊂ Rn}, such that χ(λr, ·) = λχ(r, ·) for
all λ ≥ 1, (r, ·) ∈ (ε,∞)×U . There is then a variant of the above-mentioned
symbol spaces for Γ instead of Rm, namely, Sµ;ν(Γ×Rm), and there are also
subspaces of classical (in (x, ξ)) symbols indicated by subscript ‘clξ;x’. Using
an open covering of M by charts, over M∞ as just explained, and over M0

arbitrary, we can define the space Lµ;ν
(cl)(M) of pseudo-differential operators

as sums of local pseudo-differential operators with such symbols, pulled back
to M and combined with localising factors, plus global smoothing operators.
The latter ones are defined by the mapping properties Hs;g(M)→ Hs′;g′(M)
for all s, s′, g, g′ ∈ R; the weighted Sobolev spaces Hs;g(M) are an immediate
generalisation of the ones in Rm (assuming thatM\M∞ is compact, otherwise
we have suitable ‘comp’ and ‘loc’ versions).
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Definition 2.18 Let M be a manifold with conical exit to infinity. An A ∈
Lµ;ν(M) is said to be elliptic, if A is elliptic as an operator in Lµ(M), and if
for the local symbols a(x, ξ) ∈ Sµ;ν(Γ×Rm) there are p(x, ξ) ∈ S−µ;−ν(Γ×Rm)
such that 1− p(x, ξ)a(x, ξ) ∈ S−1;−1(Γ×Rm) (the second condition concerns
the above-mentioned charts χ : (ε,∞) × U → Γ and will be referred to a
‘exit-ellipticity’).

Remark 2.19 There is a straightforward generalisation of Theorem 2.16 to
the case of an arbitrary manifold M with conical exit to infinity (when M\M∞
is compact). Also the cylinder M∞ = (ε,∞)×X 3 (r, x) itself is a manifold
with conical exit to infinity, though open for r → ε, but it makes sense to
consider operators of the class Lµ;ν

(cl)(M∞) also in this case. Ellipticity then

entails the existence of a parametrix in L−µ;−ν
(cl) (M∞).

Remark 2.20 Let X be closed compact, and consider the set X∆ \ {([0, ε]×
X)/({0} ×X)} =: X�,ε as a part of a manifold with conical exit to infinity,
for instance, R×X =: X� which has another exit r → −∞. Then we have

(1− ω)Hs;g(X�) = (1− ω)〈r〉−gKs,γ(X∆)

for any cut-off function ω (where 1−ω(r) := 0 for r < 0), and, in particular,
Hs

cone(X
∧) = Hs;0(X�)|R+×X .

Theorem 2.21 Let M be a manifold with edge (see Definition 1.14), and
let A ∈ Diffµdeg(M) be σψ-elliptic (see Definition 1.21) . Then the operator
σ∧(A)(y, η) for every fixed y and η 6= 0 is elliptic in Lµ;0(X�, ε) for every
ε > 0 (see the notation of Remark 2.20).
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3 A hierarchy of operator algebras

3.1 The program of the iterative calculus

Given a space N ∈ Mk−1, k ∈ N, k ≥ 2, we assume to have constructed
an algebra A(N) of operators on the maximal stratum of N , graded by
orders µ ∈ R, i.e., A(N) =

⋃
µ Aµ(N), where every Aµ(N) is again the

union of subspaces Aµ(N, g) with weight data g = (γ, γ − µ) for a tuple
of weights γ = (γ1, . . . , γk−1) ∈ Rk−1, γ − µ = (γ1 − µ, . . . , γk−1 − µ). For
N ∈ M0 we have in mind the spaces Aµ(N) = Lµcl(N) without any such
weight data, while for N ∈M1 we mean the respective cone or edge pseudo-
differential algebras, established in [71], [72], etc. (see also the references in
the introduction). In general we construct A(N) as a subspace of Lµdeg(N) in
such a way that Aµ(N) = Lµdeg(N) mod L−∞ on the maximal stratum of N
(see Definition 2.8). For a more transparent description, we consider at the
moment operators of the form of upper left corners rather than full 2×2 block
matrices including trace and potential entries occurring in the edge case, (for
some reason this is not too restrictive, see Remark 3.8 below). In addition we
consider operators between spaces of scalar distributions, although in general
it is interesting to admit distributional sections in vector bundles (which is
a straightforward generalisation).

The program of the iterative calculus on spaces M ∈ Ml for l ≥ k is
to organise a natural scenario to pass from A(N) to corresponding higher
generations of calculi. Spaces M in Mk can be obtained from Mk−1 by past-
ing together local cones N∆ or wedges N∆ × Ω, Ω ⊆ Rq open, N ∈ Mk−1.
Analytically, the main steps (apart from invariance aspects) consist in un-
derstanding the correspondence between A(N) and the next higher algebras

A(N∆) and A(N∆ × Ω). (52)

We will call the process of passing from A(N) to (52) ‘conification’ and
‘edgification’, respectively, of A(N). The key words listed below characterise
the main elements of this approach. The corresponding structures are feeded
in as information by (IA) (induction assumption). Those are to be generated
again on the next floor of the building of operator algebras.

Parameter-dependent calculus. The first observation is that (by
(IA)) we have a parameter-dependent version A(N ; Rl) =

⋃
Aµ(N, g; Rl)

of A(N) with parameters λ = (λ1, . . . , λl) ∈ Rl of dimension l ∈ N. The
parameters can be introduced by letting local symbols depend on those ad-
ditional parameters, treated as components of covariables, and by defining
parameter-dependent smoothing operators as Schwartz functions in the sense
S(Rl,A−∞(N)) (see also the constructions of Section 2.2). Here A−∞(N)
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denotes the space of smoothing operators on N , consisting of the spaces
A−∞(N, g) 3 C, required to map weighted distributions of any smoothness
to weighted smooth functions with (here continuous) asymptotics; the same is
asked on the formal adjoint C∗ (see the explanations below under the headline
‘Global smoothing operators’. Then A−∞(N, g) has a natural locally convex
topology, and we can talk about Schwartz functions with values there. As a
parameter we also may have Imw on any line Γβ := {w ∈ C : Rew = β};
then our notation is, e.g., Aµ(N, g; Γβ × Rl).

Cones with exit to infinity. If A(N) is established for every N ∈
Mk−1, we know at the same time A(N∧) for N∧ = R+ × N 3 (t, ·), since
Mk−1 is closed under taking Cartesian products with a C∞ manifold. How-
ever, the behaviour for t → ∞ which is regarded as a conical exit of N∧ to
infinity, can be specified in terms of extra conditions on symbols as well as
on smoothing operators. This gives rise to what we call exit symbols, where,
roughly speaking, t is recognised as a covariable. In particular, we may have
components of homogeneity zero in t at t → ∞, with values in spaces of
symbols in the covariables in the ‘usual sense’. The smoothing operators are
defined in terms of kernels that are Schwartz functions in (t, t′) for large t, t′

with values in A−∞(N). Let Acone(N
∧) denote this subcalculus of A(N∧).

Holomorphic Mellin symbols and kernel cut-off. As explained be-
fore, together with the operator spaces A(N) we have parameter-dependent
analogues A(N ; Rl) and also families in C∞(R+ ×Ω,A(N ; Rl)) for any open
set Ω ⊆ Rq. This allows us to define edge-degenerate families

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ)

for p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Ω,A(N ; R1+q

τ̃ ,ζ̃
)). The combination tτ indicates

an operation of Fuchs type in t ∈ R+, while tζ represents edge-degenerate
derivatives. For the calculus with Mellin symbols, analogously as in the edge
algebra for k = 1, we should impose quantisations based on a holomorphic
dependence on the Mellin covariable in the new axial direction t ∈ R+. So
the point is to extend the notion of parameter-dependent operator spaces
A(N ; Rl+1) to the case A(N ; C × Rl), l ∈ N. The property is that any
h(w, λ) ∈ A(N ; C×Rl) is defined by the condition h(w, λ) ∈ A(C,A(N ; Rl))
(with A(U,E) for open U ⊆ C denoting the space of holomorphic functions
in U with values in E), such that

h(β + iτ, λ) ∈ A(N ; Rl+1
τ,λ )

for every β ∈ R, uniformly in arbitrary compact β-intervals. The holomor-
phy of operator families can be defined in terms of holomorphic families of

37



the underlying local symbols, plus holomorphy of families of smoothing oper-
ators, formulated by using the mapping properties between weighted spaces
and spaces of smooth functions (say, with continuous asymptotics).

A kernel cut-off construction (see the terminology in [70] or [72]) tells
us that for every f(w, λ) ∈ A(N ; Γβ × Rl), β ∈ R fixed, there exists an
h(w, λ) ∈ A(N ; C× Rl) such that

h(w, λ)
∣∣
Γβ×Rl = f(w, λ) mod A−∞(N ; Γβ × Rl).

It holds for the singularity order k = 1; then it follows for k = 2. By (IA) it
is imposed up to the singularity order k − 1.

If we want to point out subspaces of A(N ; C× Rq) of operators of order
µ and involved weight data (γ, γ − µ), we write

Aµ(N, (γ, γ − µ); C× Rq).

Similar notation is used for other variants of our spaces.
Mellin quantisation. The Mellin quantisation consists of the theorem

that for every given

p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Ω,A(N ; R1+q

τ̃ ,ζ̃
)) (53)

there exists an

h̃(t, z, w, ζ̃) ∈ C∞(R+ × Ω,A(N ; Cw × Rq

ζ̃
))

such that, when we set

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ), h(t, z, w, ζ) := h̃(t, z, w, tζ), (54)

we have
opγM(h)(z, ζ) = Opt(p)(z, ζ)

mod C∞(Ω,A−∞(N∧; Rq)). Here opγM(·) is the pseudo-differential operator
on R+, based on the weighted Mellin transform Mγu(w) = M(t−γu)(w+ γ);
then

opγM(f) := M−1
γ fMγ = tγM−1(T−γf)Mt−γ,

(T−γf)(w) := f(w−γ), M := M0. This result which is true of the singularity
order k = 1 is imposed as (IA) in the iterative process. Note that, although
the ‘Fourier phase function’ (t − t′)τ in Opt(·) is equivalent (in the sense of
Fourier distributions) to the ‘Mellin phase function’ (log t′ − log t)τ which is
involved in opγM(·), the correspondence p̃→ h̃,

C∞(R+ × Ω,A(N ; R1+q))→ C∞(R+ × Ω,A(N ; C× Rq))
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is more than only to find a new amplitude function for the new phase. In fact,
we do not only save the smoothness in t up to zero but obtain holomorphy
in the axial covariable.

Edge quantisation By edge quantisation we understand a specific way
of passing from an edge-degenerate family

p(t, z, τ, ζ) = p̃(t, z, tτ, tζ), (55)

(cf. (53)) to an operator in weighted edge spaces. Applying the Mellin
quantisation we first find a Mellin amplitude function h(t, z, w, ζ) (see (54)).
In addition we set

p0(t, z, τ, ζ) := p̃(0, z, tτ, tζ), h0(t, z, w, ζ) := h̃(0, z, w, tζ).

Moreover, we fix cut-off functions ω, ω̃, ˜̃ω on the half-axis such that ˜̃ω ≺ ω ≺
ω̃ and cut-off functions σ, σ̃ (ω ≺ ω̃ means that ω̃ ≡ 1 on suppω). We set

aM(z, ζ) := t−µω(t[ζ]) op
δ−n

2
M (h)(z, ζ)ω̃(t′[ζ]) (56)

for a δ ∈ R, n := dimN , and

aψ(z, ζ) := t−µ(1− ω(t[ζ]))ω0(t[ζ], t
′[ζ]) Opt(p)(z, ζ)(1− ˜̃ω(t′[ζ])). (57)

Here t′ is the variable in the argument functions u(t′, ·), while ω0(t, t
′) :=

ψ((t− t′)2/(1 + (t− t′)2)) for any ψ ∈ C∞
0 (R+) such that ψ(t) = 1 for t < 1

2
,

ψ(t) = 0 for t > 2
3
. We now form the operator-valued amplitude function

a(z, ζ) := σ{aM(z, ζ) + aψ(z, ζ}σ̃ (58)

(with σ̃ depending on t′). The number δ plays the role of the new weight γk
for the k-th axial variable t ∈ R+. The operator Opz(a) is just the result
of edge quantising the (operator-valued) amplitude function (55) up to the
factors σ, σ̃ which localise the operator near the edge). The quantisation rule
(57) which produces aψ can be slightly simplified for the case of singularity
order k = 1 by omitting ω0 in the middle (see [48]). However, for higher order
singularities this localising factor seems to be indispensable, see [8] or [48].
Note that for k = 1 (and dimY > 0) there is also another edge quantisation
of a simpler shape, see [20]. However, it seems that an analogue for k > 1
(even if it is possible) causes more effort than the quantisation (58).

The asymptotic part of the corner calculus. The following con-
structions concern the case of compact X ∈ Mk−1. Considering the wedge
X∆ × Ω, or its stretched version

R+ ×X × Ω 3 (t, ·, z),
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the above constructions contribute to building up the calculus of A(X∆×Ω).
There is another essential ingredient, namely, so-called Green and ‘smooth-
ing’ Mellin operators which are pseudo-differential operators on Ω (the edge)
with operator-valued symbols

g(z, ζ) and m(z, ζ),

respectively. A Green symbol associated with the weight data g = ((γ, δ), (γ−
µ, δ − µ)) is defined by

g(z, ζ) ∈ Sµcl(Ω× Rq;Ks,(γ,δ)(X∆),S(γ−µ,δ−µ)
P (X∆)),

together with a similar property of the pointwise formal adjoint, for all s ∈ R
(the definition of symbols is based on a natural extension of the corresponding
notion from Section 2.3 to the case of Fréchet spaces with group action, see
also Remark 1.28). Here S(γ−µ,δ−µ)

P (X∆) consists of Schwartz functions for
t→∞ and weighted functions for t→ 0 with (say, continuous) asymptotics
of type P (see Section 1.1 and Section 3.3 below). Moreover, a smoothing
Mellin symbol is a linear combination of expressions

m(z, ζ) := t−µ+jω(t[ζ]) op
δj−n

2
M (fjα)(z)ζ

αω̃(t′[ζ]), (59)

j ∈ N, α ∈ Nq, |α| ≤ j, with arbitrary cut-off functions ω, ω̃, weights δj ∈ R,
such that δ > δj > δ − j, and Mellin symbols fjα ∈ C∞(Ω,A−∞(X; C \ Vj)).
Here Vj ⊂ C is a closed subset (a so-called ‘continuous’ asymptotic type of
Mellin symbols) such that w0, w1 ∈ Vj with Rew0 = Rew1 implies (1−α)w0+
αw1 ∈ Vj for every 0 ≤ α ≤ 1, {c0 ≤ Rew ≤ c1} ∩ Vj compact for every
c0 ≤ c1, and Γn+1

2
−δj∩Vj = ∅. The space A−∞(X; C\V ) for such a V is defined

to be the set of all f(w) ∈ A−∞(X; Γn+1
2
−δ) which extend to a holomorphic

A−∞(X)-valued function in C \ V such that χV f
∣∣
Γβ
∈ A−∞(X; Γβ) for every

β ∈ R and every χV ∈ C∞(C) such that χV (w) = 0 for dist(w, V ) < ε0,
χV (w) = 1 for dist(w, V ) > ε1 for some 0 < ε0 < ε1. Recall that, by
notation, A−∞(N ; C \ V ) =

⋃
A−∞(X, (γ, γ − µ), g; C \ V ) with the union

over (γ, γ − µ) for γ ∈ Rk−1, µ ∈ R. Operator functions m(z, ζ) represent
symbols

m(z, ζ) ∈ Sµcl(Ω× Rq;Ks,(γ,δ)(X∆), K∞,(γ−µ,δ−µ)(X∆))

and

m(z, ζ) ∈ Sµcl(Ω× Rq;K
s,(γ,δ)
P (X∆),S(γ−µ,δ−µ)

Q (X∆))
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for every (continuous) asymptotic type P with some resulting Q. The point-
wise formal adjoints have a similar property. (Concerning the spacesKs,(γ,δ)(X∆)
and subspaces with asymptotics, see Section 1.1 and Section 3.3 below.)
The operators Opz(m + g) then constitute the local contribution near the
edge of the asymptotic part of the operator space Aµ(M, g) for M ∈ Mk,
g = ((γ, δ), (γ − µ, δ − µ)), locally modelled on X∆ × Ω.

Global smoothing operators. Given M ∈ Mk, δ, µ ∈ R, γ ∈ Rk−1,
the space A−∞(M,

(
(γ, δ), (γ − µ, δ − µ)

)
is defined to be the set of all

C : H
s,(γ,δ)
[comp)(M)→ H

s′,(γ−µ,δ−µ)
[loc),P (M)

that are continuous for arbitrary s, s′ ∈ R, with some asymptotic type P , and
C∗, the formal adjoint, has a similar property. In the case dimY = 0 (i.e.,
when M is locally near Y = {v} modelled on a cone X∆ for an X ∈Mk−1,
such a C is also called a Green operator of the corresponding higher cone
calculus.

Global corner operators of k-th generation. An operator A ∈
Aµ(M, g) for g = (

(
(γ, δ), (γ−µ, δ−µ)

)
, M ∈Mk, is defined as follows: We

first choose cut-off functions σ, σ̃ onM that are equal to 1 in a neighbourhood
of the minimal stratum Y ⊂ M and vanish outside another neighbourhood
of Y . By virtue of N := M \Y ∈Mk−1 we have the spaces Aµ(N ; (γ, γ−µ)),
known by (IA). Then Aµ(M, g) is defined to be the set of all

A ∈ Aµ(M \ Y, (γ, γ − µ))

that are of the form
A = Asing + Areg + C

where C ∈ A−∞(M, g), moreover, Areg, Asing ∈ Aµ(M \ Y, (γ, γ − µ)), and
Areg vanishes in some neighbourhood U of Y (in the sense that Areg|U :
C∞

0 (U \ Y )→ C∞(U \ Y ) is the zero operator). The operator Asing vanishes
outside some other neighbourhood of Y (in a similar sense), and Asing for
dimY = qk > 0 is equal (modulo pull backs to M) a locally finite sum of
operators of the form

ϕOpz(a+m+ σgσ̃)ψ (60)

referring to the local description of M near Y by wedges X∆×Ω, X ∈Mk−1,
Ω ⊆ Rqk open (qk = dimY ), for arbitrary (operator-valued) symbols a,m, g
of the above-mentioned kind, and functions ϕ, ψ ∈ C∞

0 (Ω).
For dimY = 0, Y = {v}, and M locally near v modelled on X∆ for some

X ∈Mk−1, we set

Asing = t−µω op
δ−n

2
M (h)ω̃ +M (61)
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for some h(t, w) ∈ C∞(R+,A
µ(X, (γ, γ − µ); C) and a linear combination M

of operators of the form

m := t−µ+jω op
δj−n

2
M (fj)ω̃, (62)

j ∈ N, fj ∈ A−∞(X, (γ, γ − µ); C \ Vj) for certain continuous asymptotic
types Vj (where we only have one summand for j = 0), δ > δj > δ − j,
Vj ∩ Γn+1

2
−δj = ∅ for all j, n := dimX.

By Aµ
M+G(M, g) for dimY > 0 and AM+G(M, g) for dimY = 0 we denote

the subspace of all operators K ∈ Aµ(M, g) such that K|M\Y ∈ A−∞(M \
Y, (γ, γ − µ)) for k ≥ 2 (and K|M\Y ∈ L−∞(M \ Y ) for k = 1) such that

K = K0 + C

for some C ∈ A−∞(M, g), and where K0 is locally of the form (60) for where
a ≡ 0. Moreover, by Aµ

G(M, g) we denote the subspace of such operators K
where in (60) we also have m ≡ 0.

The principal symbolic hierarchy. By (IA) for any operator in
Aµ(M \ Y, (γ, γ − µ)), M ∈ Mk, with Y ⊂ M being the minimal stra-
tum, we have the principal symbolic hierarchy (σ0, . . . , σk−1). For A ∈
Aµ(M, ((γ, δ), (γ − µ, δ − µ))) we now form

σ(A) =
(
σ0(A|M\Y ), . . . , σk−1(A|M\Y ), σk(A)

)
using that A|M\Y belongs to Aµ(M \Y, (γ, γ−µ)), such that σ0, . . . , σk−1 are
known, and define σk(A) as follows.

For dimY = 0 and X ∈Mk−1 compact we set

σk(A)(w) := h(0, w) + f0(w), (63)

where h(0, w) are and f0(w) defined by (61) and (62), respectively. (63) is
called the principal (corner) conormal symbol of A.

The symbolic component (63) represents a family of continuous operators

σk(A)(w) : Hs,γ(X)→ Hs−µ,γ−µ(X)

s ∈ R, parametrised by w ∈ Γn+1
2
−δ, n = dimX.

For dimY > 0 and X ∈Mk−1 compact we set

σk(A)(z, ζ) :=t−µ{ω(t|ζ|) op
δ−dim X

2
M (h0)(z, ζ)ω̃(t′|ζ|) + (1− ω(t|ζ|)

ω0(t|ζ|, t′|ζ|) Opt(p0)(z, ζ)(1− ˜̃ω(t′|ζ|))}+ σk(m+ g)(z, ζ),

(64)
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where σk(m+ g)(z, ζ) is simply the homogeneous principal symbol of m+ g
in the sense of classical symbols with twisted homogeneity of order µ. The
symbol σk(A)(z, ζ) is defined for (z, ζ) ∈ Ω× (Rqk \ {0}).

It follows a family of operators

σk(A)(z, ζ) : Ks,(γ,δ)(X∆)→ Ks−µ,(γ−µ,δ−µ)(X∆) (65)

for all s ∈ R, with the homogeneity property

σk(A)(z, λζ) = λµκλσk(A)(z, ζ)κ−1
λ

for all λ ∈ R+, (κλu)(t, ·) := λ
1+dim X

2
+(s−γ)u(λt, ·), λ ∈ R+. We call (65)

the principal edge symbol of A (where the minimal stratum of M has the
meaning of an edge).

Compositions. Let M ∈ Mk be compact, and let A ∈ Aµ(M, (γ −
ν, γ − (µ+ ν)), B ∈ Aν(M, (γ, γ − ν)). Then we have AB ∈ Aµ+ν(M, (γ, γ −
(µ+ν)) and σ(AB) = σ(A)σ(B) with componentwise multiplication of sym-
bols (in the case dimY = 0 that means for the k-th component σk(AB) =
(T νσk(A))σk(B), (T βf)(w) = f(w + β).

If M is not compact we have a similar result when A or B is properly
supported (the latter notion is a simple generalisation of the one in standard
pseudo-differential operators on an open manifold (see Section 2.1), and every
A can be represented by a properly supported operator modulo an operator
in A−∞.

The proof of the composition result follows by (IA) on the level of oper-
ators restricted to M \ Y which already gives us the symbolic rule for the
components σ0, . . . , σk−1. Then for the compositions of the operators near
Y we can apply similar arguments as in [8] (see also [48]) which shows the
composition rule for σk.

Another useful aspect is that formal adjoints can be carried out within
the calculus, with a corresponding rule on the level of symbols.

Similar relations hold for the parameter-dependent variants of the oper-
ator spaces.

3.2 Ellipticity and an analogue of the Atiyah-Bott ob-
struction

The notion of ellipticity of an operator A on a manifold M ∈ Mk, k ≥
2, can be defined in an iterative way when we assume by (IA) that the
corresponding notion on any N ∈ Mk−1 is already introduced. Since the
symbols are operator-valued, except for the interior symbol (i.e., the zeroth

43



component on the maximal stratum) this is connected with the involved
weighted spaces, also defined in an iterative manner (see Section 3.3 below).
On a (for simplicity) compact M ∈M0, we take the standard Sobolev spaces
Hs(M) of smoothness s ∈ R. On a compact M ∈M1 we have the weighted
spaces Hs,γ(M) (‘cone-spaces’ for dimY = 0, ‘edge-spaces’ for dimY > 0,
according to the dimension of the minimal stratum) of smoothness s ∈ R
and weight γ ∈ R, and there are also subspaces Hs,γ

P (M) with asymptotics
of type P (constant discrete, or continuous, and associated with weight data
(γ,Θ) as well as with a fixed system of singular charts near Y ).

Definition 3.1 An operator A ∈ Aµ(M, g) for g = ((γ, δ), (γ − µ, δ − µ)) is
called (σ0, . . . , σk−1)-elliptic, if A|M\Y ∈ Aµ(M \ Y, (γ, γ−µ)) is elliptic with
respect to all symbolic components σj(A|M\Y ), j = 0, . . . , k − 1.

By (IA) we know what that means. For k = 0 we have nothing other
than the standard ellipticity, i.e., non-vanishing of the homogeneous principal
symbol σ0(A) on T ∗M \ 0 (or bijectivity of π∗E → π∗F , π : T ∗M \ 0 → M
when A acts between distributional sections of bundles E,F ∈ Vect(M)).

For k ≥ 1 the ellipticity condition for σ0(A) is given in Definition 1.7.
For k = 1 and dimY = 0, when Y (for simplicity) consists of one conical

point v, the component σ1(A) is the conormal symbol

σ1(A)(w) : Hs(X)→ Hs−µ(X) (66)

with X ∈ M0 being the base of the cone near v, and the ellipticity with
respect to γ is defined to be the bijectivity of (66) for all w ∈ Γn+1

2
−γ,

n = dimX (because of the notation for general singularity orders we replace
the former σc by σ1; in a similar manner we proceed with σ∧).

For k = 1 and dimY = q > 0 the component σ1(A) is the principal edge
symbol

σ1(A)(y, η) : Ks,γ(X∆)→ Ks−µ,γ−µ(X∆), (67)

parametrised by (y, η) ∈ T ∗Y \ 0.

Theorem 3.2 Let M ∈ M1, dimY > 0, and let A ∈ Aµ(M, (γ, γ − µ)) be
σ0-elliptic. Then (67) is exit-elliptic on the infinite cone for r →∞ (of order
0 at infinity), for every (y, η) ∈ T ∗Y \ 0 (see Definition 2.18).

Pointwise the operators in (67) belong to the cone algebra on X∆, i.e., to
Aµ(X∆, (γ, γ − µ)); as such they have a principal conormal symbol

σ1(σ1(A))(y, w) : Hs(X)→ Hs−µ(X) (68)

with obvious meaning of notation (it is independent of η, since σ1 in the cone
case is computed by freezing r at 0 in all arguments).
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Definition 3.3 Let M ∈ M1, A ∈ Aµ(M, (γ, γ − µ)), and let A be σ0-
elliptic. We then call σ1(A)(y, η) elliptic with respect to γ, if (68) is a family
of isomorphisms for all y ∈ Y , w ∈ Γn+1

2
−γ.

Theorem 3.4 Let A ∈ Aµ(M, (γ, γ − µ)) be σ0-elliptic, and let σ1(A)(y, η)
be elliptic with respect to γ. Then (67) is a family of Fredholm operators for
every (y, η) ∈ T ∗Y \ 0.

Remark 3.5 By virtue of σ1(A)(y, λη) = λµκλσ1(A)(y, η)κ−1
λ for all λ ∈ R+,

the Fredholm family (67) is completely determined by its restriction to S∗Y ,
the unit cosphere bundle in T ∗Y \ 0 (a Riemannian metric on Y is assumed
to be fixed). Thus we obtain an index element

indS∗Y σ1(A) ∈ K(S∗Y ),

where K(·) is the K-group (of corresponding classes of pairs (E,F ) ∈ Vect(·)×
Vect(·)) on the compact space in parentheses, see Atiyah [4].

Bundle pull back with respect to the canonical projection π : S∗Y → Y
gives rise to a homorphism π∗ : K(Y )→ K(S∗Y ).

From boundary value problems, say, with the transmission property at
the boundary, it is known that a necessary and sufficient condition for the
existence of J± ∈ Vect(Y ) such that σ∂(A)(y, η) can be completed to a family
of isomorphisms

σ∂(A)(y, η) : Hs(R+)⊕ J−,y → Hs−µ(R+)⊕ J+,y, (69)

(y, η) ∈ S∗Y , is that
indS∗Y σ∂(A) ∈ π∗K(Y ), (70)

see [5] for the case of elliptic differential operators, [6] for elliptic pseudo-
differential operators with the transmission property. The extra entries in
(69) (apart from the given upper left corner) represent the symbols of the
additional operators in (28), and we then have a Fredholm operator

A : Hs(intM)⊕Hs(Y, J−)→ Hs−µ(intM)⊕Hs−µ(Y, J+), (71)

(M in this case is a compact C∞ manifold with boundary Y , and intM =
M \ Y the interior).

A similar criterion for the existence of additional elliptic edge conditions
for the edge-algebra has been given in [72], namely,

indS∗Y σ1(A) ∈ π∗K(Y ). (72)

This admits the construction of an elliptic ‘edge problem’ of the form
(31).
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Remark 3.6 In such a process there arise two natural questions.

(i) What can be done when (70) or (72) is not satisfied?

(ii) If (70) or (72) hold, is there a way to describe ellipticity with respect to
σ1(A) (in order to obtain Fredholm operators (71) or (31)) by avoiding
extra entries of trace and potential type (possibly on the expense of
additional operators in the upper left corner which are smooth over the
main stratum)?

In the case (i) (which happens in boundary value problems, for instance,
for Dirac operators in even dimensions) there is a general concept of posing
so-called global projection conditions, as generalisations of the well-known
APS- (or global spectral) conditions, see [87], [84]. The pseudo-differential
algebra scenario for such conditions in boundary value problems is developed
in [76] (see also [79], als well the case without the transmission property [82]),
and in edge problems in [83]). In the case that (70) or (72) are satisfied,
we can construct boundary and edge conditions, respectively. For boundary
value problems with the transmission property those conditions in terms of
additional entries cannot be avoided. However, if the transmission property
is not satisfied, or in the general edge case, we have more freedom in the
respective edge calculus which allows us to place the additional information
in the upper left corner, according to the following result.

Theorem 3.7 Let M ∈ M1, dimY > 0, let A ∈ Aµ(M, (γ, γ − µ)) be
σ0-elliptic, and assume that σ1(A) is elliptic with respect to a weight γ (cf.
Definition 1.21 and Definition 3.3). Moreover, let the condition (72) be sat-
isfied. Then there exists an operator M + G ∈ Aµ

M+G(M, (γ, γ − µ)) such
that

σ1(A+M +G)(y, η) : Ks,γ(X∆)→ Ks−µ,γ−µ(X∆)

is a family of isomorphisms for all s ∈ R.

Recall that for k = 1 we have Aµ
M+G(M, (γ, γ − µ))|M\Y ⊂ L−∞(M \ Y );

therefore, a smoothing but (in general) non-compact M + G-contribution
to A suffices to guarantee an analogue of the Shapiro-Lopatinskij condition
without additional trace or potential operators.

For the abstract calculus of elliptic operators on M for M ∈Mk−1, k ≥
2, it seems to be advisable also to make such a manipulation, in order to
suppress all the trace and potential entries on lower-dimensional strata, and
to only explicitly take them into account in the last step, namely, with respect
to the minimal stratum when the order of singularity is equal to k. Those
can be again modified by such an (M + G)-trick, in order to prepare the
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same thing for k + 1. The tool which is responsible for that is an analogue
of Theorem 3.7 for any higher singularity order > 1, see the M +G-notation
in the preceding section under the headline ‘Global corner operators of k-th
generation’.

Remark 3.8 There are different variants of such ‘M + G-theorems’, also
for the case dimY = 0, or for parameter-dependent operators. For instance,
let dimY = 0, M ∈ Mk, k ≥ 2, locally near Y = {v} modelled on X∆

for an X ∈ Mk−1, and let A ∈ Aµ(M, g) for g = ((γ, δ), (γ − µ, δ − µ)) be
(σ0, . . . , σk−1)-elliptic, and in addition

σk(A)(w) : Hs,γ(X)→ Hs−µ,γ−µ(X)

a family of isomorphisms, parametrised by w ∈ Γ 1+dim X
2

−δ (by definition this

is just the ellipticity of A for dimY = 0). Then for every m ∈ Z there exists
an M + G ∈ Aµ

M+G(M, (γ, γ − µ)) (which is in this case only a ‘smoothing’
Mellin plus Green operator with respect to a corner point) such that A+M+G
is Fredholm and of index m. For m ≤ 0 (m ≥ 0) we can find M + G in
such a way that A + M + G is injective (surjective); in particular, it is an
isomorphism for m = 0). Concerning constructions of this character in the
case of boundary value problems, see [81], and of edge problems, [42].

Proposition 3.9 Let M ∈ Mk, k ≥ 1, Y its minimal stratum, Y compact,
dimY > 0, A ∈ Aµ(M, g), g = ((γ, δ), (γ − µ, δ − µ)) (where the component
(γ, γ − µ) disappears for k = 1); moreover, let A be (σ0, . . . , σk−1)-elliptic
(see Definition 3.1), and assume that

σk(A)(y, η) : Ks,(γ,δ)(X∆)→ Ks−µ,(γ−µ,δ−µ)(X∆)

is a family of Fredholm operators for (y, η) ∈ T ∗Y \ 0. Assume that the
analogue of the Atiyah-Bott obstruction vanishes, i.e.,

indS∗Y σk(A) ∈ π∗K(Y ),

π : S∗Y → Y the canonical projection (see the formula (72) for k = 1).Then
there exist bundles J± ∈ Vect(Y ) and a 2× 2 block matrix family of isomor-
phisms

σk(A)(y, η) :
Ks,(γ,δ)(X∆)

⊕
J−,y

→
Ks−µ,(γ−µ,δ−µ)(X∆)

⊕
J+,y

, (73)

(y, η) ∈ T ∗Y \ 0, where, when we write A = (Aij)i,j=1,2, the potential entry
A12 maps into a subspace with s = ∞ and with asymptotics near the tip of
the cone, and decrease of Schwartz type at infinity.
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Clearly we then have

indS∗Y σk(A) = [π∗J+]− [π∗J−].

The entries of (73) are obtained by first constructing them on the compact
space S∗Y and then for arbitrary η 6= 0 via twisted homogeneity. For in-
stance,

σk(A12)(y, λη) = λµκλσk(A12)(y, η), σk(A21)(y, λη) = λµσk(A21)(y, η)κ
−1
λ

for all λ ∈ R+, with {κλ}λ∈R+ being the group action on the spaces over X∆.
By multiplying the ij-th entries for i+j > 2 by an excision function χ(η),

we obtain locally on Y symbols in

Sµcl(Ω× Rq; Cj− , Ks−µ,(γ−µ,δ−µ)(X∆)), Sµcl(Ω× Rq;Ks,(γ,δ)(X∆),Cj+), (74)

Sµcl(Ω× Rq;Cj− ,Cj+). (75)

They allow us to pass to associated 2× 2 block matrix operators A,

A :
Hs,(γ,δ)(M)
⊕

Hs(Y, J−)
→

Hs−µ,(γ−µ,δ−µ)(M)
⊕

Hs−µ(Y, J+)
.

We then set

σ(A) = (σ0(A), . . . , σk−1(A), σk(A)),

where σk(A) is just defined as the operator family (73). These constructions
motivate an extension of Aµ(M, g) for g = ((γ, δ), γ − µ, δ − µ)) to a space
Aµ(M, g,v) of 2 × 2 matrices of operators A with a pair v := (J−, J+)
of vector bundles over the minimal stratum Y of M . The nature of local
symbols of the additional entries is already explained, namely, through (74),
(75). There are also global smoothing operators in that space; the simple
explanation will be omitted here. Moreover, we also have analogous operator
spaces Aµ(M, g,v; Rl) with parameters.

Definition 3.10 An operator A ∈ Aµ(M, g,v) on M ∈ Mk with minimal
stratum Y , dimY > 0, is called elliptic, if A := A11 is (σ0, . . . , σk−1)-elliptic
(see Definition 3.1) and if σk(A) defines a family of isomorphisms (73) (the
latter condition is an analogue of the Shapiro-Lopatinskij condition from the
calculus of boundary value problems). For dimY = 0 we gave the notion of
ellipticity already in Remark 3.8.

In a similar manner we define parameter-dependent ellipticity in Aµ(M, g,v; Rl).
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Theorem 3.11 Let M ∈ Mk, Y its minimal stratum, g = ((γ, δ), (γ −
µ, δ − µ)), where (γ, γ − µ) disappears for k = 1. We then write g−1 =
((γ − µ, δ − µ), (γ, δ)).

(i) An elliptic operator A ∈ Aµ(M, g) for dimY = 0 induces a Fredholm
operator

A : Hs,(γ,δ)(M)→ Hs−µ,(γ−µ,δ−µ)(M)

for every s ∈ R, and A has a parametrix P ∈ A−µ(M, g−1).

(ii) An elliptic operator A ∈ Aµ(M, g,v) for dimY > 0 v := (J−, J+),
induces a Fredholm operator

A : Hs,(γ,δ)(M)⊕Hs(Y, J−)→ Hs−µ,(γ−µ,δ−µ)(M)⊕Hs−µ(Y, J+)

for every s ∈ R, and A has a parametrix P ∈ A−µ(M, g−1,v−1), v−1 :=
(J+, J−).

3.3 Weighted spaces

In the preceding sections we employed various kinds of weighted spaces on
X∆, X ∈ Mk−1 or M ∈ Mk, called Ks,(γ,δ)(X∆) and Hs,(γ,δ)(M), respec-
tively (in the second case we assume that M is compact, otherwise we need
corresponding ‘comp’ and ‘loc’ analogues). We will sketch here some of the
main aspects of the construction, also in an inductive manner. For k = 1
we have the spaces Hs,γ(X∆), Hs

cone(X
∆), and Ks,γ(X∆), Ks,γ(X∆), see the

notation in (4), (5) and Remark 1.6. In the following Theorems 3.12 and
3.13 the manifold X is assumed to be closed and compact.

Theorem 3.12 (i) For every s ∈ R there exists a parameter-dependent
elliptic element Rµ(%) ∈ Lµcl(X; R) such that

Rµ(%) : Hs(X)→ Hs−µ(X)

is an isomorphism for every s ∈ R.

(ii) The space Hs,γ(X∆) for s, γ ∈ R can equivalently be defined as the
completion of C∞

0 (R+ ×X) with respect to the norm{ 1

2πi

∫
Γn+1

2 −γ

‖Rs(Imw)(Mu)(w)‖2L2(X)dw
}1/2

;

here Rs(%) is as in (i), and M is the Mellin transform applied to u with
respect to r as an element in C∞

0 (R+, C
∞(X)).
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In particular, we can set

Hs,γ(X∆) = op
γ−n

2
M (R−s)H0,0(X∆),

where H0,0(X∆) = r−
n
2L2(R+ ×X), and R−s is regarded as a function

on Γn+1
2
−γ 3 w, % = Imw, with values in L−scl (X).

Theorem 3.13 There exists a parameter-dependent elliptic p̃µ(%̃, η̃) ∈ Lµcl(X; R1+q
%̃,η̃ )

such that when we set pµ(r, %, η) := p̃µ([r]%, [r]η) for a strictly positive func-
tion [r] ∈ C∞(R) with [r] = |r| for |r| > C for a C > 0, the operator

[r]−µ Opr(p
µ)(η) : Hs;g(X�)→ Hs−µ;g(X�)

is an isomorphism for every s, g ∈ R and every fixed η 6= 0. In particular,
we can set Hs;g(X�) = 〈r〉−g[r]s Op(p−s)(η)([r]−

n
2L2(R×X)) for any η 6= 0.

Remark 3.14 Taking into account Remark 2.20 we can define Ks,γ;g(X∆)
equivalently as

Ks,γ;g(X∆) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∆), v ∈ Hs;g(X�)}

for any cut-off function ω (with 1− ω := 0 on the negative half-axis).

Recall that Definition 1.30 gave us the Hs,γ-spaces on a manifold M with
edge and subspaces with asymptotics of type P .

For the higher calculus k ≥ 2 we can generate the weighted spaces and
subspaces with asymptotics in a similar manner, using theorems of the fol-
lowing type.

Theorem 3.15 Let X ∈Mk−1 be compact, and let γ ∈ Rk−1. For every µ ∈
R there exists a parameter-dependent elliptic element Rµ(%) ∈ Aµ(X, (γ, γ −
µ); R) such that

Rµ(%) : Hs,γ(X)→ Hs−µ,γ−µ(X)

is an isomorphism for every s ∈ R.

By (IA) we already know the spaces Hs,γ(X) for (compact) X ∈ Mk−1.
Also the spaces Hs,γ;g(X�) for s, g ∈ R, γ ∈ Rk−1, are assumed to be con-
structed (in contrast to the case X ∈ M0 we have here the weights γ along
the base X of X� = R×X).

Theorem 3.16 There exists a parameter-dependent elliptic p̃(%̃, η̃) ∈ Aµ(X, (γ, γ−
µ); R1+q

%̃,η̃ ) such that, when we define p(r, %, η) similarly as in Theorem 3.13,
the operator

[r]−µ Opr(p)(η) : Hs,γ;g(X�)→ Hs−µ,γ−µ;g(X�)

is an isomorphism for every s, g ∈ R and every fixed η 6= 0.
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Similarly as in Theorems 3.12, 3.13 we can define the spaces Hs,(γ,δ)(X∆)
and Hs,γ;g(X�), knowing the spaces for s = 0, g = 0 as weighted L2-spaces
on R+ ×X and R×X, respectively. We then define

Ks,(γ,δ);g(X∆) := {ωu+ (1− ω)v;u ∈ Hs,(γ,δ)(X∆), v ∈ Hs,γ;g(X�)} (76)

for any cut-off function on the half-axis.
The scheme of the definition of Hs,(γ,δ)-spaces on an M ∈ Mk is similar

to Definition 1.30 (i), now based on Ks,(γ,δ)(X∆) := Ks,(γ,δ);s−δ(X∆) with

the group action u(r, x) → λ
1+dim X

2
+(s−δ)u(λr, x), λ ∈ R+. The notion of

subspaces with (continuous) asymptotics of type P for r → 0 is completely
analogous to the one for k = 1. In an iterative manner we can also formu-
late asymptotics of a similar structure along the other occurring distance-
variables.

3.4 Concluding remarks

The calculus of operators that we sketched here is motivated by different con-
crete tasks in partial differential equations, especially boundary value prob-
lems, occurring in models of the applied sciences or mathematical physics,
and by the desire to foresee the qualitative behaviour of solutions, also in
order to launch numerical processes. For instance, knowing solvability, reg-
ularity, and parametrices of ‘standard’ elliptic boundary value problems in
a smooth domain in the framework of the pseudo-differential calculus with
the transmission property at the boundary (say, of Dirichlet or Neumann
problems for second order equations) (see [6] or [63]) we can ask what has to
happen in a calculus that solves mixed or crack problems in a non-smooth
domain, for instance, in a cube or another configuration with ‘polyhedral’
geometry. An example is the Zaremba problem, where we have a jump from
Dirichlet to Neumann conditions along an interface on the boundary of codi-
mension 1 (see [13], [27]). By crack problems we understand boundary value
problems in a domain with a slit representing a crack (e.g., a removed hyper-
surface of codimension 1 which itself has a boundary, smooth or non-smooth)
at which we pose boundary conditions from both sides.

It turns out that, if we follow in a consequent manner the way of observ-
ing all the symbolic structures that play a role in boundary value problems
in the smooth case, we are automatically led to what we perform here in our
operator calculus, with conormal, edge, etc., symbols. To be more precise,
we then have to take into account also conormal, edge, etc. symbols tak-
ing values in operators with the transmission property at the boundary of
the base of some model cone, see [31], [28] [38]. In this connection we see
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that parameter-dependent variants of the already achieved calculi play an
enormous role. In the process of constructing higher operator algebras the
parameters are interpreted as covariables along singular strata in the next
generations of operators. Parameter-dependent theories have been elabo-
rated in a very ‘early’ stage of the development in PDE, see the work of
Agranovich and Vishik [1], or Seeley [86].

Another source of motivation for our calculus is the study of geometric
operators on manifolds with singularities, connected with operator algebras
with symbolic structures, index theory, Hodge theory, or spectral theory. Let
us mention in this context the new monograph [56] and refer to the bibliog-
raphy there. In the present exposition we focused on the ‘analytic content’ of
operator algebras with symbolic hierarchies, contributed by the singularities,
and on ellipticity. It is possible to study parabolicity in a similar framework,
see [34], [35], [36], [37], although there are some ‘unexpected’ difficulties. Also
hyperbolic problems should be studied in the context of singularities of the
spatial configurations. The geometric and topological aspects are interesting
as well, and there are many new challenges and open problems, especially
in respect to the scenario with global projection conditions in non-smooth
situations see Remark 3.6, or the papers [43], [44] in an analogous spirit.
There are many other beautiful branches of research, for instance, around
parameter-dependent theories and the structure of resolvents, see the papers
[17], [18], [33].

It seems altogether that the analysis on manifolds with singularities (al-
though well established in some aspects through the work of different schools
during the past decades) is at a new beginning, with many deep and fasci-
nating problems.
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Birkhäuser Verlag, Basel, 2004, pp. 342–429.

[80] B.-W. Schulze, The structure of operators on manifolds with polyhe-
dral singularities, Preprint 2006/05, Institut für Mathematik, Potsdam,
2006, arXiv:math.AP/0610618, 2006.

[81] B.-W. Schulze and J. Seiler, The edge algebra structure of boundary value
problems, Annals of Global Analysis and Geometry 22 (2002), 197–265.

[82] B.-W. Schulze and J. Seiler, Pseudodifferential boundary value problems
with global projection conditions, J. Funct. Anal. 206, 2 (2004), 449–498.

[83] B.-W. Schulze and J. Seiler, Edge operators with conditions of Toeplitz
type, J. of the Inst. Math. Jussieu. 5, 1 (2006), 101–123.

[84] B.-W. Schulze, B.Ju. Sternin, and V.E. Shatalov, On general bound-
ary value problems for elliptic equations, Sbornik Mathematics 189, 10
(1998), 1573–1586.

59



[85] B.-W. Schulze and A. Volpato, Green operators in the edge quantisa-
tion of elliptic operators, Preprint 2004/25, Institut für Mathematik,
Potsdam, 2004.

[86] R. Seeley, Complex powers of an elliptic operator, Proc. Sympos. Pure
Math., vol. 10, 1967, pp. 288–307.

[87] R. Seeley, Topics in pseudo-differential operators, C.I.M.E. Conference
on pseudo-differential operators, Stresa 1968 (Cremonese, Roma), 1969,
pp. 167–305.

[88] J. Seiler, Pseudodifferential calculus on manifolds with non-compact
edges, Ph.D. thesis, University of Potsdam, 1998.

[89] J. Seiler, Continuity of edge and corner pseudo-differential operators,
Math. Nachr. 205 (1999), 163–182.

[90] J. Seiler, The cone algebra and a kernel characterization of Green opera-
tors, Advances in Partial Differential Equations (Approaches to Singular
Analysis) (J. Gil, D. Grieser, and Lesch M., eds.), Oper. Theory Adv.
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