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Abstract

We prove the existence of a class of local in time solutions, including static solu-
tions, of the Einstein–Euler system. This result is the relativistic generalisation of a
similar result for the Euler–Poisson system obtained by Gamblin [8]. As in his case
the initial data of the density do not have compact support but fall off at infinity in
an appropriate manner. An essential tool in our approach is the construction and
use of weighted Sobolev spaces of fractional order. Moreover, these new spaces allow
us to improve the regularity conditions for the solutions of evolution equations. The
details of this construction, the properties of these spaces and results on elliptic and
hyperbolic equations will be presented in a forthcoming article.

1 The initial value problem for the Euler–Einstein

system

We consider the Einstein-Euler system describing a relativistic self-gravitating perfect fluid.
The unknowns in the equations are functions of t and xa, where xa (a = 1, 2, 3) are
Cartesian coordinates of R3. The alternative notation x0 = t will also be used and Greek
indices will take the values 0, 1, 2, 3 in the following. The evolution of the gravitational
field is described by the Einstein equations

Gαβ = 8πTαβ (1)

where Gαβ is the Einstein tensor of the spacetime metric gαβ and Tαβ is the energy-
momentum tensor of the matter. In the case of a perfect fluid the latter takes the form

T αβ = (ε + p)uαuβ + pgαβ (2)
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where ε is the energy density, p is the pressure and uα is the four-velocity. The quantity
uα is required to satisfy the normalisation condition

gαβuαuβ = −1. (3)

The Euler equations describing the evolution of the fluid take the form

∇αT αβ = 0, (4)

To get a determined system of equations it is necessary to specify a relation between
ε and p (equation of state). The choice we make here is one which has been used for
astrophysical problems. It is an analogue of the well known polytropic equation of state of
the non-relativistic theory given by:

p = f(ε) = Kεγ K, γ ∈ R+ 1 < γ. (5)

The new matter variable w = M(ε) which is needed to regularise Euler equations even for
ε = 0, is given by the expression (10).
In this setting Rendall [16] proved a local in time existence theorem for initial data with
compact support for the density generalising a result obtained by Makino [12] for the non
relativistic Euler Poisson system. Rendall however worked with C∞ data and did therefore,
as well shall see below, restrict the equation of state.

1.1 The Einstein-Euler equations written as a symmetric hyper-
bolic system

The initial value problem for the Einstein-Euler system will be treated by writing the equa-
tions as a symmetric hyperbolic system in harmonic coordinates. The harmonic condition
is that

gαβgγδ(∂γgβδ − 1

2
∂δgβγ) = 0. (6)

When this condition is imposed the Einstein equations imply a system of quasilinear wave
equations. To get a symmetric hyperbolic system these are reduced to first order by
introducing auxiliary variables hαβγ = ∂γgαβ. They can then be written in the following
form

∂tgαβ = hαβ0

gab∂thγδa = gab∂ahγδ0

−g00∂thγδ0 = 2g0a∂ahγδ0 + gab∂ahγδb

+Cεζηκλµ
γδαβρσhεζηhκλµg

αβgρσ − 16πTγδ + 8πgρσTρσgγδ.

(7)

The Euler system ∇αTαβ = 0 is written as a symmetric hyperbolic by decomposing it into
two orthogonal components; the first one along uα is given by uβ∇νT

νβ and the second
one is the projection Pαβ∇νT

νβ on the rest space O orthogonal to the velocity vector uα,
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here Pαβ = gαβ + uαuβ. Since Pαβuβ = 0, the Euler equation (4) is transformed into the
system {

uν∇νε + (ε + p)∇νu
ν = 0

P ν
α∇νp + (ε + p)uνPαβ∇νu

β = 0
. (8)

The normalization condition (3) implies uβ∇νu
β = 0. So we add uνuβ∇νu

β to the first
row, 2uαuβ∇νu

β to the second one and we insert the equation of state (5), then the system
(8) is equivalent to

(
uν (ε + p)P ν

β
dp
dε

P ν
α (ε + p)uνΓαβ

)
∇ν

(
ε
uβ

)
=

(
0
0

)
, (9)

where Γαβ = gαβ +2uαuβ is positive definite. Finally, since we are dealing with a situation
in which the density vanishes, we have to regularise the system by introducing a new matter
variable, the Makino variable w = M(ε) of the form

w = M(ε) =

∫ ε

0

1

g

1

ε̃ + p

√
f ′(ε̃)dε̃ = ε

γ−1
2 , g =

ε

(ε + p)K̄
, K̄ =

γ − 1

2
√

Kγ
. (10)

These steps result in a system of the form
(

g2uν wP ν
β

wP ν
α Γαβuν

)
∇ν

(
w
uβ

)
= 0. (11)

Note that we have besides the above evolution equations a constraint equation for the
velocity uα, namely gαβuαuβ = −1. The evolution equations (7) and (11) form a uni-
form symmetric hyperbolic system, the Einstein–Euler system. Recall that a (uniform)
symmetric hyperbolic system is a system of differential equations of the form

L[U ] =
3∑

α=0

Aα(U ; x, t)∂αU + B(U ; x, t) = 0 (12)

with symmetric matrices Aα and for which the matrix A0 is uniformly positive definite.
Moreover the matrices Aα and B satisfy certain regularity conditions, which will be stated
in the local existence theorem below.
For the system introduced above we want to consider a initial value problem for which
the initial density falls of at infinity in an appropriate way. The Makino variable and the
way the matter variables appear in the Euler and in the Einstein equation provide us with
the following complication. The Einstein evolution equations (7) contain the term Tαβ as
given by (2), which is a function of ε, p and uα. The pressure p and the energy density
ε are connected via the equation of state (5). Therefore we have to estimate ε and p, in
the corresponding norm of our function spaces, by w, which is a algebraic function of ε as
given by equation (10). This estimate results in an algebraic relation between the order of
the functional space k and the coefficient γ of the equation of state 1 < γ ≤ 2+k

k
. We do
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not want to restrict γ but instead interpret this inequality as an restriction on k and since
we want also to improve the regularity conditions for the solutions of the Einstein Euler
system, we are naturally lead to consider weighted Sobolev spaces of fractional order.
Numerically investigations performed by Nilson and Uggla [14] suggest that static spheri-
cally solutions of the Einstein–Euler System correspond to values of γ between 1.2 < γ ≤
1.29949. Recently these results have been confirmed analytically by Uggla and Heinzle [9]
who also derived the fall of conditions of the density for r → ∞. The solutions given by
our existence theorem show such a fall off behaviour as we will discuss in more detail in
our forthcoming article [3]

2 New Functionspaces

The weighted Sobolev spaces of integer order below were introduced by Cantor [4] and
independently by Nirenberg and Walker [15]. For real δ and nonnegative integer k we
define the

(‖u‖∗k,δ

)2
=

∑

|α|≤k

∫
|〈x〉δ+|α|∂αu|2dx, (13)

where 〈x〉 = 1 + |x|.
The space Hs,k is the completion of C∞

0 (R3) under the norm (13). Triebel [17]extended
these spaces to a fractional order:

Definition 1 (Weighted fractional Sobolev spaces: double integral). For s ≥ 0
and −∞ < δ < ∞, the Sobolev weighted Space Hs,δ is defined as the completion of C∞

0 (R3)
under the norm

(‖u‖∗s,δ
)2

=





∑

|α|≤k

∫
|〈x〉δ+|α|∂αu|2dx, s = k

∑

|α|≤k

∫
|〈x〉δ+|α|∂αu|2dx

+
∑

|α|=k

∫ ∫ |〈x〉k+λ+δ∂αu(x)− 〈y〉k+λ+δ∂αu(y)|2
|x− y|3+2λ

dxdy





s = k + λ.

(14)
here k is a nonnegative integer and 0 < λ < 1.

This definition is a natural generalization of the norm (13). However, the double integral
causes many difficulties as one turns to prove certain properties (algebra, embedding act.)
of the space Hs,δ. Therefore we are looking for an equivalent norm.
Let Kj = {x : 2j−3 ≤ |x| ≤ 2j+2}, (j = 1, 2, ...) and K0 = {x : |x| ≤ 4}. Let {ψj}∞j=0

be a sequence of C∞
0 (R3) such that ψj(x) = 1 on Kj, supp(ψj) ⊂ ∪j+3

l=j−4Kl, for j ≥ 1,
supp(ψ0) ⊂ K0 ∪K1 and

|∂αψj(x)| ≤ Cα2−|α|j. (15)
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We denote by Hs the Bessel potential spaces with the norm (p = 2)

‖u‖2
Hs = c

∫
(1 + |ξ|2)s|û(ξ)|2dξ,

where û is the Fourier transform of u. Also, for a function f , fε(x) = f(εx).

Definition 2 (Weighted fractional Sobolev spaces: infinite sum of semi norms).
For s ≥ 0 and −∞ < δ < ∞,

(‖u‖Hs,δ

)2
=

∑
j

2( 3
2
+δ)2j‖(ψju)(2j)‖2

Hs . (16)

The space Hs,δ is the set of all temperate distributions with a finite norm given by (16).

The following lemma goes back to Triebel [17].

Lemma 1. The spaces Hs,δ of Definitions 1 and 2 are equivalent. Moreover

C1‖u‖Hs,δ
≤ ‖u‖∗s,δ ≤ C2‖u‖Hs,δ

(17)

where C1 and C2 depend on s and δ.

Note that the equivalence (17) implies that the norm (16) is independent of the sequence
{ψj} as long as it satisfies inequality (15).

Lemma 2. The spaces Hs,δ have the following properties:

1. (Algebra) For s1, s2 ≥ s, s1 + s2 > s + 3
2

and δ1 + δ2 ≥ δ − 3
2
,

‖uv‖Hs,δ
≤ C‖u‖Hs1,δ1

‖v‖Hs2,δ2
. (18)

2. (Compact embedding) For s′ < s and δ′ < δ the embedding Hs,δ ↪→ Hs′,δ′ is compact.

3. (Moser’s type estimates) Let F : R1 → R1 be C∞ such that F (0) = 0. Then

‖F (u)‖Hs,δ
≤ C(‖u‖L∞)‖u‖Hs,δ

. (19)

4. For 1 ≤ γ, s < γ + 1
2

and u ≥ 0,

‖uγ‖Hs,δ
≤ C(‖u‖L∞)‖u‖Hs,δ

. (20)

This inequality has been proven for the Hs spaces by Kateb [10].
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3 The principal result

Our principal results are the solution to the constraint equations and the evolution equa-
tions as given in the following two theorems.

Theorem 1 (Main result).

1. Solution of the constrains equations (32) and (33): Let 2 ≤ s and
−3

2
< δ < −1

2
. Given free initial data h̄ab − δab ∈ Hs,δ(R3), Āab

∗ ∈ Hs−1,δ+1(R3),
ȳ(ε) ∈ Hs−2,δ+2(R3), vb(uα) ∈ Hs−2,δ+2(R3). Then there exists an unique solu-
tion φ,Kab of the constraint equations (32) and (33) such that φ − 1 ∈ Hs,δ(R3),
Kab ∈ Hs−1,δ+1(R3).

2. Solution of the evolution equations (7) and (11): Let s, δ ∈ R, 7
2

< s <
2

γ−1
+ 3

2
, and −3

2
< δ < −1

2
. Given the solutions of the constraints (32) and (33),

assume moreover that ȳ(ε) ∈ Hs−1,δ+2(R3), vb(uα) ∈ Hs−1,δ+2(R3). Then there exists
a T > 0 and a unique solution U = (w, u0− 1, ua, gαβ) of the Einstein–Euler system,
with

gαβ − ηαβ ∈ C0([0, T ), Hs,δ(R3)) ∩ C1([0, T ), Hs−1,δ(R3))

w, u0 − 1, ua ∈ C0([0, T ), Hs−1,δ+2(R3)) ∩ C1([0, T ), Hs−2,δ+2(R3))

4 Strategy of the Proof

The proof consists of three parts: First we solve the elliptic constraints applying the
established methods introduced by Cantor [5], Christodoulou and O’Murchadha [7] for our
spaces. For details we refer to our forthcoming paper. We present these results here in
form of Theorems 3 and 4. The next step concerns the construction of the initial data for
the fluid equations: Starting with the initial data for the constrain equations, we construct
the initial data for the Euler equations by means of Theorem 2. The last step finally refers
to the local existence of the symmetric hyperbolic evolution equation given by Theorem 5.

5 The elliptic constraints

The solution of the Einstein equations coupled to matter fields is usually done in two steps.
Initial data for the Einstein equations cannot be given freely; there are constraint equations
intrinsic to the initial hypersurface which must be satisfied. So the first step is to construct
solutions of these constraints. The second step is then to solve the evolution equations (in
the present case the symmetric hyperbolic system just described) with these initial data.
To define the harmonic coordinates uniquely it is necessary to supplement the condition
(6) with some conditions on the initial hypersurface defined by the equation t = 0. The
standard choice is that on the initial hypersurface g00 = −1 and g0a = 0. To write down
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the constraint equations it is convenient to introduce the second fundamental form of the
initial surface. When the conditions just introduced hold this object is given by

−1

2
∂tgab = Kab. (21)

Let nα denote the unit normal to the hypersurface, δα
β + nαnβ the projection on it and

define

z = Tαβnαnβ, (22)

jα = (δα
γ + nαnγ)T

γβnβ. (23)

The vector jα is tangent to the initial surface and so can be identified with a vector ja

intrinsic to this surface. More explicit expressions for z and ja can be given using the
projection ūα = (δα

β + nαnβ)uβ of the velocity onto this surface. Then it can be identified
as follow:

z = ε(1 + gabū
aūb) + pgabū

aūb, (24)

ja = (ε + p)ūa(1 + gbcū
būc)1/2. (25)

If Rab denotes the Ricci tensor of the induced metric on the initial hypersurface, R = gabRab

is its scalar curvature and (3)∇ its associated covariant derivative, then

R−KabK
ab + (gabKab)

2 = 16πz, (26)
(3)∇bK

ab − (3)∇b(gbcKbc) = −8πja. (27)

We turn now to the conformal method which allows us to construct the solutions of the
constraint equations (26) and (27). Before entering into details we have to discuss the
relation between the initial data for the Einstein-Euler fluid system (11) and (7) and the
initial fluid data given by the solutions of constraint equations. As it turns out this relation
is by no means trivial, and indeed it will force us to modify the conformal method.

5.1 The compatibility problem of the initial data for the fluid
and the gravitational field

The matter initial data for the Einstein–Euler system are on the one hand w(ε) and uα

for the Euler equations (11). On the other hand z = F (w(ε), uα) and ja = H(w(ε), uα)
appear as sources in the constraint equations (26) and (27). There we have the possibility
of either to consider w and uα as the fundamental quantities and construct then z and ja

or, vice versa, to consider z and ja as the fundamental quantities and construct then w
and uα.
The first possibility does not work, because the geometric quantities which occur on the
left hand side of the constraint equations are supposed to scale with some power of φ.
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So z and ja, which are the sources in the constraint equations, must also scale with some
definite power of φ. If ε scaled with some power of φ then so would p. But in the expression
for z a sum of different powers of ε occurs. Thus the power with which p scaled would have
to be zero and ε would be left unchanged by the rescaling. Similarly it can be seen that ūa

would remain unchanged. So in fact z would be unchanged and this is inconsistent with
the scalings used in the conformal method.
Instead of constructing w, ua from z, ja it turns out that is more useful to introduce some
auxiliary quantities. So we start with

w = ε
γ−1

2 and y = z
γ−1

2 . (28)

Now we consider the following map

(w, ua) →
(

y,
ja

z

)
(29)

which is given by (30). As we will show below, this map is in fact C∞ and a local diffeor-

mophism if ‖j‖
z

< 1.

Theorem 2 (Reconstruction theorem for the initial data). Let Φ be the mapping
from R4 to R4 defined by

Φ(w, ūa) =

(
w[(1 + gabū

aūb) + Kw2gabū
aūb]

γ−1
2 ,

(1 + Kw2)(1 + gbcū
būc)

1
2 ūa

(1 + gbcūbūc) + Kw2gbcūaūb

)
(30)

Then under the dominate energy condition the map Φ is an C∞ diffeomorphism from a
closed half-space of R4 onto the region G = {(y, xa) : 0 ≤ y, δabx

axb < 1}. Here K is the
constant of the state equation (5).

It can be seen immediately that Φ is a C∞ map. The rest of the proof is based Hadamard’s
Lemma which asserts that a map f : X → Y between simply connected manifolds X and
Y which is C∞, proper and locally one to one, is a global bijection. For details we refer to
[3].

5.2 The existence of solutions for the constraint equations

This method has been discussed in detail in the literature, see for example [2], [6], [5] [7]
and reference therein. So we will just briefly outline the procedure with the necessary
modifications we have to perform.
Parts of the data (the so-called free data) are chosen, and the constraints imply four elliptic
equations for the remaining parts.
The free initial data are: (

h̄ab, Ā
ab
∗ , ȳ, v̄b

)
. (31)

where vb = jb

z
and y is given by (28). Here we have performed a conformal transformation

of the metric: hab = φ4h̄ab.
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We assume the maximal slice condition for Kab, that is habKab = 0.
Let Āab

∗ be any smooth symmetric tensor which has zero trace with respect to h̄ab. We are
looking for solutions using Āab = Āab

∗ + D̄aW b + D̄bW a − 2
3
h̄abD̄kW

k and Kab = φ−10Āab.
Furthermore we have y = φ4(γ−1)ȳ va = φ−2v̄a. The transformed constraints are to be
solved for the scalar function φ and the vector field W b

∆̄φ− 1

8
R̄φ +

1

8

(
ĀabĀ

ab
)
φ−7 = −2φ−3ȳ, (32)

(∆LW )b = v̄b, (33)

where (∆LW )b =
(
∆̄W

)b
+ 1

3
D̄b

(
D̄aW

a
)

+ R̄b
aW

a, here ∆̄ denotes the Laplace–Beltrami
operator with respect to the metric h̄.
Once the solution

(
φ,W b

)
are constructed the full initial data can be obtained by inverting

the above process.
In order to obtain such a solution

(
φ,W b

)
, we proceed as follows: First, for given ȳ ∈

Hs−2,δ+2, we know by the extended Katab result as given in Lemma 2 that z̄ ∈ Hs−2,δ+2,
moreover by assumption we have v̄b ∈ Hs−2,δ+2 and by the multiplication property 2, we
conclude that jb ∈ Hs−2,δ+2.
Therefore the momentum constraint (33) is solved for W b using Theorem 4 which results
in W b ∈ Hs,δ.
Secondly using W b and the free initial data Aab

∗ , Aab is constructed using the composition
mentioned above. Finally with z and Aab given the Lichnerowicz equation (32) is solved
for φ, see Theorem 3.
We summarise the results in the following theorems:

Theorem 3 (Existence and uniqueness for the solutions of the Lichnerowicz
equation). Let 2 ≤ s, −3

2
< δ < −1

2
and h̄ be a Riemann metric and Āab be a tensor

field in R3 such that h̄ab − δab ∈ Hs,δ(R3) and Āab ∈ Hs−1,δ+1 Let ȳ ∈ Hs−2,δ+2. Then
there exists a unique solution φ of the equation (32) such that φ− 1 ∈ Hs,δ.

Theorem 4 (Existence and uniqueness of solutions for the York equation). Let
2 ≤ s, −3

2
< δ < −1

2
and v̄b ∈ Hs−2,δ+2. Then there exists a unique solution W b ∈ Hs,δ of

equation (33), where (∆LW )b :=
(
∆̄W

)b
+ 1

3
D̄b

(
D̄aW

a
)

+ R̄b
aW

a.

Remark 1. During our work we found out that D. Maxwell [13] studied the vacuum Ein-
stein constraint equations using fractional weighted Sobolev spaces. He obtained solutions
for the constrain equations under the condition 3

2
< s, improving earlier result obtained

by Bartnik [1]. We recall that our principal motivation is to adjust the regularity of the
solution to the Einstein-Euler system (1), (2) and (4) for each parameter γ of the state
equation (5).
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6 Symmetric hyperbolic systems and local existence

theorems

A principal tool is the following existence theorem which is a generalisation of the well
known existence theorem for the Hs spaces, see for example [11], [?], [?].

Theorem 5 (Local existence for quasilinear symmetric–hyperbolic systems).
Let A0, Ak ∈ C∞(R3 × R;Rl×l), B ∈ C∞(R3 × R;Rl×l) be coefficients which define the
quasilinear symmetric–hyperbolic system

A0
αβ(U ; x, t)

∂Uβ

∂t
+

3∑

k=1

Ak
αβ(U, x, t)

∂Uβ

∂xk
+ Bαβ(U ; x, t) = 0. (34)

Let U(x, 0) ∈ Hs,δ(R3) and let the initial conditions be chosen such that the condition

CδαβUαUβ ≤ A0
αβUαUβ ≤ C−1δαβUαUβ, C ∈ R+ (35)

is satisfied. Let 5
2

< s and −3
2
≤ δ.

Then there exists a T > 0 which depends on the Hs,δ norm of the initial data and there
exists a unique solution

U(x, t) ∈ C0 ([0, T ), Hs,δ) ∩ C1 ([0, T ), Hs−1,δ) . (36)

Again for a proof of this theorem we refer to [3].
The C∞ differentiability condition can be weakened by CN where N depends on s.
In order to obtain the final result, Theorem 1, we take the initial data of the gravitational
field, as given by Theorems 3 and 4, and the initial data for the fluid equations as given
by the reconstruction Theorem 2 and apply the above existence theorem. Note that in our
main result we have demanded a bound from above on the differentiability on the initial
data namely 7

2
< s < 2

γ−1
+3

2
. The reason for this is that w which appears in the evolution

equations (11) is a function of ε in (28).
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