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Abstract

On a manifold with edge we construct a specific class of (edge-
degenerate) elliptic differential operators. The ellipticity refers to the
principal symbolic structure σ = (σψ, σ∧) of the edge calculus con-
sisting of the interior and edge symbol, denoted by σψ and σ∧, re-
spectively. For our choice of weights the ellipticity will not require
additional edge conditions of trace or potential type, and the opera-
tors will induce isomorphisms between the respective edge spaces.
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Introduction

Ellipticity of a (pseudo-) differential operator A on a manifold M with
edge Y (see Section 1.1) refers to a principal symbolic structure σ(A) =
(σψ(A), σ∧(A)). The first component, the so-called interior symbol, is the
usual homogeneous principal symbol as a function on T ∗(M \ Y ) \ 0, though
edge-degenerate in stretched variables close to the edge (see Section 1.2). The
second component, the so-called edge symbol, is an operator-valued function
on T ∗Y \0, pointwise acting in weighted Sobolev spaces on the infinite model
cone transversal to the edge. The situation is similar to operators on a C∞

manifold M with boundary Y ; in this case the boundary plays the role of the
edge, and R+, the inner normal (with respect to some Riemannian metric),
of the model cone. From the calculus of boundary value problems it is well
known that the ellipticity is determined by a pair of principal symbols, con-
sisting of the interior and boundary symbol σψ(·) and σ∂(·), respectively. For
the case of operators A with the transmission property at the boundary (see,
for instance, Boutet de Monvel [1], or Rempel and Schulze [4]) the boundary
symbol is a family of continuous operators

σ∂(A)(y, η) : Hs(R+) → Hs−µ(R+) (0.1)

(here Hs(R+) := Hs(R)|R+ with Hs(R) being the standard Sobolev space
of smoothness s on R), (y, η) ∈ T ∗Y \ 0. The ellipticity of A with respect
to σψ(A) (i.e., σψ(A) 6= 0 on T ∗M \ 0) entails the Fredholm property of
(0.1) for all (y, η) ∈ T ∗Y \ 0 (and all sufficiently large s). This explains the
role of elliptic boundary conditions (in general of trace and potential type),
namely, on the level of boundary symbols, to fill up the operators (0.1) to
a 2 × 2 block matrix family σ∂(A)(y, η) of isomorphisms by corresponding
entries of finite rank, with σ∂(A)(y, η) in the upper left corner. The invert-
ibility of σ∂(A)(y, η) is just a second ellipticity condition, namely, of the
extra boundary data with respect to the given elliptic operator A, also called
the Shapiro-Lopatinskij condition. Recall that when A is a differential op-
erator, (0.1) is surjective, and then it suffices to pose trace (i.e., boundary)
conditions, while for pseudo-differential operators we need, in general, both
trace and potential conditions (since both kerσ∂(A) and cokerσ∂(A) may be
non-trivial).

In the case of a manifold with edge there is an analogue of the boundary
symbol, namely, the edge symbol

σ∧(A)(y, η) : Ks,γ(X∆) → Ks−µ,γ−µ(X∆), (0.2)

(y, η) ∈ T ∗Y \ 0, operating between weighted spaces on an infinite (so-called
model) cone X∆ = (R+ ×X)/({0} ×X) with base X which is (in our case
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here) a closed compact C∞ manifold. The spaces Ks,γ(X∆) of smoothness
s ∈ R and weight γ ∈ R will be defined below. The model cone X∆ appears
in the description of the given manifold M with edge Y locally near Y as a
wedge X∆ × Ω for some open Ω ⊆ Rq, q = dimY . Instead of X∆ × Ω we
often refer to the open stretched wedge X∧ × Ω, X∧ := R+ × X, with the
variables (r, x, y), and we then write Ks,γ(X∧) rather than Ks,γ(X∆).

Also in the edge case the ‘interior’ ellipticity of an edge-degenerate oper-
ator A (i.e., ellipticity with respect to σψ(A)) entails the Fredholm property
of (0.2), however, with the exception of a discrete set of weights γ. Moreover,
the ellipticity ‘up to the edge’ requires additional edge data, encoded by a
2 × 2 block matrix family of isomorphisms σ∧(A)(y, η) with σ∧(A)(y, η) in
the upper left corner. Although in ‘abstract terms’ it is easy (under fairly
general assumptions on A) to construct extra conditions of that kind, (see,
for instance, [6]), the characterisation of the admissible weight γ as well as
the computation of the number of those edge conditions can be extremely
difficult. It is therefore an interesting task of the edge calculus to explic-
itly construct elliptic edge operators in which those data are known. This is
just the program of the present paper. We construct a variety of differential
operators of even order in the edge calculus which are elliptic with respect
to σψ and σ∧ and where no additional edge conditions are necessary for the
σ∧-ellipticity. Our operators will induce isomorphisms between the chosen
weighted edge spaces and as such represent reductions of orders.

1 Edge-degenerate differential operators

1.1 Manifolds with edges

A manifold M with (smooth) edge can be defined as the quotient space
M := M/ ∼, where M is a manifold with C∞ boundary ∂M which has the
structure of an X-bundle over a C∞ manifold Y , the edge, where the fibre
X is assumed to be a closed compact C∞ manifold. Denoting the bundle
projection by π : ∂M → Y the equivalence m ∼ m′ of points m,m′ ∈ M
means that m = m′ when m,m′ ∈ int M and πm = πm′ when m,m′ ∈ ∂M.
We call M the stretched manifold associated with M . A simple example is
M := X∆×Ω for an open set Ω ⊆ Rq, whereX∆ := (R+×X)/({0}×X) is the
infinite cone with base X. In that case we have Y = Ω, and M = R+×X×Ω.
In general, if M is a manifold with smooth edge Y , then M \ Y is C∞, and
every y ∈ Y has a neighbourhood V such that there is a homeomorphism

V → X∆ × Ω (1.1)
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which restricts to a diffeomorphism V \ Y → X∧ × Ω for X∧ := R+ × X
and Y ∩ Y → Ω. Maps of the kind (1.1) will be called singular charts.
Analogously, denoting by V the preimage of V with respect to the above
mentioned quotient map M →M , we have a diffeomorphism

χ : V → R+ ×X × Ω (1.2)

in the sense of C∞ manifolds with boundary, where (1.2) is induced by (1.1)
in an obvious manner.

By Diffµ(·) we denote the space of all differential operators of order µ with
smooth coefficients on the smooth manifold in parenthesis. (For simplicity
all manifolds in consideration here are assumed to be countable unions of
compact sets; then Diffµ(·) is a Fréchet space in a natural way.)

1.2 Edge-degenerate operators

An operator A ∈ Diffµ(M \ Y ) will be called edge-degenerate, written A ∈
Diffµdeg(M), if the push forwards of A|V \Y with respect to V \ Y → X∧ × Ω
have the form

r−µ
∑

j+|α|≤µ

ajα(ry)

(
−r ∂

∂r

)j

(rDy)
α (1.3)

with coefficients ajα(r, y) ∈ C∞(
R+×Ω,Diffµ−(j+|α|)(X)

)
. Variables on R+×

X ×Ω and covariables are denoted by (r, x, y) and (ρ, ξ, η), respectively. Let
σψ(A) denote the homogeneous principal symbol of A of order µ, also called
the interior symbol (which is a smooth function on T ∗(int M) \ 0). Locally
near Y in the splitting of variables (r, x, y) we also write σψ(A)(r, x, y, ρ, ξ, η).
Then, by virtue of the special form of (1.3) the function

σ̃ψ(A)(r, x, y, ρ, ξ, η) := rµσψ(A)(r, x, y, r−1ρ, ξ, r−1η) (1.4)

is C∞ up to r = 0. Let us call (1.4) the reduced interior symbol.
Moreover, with an operator A ∈ Diffµdeg(M) we associate the so-called

homogeneous principal edge symbol which is defined in the local splittings
of variables close to the edge by

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)(−r∂r)j(rη)α, (1.5)

(y, η) ∈ T ∗Y \ 0. As we see it takes values in Diffµ(X∧). Thus it acts on
functions u(r, x) on X∧. The homogeneity refers to the one-parameter group
of transformations

(κλu)(r, x) = λ
n+1

2
+gu(λr, x), λ ∈ R+, (1.6)
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g ∈ R; the choice of g will be fixed below. Then we have

σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ (1.7)

for all λ ∈ R+.

1.3 Weighted spaces on a manifold with edges

We now consider weighted spaces on cones and on manifolds with edges.
The definition will rely on certain weighted spaces on the infinite stretched
cone X∧. By Hs,γ(X∧) for s ∈ N, γ ∈ R, we denote the set of all u(r, x) ∈
rγ−

n
2L2(R+ × X) (for n = dimX and L2(R+ × X) based on drdx with

a measure dx associated with a fixed Riemannian metric on X) such that
(r∂r)

jDαu(r, x) ∈ rγ−
n
2L2(R+ × X) for arbitrary Dα ∈ Diffα(X), j ∈ N,

j + |α| ≤ s. Observe that then

Hs,γ(X∧) = rγHs,0(X∧) (1.8)

for all γ ∈ R. Defining Hs,0(X∧) for s ∈ Z by duality (with respect to the
scalar product of H0,0(X∧)) and then for s ∈ R by complex interpolation, we
obtain the spaces Hs,γ(X∧) by (1.8) for all s, γ ∈ R.

By a cut-off function on the half-axis we understand any real-valued ω ∈
C∞

0 (R+) such that ω ≡ 1 in a neighbourhood of 0. In order to define suitable
spaces on X∧ for the action of the edge symbol (1.5) we denote by Hs

cone(X
∧)

the subspace of all u ∈ Hs
loc(R × X)|R+×X such that for every coordinate

neighbourhood U of X, every chart σ1 : U → U1 to an open set U1 ⊂ Sn and
for any ϕ ∈ C∞

0 (U) and a cut-off function ω the push forward of (1− ω)ϕu
with respect to 1× σ1 : R+ ×U → {x̃ ∈ R1+n : x̃/|x̃| ∈ U1}, (1× σ1)(r, x) :=
rσ1(x), belongs to Hs(R1+n). Observe, in particular, that when X = Sn

and R+ × X is identified with R1+n \ {0} via polar coordinates, we have
(1 − ω)Hs

cone(X
∧) = (1 − ω)Hs(R1+n). We now define the weighted cone

spaces

Ks,γ(X∧) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)} (1.9)

where ω is a cut-off function (the choice of ω does not affect (1.9)). In (1.9) we
can fix a scalar product such that Ks,γ(X∧) is a Hilbert space. For s = γ = 0
we choose it in such a way that K0,0(X∧) = r−

n
2L2(R+ ×X) (which is also

equal to H0,0(X∧)). We also define

Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧) (1.10)

for g ∈ R, 〈r〉 := (1 + r2)1/2, which is a variant of (1.9) with an extra weight
g at r = ∞. We endow (1.10) with the action of the one-parameter group
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of isomorphisms (1.6). We then have an example of a Hilbert space E with
group action in the following sense.

We say that a Hilbert space E is endowed with a group action κ =
{κλ}λ∈R+ , if κλ : E → E, λ ∈ R+, is a family of isomorphisms, κλκν = κλν
for all λ, ν ∈ R+, and λ → κλe defines an element of C(R+, E) for every
e ∈ E (i.e., κ is strongly continuous).

If E is a Hilbert space with group action κ = {κλ}λ∈R+ , then the ‘abstract’
edge space Ws(Rq, E) of smoothness s ∈ R is defined to be the completion
of S(Rq, E) (the Schwartz space on Rq of functions with values in E) with
respect to the norm {

∫
〈η〉2s‖κ−1

〈η〉û(η)‖2
Edη}1/2, û(η) =

∫
Rq e

−iyηu(y)dy, 〈η〉 :=

(1+ |η|2)1/2. If necessary we also write Ws(Rq, E)κ when we want to indicate
the dependence of the space on the group action κ. Spaces of that kind are
well known for the case κλ = idE, λ ∈ R+, under the notation Hs(Rq, E).
The spaces for general κ were introduced in [5]. In connection with operators
on manifolds with edge we can take E := Ks,γ;g(X∧) and κ = {κgλ}λ∈R+ , cf.
the formula (1.6). We then have the property

Hs
comp(X

∧ × Rq) ⊂ Ws(Rq,Ks,γ;g(X∧)) ⊂ Hs
loc(X

∧ × Rq)

for all s, γ, g ∈ R, cf. [2, Section 7.1.2]. A particularly natural choice is
obtained for the case g = s− γ, cf. [8] or [7]. We then write

Ks,γ(X∧) := Ks,γ;s−γ(X∧)

and
W s,γ(X∧ × Rq) := Ws(Rq, Ks,γ(X∧))κs−γ .

Given a compact manifold M with edge Y with its associated stretched
manifold M we define W s,γ(M) to be subspace of all u ∈ Hs

loc(int M) such
that for every V from the above mentioned covering of W, and χ : V →
R+ ×X × Rq in the sense of (1.2) we have

χ∗(ψu) ∈ W s,γ(X∧ × Rq)

for every ψ ∈ C∞
0 (V).

Observe that every A ∈ Diffµdeg(M) induces continuous operators

A : W s,γ(M) → W s−µ,γ−µ(M)

for all s, γ ∈ R. Moreover, the homogeneous principal edge symbol represents
a family of continuous operators

σ∧(A)(y, η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧),

s, γ ∈ R, (y, η) ∈ T ∗Y \ 0.
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2 Elliptic operators and isomorphisms in

weighted edge spaces

2.1 Edge-degenerate operators of special form

Let M be the stretched manifold associated with a compact manifold M with
edge Y . From the definition we have a finite system of singular charts close
to ∂M

χ : V → R+ ×X × Rq, (2.1)

cf. the formula (1.2), where V denotes a neighbourhood in M with V∩∂M 6=
∅. For simplicity we assume here that the transition maps to different maps
of the kind (2.1) are independent of r for small r. Furthermore, we choose
coordinate neighbourhoods U on Mreg = M \ ∂M together with charts

κ : U → R1+n+q, (2.2)

n = dimX, q = dimY , such that the sets V and U form a finite covering of
M. On every V we have an ωV ∈ C∞

0 (V) and on U a ϕU ∈ C∞
0 (U) such that

the system of functions ωV and ϕU form a partition of unity subordinate to
the covering of M by the sets V, U . Let

ω := χ∗ωV, ϕ := κ∗ϕU

for any fixed χ and κ as in (1.2) and (2.2), respectively. We will choose the
functions ω in such a way that they only depend on (r, y) ∈ R+ × Rq. Let
us fix operators Dj ∈ Diff1(X), j = 1, . . . , N (for a suitable N), expressed
by vector fields on X which span the tangent space of X at every x ∈ X.
Moreover, let Hj ∈ Diff1(Mreg), j = 1, . . . , L (for a suitable L), be operators
expressed by vector fields on Mreg which span the tangent space of Mreg at
every point of Mreg.

Let us fix an s ∈ N and form the differential operators depending on a
parameter λ ∈ Rl,

(χ−1)∗ω(r, y)r|β|(−r∂r)jDαDβ
y r

−sλι (2.3)

for every V with the associated χ and ω, for arbitrary j ∈ N, α ∈ NN , β ∈ Nq,
ι ∈ Nl, such that j + |α|+ |β|+ |ι| ≤ s, Dα = Dα1

1 · . . . ·DαN
N , and

(κ−1)∗ϕκ∗H
δλι (2.4)

for every U with the associated κ and ϕ, for arbitrary δ ∈ NL, ι ∈ Nl, such
that |δ| + |ι| ≤ s, Hδ = Hδ1

1 · . . . · HδL
L . This gives us a column vector of

parameter-dependent differential operators

t(Bk(λ))k=0,...,K (2.5)
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for some K, determined by all possible combinations of the involved multi-
indices and the number of the sets V, U in the open covering of M.

Remark 2.1. In (2.3) we understand the r-variables as operators of multi-
plication from the left, with the exception of the factor r−s. More precisely,
(apart from (χ−1)∗) the operator has the form

u(r, ·) → ω(r, y)r|β|(−r∂r)jDαDβ
yλ

ι(r−su(r, ·)). (2.6)

In formal adjoints of those operators the factor r−s becomes an operator from
the left, while the other r-variables are acting from the right.

The operators (2.5) induce continuous operators

B(λ) : W t,n
2
+γ(M) →

K⊕
k=0

W t−s,n
2
+(γ−s)(M)

for every t, γ ∈ R, λ ∈ Rl. The formal adjoints with respect to the scalar
product of L2(M) = W0,n

2 (M) induce continuous operators

B∗(λ) :
K⊕
k=0

W t,n
2
+δ(M) → W t−s,n

2
+(δ−s)(M)

for every t, δ ∈ R, λ ∈ Rl. Let us now interpret

B∗(λ)B(λ) =
K∑
k=0

B∗
k(λ)Bk(λ) (2.7)

as a family of continuous operators

B∗(λ)B(λ) : W 2t,n
2
+s(M) → W 2(t−s),n

2
−s(M). (2.8)

It is clear that we have B∗(λ)B(λ) ∈ Diff2s
deg(M) for every λ ∈ Rl. We are

interested in the question of ellipticity of (2.8) with respect to the principal
symbolic structure σ = (σψ, σ∧) of the edge calculus, especially for single
operators, say, when λ = 0. Here we will employ the fact that

B∗B := B∗(0)B∗(0)

is embedded in a parameter-dependent family of operators; this will provide
additional useful information.
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2.2 Ellipticity with respect to the principal edge sym-
bols

Let us first observe that the operators B∗(λ)B(λ) are parameter-dependent
elliptic of order 2s on Mreg, i.e., the parameter-dependent principal symbol
σψ(B∗B)(·, λ) with λ ∈ Rl as an additional covariable does not vanish on
T ∗Mreg ×Rl \ 0. Moreover, in the local splitting of variables (r, x, y) close to
∂M we can write

σψ(B∗B)(·, λ) = r−2sσ̃ψ(B∗B)(r, x, y, rρ, ξ, rη, λ)

for a function σ̃ψ(B∗B)(r, x, y, ρ̃, ξ, η̃, λ) which is homogeneous of order 2s in
(ρ̃, ξ, η̃, λ) 6= 0 and non-vanishing up to r = 0. In particular, the operators
B∗(λ)B(λ) are σψ-elliptic in the sense of the edge calculus for every fixed
λ ∈ Rl.

Let us now turn to the principal edge symbol σ∧(B∗B) as a family of
continuous operators

σ∧(B∗B)(y, η, λ) : Kt,n
2
+s(X∧) → Kt−2s,n

2
−s(X∧), (2.9)

t ∈ R. It can be written as the composition of the operator functions

σ∧(B)(y, η, λ) : Kt,n
2
+s(X∧) →

⊕
j+|α|+|β|+|ι|≤s,ω

Kt−s,n
2 (X∧),

and

σ∧(B∗)(y, η, λ) :
⊕

j+|α|+|β|+|ι|≤s,ω

Kt−s,n
2 (X∧) → Kt−2s,n

2
−s(X∧),

where σ∧(B)(y, η, λ) is a vector of operator functions of the form

ω(0, y)r|β|(−r∂r)jDαηβλιr−s,

j + |α| + |β| + |ι| ≤ s, cf. the formula (2.6). (The notation with subscript
‘ω’ in the latter expressions means that ω indicates the set V ∩ Y where V
runs over the above mentioned system of neighbourhoods on M.) For the
subordinate conormal symbols we have

σcσ∧(B)(y, w, λ) = t
(
ω(0, y)(w + s)jDαλι

)
j+|α|+|ι|≤s,ω,

σcσ∧(B∗)(y, w, λ) =
(
ω(0, y)(1− (w + s))j(Dα)∗λι

)
j+|α|+|ι|≤s,ω.
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These are families of continuous maps

σcσ∧(B)(y, w, λ) : H t(X) →
⊕

j+|α|+|ι|≤s,ω

H t−s(X),

σcσ∧(B∗)(y, w, λ) :
⊕

j+|α|+|ι|≤s,ω

H t−s(X) → H t−2s(X),

t ∈ R. The operators

σcσ∧(B∗B)(y, w, λ) : H t(X) → H t−2s(X) (2.10)

are parameter-dependent elliptic on X for every fixed y ∈ Y , with the pa-
rameter (Imw, λ) ∈ R1+l, w ∈ Γβ for every real β (here Γβ := {w ∈ C :
Rew = β}). In particular, we consider (2.10) on the weight line Γ 1

2
−s, where

σcσ∧(B∗B)(y,
1

2
− s+ iρ, λ)

=
∑
ω

∑
j+|α|+|ι|≤s

ω2(0, y)
(1

2
− iρ

)j
(Dα)∗λι

(1

2
+ iρ

)j
Dαλι (2.11)

(similarly as before the first sum means summation over the contributions
from V ∩ Y for V varying over our system of neighbourhoods on M).

Proposition 2.2. The operators (2.10) form a family of isomorphisms for
all y ∈ Y , w ∈ Γ 1

2
−s, λ ∈ Rl, and all t ∈ R.

Proof. Since B∗(λ)B(λ) is σψ-elliptic in the sense of the edge calculus, the
conormal symbol σcσ∧(B∗B)(y, w, λ) is a family of parameter-dependent el-
liptic operators on X with the parameters (w, λ) ∈ Γβ × Rl for every β ∈ R
(and every fixed y ∈ Y ). Therefore, the operators (2.10) are Fredholm for
all those (w, λ), and they are isomorphisms for all |w, λ| sufficiently large.
Therefore, the index of (2.10) is zero for all (w, λ) ∈ Γβ × Rl. Thus, for the
bijectivity of (2.10) for w ∈ Γ 1

2
−s, λ ∈ Rl, it is enough to show the injectivity.

Now u ∈ kerσcσ∧(B∗B)(y, w, λ) show that

0 = (σcσ∧(B∗B)(y, w, λ)u, u)L2(X)

= (σcσ∧(B)(y, w, λ)u, σcσ∧(B)(y, w, λ)u)⊕L2(X)

where the direct sum in the subscript means the number of components
enumerated by ω and the triples (j, α, ι) of length ≤ s. Since all summands
are non-negative, the summands vanish separately, especially those with j +
|α|+ |ι| = 0. This entails u = 0.
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Theorem 2.3. The operators (2.9) from a family of isomorphisms for all
(y, η) ∈ T ∗Y \ 0, λ ∈ Rl, and for all t ∈ R.

Proof. First we show that (2.9) is a family of Fredholm operators. To this end
we have to verify that these operators are elliptic in the cone calculus on the
infinite (stretched) cone X∧, where r →∞ is treated as a conical exit to in-
finity. There are three symbolic contributions, namely, the conormal symbol
which is elliptic on the weight line Γ 1

2
−s by Proposition 2.2, moreover, the

interior symbol σψσ∧(B∗B)(r, x, ρ, ξ) which is non-vanishing for (ρ, ξ) 6= 0
and its reduced version r2sσψσ∧(B∗B)(r, x, r−1ρ, ξ) which is non-vanishing
for (ρ, ξ) 6= 0, up to r = 0, and the exit symbol σEσ∧(B∗B), responsible
for r → ∞. The exit symbol refers to conical sets in R1+n 3 x̃ with the
covariable ξ̃ ∈ R1+n and contains two conditions, namely non-vanishing of
the homogeneous component in x̃ of order 0 for |x̃| → ∞ and all ξ̃ ∈ R1+n

and non-vanishing of its principal homogeneous part in ξ̃ of order 2s for
ξ̃ 6= 0. This property is satisfied for η 6= 0, cf. [3, Section 3.3.8], or [2,
Section 2.4.5]. Thus we obtain the Fredholm property of (2.9). The pa-
rameter λ ∈ Rl behaves like an extra covariable in the exit calculus, and
we have parameter-dependent ellipticity. In particular, the above mentioned
homogeneous component in x̃ of order 0 for |x̃| → ∞ is non-vanishing for all

(ξ̃, λ) ∈ R1+n+l (including (ξ̃, λ) = 0) and its homogeneous principal part in

(ξ̃, λ) of order 2s does not vanish for (ξ̃, λ) 6= 0. Of course, λ is also an extra
covariable in the pseudo-differential calculus on the open manifold X∧, and
we have parameter-dependent ellipticity. Finally, the conormal symbol is a
bijective family in the sense of parameter-dependent elliptic operators on the
base X. This has the consequence that we can construct a parametrix of
(2.9) in the cone algebra on X∧ with exit property at ∞, where the left-over
terms are Schwartz functions in λ ∈ Rl with values in Green operators on
the infinite cone. In other words we conclude that the operators (2.9) are
isomorphisms for all |λ| ≥ C for some C > 0. Thus, since they are Fredholm
for all λ ∈ Rl, we obtain

indσ∧(B∗B)(y, η, λ) = 0 (2.12)

for all λ ∈ Rl, (y, η) ∈ T ∗Y \ 0. To complete the proof of Theorem 2.3 we
show that (2.9) has a trivial kernel for all λ ∈ Rl, (y, η) ∈ T ∗Y \0. Assuming
u ∈ kerσ∧(B∗B)(y, η, λ), we know u ∈ K∞,n

2
+s(X∧) which is contained in

L2(X∧). Thus we can form

0 = (σ∧(B∗B)(y, η, λ)u, u)L2(X∧)

= (σ∧(B)(y, η, λ)u, σ∧(B)(y, η, λ)u)⊕L2(X∧)
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where the direct sum in the subscript concerns different copies of L2(X∧)
enumerated by ω and triples (j, α, β, ι) ∈ N × NN × Nq × Nl of length ≤ s.
In other words, all terms(

ω(0, y)r|β|(−r∂r)jDαηβλιr−su, ω(0, y)r|β|(−r∂r)jDαηβλιr−su
)
L2(X∧)

vanish. This is the case, in particular, for j+ |α|+ |β|+ |ι| = 0, and it follows
that u ≡ 0.

Corollary 2.4. The operators B∗(λ)B(λ) are elliptic of order 2s in the edge
calculus on for every λ ∈ Rl. As such they are Fredholm as operators (2.8)
for all t ∈ R, λ ∈ Rl.

2.3 Order reducing families

In this section we modify the construction of operators B∗(λ)B(λ) in order
to obtain isomorphisms (2.8) in the edge algebra, for all t ∈ R, λ ∈ Rl. To
this end we start from families of operators

(χ−1)∗ω(r, y)r|β|(−r∂r)jDα(Dy, ϑ)βr−sλι (2.13)

for every V with the associated χ and ω, where ϑ = (ϑ1, . . . , ϑp), β ∈ Nq+p,

(Dy, ϑ)β := Dβ1
y1
. . . D

βq
yq ϑ

βq+1

1 . . . ϑ
βq+p
p , and j ∈ N, α ∈ NN , ι ∈ Nl, such that

j + |α|+ |β|+ |ι| ≤ s and

(κ−1)∗ϕκ∗H
δ(λ, ϑ)ι (2.14)

for every U with the associated κ and ϕ, for arbitrary δ ∈ NM , ι ∈ Nl+p,
such that |δ|+ |ι| ≤ s, (λ, ϑ)ι := λι1 . . . λ

ιl
l ϑ

ιl+1

1 . . . ϑ
ιl+p
p . The considerations of

Section 2.1 and 2.2 can be carried out in analogous form, now with the extra
parameter ϑ. Instead of (2.8) we therefore obtain operators

B∗(λ, ϑ)B(λ, ϑ) : W 2t,n
2
+s(M) → W 2(t−s),n

2
−s(M) (2.15)

which agree with (2.8) for ϑ = 0.

Remark 2.5. The operators B∗(λ, ϑ)B(λ, ϑ) are elliptic of order 2s in the
edge calculus on M. As such they induce Fredholm operators (2.15) for all
t ∈ R and (λ, ϑ) ∈ Rl+p.

In fact, the arguments for Corollary 2.4 can easily be modified for the
case of (λ, ϑ)-depending families.

Theorem 2.6. The operators (2.15) are isomorphisms for all t ∈ R, (λ, ϑ) ∈
Rl+p.

12



Proof. The operators (2.15) form a parameter-dependent elliptic family of
the edge calculus. In particular, the analogue of (2.8)

σ∧(B∗B)(y, η, λ, ϑ) : Kt,n
2
+s(X∧) → Kt−2s,n

2
−s(X∧) (2.16)

is a family of isomorphisms for all (y, η, ϑ) ∈ T ∗Y × Rp \ 0 (where 0 means
(η, ϑ) = 0) and all λ ∈ Rl. This allows us the construction of a parameter-
dependent parametrix of (2.15) with parameter ϑ ∈ Rp, for every fixed λ ∈
Rl, where the left-over terms are Schwartz functions in ϑ ∈ Rp with values in
the space of smoothing operators of the edge calculus on M. This shows that
the operators (2.15) become invertible when |ϑ| is sufficiently large. Thus the
Fredholm operators (2.15) are of index 0 for all ϑ ∈ Rp and λ ∈ Rl. To show
that the operators are isomorphisms it is enough to check that the kernel is
trivial for all λ, ϑ. This can be done in a similar manner as in the last part
of the proof of Theorem 2.3. In fact, u ∈ ker(B∗(λ, ϑ)B(λ, ϑ)) shows that
u ∈ W∞,n

2
+s(M); this is contained in W0,n

2 (M). We have

0 = (B∗(λ, ϑ)B(λ, ϑ)u, u)L2(M) =
K∑
k=0

(Bk(λ, ϑ)u,Bk(λ, ϑ)u)L2(M)

which gives us (Bk(λ, ϑ)u,Bk(λ, ϑ)u)L2(M) = 0 for every k. Going back to
the original manning of the operators Bk(λ, ϑ), namely (2.13) or (2.14), we
see that, when we insert, for instance, λ = 0, ϑ = 0, j + |α| + |β| + |ι| = 0
or |δ|+ |ι| = 0, the functions ωVr

−su and ϕUu have a vanishing L2(M)-norm
for all V and U , and this gives us u ≡ 0.
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